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Abstract—The rapidly evolving scene of emerging workloads
poses a challenge to the High Performance Computing com-
munity in terms of communication and I/O. Significant im-
provements are required to keep up with the demand of high
rate of data transfers, streaming services, and scientific research
that deal with extremely large quantities of data, which may
impede a system’s performance. Networking is a key area
that plays a major role in accelerating data transfers within
HPC facilities. Though significant research efforts have targeted
I/O optimization for storage systems, network optimization to
improve the overall storage system performance has been rather
overlooked by the research community. In this position paper,
we aim to bridge the gap between networks and storage system
optimization towards the common goal of accelerating HPC I/O
and communication by revealing the various ways in which
previously done network optimization research can be applied
to improve I/O performance for data-intensive applications.
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I. INTRODUCTION

I/O performance, which typically provides a measure for

an application’s read and write throughput, is one of the

most important factors that determines the merit of a High

Performance Computing (HPC) system and its usability. Ap-

plications, banking on HPC storage systems to reserve and

process a large collection of data, from the fields of scientific

research, social media, industries, etc, are expected to deliver

fast reads, writes and easy access to data on demand. An

important component of a distributed file system is its net-

work that drives data transfers, internode communication and

client-to-server communication. For data-intensive computing,

network is a pivotal element that can affect the performance as

significant overhead may be incurred during interprocess com-

munications. With the increasing rate of data generation today,

it is imperative that existing HPC systems adapt themselves

to these applications’ I/O requirements to stay relevant.

The last decade has witnessed a massive upsurge in the

amount of data being generated and consumed by modern

applications. It is expected that this trend will continue to grow
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and the rate of data generation will increase exponentially with

more and more data intensive applications being embraced.

Some of the major areas that will require super fast data access

are data centers, scientific research workflows, data analytics,

machine learning, Internet of Things, and content streaming

platforms such as Netflix and Hulu. Distributed storage sys-

tems have been used in HPC to accelerate the processing

of data-intensive applications. However, major upgrades are

required to be made to the existing HPC storage designs in

order for them to be able to keep up with the demands of fast

and easy data transfers that these applications require or they

are bound to be bottlenecked by the system I/O performance.

In this paper, we identify several works that address the

problem of network optimization for the sake of improving

system performance. However, work addressing the direct

relationship between network optimization on distributed stor-

age systems for I/O boost seems insufficient in the research

community. Performance optimization for distributed storage

systems has been traditionally tackled by scaling up the HPC

system in use (number of nodes, number of cores, RAM, etc.)

In this paper, we identify key research papers in the field of

network optimization and argue how their ideas can be applied

towards performance optimization for distributed storage sys-

tems in HPC facilities. We also consider works that leverage

network components as key parameters for throughput im-

provement on distributed storage systems. For this exercise, we

have gone through recent research papers published between

2015-2021 and labelled them with the corresponding areas of

network research they pertain to using the ACM classification

tree labels. Then we analyze the papers to evaluate how

network research can impact storage research. We hope to

provide insights to the HPC community about how closely

these two research areas are related and may work together

towards the goal of performance optimization for HPC systems

running data-intensive workloads.

II. BACKGROUND AND RELATED WORK

Data-intensive science is considered to be the fourth pillar

of science and complements the three interrelated paradigms

of empirical, theoretical, and computational science. It is

seen as a data-driven, exploration-centered style of science,

where IT infrastructures and software tools are heavily used

to help scientists manage, analyze, and share data. Large-scale

scientific HPC workloads are increasingly data-intensive and
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Fig. 1: An architectural overview of different network components. The diverse range spans IoT devices and networks, geo-

distributed data centers and HPC facilities, access points equipped with edge equipment, and the larger internet.

put excessive pressure on the interconnection network, which

is the backbone for both communication and parallel I/O.

An end-to-end data transfer involves at least three ma-

jor components: a high-performance storage system, a high-

performance network, and the software to tie it all together.

