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ABSTRACT. We consider the stability of transonic contact discontinuity for the two-dimensional
steady compressible Euler flows in a finitely long nozzle. This is the first work on the mixed-
type problem of transonic flows across a contact discontinuity as a free boundary in nozzles.
We start with the Euler-Lagrangian transformation to straighten the contact discontinuity in
the new coordinates. However, the upper nozzle wall in the subsonic region depending on the
mass flux becomes a free boundary after the transformation. Then we develop new ideas and
techniques to solve the free-boundary problem in three steps: (1) we fix the free boundary and
generate a new iteration scheme to solve the corresponding fixed boundary value problem of
the hyperbolic-elliptic mixed type by building some powerful estimates for both the first-order
hyperbolic equation and a second-order nonlinear elliptic equation in a Lipschitz domain; (2)
we update the new free boundary by constructing a mapping that has a fixed point; (3) we
establish via the inverse Lagrangian coordinate transformation that the original free interface
problem admits a unique piecewise smooth transonic solution near the background state, which
consists of a smooth subsonic flow and a smooth supersonic flow with a contact discontinuity.

1. INTRODUCTION

We are concerned with the stability of steady transonic contact discontinuity for the com-
pressible flows in a two-dimensional (2D) finitely long nozzle. The underlying equations are the
2D steady full compressible Euler equations of the following form:

9z (pu) + 9y (pv) = 0,

0z (pu® +p) + Oy(puv) = 0,

Oz (puv) + 9y(pv* +p) = 0,

9z ((pE + p)u) + 0y ((pE + p)v) = 0,

where (u,v), p and p stand for the velocity, pressure and density, respectively; and the total
energy F is given by

(1.1)

1
E = (u* +v%) + e(p,p). (1.2)
Here e is the internal energy that is a function of (p, p) through the thermodynamics relations.

For the ideal gas
p=A(S)p7, and e=——p"" e, for A(S) = keer, (1.3)
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where S is the entropy, and v > 1, k and ¢, are all positive constants. The sonic speed of the

flow for the ideal gas is
p
c=,]—. 1.4
Vo (1.4)

The Mach number and the flow slope (i.e., the tangent function of flow angle) are defined by

JZ -2
M = VT and w=". (1.5)
c U
The flow is called supersonic if M > 1, subsonic if M < 1 and sonic if M = 1. For supersonic
flows the system (1.1) is a hyperbolic system of conservation laws, for subsonic flows it is of
hyperbolic-elliptic composite type, and for transonic flows it is of hyperbolic-elliptic composite

and mixed type. For the smooth solutions to the system (1.1), the Bernoulli function

1 P
B=_-(u?+v?)+ —F—, (1.6
5 ) (v=1p )
and the entropy S satisfy the following:
w0y B +v0yB =0 and U0, S +v0yS = 0, (1.7)

and consequently the Bernoulli function and entropy are preserved along the streamlines.

As discussed in Courant-Friedrichs [27], compressible fluids in nozzle exhibit abundant non-
linear phenomena, for example, supersonic bubble, Mach shock configuration, jet flow, and
their interactions. All these phenomena are formulated by elementary waves such as contact
discontinuities. Due to the importance in applications (e.g., aerodynamics) and complex non-
linear phenomena, rigorous mathematical analysis of flows in a nozzle is of great interest but a
formidable task.

Many works have been done on the compressible Euler flow in nozzles. The problem of
the transonic shock in a nozzle, governed by an equation of the hyperbolic-elliptic mixed-type
(see [18,34]), has been extensively studied, see [5,8,9, 16,17, 23, 32, 33, 40, 41, 53] and their
references for the recent progress. The problem of the subsonic flow in nozzles was first studied
in [4]. A well-posedness result for the subsonic irrotational flow in a 2D infinitely long nozzle with
a given appropriate incoming mass flux was obtained in [49], and was extended to the isentropic
Euler flow with small non-zero vorticity in [50] and then in [31] for large non-zero vorticity
with sign condition on the second-order derivative of the incoming horizontal velocity. For the
full Euler flow, the well-posedness was obtained in [7] for the smallness non-zero vorticity and
in [13] for large non-zero vorticity without any additional conditions on the vorticity. For other
related problems, one can see [6,11,13,46] for the sonic-subsonic limit, [12] for the incompressible
limit, [24-26,42] for the jet flow, [28] for the axisymmetric flow with nontrivial swirl, and [30]
for the subsonic flow in a finite nozzle. For the supersonic flow in nozzles, one basic feature is
that a shock will be generated if the nozzles are taking sufficiently long (see [36, Appendix]).
We see that most of these results are on the nozzles with special structures, for instance, the
supersonic flow through an expanding nozzle, which was proposed by Courant-Friedrichs in [27]
and was studied recently in [22,47,52].

