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Abstract

Most of the previous studies on the well-known Gray-Scott model view it as an irreversible chemical
reaction system. In this paper, we derive a four-species reaction-diffusion system using the energetic vari-
ational approach based on the law of mass action. This is a reversible Gray-Scott type model, which has
a natural entropy structure. We establish the local well-posedness of this system, and justify the limit to
the corresponding irreversible Gray-Scott type system as some backward coefficients tend to zero. Fur-
thermore, under some smallness assumption on the initial data, we obtain the global-in-time existence of
classical solution of the reversible system.
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1. Introduction

The research of reaction-diffusion systems has been an active field, especially since Tur-
ing developed morphogenesis and instability theory for reaction—diffusion systems in [42,54].
The dynamic instability of the reaction and transport processes can lead to pattern formation
and periodic oscillations. The pattern dynamics has been extensively studied from the view-
points of mathematics and experiments [25,44,45,48]. These geometrical structures consist of
stripes and/or dots, often known as dissipative structures. Moreover, Prigogine et al. proposed
the concept of the dissipative structures in the framework of the non-equilibrium thermodynam-
ics [29,43].

In the present paper, we study the following reversible reaction-diffusion system involving
four chemical species:

u; =dy,Au —k?‘uvz—i—kl_v3 —k(")"u+k0_q,
vy :dvAv—i—kauvz—kfv3 —k;v—i—k;p,
ptzdpAp—i—k;rv—k;p,
qtquAq+kgu—kO_q.

(Re-GS)

The unknowns (u, v, p, g) are molecular concentrations of reactants (or products) U, V, P and
Q, depending on the time 7 > 0 and the spatial position x € Q& C R3. The positive constants d,’s
with « = u, v, p, g are diffusion coefficients of the corresponding species. Mathematically, the
system (Re-GS) is a nonlinear parabolic system, which describes the evolution of the molecular
concentrations with the following chemical reaction schemes:

k+ k+ k+
1 2 0

U+2V =3V, V=P, U= 0, (1.1)
ky ky ko

where k,.i with i =0, 1, 2 are the forward and backward rate coefficients of the i-th reaction. It
is assumed that the chemical rates obey the so-called law of mass action (LMA) in the chemical
kinetics theory, which indicates that, the rate of a reaction process is proportional to the concen-
trations of the reactants. Therefore, denoting by r; (i =0, 1, 2) the total rates for the above three
reactions, it follows,

ri=kfu? —k;vd, n=kfv—kyp, ro=kiu—kyq. (1.2)

The system (Re-GS) can be viewed as a generalization of the classical, irreversible Gray-
Scott model [17,18], which arises originally from the study of cubic auto-catalytic reactions in
a continuously flowing, well-stirred gel reactor. Gray-Scott model is governed by the following
irreversible system:

uy =dy,Au — ki"uv2 +a(l —u),
+ .2 _ 1+ (1.3)
vy =dyAv +k"uv® —kyv.
This system is centered on a cubic auto-catalysis reaction, with the catalyst species V decays
slowly to an inert product P. The Gray-Scott system (1.3) corresponds to the chemical reaction

schemes:
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kf K o
Uu+2v—3v, Vv—-P U— Q. 1.4

The coefficient « is also the rate of the process that feeds U. Comparing to the chemical reactions
(1.1), the reactions in classical Gray-Scott model (1.4) are irreversible.

The four species reversible Gray-Scott type reaction-diffusion system (Re-GS) bears some
apparent similarities to the original, irreversible Gray-Scott system. We expect fruitful analytical
properties of the solutions to (Re-GS). The first step of the analytical study is to establish the well-
posedness of the system (Re-GS) in different domains (bounded domain with proper boundary
conditions, periodic domain, or whole space) and in different framework of solutions (weak or
classical solutions). Furthermore, it is interesting to justify the relation between the reversible
Gray-Scott system (Re-GS) and the irreversible Gray-Scott system (1.3).

A motivation of studying the reversible Gray-Scott system (Re-GS) instead of the original
Gray-Scott system (1.3) is that the reversible system possesses an energy (entropy) structure.
Indeed, the four-species reversible Gray-Scott-like system (Re-GS) can be derived from the fol-
lowing entropy-entropy production law:

d
af[u(ln%—1)+v(ln%—1)+p(ln%—1)+q(ln%—1)] dx
Q

+/(”f7“|Vu|2+d7v|vu|2+%leler"q—"qulz) dx (1.5)
Q

ku

kv

+ +
+ [(kgu —kyq)In ’;g_—q + (kFuv? — ko) In L 4+ (v — k3 p)In ’;j_—p} dx

=0,

ing the detailed balance condition, see (1.15) below. The relation (1.5) will be also referred as
the basic energy-dissipation law in following contexts. The derivation process will be given in
section 2, by using the energetic variational approach (EnVarA). We emphasize here that besides
the reversible Gray-Scott system (Re-GS) is derived from the point view of energetic variation,
so should be its boundary condition in the bounded domain (see [37]). Analytically, the entropy-
entropy production law (1.5) leads to a natural a priori estimate of the system (Re-GS). However,
the estimate (1.5) is not enough to obtain the compactness of the weak solutions, which is unlike
the incompressible Navier-Stokes equations. For simplicity, in this paper, we consider the classi-
cal solutions of (Re-GS) in torus or whole space. We leave the harder global weak solutions and
the boundary condition issues to the future study.

Furthermore, we also will establish a reversible-irreversible limit from the four species re-
versible Gray-Scott-like system to an irreversible Gray-Scott-like system as some of backward
rate coefficients k| and k, go to zero simultaneously. Again, we work in the classical solutions
in the torus or whole space.

1.1. Gray-Scott model: review of mathematical studies

The Gray-Scott model is of great importance since it describes several experimentally ob-
servable autocatalytic reactions such as chloride-iodide-malonic acid reaction, arsenite-iodate
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reaction, and some enzyme reactions in biochemistry and biology. In particular, its complex pat-
tern formation behavior associated to various range of parameters attracts many attentions of
researchers from different disciplines. The self-replicating pulses and spots were firstly stud-
ied numerically by Pearson in [48], see also [33,51]. Doelman-Kaper-Zegeling [8] constructed
rigorously single and multiple pulse solutions, and later the stability was studied in [7]. Hale-
Peletier-Troy [20,21] studied the existence and stability issues in the equal diffusivities case of
dy = d,. Concerning the weak interaction regime in which both of d,,, d, < 1 are in the same
order, a skeleton structure of self-replicating dynamic and spatio-temporal chaos are analyzed in
Nishiura-Ueyama [44,45]. On the other hand, there are many researches on other types of pat-
terns such as spike, stripe, ring and so on. For instance, existence, stability and pulse-splitting
behavior are studied in Wei [57,58] and his collaborated works [30,59], based on the so-called
semi-strong interaction regime where small diffusivity ratio d, < d,, = O(1) is assumed. Be-
sides, some general models are introduced and studied in [22,32] in dimensions one and two,
concerning a general auto-catalytic scheme U +mV — (m 4+ 1)V, V — P with reaction rates
uv™ and v" (assuming m > n > 1). Later the traveling wave solutions are studied for the general
order model in the case of that without feeding, see [3,4,63]. More researches on other related
models and topics can be found, for instance, in [16,19,26,27,49,50,52,60] and references therein.

Chemical reactions in reality are reversible processes [12]. However, there are only a few
researches in this direction, to the best of our knowledge. As a modification of the original ir-
reversible Gray-Scott model, a reversible Gray-Scott model involving three reactants (U, V, P)
was introduced in [38], based on the reversible reaction scheme (1.1) in which the product P is
not an inert substance any more. The existence and robustness of global attractor are studied later
in [61,62], and the global attractor of a lattice reversible model is studied in [23].

The present paper focuses on the reversible chemical reactions, which are assumed to obey the
law of mass action. Usually speaking, a chemical reaction should not be viewed as a Newtonian
mechanics [13]. Wang-Liu-Liu-Eisenberg [55] showed recently a possible variational treatment
on the reaction-diffusion process obeying LMA and the detailed balance condition. Their formu-
lation provides a basis of coupling chemical reactions with other mechanical effects. The core of
their treatment is based on a generalized notion of energetic variation approach (EnVarA). The
EnVarA is developed from seminal work of Rayleigh [53] and Onsager [46,47], and has proven to
be a powerful tool to deal with the couplings and competitions between different mechanisms in
different scales. This approach has been successfully applied to model many systems, especially
those in complex fluids, such as liquid crystals, polymeric fluids, phase field and ion channels, see
the survey [14] for more details. The EnVarA can also be used to study problems with boundary,
especially for dynamical boundary conditions problems for the Cahn-Hilliard equation [28,37]
where chemical reactions occurring at the boundary are taken into account. Recently, a micro-
macro model for living polymeric fluids involving the reversible chemical reaction of breakage
and reforming process is derived by EnVarA in Liu-Wang-Zhang [36,56], where the global exis-
tence near equilibrium is established.

The main reason that we consider the reversible reactions is due to the entropy-entropy pro-
duction structure exhibited in this case. Based on this entropy structure (1.5) combined with the
corresponding kinematic relations, we can derive by a general EnVarA the reversible Gray-Scott-
like system (Re-GS). The detailed derivation can be found in §2 below.

Notice that more phenomena will arise when we consider different timescales for different
reaction schemes in the (Re-GS) system. The limit issues of some diffusion-reaction system with
small parameter are proved by Evans [9] and Gajewski-Sparing [11]. Chen-Gao [2] considered
the well-posedness of a free boundary problem arising from the limit of a FitzHugh-Nagumo
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system (a slow-diffusion fast-reaction system). Bisi-Conforto-Desvillettes [ 1] justified rigorously
the quasi-steady-state approximation used in chemistry. Mielke-Peletier-Stephan [4 1] considered
the nonlinear systems satisfying LMA with slow and fast reactions.