Figure 1 provides an overview of different network compo-

nents and communication networks, and their interconnection.

The Internet of Things (IoT) describes physical objects that are

embedded with sensors, processing ability, software, and other

technologies, and that connect and exchange data with other

devices and systems over the Internet or other communications

networks. The diverse range of IoT devices and networks

connect to the access points, possibly equipped with edge

computing resources and routers, which can communicate

amongst themselves and to the larger Internet. Geo-distributed

data centers, HPC facilities, and cloud resources provide

another source of high-performance compute capabilities for

data-intensive science. Due to the increasing diversity of

devices, networks, and services, it is only natural conclusion

to combine the research efforts of the network and parallel I/O

communities since they are two sides of the same coin.

As a recent I/O behavior analysis of a year’s worth of I/O

activity [1] has shown, HPC is no longer solely limited to tradi-

tional simulation and modeling workloads, which are typically

write-intensive and bursty. Emerging HPC workloads now also

include big data analytics [2], [3], machine learning, deep

learning [4], high-throughput applications, and data-intensive

workflows [5], [6]. These workloads exhibit largely different

kinds of I/O patterns than the traditional simulation-based

workloads resulting in highly random small file accesses,

or non-sequential, metadata-intensive, and small-transaction

reads and writes that ultimately are translated into network

requests and therefore stress the underlying network.

However, only a few research papers have addressed the gap

between network and parallel file system research. Previous

work by Tsiftes et al. [7] has introduced the Coffee file system,

which provides a programming interface for building efficient

and portable storage abstractions for flash-based sensor net-

works. Their work shows that network layer components such

as routing tables and packet queues can be implemented on

top of Coffee, leading to increased performance and reduced

memory requirements for routing and transport protocols.

Ezell et al. [8] present an approach to optimize the I/O

router placement and introduce fine-grained routing to ensure

that Lustre clients are paired with the closest I/O router for

communication with the parallel file system to minimize end-

to-end hop counts and network congestion. Mills et al. [9] try

to identify the optimal data transfer parameters for performing

parallel genomics data transfers by optimizing the interface

between parallel file systems and advanced research networks.

And finally, Neuwirth [10] looks into accelerating network

communication and I/O, but considers both research areas

separately. To the best of the authors’ knowledge, this is one of

the first papers that attempts to align the network and parallel

I/O and storage system research, which makes this a timely

and valuable contribution to both research communities.

III. SURVEY TECHNIQUES

In this position paper, we follow different guidelines [11],

[12] for undertaking a brief methodical survey that focuses

on the identification of network optimization research that

can also be leveraged to enhance the storage system designs

in HPC. We focus on articles published between 2015 and

2021. The goal is to reveal the applicability of these research

works for performance optimization of data-intensive science

applications and their emerging workloads.
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Fig. 2: Network research classification derived from the ACM Computing Classification System.

We use the ACM Computing Classification System (CCS) to

identify relevant network research subcategories and identify

search keywords. First, we narrow down the network research

areas that are most appropriate for our goal and traverse

through the child branches under each parent branch that fall

under the Networks research label of interest. Next, we search

the ACM library and used a brute force method on Google

Scholar to identify pertinent research work not listed by ACM.

The final set of labels used to categorize the selected papers

is depicted in Figure 2. Note that a single publication can be

categorized under multiple labels.

We apply a variety of combinations of search keywords,

including: Network Optimization, HPC Storage Systems, Data

centers, Storage Area Network, IoT network, Edge, I/O op-

timization and Data-intensive applications/workloads. Finally,

we identify 17 research articles, each with at least one potential

design of significance for network integrated HPC storage

system I/O throughput increment in emerging workloads that

pertain to data intensive applications.

IV. NETWORK AND I/O RESEARCH

As introduced in Section III, a subset of the ACM network

classification is used to group publications on network opti-

mization. Following Figure 2, we describe the optimization

techniques for each network classification and estimate how

they can be applied to parallel I/O optimization research

dealing with data-intensive workloads.