The study of the vortex sheets in steady compressible fluids is also an interesting topic, which
has drawn a lot of attention recently. For the subsonic flow, the stability of an almost flat contact
discontinuity in two dimensional nozzles of infinite length was established in [1]; and see [2,3] for
further related results. Recently, the uniqueness and existence of the contact discontinuity, which
is large, i.e., not a perturbation of the straight one, was obtained in [13]. For the supersonic
flow, the stability over a 2D Lipschitz wall in the BV space was proved in [15]. Recently, the
well-posedness theory for the steady supersonic compressible Euler flows through a 2D finitely
long nozzle with a contact discontinuity was established in [36]. For other related problems on
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the steady supersonic contact discontinuity over a wedge with a sharp convex corner, we refer
the reader to [14,29,37,42-45,48]. The contact discontinuity in the Mach reflections was also
studied in [19-21].

In this paper, we study the stability of steady transonic contact discontinuity in a 2D finitely
long nozzle, which is the first work on this topic. The transonic contact discontinuity is a
free boundary that separates the subsonic flow on the upper layer and supersonic flow on the
lower layer in the nozzle. The length of the nozzle is taken to be finite since singularities will
generally develop from the smooth supersonic flow when the nozzle is infinitely long (see the
Appendix of [36]). Moreover, the loss of the regularity for the supersonic flow will lead to the
low regularities of the boundary as well as the data along the boundary for the subsonic region,
which makes the elliptic boundary value problem for the subsonic flow difficult to deal with.
The problem of transonic contact discontinuity in a nozzle is different from the problems studied
in [5,8-10,16,17,27] for the transonic shock in a nozzle where the supersonic state can be solved
priorly, and also different from the ones in [19-21] where the domain concerned is a sector type.

Mathematically, our problem can be formulated as a nonlinear free boundary value problem
governed by the hyperbolic-elliptic composite and mixed-type equations in a nozzle with the
contact discontinuity as a free interface. The main difficulties stem from the fact that the tran-
sonic contact discontinuity is a free interface, the states on both sides are unknown, and the
contact discontinuity is characteristic from the supersonic side, which requires that the mixed-
type equations should be solved first in the subsonic region and then in the supersonic region
together. To fix the free boundary, thanks to the fundamental feature of the contact disconti-
nuity, namely, the flow velocity on its both sides is parallel to the tangent of the interface, we
can straighten the contact discontinuity, as well as the up and lower nozzle walls, by employing
the Euler-Lagrangian coordinate transformation such that the free interface is fixed in the new
coordinates. However, the upper nozzle wall becomes a free boundary in the new coordinates,
since it is a function of the mass flux which can not be determined by the incoming flux com-
pletely. Thus, the original free boundary value problem after transformation actually becomes a
new free boundary value problem, denoted by (NP) in the Lagrangian coordinates. We develop
a boundary iteration scheme to tackle the new free boundary value problem. More precisely, for
a given incoming mass flux m(®), we solve the nonlinear fixed boundary value problem (FP),
then use the solution to update the new mass flux through the conservation of the mass (see
(3.61)). Hence we define a map 7 and then show that it is well-defined and contractive, so
that it admits a unique fixed point (see Section 7 below). Therefore, the remaining task is to
establish the existence and uniqueness of the fixed boundary value problem (FP).