In this paper, we will study some certain scaling limit on parameters, speaking specifically,
the reversible-irreversible limit as the backward rate coefficients k; and k, go to zero simulta-
neously. By employing in the (Re-GS) system the parameters k;” = k, = ¢, we get the following
approximate system:

uf =dy Auf — kfuf (v¥)? + e (v°)® — kfu® + kg q°,
v =dy Av® + lciﬂf(v"g)2 —e(v®)3 — k;vg + ept,

Re-GS
pf:dpAp8+k;'v8—£p8, ( )e
q; =dsAq° —i—kg' ¢ —kyq®.
As the small parameter & goes to zero, we get the limit system, at least formally, that
u® =d, Au®> — kau"o(v"o)2 — k(")"u‘x’ +kyq®,
+ 2+
v =dy Av® + k[ u™(v®)” —ky v, (Ir-GS)

p =d,Ap™ +k;v°°,
g =dyAg™ +k(')~'u°° —ko_qoo,

which will be referred as the irreversible Gray-Scott system in the following context.

It is worth mentioning to obtain the original Gray-Scott model (1.3), we need to take another
limit from the irreversible Gray-Scott system (Ir-GS), which is more challenging. Formally, one
can view the reaction

k+
0
U=20
ko

as a birth-death reaction, which describes the exchange of the system with the environment. We
assume the concentration relation in (Ir-GS): ¢°° > u®, and define a new unknown s = Ag*°
with respect to a sufficiently small parameter A. For the sake of exposition, we omit temporarily
the molecular diffusion of p* and ¢, i.e., d » = dy = 0. Therefore, by assuming k, = A, the
third and fourth equations of (Ir-GS) can be reduced to:

P =k, (1.6)
50 = A(kgu™ —5). '
Notice that s°° can be easily represented as:
1
§°(1) = s 41 / kfu(r)e "0 dr, (1.7)
0

where 57 denotes the initial data of s°°. This means that when the small parameter A goes to
zero, it holds, formally, s*° — sgo. By inserting this relation into the first equation of (Ir-GS),
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and noticing the unknown p® is decoupled from the other equations, the irreversible system
(Ir-GS) is finally reduced to the following formulation, at O (1/A) time scale:

u® =d, Au™ — k?’l,t"o(voo)2 + ka' <;(i: - u°°> , (1.8)
0 .

VP =dy Av™® + kf“u""(voo)2 - k;rvoo,

o0
with a decoupled equation for product p®. So the quantity ;c% possesses a consistency with
0

the feeding term from the external fields in the classical Gray-Scott system (1.3), by fixing its
value ;% = 1. This slow-fast dynamics presentation may provide the asymptotic relation between

our irre(i/ersible system (Ir-GS) and the classical one (1.3). In the process, the birth-death scheme
plays a crucial role. The interested readers can find similar ideas in [ 10]. The rigorous justification
of this limit is under preparation. We emphasize that the limiting procedures ¢ — 0 and A — 0
are not commutative, and the scale of A and ¢ may also be different.

Our goals in this paper are to establish the well-posedness of the reversible Gray-Scott-like
system (Re-GS), and to study above reversible-irreversible limit between the approximate re-
versible system (Re-GS), and the corresponding irreversible limit system (Ir-GS).

1.2. Main results

Before presenting our main results, we first gather all notations and conventions used through-
out this paper. We use C to denote some positive constant that may take different values at
different lines. For any p € [1, 00), we introduce the Banach spaces L? equipped with the norms

1
[flr = (Jq | fIP dx)?, where Q = R3 orT3. Especially for p =2, we use the notation (-, -)
to represent the inner product on the Hilbert space L. The symbol V, stands for the gradient
operator and A, denotes the Laplacian operator. For any multi-index k = (ki, k2, k3) € N3, we

. A Iki
denote the higher order derivative operators Bf = W, where |k| = k1 + k2 + k3. We then
Xy 0xy70x5"
define the Sobolev spaces H® endowed with the norms

N
L
| s = () 105 - 172)2.

|k|=0

In this paper, we mainly investigate the well-posedness of the reversible system (Re-GS) with
initial data (1.11), including the local existence with large initial data and the local convergence
of the asymptotic system (Re-GS).. Moreover, under the smallness assumption on initial data,
the reversible system (Re-GS) will admit a global-in-time solution near the equilibrium.

Our main results are expressed respectively in Theorem 1.1 and Theorem 1.2 below.

Theorem 1.1 (Local well-posedness and convergence towards the irreversible system). Assume
the initial data (ug, vo, po,qo) € H 1 (T3), then there exists some positive constant T > 0, de-
pending only on the initial data, such that the Cauchy problem of the reversible Gray-Scott-like
system (Re-GS) admits a unique solution (u, v, p,q) € L*°, T; H! (T3)) N L2(O, T; H2(T3)),
which satisfies the following energy bound:
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sup 1, v, p, )2 + /W(u,v,p,qniﬂ dr<C. (1.9)
+€[0,T]

where the bound C only depends on the initial data, the maximum time T, and the coefficients in
the system.

Furthermore, let (u®,v¢, pt,q°) € L>(0,T; H'(T3)) N L?(0, T; H*(T?3)) be the classi-
cal solution of the asymptotic reversible system (Re-GS). with initial data (uo, vo, po,q0)
€ HI(T3). Then we have, as € — 0,

W, 0%, p¥,q%) — W™, v, p™,¢™) inCO,T; L*(T*)NL*0,T; H(T?), (1.10)

where (u®°,v>°, p®>, g°) is the solution of the irreversible system (Ir-GS) with the same initial
data (uo, vo, po, 40)-

It should be pointed out that the local well-posedness part can also be adapted to the whole
space case Q2 = R3, as indicated by our proof.

We now state the global existence result of the reversible system (Re-GS) near the equilibrium
state. For that, we firstly introduce the notion of equilibrium. We impose initial data on system
(Re-GS),

u(0,x) =uo(x), v(0,x)=uvo(x), p0,x)=po(x), ¢g(0,x)=qo(x), (L.11)
and when the domain  is finite, i.e. |2| < o0,

/(uo+v0+po+qo)dx=20>0. (1.12)
Q

Noticing that the system (Re-GS) satisfies the constraint of conservation of atoms, i.e., % f (u +
v+ p +¢)dx =0, we get formally that [(u+ v+ p +¢)(r) dx = Z for any ¢ > 0.
Now we determine the constant solution (i, v, p, ¢) to the reversible system (Re-GS). Putting

kju=kyq, kiuv*=kv, Kv=kp, (1.13)
with the global conservation of mass:

-, =, %
u+v+p+qg= |Q| (1.14)

Without loss of generality, we assume |€2| = 1. From (1.13) and (1.14), we obtain two types of
constant solutions to the reversible system (Re-GS): one is (u, v, p, q),

Ezk(;k;kgz . T2l kf k’Z
(1.15)
.+ -
ﬁ_kkkzzo’ 7= kka
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and K = kg ky ky + ko ki ky +ky ki"ky 4 ki ki k5 . The other constant solution is (u, 0,0, g)
with

u= 7, g=t0
U= +,-40 = i
ky +k, = ko tkg

Zo. (1.16)

We point out that, when the domain € = R3, the constant state (i, 7, p, g) only satisfies the
system (Re-GS), but with infinite energy since the integral is infinite. In this case, we still use the
equilibrium (1.15) and (1.16) which can be seen as the limiting case of the finite domain.

Now we introduce the global existence of system (Re-GS) near the equilibrium (u, v, p, q).
Based on the local result in Theorem 1.1, under the further assumption on the smallness of
initial data, the equilibrium solution (u, v, p, ¢) can be extended globally in time. The solution
(u, v, p, g) can be rewritten as the following perturbation forms:

u=u+u, v=v+v, p=p+p, q=q+4q, (1.17)

p
where the perturbation |¢| < 1(¢ = u, v, p, g). Correspondingly, the perturbative system is of
the following formulation:

iy = dy A — k0% + k03 — 2k 0U0 + 2k 007 — k0% + k020 — ki + kg g,
U = dy AT + kU0 — k0P + 2k 00 — 2k 002 + k020 — k020 — KU+ kS D
Pi=dp AP+ kT —k; P,
G =d,AG + ki —k; G,
(1.18)

where the relations kfﬁ =k, kar u=kyq, k; v = k, p have been used. The corresponding
initial data are

nwo=ug—u, Vo=vo—U, Po=po—pP, qo=qo—4q. (1.19)
We mention that, the (global) well-posedness of the system (Re-GS) near steady (equilibrium)
state is converted equivalently to the problem of the (global) existence of the perturbative system

(1.18) near zero solution.

Theorem 1.2 (Global well-posedness). Let the domain 2 be the whole space R3. Then there
exists a small constant v > 0, such that, if

E* = (o, B0, Po. o) 5 < v, (1.20)

the solution to the Cauchy problem of (Re-GS) constructed above can be extended globally, with
a global-in-time energy bound, i.e.,

sup(kg kT k3 15,0 + kg ky k3 1915, + kg ki ky 1P, + ko kTS 1G15,0)
t>0

o
+ /(dukgkjk; VT2, + dokg kT kS V013, + dpkd ki kS Ve Bl3 + dgkg kT kT 1VG1%,
0
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ke K TSI — Ky Bl + kK k= g @1+ kg k23T = g Pl de

< Cyv, (1.21)
here Cy is a constant depending only on the coefficients.

Notice that we can establish a similar global-in-time existence result near equilibrium in more
regular space (say, H® for any s > 2), by almost the same argument. As a result, we refer this
type of solution as classical solution due to the Sobolev embedding theorems in L or in more
regular Holder spaces.