A. Network Types

1) Data Center Networks: Data centers are critical com-

ponents for hosting large-scale storage devices with extremely

large amounts of data, and find application in big data science,

data-intensive applications like Facebook, and Google, and

over-the-top (OTT) platforms such as Netflix and HBO Max.

Data centers are not always limited to a specific location

and may be geographically distributed. As such, high storage

I/O and data transmission rates are very critical to their

smooth functionality and usability. CliqueMap [13] is a hybrid

RMA/RPC (remote memory access/remote procedure call)

caching system used at the Google Data Center for three years

at the time of publication, which highlights the I/O benefits

data centers can receive from careful distribution of work

between RPC and RMA across data plane, control plane, and

management operations, while optimizing the CPU overhead.

This observation will be beneficial to data streaming applica-

tions where the number of read operations supersede write op-

erations. Chameleon [14] increases the network utilization of

data centers by reallocating resources at the edges of multiple

geo-distributed data centers. Such network optimization can

also be used to improve data transmission rates across various

distributed storage systems that deal with multiple scientific

datasets to aid collaborative efforts among scientists located

at different parts of the world.

2) Cyber Physical Networks: The field of Cyber-Physical

systems is interdisciplinary in nature and is a combination

of computational, network and physical processes. It provides

the foundation for IoT technology and for this paper, we will

limit the scope of Cyber-Physical systems to the context of

the same. Borah et al. [15] use a game theoretic approach

for context-based routing for oppNets, to identify the best

next-hop to forward data packets efficiently. It is based on

the context information, encounter index, and distance of the

corresponding node from the destination. This is designed for

opportunistic IoT and will also greatly help in reducing latency

related issues in I/O bound real-time data analysis problems.

3) Storage Area Network: Storage Area Networks (SAN)

form the backbone of any large-scale HPC or data center I/O

infrastructure by helping connect storage devices to storage

servers. BlueDBM [16] incentivises the usage of distributed

flash storage as a low cost and energy efficient alternative to

DRAM to boost storage I/O for complex big data applications

requiring random non-sequential memory accesses. To account

for overheads caused due to network latency, BlueDBM is

designed with its own in-store processors, integrated network

routers and flash controllers. The design may also find appli-

cation in local data centers.

BAShuffler [17] is an application level bandwidth-aware

shuffle scheduler that tries to maximize the overall network

utilization on a cluster. BAShuffler increases network utiliza-

tion even in a heterogeneous network infrastructure with nodes

displaying varying uplink and downlink bandwidth capacities.

It exploits the available bandwidth from the available nodes

in the cluster and increases the network utilization by incre-

menting the shuffle throughput, thereby increasing the overall

cluster performance. Thus, BAShuffler can find applications

in any HPC storage setup to leverage the full potential of



the network resources and optimize I/O for increasingly data

intensive workloads, such as, big data analytics.

SANs also benefit from the implementation of Software

Defined Networking (SDN). Ceph [18] is a distributed ob-

ject storage system that increases fault tolerance by creating

two replicas of each object across its Object Storage Dae-

mons (OSD) driven by its CRUSH algorithm [19]. Wu et

al. [20] propose the use of SDN to detect network status

and load of an OSD node, and use those values to select

storage nodes for incoming objects that by default relies only

on the OSD node storage capacity. This approach increases

the read performance of a cluster significantly which is useful

within distributed storage facilities that serve read intensive

workloads like content streaming platforms (for example,

Netflix) demanding very high throughput. It also opens up

the possibility of integrating SDNs into distributed storage

architectures and exploring their benefits towards parallel I/O.