When the flow is C'-smooth, the Bernoulli function B and the entropy S can be solved by
(1.7) depending completely on the incoming flow. With this property in hand, for the flow
in the subsonic region O, the Euler equations in the Lagrangian coordinates can be further
reduced into a nonlinear second-order elliptic equations (see Section 3.2 below) by employing
the stream function . While in the supersonic region Q™ due to the genuine nonlinearity
of the characteristic fields for the Euler system, a pair of Riemann invariants z4 (see Section
3.3 below) can be found such that the Euler equations in the Lagrangian coordinates can be
written as a 2 x 2 diagonal form for zy. Therefore, solving the Euler equations in the region
Q© uQ® is equivalent to solving the boundary value problem (FP) for the stream function ¢
and Riemann invariants z4 with a contact discontinuity separating the regions. More precisely,
we will construct the approximate solutions for the problem (FP) by linearizing it near the
background state, denoted by (FP),, and then developing a well-defined iteration scheme to
show that the sequence of approximate solutions constructed by (FP), is convergent. The
main difficulty for the linearized problem (FP), is that the solutions for z4 in the supersonic
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region QM cannot be determined completely because of the loss of normal components on the
contact discontinuity. To overcome these difficulties, we first replace the boundary condition

e = tan% on Teq by Oep = weq for any given flow slope weq in (FP), and formulate

the modified linearized boundary value problem (f‘\ls)n The advantage of this replacement is
that we can avoid the singularities of the solution ¢ near the corner point @ = (0,0) being
transformed into the supersonic region Q® | otherwise it would lead to the loss of regularities
for z4. Then we use the equation (3.76) to update a new &.q, which creates a map T,. Due
to lack of the contractivity for T,,, we employ the implicit function theorem to show that T,
admits a unique fixed point. This step will be achieved in Section 5.

The existence and uniqueness of the solutions for the modified linearized boundary value
problem (FP), can be proved as follows. We first solve the elliptic boundary value problem in
Q© by applying the second-order linear elliptic theory, and obtain the solutions for  and the
regularity near the corner O = (0,0). Then, with the solution ¢, we employ the continuity of
the pressure p on I'eq to derive a boundary condition for z on ['wq. Next, we need to solve the
initial-boundary value problem for z in the supersonic region Q® through the characteristic
method within different subregions generated by the reflections on the contact discontinuity I'eq
as well as the reflections on the lower nozzle wall. Finally, from the above procedures, several
C’jf and Cb* estimates for the solutions to the modified linearized boundary value problem
(FP), are derived. With these estimates as well as the estimates for w.q obtained in Section 5,
one can deduce in Section 6 that the map generated by the iteration scheme is contractive in
CL(Q©) x 0%(QM™)-norm. Using this property together with the compactness in the function
space C2%(Q(®)) x 1 (QM), we can further obtain the convergence of the approximate solutions
with a unique limit that is the solution of the problem (FP).

The rest of the paper is organized as follows. In Section 2, we first formulate the transonic
flow problem in nozzles with a contact discontinuity mathematically, i.e., Problem A, and then
state the main theorem of the paper. In Section 3, we use the Euler-Lagrangian coordinate
transformation to straighten the free boundary and then further formulate this problem in the
new coordinates, i.e., Problem B. In order to solve Problem B, the stream function and the
generalized Riemann invariants are introduced to reduce the Euler equations in the Lagrangian
coordinates to the nonlinear second-order elliptic equation in the subsonic region Q© and the
first-order diagonalized system of hyperbolic equations in the supersonic region Q®, and state
the main theorem in the Lagrangian coordinates. We then develop some iteration scheme to
prove the main theorem in the Lagrangian coordinates by first fixing the free boundary and then
using the flow slope as the boundary condition to solve the fixed boundary value problem. In
Section 4, we consider the linearized fixed boundary value problem with the flow slope as the
boundary condition introduced in Section 3 and some estimates for the approximate solutions
are established case by case. In Section 5, we will show that the mapping for the flow slope
has a unique fixed point by employing the implicit function theorem. In Section 6, we show
the convergence of the approximate solutions obtained by the iteration scheme in Section 3 and
then complete the proof of existence and uniqueness for the fixed boundary value problem by
using the contraction mapping arguments. Finally, in Section 7, we prove the main result in the
Lagrangian coordinates by constructing a boundary iteration map and show that it is one to
one and contractive and thus has a unique fixed point.