Due to the smallness of classical solutions near the (positive) equilibrium, the obtained solu-
tions will always be strictly positive, so that the calculations on concentrations (u, v, p, g) like
taking logarithms make sense. Precisely speaking, our classical solutions satisfy the entropy-
entropy production identity (1.5). This ensures the consistency of the reversible Gray-Scott model
(Re-GS) with the thermodynamics theory.

For the well-posedness of irreversible Gray-Scott system (Ir-GS), we can also use the energy
estimate to state its well-posedness in the space L>°(0, T’; H! )N L%, T; Hz(Q)). There are
many well-posedness results about the irreversible Gray-Scott model ([31,57,58]).

1.3. Main ideas and difficulties

We now sketch the main ideas of proving the above theorems. When we construct the lo-
cal convergence result to the system (Re-GS),, our main goal is to derive the uniform energy
estimates of the system (Re-GS), according to the energy estimate in the previous existence
theorem. Based on the local-in-time energy estimate uniformly in ¢ € (0, 1), we take the limit
from the system (Re-GS); to the irreversible system (Ir-GS) as ¢ — 0. We mainly employ the
Aubin-Lions-Simon’s Theorem to obtain enough compactness such that the limits valid.

The second main result of this paper is to prove the global well-posedness result to the system
(Re-GS) with small initial data around the equilibrium (&, v, p, ¢). The key point lies in the

~ —~|2 —~2 ~ —~2 . . .
norms |k]+u —k; v|L2, k(')"u —kyq |L2 and |k;'v —k, p|L2 constructed in the dissipative term.
Due to the linear terms in the perturbation system near (u,v, p,g) can not absorbed by the
dissipative term in the left-hand side, more precisely, the first Z-equation in perturbation system
(1.18) is

iy =dy AT — k0 + k[0 — 2k0U0 + 2k 007 — kO 4+ k0T — kG i+ kg G

in which contains the linear terms kar u and k(g The treatment of these two linear terms is crucial
in proving the L? estimate of proving the global well-posedness result. It is a key observation
that we can combine all the linear terms in the perturbation system of (Re-GS). We multiply by

some coefficients to construct the two square expressions |kj & — ko § ]iz and |/’c;r v—ky p ZLZ,
which can be designed as dissipation term. Generally speaking, in order to prove the global well-
posedness with small initial data, one often should obtain the following type energy inequality

LEo(t) + Dg(t) < P(Eg(1) Dy (1).

Thus the term P(E,(t)) Dg(t) can be absorbed by the diffusion term D, (f) due to the small
assumption on the initial data. Moreover, besides the linear terms ko+ u, k;r v, kg q, k; p, there
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are two linear terms kfr#ﬁ', kl_iz’ﬁ, coming from the perturbations u =u + 4 and v =v + V.
The main obstacle to prove the global existence results comes from the linear terms in the L2
estimate, our novelty is to seek an extra elimination relationship to overcome this difficulty. To
be more precise, we design the dissipative term |k;“ﬁ - kl_'i]ﬁz constructed by the linear terms
krizﬁ, kl_izﬁ. According to the chemical relation ki"ﬁ = k, v, the other term of the system
(Re-GS) around the equilibrium state (&, v, p, ) can be constructed as P (E, (1)) D, (2) in the L?
estimate, i.e.,

<—2k1 vuv + 2k vv ,u>L2 <201V |ulge |k1 u—k; v|L2,
i~ ) A i~ ~ ~ —~
<2krvuv—2kl VU ,v>L2§2v|v|L3|v|Le |kr —k; v|L2.

Combine the Sobolev inequality and the small initial assumption, the right-hand term can be
absorbed by the diffusion term. The above difficulties will vanish when we prove the global
existence with small size of initial data. Then we derive the following energy inequality

1 1
SE(t) + Dg(t) < (1+ EZ (D)) EZ (1) Dy (0).
Based on the continuity arguments, one thereby verify the global well-posedness.
1.4. Organizations of current paper

The rest of this paper is as follows: a formal derivation of this four-species reaction-diffusion
system of reversible Gray-Scott type model (Re-GS) will be given, by using the EnVarA, in the
following section §2, containing the derivations for the mechanical and chemical reaction part.

In the next section §3, we prove the local well-posedness and the local convergence of the
reversible Gray-Scott system (Re-GS). We first derive the a priori estimates in Lemma 3.1. Then,
based on the a priori estimates, we prove the large local solution by continuity arguments. Fur-
thermore, we obtain the uniform bound energy estimate and derive the local convergence from
(Re-GS), to (Ir-GS) by using the Aubin-Lions-Simon’s Theorem.

In Section §4, based on the local existence in the Theorem 1.1 and the assumption on the
smallness of initial data, the local existence can be extended globally in time.

2. Derivation of the reversible Gray-Scott-like model

Our aim in this section is to derive the model (Re-GS) by using the energetic variational
approach. Two main ingredients are included in this approach: the least action principle and
the maximum dissipation principle, which derive the conservative force and the dissipative force
respectively, and force balance relation will lead to the final PDE system. We split the deviation
procedure into two steps: spatial diffusion part and chemical reaction part.

Note firstly that system (Re-GS) satisfies the following kinematics:

Oru +divy (uuy,) = —r1 —ro,
ov + divy (vuy) =1y — 1,
0 p + divy(pup) =ra,

0rq +divx(qug) =ro,

2.1
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where r;’s (i =0, 1, 2) are respectively the total reaction rates of the chemical reaction associat-
ing to the reversible chemical reaction process of cubic autocatalysis (1.1). They are defined, as
mentioned before, through the law of mass action:

2

ro=kju—kyq, ri=kjfuv’—k;vd, rn=kfv-i;p. 2.2)

We also point out that u,, is the induced velocity by the diffusion process of each species o =
u, v, p,q.

The energy-dissipation law obeyed by the reversible chemical reaction scheme (1.1) can be
formulated as

d
g @ v p.9)=—Da—Dr, 2:3)

where the free energy F takes an entropy formulation:

Fu, v, p. q)zf[u(lng ~ D+t —1)+pln2 —1)+g(nt — 1)] dv, (24
Q

and the dissipation consists of two types of contributions: one comes from spatial diffusion and
the other from chemical reaction, represented by D, and D, respectively,

Dd=/<d7”|Vu|2+%|Vv|2 2Ivpt+ % |Vq|2) dx,
Q

.
D, f(ku Oq)ln dx+/(k+uv kv3)ln dx+/(k+ kz_p)lnl’:i—:dx.
2

2.1. EnVarA for the diffusion part
Associated to the velocity u,, we can define flow map x(X, 1) : Q — €, in which X de-
notes the Lagrangian coordinates and x denotes Eulerian coordinates, by the following ordinary

differential equation (ODE):

%X(X, 1) =uy(x(X, 1), 1),

(2.5)

x(X, 0)=

We also define the deformation gradient by
FX.py =% (2.6)

TUUaxT '
For the sake of exposition, we denote ¢ = (¢, ¢y, Cp, ¢q) = (4, v, p, q), then
F(e)=Fu, v, p. q) = / Y calin S — 1ydy, Q.7
Ca

o ¢
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so we can infer from the least action principle (LAP) that

T T
0 0
c c _
8X/F(c)dt:5x//gde:‘F <ln de:F —Incy — 1) det FdX dr
0 0 Qo

T
of detF ¢ dX 98x
= o\ T ra tht(——) dXdr
¢y (detF)

0 QO

¢ aé

O x

- tr(—)dX

//car(ax)d dr

0 Qo0

T
—//cavx~(8x)dxdt

0 Qf

T
:f/VXca~8xdxdt,
0 Q

13

2.8)

where we have used the matrix equahty Iy det A(x) =det A - tr(A™ 1 d 4; A) in the second line. We

thus get

SXfF(c) dt = (Vicq, Sx)L[z

(2.9)

We next turn to consider the dissipation D; due to the diffusion contribution, which often

takes the form of
1 » 2
=§/Z;—a|ua| dx.
Q o

The maximum dissipation principle (MDP) gives that

80, Da —< Cayy,, 3ua)

L2’
We can get by the force balance Ltz’ — Bfai + L2 % 0 that,
Vi + g =0,
namely,
Uy = —dyVylnc,.
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Inserting this into the kinematic relation (2.1) yields finally the exact expression of diffusion.
2.2. EnVarA for the reaction part

As explained in the last section (see also [55]), a notion of general EnVarA is needed to deal
with the chemical reactions. For that, noticing the conservation constraints of elements satisfied
by the chemical reaction process (1.1), that

%(u+v+p+q)(t)=0, (2.14)

we can employ the so-called reaction trajectories for the above reaction process, R;(¢)’s with
i =0,1,2, satisfying

%Ri t)=Ri(t) =r;. (2.15)

Therefore, the concentrations of each species ¢y (With @ = u, v, p, ¢) can be expressed as

u(t) =up — Ry (t) — Ro(1),
v(t) =vo + R1(t) — Ra(2),
p(t) = po+ Ra(1),
q(t) =qo+ Ro(?).

(2.16)

The above relations may be regarded as the kinematics for the chemical reaction (1.1).
The new state variable of reaction trajectory enables us to rewrite the free energy J by virtue
of R=(Ro, R1, R)(1),ie.,

F(R) = F(c(R)). (2.17)

Meanwhile, we also write the reaction dissipation part as D, = D, (R, R). So the energy-
dissipation law for a pure chemical reaction process can be rewritten as

%]—‘(R) =D, (R, R). (2.18)

Since chemical reactions are often far away from equilibrium states, the reaction dissipation
may not be quadratic with respect to R. This fact is different from the quadratic dissipation
functional in a mechanical system, which is also the reason that we need the notion of generalized
EnVarA.