B. Network Components – Intermediate Nodes

Network optimization on intermediate nodes is very benefi-

cial in optimizing I/O on storage systems based on hierarchical

structure (i.e., Lustre [21]). Argo [22] – a user space distributed

shared memory system built atop MPI, proposes a novel cache

coherence protocol that mitigates the latency produced due to

communications between distant nodes. It maximizes localized

decision making process facilitating faster synchronization

between nodes. Argo does not use message handlers and

delegates associated operations to RMA by requesting nodes.

The work is preliminary and the full potential of Argo is

yet untapped. It will be interesting to see the applicability of

such a system on large-scale HPC centers. NICE (network-

integrated cluster-efficient) [23] proposes a novel way of

reducing network latency during request routing in a storage

system through the implementation of a ring of virtual storage

nodes over the traditional ring model of physical storage nodes

in a Network Oblivious (NOOB) Storage system architec-

ture. This approach leverages SDN for node virtualization.

NICE uses the virtual storage nodes’ IP while hashing an

access request from the client and then maps the selected

virtual node’s IP address to the physical node’s IP address

with the help of the storage system’s metadata service. The

network packets are routed directly to the IP address of

the physical storage nodes, foregoing the additional network

hops between physical storage servers and thus reducing the

overall network latency. Focusing on key-value storage system,

this architecture is deployed on the prototype storage system

NICEKV, which shows significant get/put performance boost

and a reduced network latency. As the industry shows a

growing trend to incorporate SDN for network management,

the results promise a much needed performance boost in most

deployments of HPC storage clusters that include data centers

and edge computing.

C. Network Architecture

1) Network Design Principles: Fog computing in IoT tries

to reduce the network latency during communication between

IoT end devices and data center storage by scheduling IoT

tasks to nearby edge devices within one hop distance. He

et al. [24] address the lack of research into how multiple

fog topologies influence the over cost in terms of average

number of hops by proposing, implementing and evaluating

two Integer Linear Programming (ILP) models on star and

ring fog topologies on real time and mobile IoT tasks. The

approach is tested on an iCloudFog (integrated cloud and fog

framework) framework which shows that the star topology

outperforms fully connected mesh topology, and ring topology

costs can theoretically increase with increasing system com-

plexity when compared to fully connected mesh topology. For

emerging data-intensive workloads, fog computing will play

a part between HPC system storage and IoT devices where

these ILP models could be used to determine the optimal fog

topology.

2) Programming Interfaces: A consistent bandwidth is ex-

tremely important for a quality user experience in the case

of data-intensive applications like video gaming and content

streaming platforms. As such, a dynamic self-driving network

interface that can capture the application behavior and regulate

the network bandwidth by intelligently reallocating available

resources during application run, as proposed by Madanapalli

et al. [25], can be a great breakthrough. Such self-driving

network interfaces will also find application for data-intensive

scientific workloads streaming between storage systems that

see a high network concurrency, by setting application-specific

priority and assisting and de-assisting the application based on

a certain threshold. PacketMill [26] introduces a method for

software packet metadata management and code optimizations

pushing for maximum utilization of underlying commodity

hardware. It increases throughput and reduces latency for non-

trivial packet processing at 100GBps using one core. IoT

applications that require a continues to/from flow of data

from cloud through edge routers will benefit from such packet

metadata management and network hardware optimizations.

D. Network Services

1) Network Management: Mill et al. [9] suggest an equa-

tion that leverages the Bandwidth-Delay-Product to predict

the optimal TCP socket buffer size and the number of TCP

streams for data transmission. The bandwidth-delay-product is

computed as the product of the amount of data in flight and

RTT (roundtrip delay time). The equation can be represented

as: BDP ≤ buffer × streams. However, the equation does not

take into account network losses. To mitigate this limitation,

the authors suggest that a higher number of streams can be

used versus increasing the socket buffer size as a larger number

of streams is more favourable for quicker recovery in case

of loss. This equation will be useful as SDNs, which can

dynamically adapt network parameters, find more and more

applications in HPC facilities.