2. MATHEMATICAL PROBLEMS AND MAIN RESULTS

In this section, we first formulate the stability problem of transonic flows in a 2D finitely long
nozzle (see Fig. 2.1) for the Euler equations (1.1) with a contact discontinuity as a free interface,
and then present the main theorem of the paper.
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For two given functions g4 (z) and g_(z) satisfying g_(0) < 0 < g+(0), set
Q= {(m,y)6R2:0<m<L, g-(z) <y < g(z)}, (2.1)

which describes the domain in the nozzle. Denoted by I'_ and I' ;. the lower and upper walls of
nozzle defined in the following:

I :={(z,9):0<z<L,y=g-(2)}, Ty :={(z,9):0<z <L, y=g4(z)}. (2.2)

Let the location of the contact discontinuity be I'cq = {y = ged(z), 0 <2 < L} with geq(0) =0,
which divides the domain 2 into the subsonic and supersonic regions:

09 = 0N {ga(z) <y < g4 (@)}, A= {g (2) <y < geal@)}. (2.3)
The entrance of the nozzle in the subsonic and supersonic regions is described as
I = {(@y):2=0,0<y<ge(0)}, T = {(@y):2=0 g-(0)<y<0}, (24
and the exit of the nozzle in the subsonic region is denoted by
I = {(@y) 12 = L, gua(L) <y < g+(L)}. (25)

(e) r
Wy [ o~ — — L4
A wo(y)
Qle) —
Doy [mmmmmeee-- --TTT T --mT T cd
U y) [T
T Q)
N
/\ I‘i

V(e y=1
we =0
I A y=0
y=-1
z=0 r=1L

Fi1Gg. 2.2. Transonic flow in a finitely long flat nozzle with contact discontinuity

A special case is that a uniform transonic incoming flow goes through a 2D finitely long flat
nozzle, with a flat transonic contact discontinuity dividing the flat nozzle into two layers with
subsonic and supersonic constant states on the corresponding regions; see Fig. 2.2. Let the
nozzle with flat boundaries be described as:

Q;:{(x,y)eR2:0<x<L, -1<y<1}, (2.6)
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the solution in the subsonic region be

Q(e) = (Q(e)7 07B(e)’g(e))T’ (2.7)
and the solution in the supersonic region be
T
UM .— (g(h),o,g(h),g(h)) ) (2.8)

These two layers (top layer is the subsonic region and lower layer is the supersonic region) are
separated by the straight line y = 0. The line y = 0 is the contact discontinuity, which divides
the domain Q2 into two regions,

o9 =an{o<y<1}, QW.=an{-1<y<o0}.

Let
K(e) — (B(ez)’E(ez),ﬁ(e))T7 (2.9)

and let w® = 0 be the angle of the velocity in Q). The horizontal velocities, densities and
pressures in the top and bottom layers are all positive, and the pressures in this two layers are
equal, i.e., p(® = p® = p Moreover, the supersonic and subsonic conditions hold for some
dg > 0, a a a

u® — M > 5, and @) — e > oo, (2.10)

vp( 9
p®

where ¢(¥) = , for i = e or h. Let

v, (z,y) €Q,

2.11
o, (z,y) e QM. 211

U@w)Z{
Obviously, U(z,y) is a weak solution of the boundary value problem governed by the Euler
system (1.1) in  with the boundary {(z,y) : 0 < =z < L, y = 0} as the transonic contact
discontinuity. The flow is supersonic in Q(h) and subsonic in Q(e). We call the solution U(zx,y)
the background solution.
Based on the background solution, we now introduce the problem considered in this paper.
Assume that the initial incoming flow Up(y) at = 0 is of the following form:

() — Vo), yery,
oW=93 (h)
UO (y)7 RS I

in ?