We assume that the nonnegative reaction dissipation D, takes the form of

D,(R, R) =(G,(R, R), R), (2.19)
this, combining with the fact $F(R) = (3%, R), yields that

. 8F
Gr(R,R) = IR (2.20)
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We refer this as a general gradient flow. The exact expression of r;’s will be revisited by choosing

Dy (Ro, Ro) = Roln <1f—°q + 1) , 2.21)
0

D, (Ry, Ri) = RiIn (kf—lg + 1>, (2.22)

D, (Ra, R2) = Ryln <lf—2p + 1) . (2.23)
2

Indeed, for i =0, direct calculations imply that

§F 9 kt
e TP P P A (2.24)
SRy = Cca ORp u q k()q

where we have used the equilibrium equality kar u =k q. As aresult, the above general gradient
flow (2.20) leads to the following relation:

ro=Ro=kju—kjyq. (2.25)

which is exactly the same formulation as Eq. (2.2) given by the law of mass action. The other two
rates r1 and r, can be derived by a similar process. Inserting these expressions into the kinematic
relation (2.1) yields the expression of reaction part.

Finally, combining diffusion contribution and reaction contribution enables us to get the par-
tial differential equations (PDEs) governing the reversible chemical reaction process of cubic
autocatalysis, namely, system (Re-GS). Note that this is a four-species reaction-diffusion system
of reversible Gray-Scott type.

3. Local well-posedness and convergence towards the irreversible system

In this section, we will employ the energy method to prove the local in time existence of the
system (Re-GS) with large initial data. Moreover, according to the energy bound in the existence
result, we obtain the uniform energy bound of (u®, v*, p®, ¢®) and (u?, v{, p?, g°). Combining
with the Aubin-Lions-Simon’s Theorem, we derive the reversible-irreversible limit in local time.
Note that the domain considered in this section contains both cases of T3 and R3.
3.1. A priori estimate to the reversible Gray-Scott system

In this subsection, the a priori estimate of the system (Re-GS) will be accurately derived from

employing the energy method. We now introduce the following energy functional E () and
energy dissipative rate functional Dy (7):

EL()=ul}; + i3 + 1ol +lgl5 .
2
DL(t) =% [Vulyy + % Vol +dy IV ol +dg Va1 +k7 |02 4k ol
kT Bu w3 kG (a2 Kk Pl kg gl (3.1)
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Now we state the priori estimate as follows:

Lemma 3.1. Assume that (u(t,x),v(t, x), p(t,x),q(t,x)) is a sufficiently smooth solution to
system (Re-GS) on the interval [0, T]. Then there is a positive constant Cp = Cr(dy, dy, d),
dg. kg kg kT k7 kS ky) > 0, such that

SEL(t) + DL(t) < CL(EL(t) + E{ (1))
holds forall t € [0, T1].

Proof of Lemma 3.1. We first derive the L2-estimate, which will contain the major structures
of the energy functionals. Then we estimate the higher order energy bound, which shall be con-
sistent with the structures of L2-estimate.

Step 1. L? estimates.
We take L?-inner product with u(z, x) on the first equation of system (Re-GS), and integrate
by parts over x € 2. We thereby have

2 ul2, 4 du [Vul7, + kvl + kg ul7, <k vl fulge +kg lul2lglz. (32)

Based on the integration by parts, the Holder inequality, from taking L2-inner product with
v(t, x) on the second equation of system (Re-GS), integrating by parts over x € €2, we derive

2
%%lv@ﬁwmiﬁkr\vzL2+k2+|v|izskmum|v|i4+k;|v|Lz|p|Lz. (3.3)

We then multiply the third equation of system (Re-GS) by p(¢, x), and integrate by parts over
x € 2. We thereby obtain

L pP, +dy VPP +ky Ipl2s <k vl |plge. (3.4

By taking L?-inner product with ¢ (z, x) on the fourth equation of system (Re-GS), and integrat-
ing by parts over x € 2, we have

14112 +dg Vg2 + kg g2 < kg lul2lqlp2 . 3.5)

Adding the inequalities (3.2), (3.3), (3.4) and (3.5), and combining the Sobolev embedding
HY Q) — L4(Q), we see that

18 (ulzs 4 v+ 1pl7s +1g172) + du |Vul?, + dy VU2, +dp [V pl7, +dg Vg2,

2
et w2,k ‘vz Gl 0 kg 1Pl + kg Ll

<k Wl el + K Ll 1010+ kg g2 ul g2 + kg vlg2 [pli2 + k5 vlg21plp

kg gl lulp2 (3.6)
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Step 2. H'! estimates.
First, we act derivative on the first equation of system (Re-GS), take L?-inner product by dot
with d,u and integrate by parts over x € 2. We thereby have

L oul?, +duldVuly, + ki 10w -vl7, + kg [0ul?,
S 2kii_ |M|L6 |U|L6 |8u|L6 |8U|L2 + 3k_ |v|26 |3M|L6 |8U|L2 +k0_ |8q|L2 |8M|L2

4(k ) 9(/< )

vl + 0I%1 + kg 1912 10ul 2 - (3.7

For the second equation of system (Re-GS), act derivative and take L?-inner product by dot
with 9, v and integrate by parts over x € 2. We obtain

T4 10v[3, +du|dVvl3, + 3kp v - dvl7, + &3 [9v]3,
<k vl q10ul 2 10|16 + 2k [ul 6 [vl6 10016 1802 + k5 [3p] .2 |9v] 2

4(k )?

d 2 (k)?
< F Vol + 5 lul

2l + lul30 oI5+ K5 19pl 2 [8v] 2. (3.8)

We next act derivative on the third equation of system (Re-GS), take L?-inner product by dot
with 9, p and integrate by parts over x € 2. Then we have,

L 19p2, +dy 18V pI2, + k3 18p122 <k [9vl 2 [9p] 2. 3.9)

Next, from acting derivative on the fourth equation of system (Re-GS), taking L?-inner prod-
uct by dot with d,¢ and integrating by parts over x € €2, we deduce that

1810q17, +dg10Vql7, +ky 19g17, < kg 10ul,210g] .2 . (3.10)

Due to the Sobolev embedding H'!(Q2) < L*(Q) and H'(Q) — L°%(R), combine with the
L? estimate, it is therefore derived from adding the inequalities (3.7), (3.8), (3.9) and (3.10),

L8l 4+ B+ PPy + 1) + % Va2, + %1Vl +dy [Vpla, +dg Val%,

2
S Tl Ut NS Sl VT Ny S TV N xal 171 Sy Sl [¥] Ay Sl 1 RSy ol P
HI L L H H H H

4(k )?

9(k) <k+>2 2 4
I| + = lulg vl

4
lu | 1|U|H1

— 3 3
<k |v|H1 lul g1+ K Jul g [0l +

4(k

LA, wlgpy [l + kg gl lulgn + k5 (vl |p|H1+k+|U|H1 Pl + kgl el g

scL<EL(r>+E2<r)>, 3.11)
+42 -2 +42 +42

where Cp = kg + ki +k +kf +h5 + & + 250 4 200 BO7 4 30 Recalling the

definitions of the energy functlonals E L) and Dy (t) in (3. 1) we finish the proof of Lemma 3.1

from the inequality (3.11). O
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3.2. Local well-posedness with large initial data

The aim of this subsection is to prove the local well-posedness of the system (Re-GS) with
large initial data, namely, prove the existence result of the Theorem 1.1. We first construct the
linear approximate system by iteration. Then the key step is to prove the existence of the uniform
positive time lower bound to the iterative approximate system and thereby the uniform energy
bound will hold. Finally, by compactness arguments, we justify the local existence results.

The iteration scheme: We construct the approximate system of (Re-GS) by iteration as follows,
for all integers n > 0, that

uf ™ = dy Au — ka2 + k0 = ket 4 kg q"
v;1+1 =dUAv”'H _'_kfunvnvn-i-] _ k;(vn)Zvn+l _ k2+vn+1 +k;pn

3.12
p;l'f'] deApn-H +k;‘vn _ kz_pn+1 ( )
q[n-i-l :quqn+l _+_k(-)i-un _ ko_qn+1~
And we start the approximating system from n = 0 with
u™(t,x) = uo(x), (1) = vo(x),
P (t,x) = po®), ¢ (t,%) = qo(x). (3.13)

In the arguments proving the convergence (n — oo) of the approximate solutions (3.12), it
is essential to obtain uniform (in n > 0) energy estimates of (3.12) in a uniform lower bound
lifespan time, whose derivations are the almost same as the derivations of the a priori estimates
for the system (Re-GS). The arguments of the uniform lower bound lifespan time can be referred
to [24], for instance. The convergence arguments are a standard process. For simplicity, we will
only consider the a priori estimates in Lemma 3.1 for the smooth solutions of system (Re-GS)
on some time interval.

The maximum time of existence: From Lemma 3.1, we see that

SEL() +DL(t) < CL(+ EL)EL (D), (3.14)

where the energy functionals Ey (¢) and Dy (¢) are defined in (3.1). Then (3.14) implies

d Ep(t
_I:ln#l]SCL. (3.15)
At (14 E3(1)2
Noticing that
EL(0) = Ein.— |uin|2 + vin 2 +‘ in 2 + | in|2 < 00
L) =5p = Hl m P T )
we derive from integrating the inequality (3.15) over [0, 7] that
E(t En
L@ L oCll— A1), (3.16)

[+ E20]  [1+EM?]?
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Consider the function

y

H(y)=—""—"7

(1+y?)?

for y > 0. It is easy to see that H(0) =0, lim H(y) =1, and H'(y) > 0 is strictly decreasing
y—>o0

in [0, 00). We therefore see that if Aj(¢#) < 1, the nonlinear inequality (3.16) on the functional
E; () can be solved as

Ex@) < H Ay =H | —FL o€t} = B@r). 3.17)
[l+(E’L")2]7

Notice that B(¢) is strictly increasing on # > 0. Aj(¢#) < 1 implies that

. 1
1 DHEM2
1<¢; In £
- Ly DHE
Consequently, from (3.14) and (3.17), we derive that forany 0 < T < o In Eifn,
L

t
EL(t)+ / Dy(v)dv < EY + CLTB(T)(1 + BX(T)) = A(T. E¥, C1)
0

holds for all ¢ € [0, T]. Consequently, we conclude the local existence of the system (Re-GS)
with large initial data.