2) Network Monitoring: Cloud computing companies that

provide services to multiple businesses rely on shared comput-

ing resources that result in high network traffic concurrency.

It can be observed that heavy hitter flows from certain tenants



using the shared services may lead to contention in intermedi-

ate nodes that serve as load balancers, and cloud gateways. As

such, it may significantly degrade the expected performance

of the other tenants. Song et al. [27] note that widely deployed

x86 boxes as intermediate nodes that use flow based hashing

to load balance the packets received among available cores,

may suffer from CPU overload from heavy hitter applications

in cases where traffic from heavy hitter applications are hashed

to the same CPU cores. The authors propose a cloudscale

per-flow backpressure system designed in Alibaba Cloud

that involves an FPGA(Field-programmable gate array)-based

heavy hitter flow detection when CPU utilization has crossed

a threshold and then conduct backpressuring the heavy hitter

flows to the traffic source – this is done by the intermediate

node through sending a notification packet to the traffic source

and conducting heavy hitter rate, therefore limiting by adding

corresponding meter table entries on the virtual switch (VS) of

the packet sender. It is evaluated that an FPGA accelerated VS

can positively influence the packet processing rate by 5 times,

halve network latency and double traffic throughput compared

to a software virtual switch. Researchers may leverage this to

improve shared HPC storage performance by reducing CPU

contention and maintain expected I/O throughput for all users.

This is relevant for a shared facility where certain applications

may generate unheralded high bursts of data which may

negatively impact other applications.

3) Location Based Services: High speed data transfers are

critical for data-intensive scientific applications. Mills et al. [9]

focus on the optimization of the network configuration to

produce higher bandwidth for genomics data transfers between

two geographically distributed HPC storage clusters connected

over a CloudLab testbed using Internet2 and SDN. They

investigate the usage of GripFTP with multiple parallel file

systems, namely BeeGFS, OrangeFS, GlusterFS and Ceph in

association with Infiniband and TCP. For streaming a single

file of 834GB, it is evaluated that the best data transmission

performance was found in BeeGFS with 4-8 nodes connected

by InfiniBand over GridFTP using at least 5 parallel TCP

streams with a 16 MiB TCP socket buffer size. Storage clusters

using BeeGFS as the PFS can use this configuration for

comparable file sizes within other scientific fields that require

large data transmission from remote facilities to accelerate the

availability of data to geo-distributed scientists.

E. Network Properties

1) Network Manageability: Intermittent network changes

during maintenance in a production data center deployment

can affect the overall I/O as the network utilization is reduced,

which in turn may affect user QoS and incur high cost in

dynamic network traffic conditions. Though most providers

fall back on MRC based planning to maximize the residual

network, it is a costly undertaking especially under dynamic

network conditions. Janus [28] operates at less cost and

optimally plans for maximizing network throughput under

reduced network capacity taking advantage of the high degree

of symmetry in data center networks. Operating principles of

Janus include finding blocks of equivalent switches, finding

equivalent sub plans, scaling cost estimation and accounting

for failures. Evaluation on large-scale Clos and Facebook

traffic show that Janus generates plans in real time and incurs

33 to 70 percent of the cost compared to SoA and can adapt to

varying network change policies like different cost functions

and deadlines. We believe Janus’ potential can be applied to

different kind of applications and storage centers that host

heterogeneous workloads such as IoT data and streaming data

during network downtime.

2) Network Structure: Revisiting BlueDBM [16], we can

learn from its low latency high bandwidth transport layer

network infrastructure to support its storage controller net-

work. In the packet switching mesh network of BlueDBM,

each storage device in the cluster is connected with serial

links that form a separate network among themselves, each

of them having multiple network ports that can route packets

across the network without a separate router/switch. For inter

storage device network traffic, this structure removes the

overhead of going to the host software to access individual

storage devices, hence boosting I/O. The multi-port structure

of BlueDBM also creates an environment that can support

multiple network topologies by only changing the physical

cable links between devices while the routing is dynamically

updated by the software component. Further, each endpoint

is given the choice of maintaining end-flow-control or doing

away with it to reduce latency. It is a trade off that can pay

off in terms of higher I/O performance. Similarly, integrated

network with storage devices can be implemented in large-

scale computing facilities that require faster data access like

in data analytics.