(2.12)

e e e e)\ T e
where Ug" (y) = (ug”, 0", p” 05"”) ' () and Vi (y) = (n”, BE, S57) ' (). Moreover, Vi (y)
and Uéh) (y) satisfy the following compatible conditions:

v (0) =0, p(0) =piV(0),  F)(0) = (BY(0) = (59)(0) = o, (2.13)

and Up(y) satisfies the compatible conditions at the corner point (0, g (0))
Denote the flow field in Q@, (i = e,h), by U®) = (u(l @ p® p ) Then on the nozzle
walls I'_ and 'y, the flows satisfy that

(u(h)’v(h)) ‘n_=0, on I, (u(e),v(e)) ‘ny =0, on Iy, (2.14)

where n_ = (¢’.,—1) and ny = (—g¢/,,1) represent the outer normal vectors of the lower and
upper walls I'_, ', respectively.
Along the contact discontinuity y = g.q(x), the following relations hold

(u,v) neqq =0, [=]=][p]=0, on Teq, (2.15)

v
u
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where neq = (g/4, —1) is the normal vector on I'cq and the symbol [ | stands for the jump of the
states on both sides of the contact discontinuity. Finally, in the subsonic region Q) the flow

slope at the exit ng) is given by

w9 (L,y) = we(y), (2.16)

satisfying

we(gea(L)) = %(L,gcd(L)). (2.17)

In summary, the problem we will study in this paper is described as follows.

Problem A. For a given transonic incoming flow Up(y) in (2.12) at the entrance satisfying
(2.13) and the compatible conditions at the corner point (0, g—(0)), and a given flow slope we(y)

in (2.16) at the exit I‘((f() satisfying (2.17), find a unique piecewise smooth transonic solution
(U (2,Y), ged ({L‘)) that is separated by the contact discontinuity I'cq satisfying the Euler system
(1.1) in the weak sense and the boundary conditions (2.14)-(2.15). Moreover, the solution
(U(x,y), gea(x)) in Q is a small perturbation of the background solution (U, 0) in .

A function U(z,y) = (u,v,p, p) " of Problem A is called a weak solution to the Euler equations
(1.1) provided that the following

// (pu@rC + pv@,@) dxdy =0,

// (Pu +p)0. C+puvﬁyC)da:dy_o

// (puv8 ¢+ (p?+p) yC>d:):dy

//( (pE +p)u 8C+((pE+p) ) y§>dxdy_0

(2.18)

holds for any ¢ € C§°(12).

We will give a positive answer to Problem A. Before providing the main theorem of this paper,
let us introduce the weighted Holder spaces (c.f. [1], [5], [35]). Let ¥ be an open subset of 0.
Denote by X = (z,y) a point in Q. Set

dx =dist(X, %), oxx =min(dx,dx’), X, X' eq. (2.19)

Then, for any integer m >0, k € R and « € (0,1), and a function u defined on 2, we define

lullmoo =" sup|[Du(X)],

0<|8|<m X &4
2.20
| D u(X) — DPu(X)] (2:20)
[u]moc Q= Z sSup / )
Blom X X' EQXAX! | X — X/|@
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and
k,X) max k,0
lullfesg = > sup (859 DPu(x))),

0<|8l<m X <
2 max(m-+a-+k,0) [ D u(X) — Dou(X")]
[u]fn,a)Q =3 sup (5)&(,’” a-+k,0) PR ) (2.21)
— X, X'eQX#X' | |
|Bl=m
k,X) kX kX
Il = lullmoe + Wman,  lullwal = lulwos + W,

where 8 = (81, B2) is a multi-index with 8; > 0(j = 1,2), || = f1 + B2, and D = 850>, We
denote by C™%(Q) and Cm’;)(Q) the function spaces defined below:

(k7
C™(Q) = {u: [[ullman < 0}, C’( = {u: HuH Q < 00} (2.22)
For a vector-valued function u = (uy,ug, -+ ,uy), deﬁne
n
kS
nmm@azijmwmm,|meaﬂ—§jnm;gy (2.23)
i=1

If u is a function deﬁned on an open subset ¥ of 09, let T be a subset of the set X, the
weighted Holder norm HuH E can be defined similarly to (2.20)-(2.22) by changing 2 and X

to X and Y, respectively. The standard Holder norm ||u||;, q;5 can also be defined similarly to
that in (2.23).