3.3. Reversible-irreversible limit
We now in a position of proving the convergence result of Theorem 1.1, according to local
energy bound of the existence result in Theorem 1.1, we aim at deriving the uniform estimates

of system (Re-GS),. Based on the local energy bound (3.11) in Theorem 1.1, we now introduce
the following energy functional E7 (¢) and energy dissipative rate functional Dj (¢) similarly:

E5 (6) = uf 3+ [v° [ + [P + [a® 31

2
d
Dj (1) =% B

2 2 2 2 - 2
Vi + G [V [ dp VD! [ +dg Ve[ + ‘(v5)2‘ R
+ e e]2 +1,¢2 +1,¢|2 —1,.8]2 —1,e|2
S I PP i i PR O T S R T g
and satisfy the following inequality:
5§ EL(0) + D (6) < CLEL (1) + (EL (1)) (3.18)

We aim at deriving the system (Ir-GS) from the system (Re-GS), as ¢ — 0. Based on the defini-
tion of Cy, we know that
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C: <Cp+1
o B 4(kHH)2 )2 42 . .
as ¢ = 0, where C; = k; —i-kar —i—kfr —i—k;r + (dtl) + (0',3 + (dlv) . We obtain the uniform
. . . 1 [1+(Ef")2]%
bound with respect to ¢ in the following sense, for any 0 < T < T In E"L" ,0<e<,
L L

sup (a1 + [0 [ + [0 [ + Lo [0
te[0,T]

T
+f(|wf!§,1 VO + VPP + Vet [0 dr < C(T EP, Ty, (3.19)
0

where the constant C is independent of ¢. Then we know that (u?, v, p?, ¢°) is uniformly
bounded in L>(0, T; H') N L%(0, T; H?).

In order to use the compactness Aubin-Lions-Simon’s Theorem to prove the convergence
from system (Re-GS), to system (Ir-GS), we have to obtain the uniform estimates for the time
derivative of (u®, v®, p%, ¢°) in the following.

Uniform estimates for time derivatives. Firstly, according to the equation of ©? in the system
(Re-GS),, we obtain

TR P i P e A [ T T T B ol P
It follows that

T T
2
fluflizdt§d5/|Vu£|H1 dl—l—(ki")zT( sup |u8}H1)2( sup |v€}H1)4+82T( sup |v8|H1)6
tel0,7T] tel0,7T] tel0,7T]
0 0
+ (kPTC sup uf| ) + kg)2T( sup g | ),
0 tel0,T] | |H 0 t€[0,T] | |H
<C, (3.20)

where in the last inequality we have used the uniform bound obtained in (3.19). Then we obtain
u; is uniformly bounded in the space L%(0, T; L?). Specifically speaking,

|uf|L2(O,T;L2) < C(T) forall0 <e <1

. 1

iny217
is valid for0 < T < =1 —In [1+(EiLn) !
Cr+1 EY

One notices that,
H*(T?) — H'(T?) — L*(T?), (3.21)
where the embedding of H? in H' is compact and the embedding of H' in L? is naturally contin-
uous. Then from Aubin-Lions-Simon’s Theorem, the bounds (3.19), (3.20) and the embeddings

(3.21), we deduce that there exists a u® € LZ(O, T: H') such that
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strongly in L2(O, T; Hl) as e — 0.
Moreover, note that

H'(T3) < L*(T3) < L*(T?) (3.22)

with the compact embedding of H'! in L?. Then from the Aubin-Lions-Simon’s Theorem, the
bound (3.19), (3.20) and the embeddings (3.22), we deduce that the sequence u® strongly con-
vergent to u™ in C(0, T; L?).

We obtain that the sequence u; is uniformly bounded in the space L%(0, T; L?) and the strong
convergence of the sequence u® in C(0, T; LY NLX20,T; HY. Similarly, we can obtain the
same results of the sequence v?, p®, ¢¢, and we omitted it here.

Next we have to prove that the limit (#°°, v>°, p°, ¢®°) is the solution of system (Ir-GS).

Convergence. In the space L*°(0, T’ LZ), due to the Sobolev embedding H ey 1.5 we have
the uniform bounds for the (v®)3 and p? of the system (Re-GS),

{'(U ) |L°°(0 T, L2) = |U |Loo(0 T; L(’) = |U |L°°(0 T: Hl) = C (323)
|p® lp0.7:02) < |p* lpc, 101y = C,s

where we use the uniform energy bound (3.19).
Then, in the space LZ(O, T; H l), we obtain

T
1 o = [ 167 By
0

T
s[\(v

0

T
3| 2
dt+3/ (vs) VP de
LZ 2
0

<T( sup |v€|H1)6+3( sup |v8|Hl)4/|Vv‘9|12q1 dr
1€[0,T]

tel0,
<C (3.24)
and

T
2
10 Ragg T.Hl)sf|p8|m dr<T( sup |p|,0?<C. (3.25)
e 0 tel0,T]

Because of the fact that the solution (u?, v¢, p®, ¢°) of system (Re-GS) is uniformly bounded
in the space L*°(0,T; HYH N L2(0,T; H?), we know that (v‘?)3 and p® are bounded in
LZ(O, T; Hl). Then it follows that, taking formally ¢ — 0,
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e\3 : 00 .72 2 gl
e(®)’—>0in L0, T; L)YNL“(0,T; H"),
ep® — 0in L0, T; L) NL*0, T: H").
Moreover, according to the strong convergence result and Fatou’s Lemma, we derive that

MS(U£)2 _ uoo(voo)Z

L2(0,T;L2)
— ‘(ue _ uoo)(vs)Z + uoovs(vs _ Uoo) + uoovoo(ve _ voo)
L2(0,T;L?)
T T
4 2 2 2 2
§sup]v€|H1 / }us —u°°|H. dt+sup|u°°|H. sup|v€‘H1 / ]vs — vy dt
0 0
T
2 2 2
+sup‘u°°|H] sup|v°°|H1 / |v€ —v°°|H] dt
0
50, as e—0. (3.26)

Hence, taking formally ¢ — 0 in system (Re-GS),, one can obtain the irreversible Gray-Scott
system (Ir-GS). We conclude (u®°, v™>, p™, ¢>) € C(0, T; L?) N L?(0, T; H') is indeed a so-
lution of system (Ir-GS). This completes the convergence result of Theorem 1.1.

4. Global well-posedness of the system (Re-GS) near equilibrium
In this section, we obtain the global in time existence under small size of initial data near the

equilibrium state (u#, v, p, g) of system (Re-GS). We now introduce the following global energy
functional E,(¢) and global energy dissipative rate functional D (t):

Eq(t) = ki kT k3 (013, + ki kK (013, + kg ky ks (P13, + kg kTkS 1313,
Dy(t) = duk kK IVl + dokg kT k3 VU131 + dpkd kK (V13,1 + dgkg kTkT VG5,
kSO — kO + KT kT — kg @120+ kg k1 — kg Bl
(4.1)
Now we state the main energy inequality in global time as follows.

Lemma 4.1. Assume that (u(t, x),v(t, x), p(t,x),q(t,x)) is the solution to system (1.18) on
the interval [0, T constructed in the Theorem 1.1. Then there are energy Eq(u, v, p,q)(t) and
energy dissipative rate Dg(u, v, p, q)(t) such that

1 1
S E(D) + Dg(D) < Co(1 + EJEZ Dy 4.2)
forallt €10, T], where Cg = 4kg ki ky + 6ky ki kv + 4k ki k3 + 6kg k; k3 v.

~ o~ o~ A~ .
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Proof. We only need to modify the estimates in Lemma 3.1. More precisely, it is displayed as
follows.

Step 1. L? estimates.
We first consider the equality of « in system (1.18), namely,

L\, + dlVul?, < ol 1k — Ky vl 2 lul o + 20 el o [0l 2 1k — Ky vl 2 — k5 (u, )
+k 0% (v, u) — kg, u) + kg (g, u). 4.3)

Then based on the second equation of system (1.18), we obtain

1d,, 2 2 2 gt - = + - +-2

sar W2 Hdu|Volys < fvlje lkyu —kyvlg2 vlgs + 20 vlge [vlgs [k u — kvl + k707 (u, v)

k0% (v, v) — K (v, v) + k5 (p, V). (4.4)

We next consider the equality of p, i.e.,

L4 1p12, +d,y VP, <k (p.v) —ky (p. p). “.5)

From the equality of ¢ and the Holder inequality, we deduce that

181917, +dg|Vql3, <k (u. q) —ky (q. ). (4.6)

Because the fact that

(kg u kg u) 2 =20k ko q) 2 + (ko - ko a)2 = kg u = ko g kg u =Ky g2
= [k u —kgaly2.
(kifu, kfu), o — 2 (ki u, k7)o + (ky v, ki v) o = (kfu— kv, kfu—kjv),,
= |kfu — ko),
k0, ko) = 2060, K5 D)o+ (5, K p) o = (k50 = K5 p Ko — K5 ),
= kfv—k; pj-
Derived from adding the kj k k3 times of inequalities (4.3), the k k; k3 times of (4.4), the
kar ki k, times of (4.5) and the k, kfrk;’ times of (4.6), we thereby see that
28 kg kT kS Nul?, + kg ky kS (0|7, + kgkT ks 1pl7, + kg kTk 1g175) + dukg kK [ Vul?,
tdokd ki kS VI, +dpkd ki ks [V pl7, +dgky kiTkS Vg7, + kg k3 o2k u — k)3,
kT kS kg u — kg g3, + kg ky kv — k3 pl2,
<k$kFkS 112, (Vul 2k u — k7ol g2 + 2k kK0 [l g1 [Vl 2k u — kol

kg ky kS 015 [Vl [k u — kvl g2 4 2k kT kS vl Vol Ik u — kvl (47)
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Step 2. H'! estimates.
Before our estimate, we know that

d(—kj uv? +ky v — 2k vuv + 2k, vv?)