F. Network Performance Evaluation – Analysis

Network Traffic Classification (NTC) will play an important

role in the growing landscape of diverse network traffic for

network planning, network behavior analysis, and network

management. With the evolution of applications that arouse

high internet traffic, NTC will provide insight into network

patterns and can be instrumental in understanding, classifying

and dynamically adjusting to the volume, variety and velocity

of variable network traffic generated, especially in a shared

resource setup.

Shahraki et al. [29] address the challenges imposed by

the three popular methods (port-based, pay-load based and

statistical modelling based using one or ML models) used for

NTC. The paper [29] suggests port-based methods are not

the optimal solution as the industry adapts to new protocols

and pay-load based methods are not suitable when it comes

to encrypted traffic and avoiding heavy overheads. Statistical

models in NTC are restricted to basic ML models so far.

They propose a deep learning based method to classify the

network traffic in communication systems and networks us-

ing a combination of multiple convolutional neural networks

(CNN) to build an ensemble of classifiers. The outputs from

these models are combined to generate a final prediction with

an average accuracy of 98 percent on the Cambridge Internet



Traffic dataset. We estimate that this model can be applied to

data-intensive applications generating erratic network traffic

patterns like in IoT, shared high performance computing

facilities for scientific research and other evolving workloads

that rely on SDNs to boost storage system performance by

efficiently analyzing the network utilization and dynamically

adjusting the networking parameters for maximum I/O.

V. KEY INSIGHTS AND RESEARCH CHALLENGES

Through this exercise, we get an insight on how closely re-

lated network and storage systems are in the HPC architecture

for the purpose of I/O optimization. Network optimizations

and the application of appropriate network configurations can

affect many layers of distributed storage functionality that

leads to overall performance boost of the system. Further,

with the continuously upgrading workload characteristics and

demand of fast, on-demand and real time data accesses

from various sectors, I/O throughput becomes one of the

key components in judging the feasibility of any system for

data intensive applications. As CPU performance scaling has

slowed down and almost reached its cap, the HPC community

can pour more attention towards research on this topic to

accelerate system performance. Software defined networks are

very interesting and a viable option for implementation in

storage system architectures, data centers, and edge routers

due to their potential of dynamically adjusting to changing

network characteristics and workloads.

The findings of Madanapalli et al. [25] suggest another

choice for configuring the network based on the relationship

between BDP, number of TCP streams and TCP socket buffer

size to optimize throughput for large data transmission in geo-

distributed data centers. Given the expected rise in the number

data intensive IoT applications in the near future, we anticipate

network load balancing and utilization paradigms will be

major drivers towards avoiding network congestion, reducing

latency and maintaining the expected quality of service for

end users. The HPC community may explore how network

load balancers and resource managers can be integrated into

large-scale storage system designs that reduce latency due

to a large number of internode communications during an

application run, and boost the I/O performance for data-

intensive applications. However, many of these undertakings

may require major system design changes, which are complex

and time consuming.

Another challenge will be to determine the best design

approach for non-homogeneous workloads hosted on a single

HPC storage cluster. Further research is necessary to find

the optimal approach that takes into account the networking

challenges posed by new and emerging workloads and how

they affect the storage system throughput.

VI. CONCLUSION

This position paper presents a snapshot of the recent

network research landscape targeting data-intensive science

applications from a network perspective and identifies possible

synergy effects between network and parallel file and storage

system research. We hope that the identified key insights and

research challenges will benefit the software and hardware

environment needed to serve data-intensive application archi-

tectures from both the network and parallel I/O perspective.
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