Finally, we define £(¢) = 0Q©\{T{?UT'q}, and O = (0,0), P = (L, gea(L)), Qe = (L, g+ (L)).
Then the main theorem of this paper can be stated as follows.

Theorem 2.1 (Main Theorem). There exist constants ag € (0,1) and €9 > 0 depending only
on U and L, such that for any given o € (O ap) and € € (0, €), if

—1l-a {Pe:Qe})

Ve = VO, ppior + 1087 = TP, g + el ]S

(2.24)
+ Hg— + 1H2,a;11 + Hg"‘ N 1H2706;F+ s6

(h) 1
(h) _ Y 272 2.25
M Q(h)>1/1+4L, (2.25)

() x C*2([0, L)) to Problem A with the

and

there exists a unique solution (U(z,y),gea) € HL.
following properties:
(i) The solution U consists of the supersonic flow U™ € C*(Q™) and subsonic flow U

1, _ . . 3
C(fa,z:(e)\{o})(Q(e)) separated by y = ged(x), and the following estimate holds:
a5
HU( Q Hl Q0 Qz(:e) Moy + HU(h) o U(h)Hl,a;Q(h) < COG; (226)

(ii) The contact discontinuity y = geq(x) is a stream line with g.q(0) = 0 and satisfies
< Coe, (2.27)

ch{O}

where Cy > 0 is a constant depending only on U and L.
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3. MATHEMATICAL REFORMULATION OF PROBLEM A

In this section, we first reformulate Problem A into a new free boundary value problem, i.e.,
Problem B in the Lagrangian coordinates through the Euler-Lagrangian coordinate transfor-
mation, and then state the main theorem for Problem B in the new coordinates. Later we
further introduce the stream function ¢ and Riemann invariant z to reduce Problem B to a new
free boundary value problem for (¢, z), i.e., Problem C. Finally, some strategies and iteration
schemes are developed to solve Problem C.

3.1. Mathematical problem in the Lagrangian coordinates. Note that the contact dis-
continuity I'cq is a free streamline by (2.15). We shall straighten the free interface I'cq in term
of the Euler-Lagrangian coordinate transformation and reformulate Problem A into a new free
boundary value problem in the Lagrangian coordinates.

Let (U(z,y), gea(z)) be a solution to Problem A. Define

9+(0) 9ea(0)
m(® :/ pul®) (0, 7)dr and m) :/ péh)uéh)dr (3.1)
gcd(o) g9— (0)
Then, it follows from (1.1), that
g+ (=) ged (%)
/ p(e)u(e)(:c, T)dT = m'®), / p(h)u(h)(x, T)dT = m®, (3.2)
Jod () g—(z)
and
g+ () b
/ (2) pu(z, 7)dr = m® +mm, (3.3)
g—(x

forany 0 <z < L.

We remark that since p(®(0,y) and u(®)(0,y) are not given in the boundary conditions, m(®
defined by (3.1) cannot be determined in Q(® priorly. Thus m(®) is an unknown quantity.

Let

y
n(z,y) —/ pu(z, 7)dr —m®. (3.4)
9-(2)
By (1.1); and the boundary condition (2.14), it is easy to see that
0 0
nwy) _ oy (3.5)
ox oy

Thus we can introduce the Lagrangian coordinate transformation £ as
§ =u,
L: (3.6)
n =n,y)

By a direct computation, we have

9(&m) :( L0 ) (3.7)

Then, it is easy to see that
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BMm), (&) e

10
thus the system (1.1) in the Lagrangian coordinates becomes
(1) -(2) o
oe(+ L) - 0,(%) =0, (3.9)
¢ + Opp = 0,
with the Bernoulli laws:
_ 5(e) (e)
B , ,n) € Q¢
w ) By (n) (&n) i (3.10)
Q.