= v?(—k; du + ky 9v) + 20-0v(—kj u + k) + 200(—k du + ki dv) + 200v(—k] u +k; v).

We first combine the inequality (4.3) and take derivative to the first equation of system (1.18),

we obtain

T \9ul7, +duldVuly, < [vl7 ki du — k7 9v]210ul L6 + 2 [v] 1o |30] 2 1k u — kvl 1o|dul 6
+20 vl 4 1k du — ki vl 210ul s + 20|9v] 2|k u — kv pa]dul e
—k; 02 (Qu, du) + k; 0% (Bv, du) — kg (du, du) +k; (3q, du) .

(4.8)

Next we consider the H! estimate of v, based on the relation (4.4), we see that
2 2 2 - -
2 19v]7, 4+ dy|dVVI7, < [vl76 Ik Ou — ki 0] 2190|164+ 21v] 16 [0 21k u — k] 16]00] 16

+20 [vl 4 |k du — ki dvl210v] 14 + 2090 2]k u — kv 14]9v] 4

+k0% (du, dv) — k; 0% (B, dv) — ki (dv, v) + k5 (dp, dv).

(4.9)
For the equation of p, combine with the inequality (4.5), namely,
T819pl2, +dplaVpl2, < ki (dv, dp) — k5 (9p, 9p). (4.10)
Finally, we consider the inequality (4.6),
1819q13, +dg1dVq|Z, <k (du, dg) — kg (dq. dq). (4.11)

Now we will close the energy estimates, it is consequently derived from summing the k(J{ kfk;r
times of inequality (4.8), the ka' kl_k;' times of inequality (4.9), the ka' ki k; times of inequality
(4.10) and the ky k; k3 times of inequality (4.11), we have

5 kg I 10l + kg kK 100[3 + kg ke 1017 + kg k&S 19g17)
+ dukd kTR 10VUIT 5 + dokd kT kS 10V [T, + dpkd kT ky 10V I3, + dgky ki kS 19V 3,
+ k§ KOk u — ky 07, + kTS kg du — kg g7, + kg kS dv — k5 dpl3,

< 3kF kRS 13,0 IVul g |k u — kol g+ 4k KK T ol g (Val gk u— kol g

+ 3k kK [vI2, IVl [k e — ko] g 4 4k kT kSO 0] Vol g 1k u— kol
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Step 3. Close the energy inequality.
Combine with the L? estimate and the H! estimate, we obtain

(g o |u| | kg kT kS |v|§,1 + ko ki ks |p|§,1 + ko ki kS |q|§,,)
Fdukd KTk IVuls) 4 dokd kUK (VO3 + dpkd ks [V pl3, + dgky kRS Va3,
kIS K u — kvl kRS Tk u — kg gl + kG kv — k3 pl,

< AkG kKRS I3 Vul g |k — k7ol g+ 6k KTk 0] [Val g |k u— kol

AT kT kT 10130 [Vl g 1k u— kvl g+ 6k kT RS0 0] g1 [V g [k — kvl
1 1
<Co(1+ E2)E? Dy, (4.12)

where C, = 4k+k"’k+ + 6k+k+k+ + 4k+k k+ + 6k+k k+v Consequently, the inequality
(4.12) concludes Lemma 4.1. O

Proof of Theorem 1.2. Based on Lemma 4.1 and the local-in-time existence to the system
(Re-GS), we can prove the global-in-time existence to the system (Re-GS) with small size initial
data near the equilibrium (u, v, p, q).

Based on Lemma 4.1, we now start to prove the global-in-time existence to the system
(Re-GS) with small size initial data. We directly deduce

T4 Equ, v, p,q)(t) + Dy(u, v, p,q)(t) < Co(1+ Eé)Eé D, (4.13)
where
Co = 4kg ki k3 + 6k ki kv + 4k ki ks + 6k ki &y . (4.14)
We observe that
Eg(0) = kf &k w2, + kg ks [vol2, + kg kyky [pol? + ko &k Iqol? -

We now take v = min{1, chz} € (0, 1] such that if E¢(0) < v, then
8

1 1
Cg(l+E;(O))EgZ(O)§£. (4.15)
Now we define
T =sup{t >0; sup C, (1+E (t))E (1) < %} > 0. (4.16)
tel0,7]

By the continuity of E¢(¢) and the small initial bound (4.15), that we have T > 0. We further
claim that T = +o0. Indeed, if T < 400, then the energy inequality in Lemma 4.1 implies that
forall r € [0, T],

$E(D) + Dg(1) <0,

450



J. Liang, N. Jiang, C. Liu et al. Journal of Differential Equations 309 (2022) 427-454

which means

T
sup Eg(t)+/Dg(t)dt < E4(0).
t€[0,T] 0

Then the above bound reduces to

3 3 1 1
sup Co(1+ EZ())EZ (1) < Co(14 EZ (0)EZ (0) < < 3.
te(0,7T]

By the continuity of E,(¢), there is a t* > 0 such that for all 1 € [0, T 4 ¢*],

L 1
Co(l+ E{ () EZ (1) < 3,

which contradict to the definition of T in (4.16). Thus T = 400, consequently, we have

o0
supEg(t)+/Dg(t)dt§Eg(0),
t>0

- 0

which finish proof of the first part of Theorem 1.2. O
5. Conclusion

Gray-Scott model is an important reaction-diffusion system, especially in the study of Turing
pattern and related issues such as stability/instability, bifurcation and phase transitions. In this
paper, we derived by the EnVarA a new reversible Gray-Scott type model. This reversible model
possesses a natural entropy structure, and is thus thermodynamically consistent. In physics, our
work links non-equilibrium thermodynamics theory on chemical reaction away from equilib-
rium. From a mathematical viewpoint, this indicates a new possible way to study those chemical
reaction-diffusion process from perspectives of modeling, analysis and simulations.

Notice that the spatial domain we work with is the torus or the whole space, in order to avoid
more discussions on boundary. Meanwhile a chemical reaction in reality usually occurs in a
bounded domain. As mentioned before, it could be the first natural problem for us to derive the
corresponding system with proper boundary conditions, by the EnVarA. It is addressed not only
for modeling, but also for rigorous analysis, say, to consider the global weak solutions for the
initial boundary value problems (IBVP).

The second aspect concerns the long time behavior of the obtained solutions, in classical or
weak sense and in a bounded or unbounded domain. This is important in studying the stability
issues of steady states. Many researches discussed the trend to equilibrium and the convergence
rate, see [1,6,40,42] for instance.

The next aspect is with the asymptotic relationship between our reversible Gray-Scott-like
model (Re-GS) and the classical Gray-Scott model (1.3). Recall that on one hand, we have ob-
tained the convergence from reversible system (Re-GS) towards the irreversible system (Ir-GS)
(in Theorem 1.1), and on the other hand, we also have provided formally a asymptotic consis-
tency between the irreversible model (Ir-GS) and the classical Gray-Scott model (1.3) (on page 4

451



J. Liang, N. Jiang, C. Liu et al. Journal of Differential Equations 309 (2022) 427-454

in §1.1). Combining the two process together, we actually have addressed a two-step convergence
scheme from the reversible system (Re-GS) towards the classical irreversible system (1.3). Rig-
orous justification for the limit will involve a slow-fast dynamics perspective and some singular
limits. This work is under preparation.

However, we note that as pointed out in [5,15], not all irreversible reactions can be regarded
as a limiting case of reversible reactions. This requires more discussions with law of mass action
and detailed balance.

The last but not the least important issue is with the numerical simulation viewpoint, which is
very useful in studying the patterns and stability/instability problems, and some coupling effects
with other different mechanics such as temperature and electric fields [34,35,39,55,56]. This
could in turn raise more research topics in mathematical analysis.

Acknowledgments

This work is partially supported by the National Science Foundation (USA) grants NSF DMS-
1759536, NSF DMS-1950868, the United States-Israel Binational Science Foundation (BSF)
#2024246 (C. Liu, Y. Wang), the grants from the National Natural Science Foundation of China
No. 11971360 and No. 11731008 (N. Jiang), and No. 11871203 (T.-F. Zhang), and the Strategic
Priority Research Program of Chinese Academy of Sciences under Grant No. XDA25010404
(N. Jiang). This work was initiated when T.-F. Zhang visited the Department of Applied Math-
ematics at Illinois Institute of Technology, he would like to acknowledge the hospitality of IIT
and the sponsorship of the China Scholarship Council, under the State Scholarship Fund No.
201906415023. The authors are very grateful to the anonymous referees for their valuable com-
ments and suggestions.

References

[1] M. Bisi, F. Conforto, L. Desvillettes, Quasi-steady-state approximation for reaction-diffusion equations, Bull. Inst.
Math. Acad. Sin. (N.S.) 2 (4) (2007) 823-850.

[2] X. Chen, C. Gao, Well-posedness of a free boundary problem in the limit of slow-diffusion fast-reaction systems, in:
Nonlinear Diffusive Systems-Dynamics and Asymptotic Analysis (Japanese), Kyoto, 2000, Surikaisekikenkytisho
Kokyitroku 1178 (2000) 129-143.