1112 2 _
o1t )+(7—1)ﬁ

Here we use the fact that the Bernoulli function is only a function of n, because by (1.1),, B (l)( )

for ¢ = e, h are conserved along the streamlines
The boundary conditions (2.14) in the new coordinates become
(e 5(h)
v o v o
+ —
and the Rankine-Hugoniot conditions on f‘cd are
h) o)
=g.a(©). W, =5, (3.12)

ol B

oo

ch

ﬂ(h) f‘Cd
We remark that (3.12) indicates that 2 and p are continuous across I'eq
As shown in Fig. 3.3, in the Lagrangian coordinates the domain €2 becomes

Q={(n)eR*:0<E< L,

the entrance of the nozzle in the subsonic and supersonic regions is
F(e .—{577 O<17<m( —O} I‘(h).—{g, )<77<0£ },
the exit of the nozzle in the subsonic region is
[ = {(&m:0<n<m, ¢=L},
and the lower and upper nozzle walls are
_={En)n=-mW, 0<e< L}, Ty ={(n): © 0<e< L) (3.13)
Moreover, on I'¢q, we have
n(x, gea(x)) = /gc(d()x) pu(z, 7)dr —m®™ = 0.
g-(z
Hence, the free interface I'.q becomes the following fixed straight line
Ceq :={(&m):n =0, 0< &< L} (3.14)
Denote
Q) ':Qﬂ{0<n<m(e)}, Q :Qﬂ{—m(h)<77<0}, (3.15)
and set
i (&), 09(&m), D& m), 5 Em)T, V(&) € QD i=eh,  (3.16)

U9 (&,n) = (al
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e I,
Vo () )
— We(n)
— Q -
—
U(gh) ) I Led
—
— B
I_
£=0 ¢=1L

Fi1G. 3.3. Transonic contact discontinuity flows in the Lagrangian coordinates

as the corresponding solutions in Q© and OW), respectively. Then the background solution
(2.11) in the new coordinates is

U©, (e,

(h)

’ (3.17)
u®, (g e,

U(¢n) =

where
Q(e) = {(5»77) :0< f < L,O <n <m(e)}7 Q(h) = {(gan) :0< g < L7 _m(h) <n< 0}’

and m® = p@Wy §=¢ h.
At the inlet € = 0, the flow is given by

By Valm). el
() = ) = (h)
o (m), mel

in

(3.18)

where ‘70(6) (n) = (]5(()6),386),5’(()6))(77) and Uéh)(n) = (ﬁéh),ﬁéh),ﬁ(()h),ﬁéh))(n) satisfy the following
compatible conditions:

370 =0, 50 = 55”0, (57)(0) = (BF)'(0) = (5,7Y(0) = 0. (3.19)

At the corner point (0, —m(h)), the compatible conditions also hold for U'O(h).
Finally, the boundary condition at the exit of the nozzle in the subsonic region is

@)L, ) = @e(n), (3.20)
satisfying

5e(0) = (%)(L,O), (3.21)

where @e(1) = we(y(L, n)).

With the above preparation, we can reformulate Problem A again in the Euler coordinates
as a new problem in the Lagrangian coordinates with the upper nozzle wall as a free boundary,
i.e., Problem B.

Problem B. For the transonic incoming flow given by (3.18) at the entrance satisfying (3.19)
and the compatible conditions at the corner (0, —m®) and a given flow slope (3.20) at the outlet
satisfying (3.21), find a transonic piecewise smooth solution U (€&,7) with the straight line I'rq as
a contact discontinuity and a constant m(®) > 0, satisfying the Euler equations (3.9) with (3.10)
in Q© UQ® | the slip boundary condition (3.11) on I'y, the Rankine-Hugoniot condition (3.12)
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on Teq, and the boundary condition (3.20) at the exit féi) Moreover, the flow is subsonic in
Q(e), supersonic in Q(h), and is a small perturbation of background solution U by (3.17) in Q.
Set $(¢) = 9QN\ T}, UTq}, and O = (0,0) and P, = (L,0), Q. = (L, m®).
Our main result in the Lagrangian coordinates is the following.