[3] X. Chen, Y. Qi, Travelling waves of auto-catalytic chemical reaction of general order—an elliptic approach, J.
Differ. Equ. 246 (8) (2009) 3038-3057.

[4] X. Chen, Y. Qi, Y. Zhang, Existence of traveling waves of auto-catalytic systems with decay, J. Differ. Equ. 260 (11)
(2016) 7982-7999.

[5] C. Chu, Gas absorption accompanied by a system of first-order reactions, Chem. Eng. Sci. 26 (3) (1971) 305-312.

[6] L. Desvillettes, K. Fellner, B.Q. Tang, Trend to equilibrium for reaction-diffusion systems arising from complex
balanced chemical reaction networks, SIAM J. Math. Anal. 49 (4) (2017) 2666-2709.

[7] A. Doelman, R.A. Gardner, T.J. Kaper, Stability analysis of singular patterns in the 1D Gray-Scott model: a matched
asymptotics approach, Physica D 122 (1-4) (1998) 1-36.

[8] A. Doelman, T.J. Kaper, P.A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity
10 (2) (1997) 523-563.

[9] L.C. Evans, A convergence theorem for a chemical diffusion-reaction system, Houst. J. Math. 6 (2) (1980) 259-267.

[10] G. Falasco, R. Rao, M. Esposito, Information thermodynamics of Turing patterns, Phys. Rev. Lett. 121 (10) (2018)
108301.

[11] H. Gajewski, H.-D. Sparing, On the limit of some diffusion-reaction system with small parameter, Z. Anal. Anwend.
3(6) (1984) 481-487.

[12] H. Ge, H. Qian, Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chem-
ically driven open subsystems, Phys. Rev. E 87 (6) (2013) 062125.

452


http://refhub.elsevier.com/S0022-0396(21)00736-1/bibD7452781B613CAAD756AE7C37A6B90EEs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibD7452781B613CAAD756AE7C37A6B90EEs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib2C9324CD152EDCECD7F535405AFA7412s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib2C9324CD152EDCECD7F535405AFA7412s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib2C9324CD152EDCECD7F535405AFA7412s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibF050A0B441335A49EE2EEF395F844A84s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibF050A0B441335A49EE2EEF395F844A84s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibFA3A8FE679F9730467A7A944E082CDE0s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibFA3A8FE679F9730467A7A944E082CDE0s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibA6453C9DE07354B1CF3E5FE6340D1B54s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib57485253C0A571B7D4679F80C4D4B50Es1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib57485253C0A571B7D4679F80C4D4B50Es1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibA04242D11206B891CDDAD53F25F7861Ds1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibA04242D11206B891CDDAD53F25F7861Ds1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib68921D24BD0DD87B073E4C5636670A50s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib68921D24BD0DD87B073E4C5636670A50s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibEA3D57D4804EDD31A063EFAD8779F86As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB2FF5421E177FFC743C1936F952D94F1s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB2FF5421E177FFC743C1936F952D94F1s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibEF3AA8D326A4E69897D5D00F7BB22BB6s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibEF3AA8D326A4E69897D5D00F7BB22BB6s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib4CFF5AA3E592579C9E2263497B34D62Fs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib4CFF5AA3E592579C9E2263497B34D62Fs1

J. Liang, N. Jiang, C. Liu et al. Journal of Differential Equations 309 (2022) 427-454

[13] H. Ge, H. Qian, Mesoscopic kinetic basis of macroscopic chemical thermodynamics: a mathematical theory, Phys.
Rev. E 94 (5) (2016) 052150.

[14] M.-H. Giga, A. Kirshtein, C. Liu, Variational modeling and complex fluids, in: Handbook of Mathematical Analysis
in Mechanics of Viscous Fluids, Springer, Cham, 2018, pp. 73—-113.

[15] A.N. Gorban, G.S. Yablonsky, Extended detailed balance for systems with irreversible reactions, Chem. Eng. Sci.
66 (21) (2011) 5388-5399.

[16] D. Gomez, L. Mei, J. Wei, Stable and unstable periodic spiky solutions for the Gray-Scott system and the Schnaken-
berg system, J. Dyn. Differ. Equ. 32 (1) (2020) 441-481.

[17] P. Gray, S. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms
of multistability, Chem. Eng. Sci. 38 (1) (1983) 29-43.

[18] P. Gray, S. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabil-
ities in the system A +2B — 3B; B — C, Chem. Eng. Sci. 39 (6) (1984) 1087-1097.

[19] A. Gu, Random attractors for stochastic three-component reversible Gray-Scott system with multiplicative white
noise, J. Appl. Math. (2012) 810198.

[20] J.K. Hale, L.A. Peletier, W.C. Troy, Stability and instability in the Gray-Scott model: the case of equal diffusivities,
Appl. Math. Lett. 12 (4) (1999) 59-65.

[21] J.K. Hale, L.A. Peletier, W.C. Troy, Exact homoclinic and heteroclinic solutions of the Gray-Scott model for auto-
catalysis, SIAM J. Appl. Math. 61 (1) (2000) 102—-130.

[22] M.E. Hubbard, J.A. Leach, J.C. Wei, Pattern formation in a 2D simple chemical system with general orders of
autocatalysis and decay, IMA J. Appl. Math. 70 (6) (2005) 723-747.

[23] X. Jia, C. Zhao, X. Yang, Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model
on infinite lattices, Appl. Math. Comput. 218 (19) (2012) 9781-9789.

[24] N. Jiang, Y.-L. Luo, On well-posedness of Ericksen-Leslie’s hyperbolic incompressible liquid crystal model, SIAM
J. Math. Anal. 51 (1) (2019) 403-434.

[25] P.D. Kepper, V. Castets, E. Dulos, J. Boissonade, Turing-type chemical patterns in the chlorite-iodide-malonic acid
reaction, Physica D 49 (1-2) (1991) 161-169.

[26] B.S. Kerner, V.V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence, Fun-
damental Theories of Physics, vol. 61, Springer, Netherlands, 1994.

[27] G.A. Klaasen, W.C. Troy, The asymptotic behavior of solutions of a system of reaction-diffusion equations which
models the Belousov-Zhabotinskii chemical reaction, J. Differ. Equ. 40 (2) (1981) 253-278.

[28] P. Knopf, K.F. Lam, C. Liu, S. Metzger, Phase-field dynamics with transfer of materials: the Cahn—Hillard equation
with reaction rate dependent dynamic boundary conditions, ESAIM: Math. Model. Numer. Anal. 55 (1) (2021)
229-282.

[29] D. Kodepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures, second ed.,
John Wiley & Sons, Ltd., 2014.

[30] T. Kolokolnikov, J. Wei, On ring-like solutions for the Gray-Scott model: existence, instability and self-replicating
rings, Eur. J. Appl. Math. 16 (2) (2005) 201-237.

[31] T. Kolokolnikov, M.J. Ward, J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-
Scott model on a finite domain, Appl. Math. Lett. 18 (8) (2005) 951-956.

[32] J.A. Leach, J.C. Wei, Pattern formation in a simple chemical system with general orders of autocatalysis and decay.
1. Stability analysis, Physica D 180 (3—4) (2003) 185-209.

[33] K.-J. Lee, W. McCormick, J. Pearson, H. Swinney, Experimental observation of self-replicating spots in a reaction—
diffusion system, Nature 369 (6477) (1994) 215-218.

[34] C. Liu, J.-E. Sulzbach, Well-posedness for the reaction-diffusion equation with temperature in a critical Besov
space, preprint, arXiv:2101.10419 [math.AP], 2021.

[35] C. Liu, C. Wang, Y. Wang, A structure-preserving, operator splitting scheme for reaction-diffusion equations with
detailed balance, J. Comp. Phys. 436 (2021) 110253.

[36] C. Liu, Y. Wang, T.-F. Zhang, On a two-species micro-macro model for wormlike micellar solutions: dynamic
stability analysis, preprint, arXiv:2101.11455 [math.AP], 2021.

[37] C. Liu, H. Wu, An energetic variational approach for the Cahn-Hilliard equation with dynamic boundary condition:
model derivation and mathematical analysis, Arch. Ration. Mech. Anal. 233 (1) (2019) 167-247.

[38] H. Mahara, N.J. Suematsu, T. Yamaguchi, K. Ohgane, Y. Nishiura, M. Shimomura, Three-variable reversible Gray-
Scott model, J. Chem. Phys. 121 (18) (2004) 8968-8972.

[39] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity
24 (4) (2011) 1329-1346.

[40] A. Mielke, J. Haskovec, P.A. Markowich, On uniform decay of the entropy for reaction-diffusion systems, J. Dyn.
Differ. Equ. 27 (3-4) (2015) 897-928.

453


http://refhub.elsevier.com/S0022-0396(21)00736-1/bib9B461442D8B5633993C29F9BBC8BBE0Fs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib9B461442D8B5633993C29F9BBC8BBE0Fs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibE97FF89AA0A0C4ED35AEBFE57ECB8E3As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibE97FF89AA0A0C4ED35AEBFE57ECB8E3As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib53C99305E273231B5E9760AB6305D675s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib53C99305E273231B5E9760AB6305D675s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib3A2CA018ECAAAD130370F6707FE23302s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib3A2CA018ECAAAD130370F6707FE23302s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibCB4B27F755190C366D86F86C61B0E31Ds1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibCB4B27F755190C366D86F86C61B0E31Ds1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibE3450AA6C8A52FB861B60CE9D07970A2s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibE3450AA6C8A52FB861B60CE9D07970A2s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibECBB542437B5140694D60B90153E1B10s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibECBB542437B5140694D60B90153E1B10s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB85341BBCA68057DC49DFA526C179F60s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB85341BBCA68057DC49DFA526C179F60s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibF7556B6791B6C62C0F23742EAA59F710s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibF7556B6791B6C62C0F23742EAA59F710s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibC9D4BDFCB0224334094F0DFC2BB0EAABs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibC9D4BDFCB0224334094F0DFC2BB0EAABs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibDCE341E20E9DA31BA51D26DD1BE15C88s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibDCE341E20E9DA31BA51D26DD1BE15C88s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib0CF05E0E1E8589ADF0D4F929117E34EEs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib0CF05E0E1E8589ADF0D4F929117E34EEs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB0C6F8A42A76CAB73BF3220DAABEF379s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB0C6F8A42A76CAB73BF3220DAABEF379s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib5C63EF95405F9F61C58A5CE93D7E4A1Es1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib5C63EF95405F9F61C58A5CE93D7E4A1Es1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib18DCC75AD0CC41B15965EFF23FF06F39s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib18DCC75AD0CC41B15965EFF23FF06F39s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB49AA6D34DD2AD9206B2E00601FF342As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB49AA6D34DD2AD9206B2E00601FF342As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB49AA6D34DD2AD9206B2E00601FF342As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibFF21DA10A775DF48E4EB7B5479C7519Cs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibFF21DA10A775DF48E4EB7B5479C7519Cs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibA9261992BA4BCA84E571C1B64EEAAA62s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibA9261992BA4BCA84E571C1B64EEAAA62s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib403D2C4847BDBA28E19DF7DD1392970As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib403D2C4847BDBA28E19DF7DD1392970As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibCC04CAAE22EF47F904992489F4A0099Cs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibCC04CAAE22EF47F904992489F4A0099Cs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib33F61F81721B90EAF579338447BDEB94s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib33F61F81721B90EAF579338447BDEB94s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib49752372F9B0104D044DED80EDE6B4D3s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib49752372F9B0104D044DED80EDE6B4D3s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibA0C6D6C1BC9E792142DCD9181076A0BBs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibA0C6D6C1BC9E792142DCD9181076A0BBs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB57CC581336E70BC70CA45C24D14BB0Bs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB57CC581336E70BC70CA45C24D14BB0Bs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib8C98DBD9107B8AA257399BBDA5A382C9s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib8C98DBD9107B8AA257399BBDA5A382C9s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibE13E381E06F92492FED92AC29C6557ABs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibE13E381E06F92492FED92AC29C6557ABs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib289F96A17CA47D0D9AD62C61EBB61D26s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib289F96A17CA47D0D9AD62C61EBB61D26s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib493C35496BF45CE19A87B6C47F03BA8Fs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib493C35496BF45CE19A87B6C47F03BA8Fs1

J. Liang, N. Jiang, C. Liu et al. Journal of Differential Equations 309 (2022) 427-454

[41] A. Mielke, M.A. Peletier, A. Stephan, EDP-convergence for nonlinear fast-slow reaction systems with detailed
balance, Nonlinearity 34 (8) (2021) 5762-5798.

[42] W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.

[43] G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structure to Order
Through Fluctuations, John Wiley & Sons, Ltd., 1977.

[44] Y. Nishiura, D. Ueyama, A skeleton structure of self-replicating dynamics, Physica D 130 (1-2) (1999) 73-104.

[45] Y. Nishiura, D. Ueyama, Spatio-temporal chaos for the Gray—Scott model, Physica D 150 (3—4) (2001) 137-162.

[46] L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (4) (1931) 405-426.

[47] L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (12) (1931) 2265-2279.

[48] J.E. Pearson, Complex patterns in a simple system, Science 261 (5118) (1993) 189-192.

[49] V. Petrov, S.K. Scott, K. Showalter, Excitability, wave reflection, and wave splitting in a cubic autocatalysis reaction-
diffusion system, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci. 347 (1685) (1994) 631-642.

[50] Z. Pinar, An analytical studies of the reaction—diffusion systems of chemical reactions, Int. J. Appl. Comput. Math.
7 (3) (2021) 81.

[51] W.N. Reynolds, J.E. Pearson, S. Ponce-Dawson, Dynamics of self-replicating patterns in reaction diffusion systems,
Phys. Rev. Lett. 72 (17) (1994) 2797-2800.

[52] L. Sewalt, A. Doelman, Spatially periodic multipulse patterns in a generalized Klausmeier-Gray-Scott model, SIAM
J. Appl. Dyn. Syst. 16 (2) (2017) 1113-1163.

[53] J.W. Strutt, Some general theorems relating to vibrations, Proc. Lond. Math. Soc. 4 (1871-1873) 357-368.

[54] A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B 237 (641) (1952) 37-72.

[55] Y. Wang, C. Liu, P. Liu, B. Eisenberg, Field theory of reaction-diffusion: law of mass action with an energetic
variational approach, Phys. Rev. E 102 (6) (2020) 062147.

[56] Y. Wang, T.-F. Zhang, C. Liu, A two species micro-macro model of wormlike micellar solutions and its maximum
entropy closure approximations: an energetic variational approach, J. Non-Newton. Fluid Mech. 293 (2021) 104559.

[57] J. Wei, Existence, stability and metastability of point condensation patterns generated by the Gray-Scott system,
Nonlinearity 12 (3) (1999) 593-616.

[58] J. Wei, Pattern formations in two-dimensional Gray-Scott model: existence of single-spot solutions and their stabil-
ity, Physica D 148 (1-2) (2001) 20-48.

[59] J. Wei, M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in RZ, Physica D
176 (3-4) (2003) 147-180.

[60] J. Wei, M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math.
Pures Appl. (9) 83 (4) (2004) 433-476.

[61] Y. You, Dynamics of three-component reversible Gray-Scott model, Discrete Contin. Dyn. Syst., Ser. B 14 (4)
(2010) 1671-1688.

[62] Y. You, Robustness of global attractors for reversible Gray-Scott systems, J. Dyn. Differ. Equ. 24 (3) (2012)
495-520.

[63] Z. Zheng, X. Chen, Y. Qi, S. Zhou, Existence of traveling waves of general Gray-Scott models, J. Dyn. Differ. Equ.
30 (4) (2018) 1469-1487.

454


http://refhub.elsevier.com/S0022-0396(21)00736-1/bib8E85C1DB267E15A797484964553BC48Bs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib8E85C1DB267E15A797484964553BC48Bs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib06437DEF2CDB7C1C798D10D72B6F121Cs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib06437DEF2CDB7C1C798D10D72B6F121Cs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib021BA35E65D9DE692EEA6B62C4B12DB3s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib021BA35E65D9DE692EEA6B62C4B12DB3s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibFC765241AA6A3533EF098580E41853C6s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib2760D8E63260095A201EC995E048DE90s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib35EE43264D6567900498A004F9871A97s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib845ADA2F72CDD2D6A668B6B78DAB08B8s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB24C34A72AB469B8BCDFFEF70381ECF5s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib12E34C3CC42FD7A2F2E0D75AFB8C7E20s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib12E34C3CC42FD7A2F2E0D75AFB8C7E20s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibE814E66AB69F8C5475C4E9DF34F9D1D2s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibE814E66AB69F8C5475C4E9DF34F9D1D2s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibEDBD7FC53CC2F0A180667B822A367876s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibEDBD7FC53CC2F0A180667B822A367876s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibF6D8CB8FF8B65F3E74F7BEFC207630E0s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibF6D8CB8FF8B65F3E74F7BEFC207630E0s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibBA1F4795C62C8DDFBCAA76059CE8750Bs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibCB9F64E8E4610A0EA9B0470C78785945s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib711679A1389F7B952205EFFDECD2B950s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib711679A1389F7B952205EFFDECD2B950s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibACC359E42B9E935A6E4D8F64F8B086F4s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibACC359E42B9E935A6E4D8F64F8B086F4s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB2C58AC2BB6EE3D6E2C26D80C8B9BE98s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibB2C58AC2BB6EE3D6E2C26D80C8B9BE98s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib75F1A68B68D91A61FD0EAA5569C2EFAFs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib75F1A68B68D91A61FD0EAA5569C2EFAFs1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib3429E39A77E9F7D72F7AD162D0FDA703s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib3429E39A77E9F7D72F7AD162D0FDA703s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib0F175AF2C1AC9860E821B78D6F59083As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib0F175AF2C1AC9860E821B78D6F59083As1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibDA0DE4D564CA9C75BB11E2FCD427C815s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bibDA0DE4D564CA9C75BB11E2FCD427C815s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib9E94AB7889D7729B61AE6D0AA9882907s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib9E94AB7889D7729B61AE6D0AA9882907s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib174D9F6115B423D177976C5D22C543F5s1
http://refhub.elsevier.com/S0022-0396(21)00736-1/bib174D9F6115B423D177976C5D22C543F5s1

	On a reversible Gray-Scott type system from energetic variational approach and its irreversible limit
	1 Introduction
	1.1 Gray-Scott model: review of mathematical studies
	1.2 Main results
	1.3 Main ideas and difficulties
	1.4 Organizations of current paper

	2 Derivation of the reversible Gray-Scott-like model
	2.1 EnVarA for the diffusion part
	2.2 EnVarA for the reaction part

	3 Local well-posedness and convergence towards the irreversible system
	3.1 A priori estimate to the reversible Gray-Scott system
	3.2 Local well-posedness with large initial data
	3.3 Reversible-irreversible limit

	4 Global well-posedness of the system (Re-GS) near equilibrium
	5 Conclusion
	Acknowledgments
	References