Theorem 3.1. For a given transonic incoming flow (3.18) at the entrance with (3.19) and a
given flow slope (3.20) at the outlet satisfying the compatible conditions at the corner (0, —m(h))
and (3.21), there exist constants ag € (0,1) and é > 0 depending only on U and L, such that
for any a € (0,) and € € (0,¢€), if the given data satisfy

|77~ v 08 g, + e i ™

;)

Lasr@ T
“hn (3.22)

+ Hgf + 1H2,a;f‘, + Hng B 1H2,a;f‘+ < g’

(h) / 1
(h) ¥~ 72
MW = By >q/1+ 4L , (3.23)

where V(© s given by (2.9), then Problem B admits a positive constant m® and a unique

solution U(¢,m) € HL_(Q), which consists of the subsonic flow U (&,n) € C(l’io; i(e)\{o})(fl(e))

and supersonic flow UM (&,1) € CH*( QM) with n = 0 as the contact discontinuity. Moreover,
it holds that

and

- —a5© ~ .
|7 — g @ e MY [0 — g®) o+ 1 —m©)] < Coe, (3.24)
where m\©) satisfies
m(© 1
——— (0, 7)dT = g+(0), 3.25
/0 <ﬁ(e)ﬂ(e))( ’T) T g+( ) ( )

and the constant Cy > 0 depends only on U and L.

e (G) -

if € > 0 is taking sufficiently small. Then the inverse Lagrangian transformation £~! exists and
is

Remark 3.1. Note that

r =E,
y = fjm(m (p%)(x,T)dT—i—g_(x).

Therefore, if Theorem 3.1 holds, then from the inverse Lagrangian transformation L7 we can

show Theorem 2.1 by setting U(z,y) = U({(x,y),n(z,y)). Furthermore, the contact disconti-
nuity geq is given by

gea() = /;(h) <p1u) (x,7)dT 4+ g_(x), = €0, L).

£t

Obviously,
v
géd(m) - E(‘rvgcd(x))a T € [07L)a

which belongs to C1 and implies that g.q(z) € C>%([0,L)). Hence, we only need to prove
Theorem 3.1.
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3.2. Equations (3.9) in the subsonic region Q©, In the subsonic region Q) the Euler
equations (3.9) are a hyperbolic-elliptic coupled system. If the flow is C! in Q©) then by the
direct computation, one has

5()
ag((lge)w) —0, (3.26)
which implies that
s 5(e) 5(e) .
§O(em) = a7 (A ) €m) = A7 (25— ) ) = S5, (3:27)
( ) (Po )7

holds along each streamline.
Next in Q®), we reformulate the Euler equations (3.9) as a second-order elliptic equation by
using the stream function. By (3.9),, define the stream function ¢ by

7 1

Dep = Ok Onp = FORE (3.28)
Then
1 0,
~(e) _ ~(e) _ P 3.99
' = — , 0¥ = — , .
P( )arJSO P(e)an@ ( )
and Bernoulli’s law (3.10) can be reduced to
g(e) 2
TA(S ") ~(e)\y+1 _ B ~(e))2 (Oep)” +1
—_— - B ————— =0. 3.30
SO B + (330)

We have the following property for 5(¢).

Proposition 3.1. In the subsonic region, the equation (3.30) admits a unique solution ﬁ(e) =
ﬁ(e) (Dgo; B(()e), gée)) . Moreover,

ape) - e
= o 1+(8e0)2 \’
I T (GRIER s 2=y
(3.31)
9p© (Ocp)* +1

360 — = o 1+(0c0)? 1\’
@) j( >(8nso)3((c( ))? - m)

where Dy = (85,0, 8,790 and éle \/714 p(e)
Proof. Define

YA(SS))

S = B () +

B(ﬁ(E)7X7B(()e)a g{ge)) —

A 2 ~
where xy = (gfgn )w;l. For any point in Q) we have

oB(3®, x, B, §19)

- = A9 ()2 = @) = (@9)?) > 0,

and

aB(ﬁ(e)7X,B(()e)’ Sv((]e)) B
ox
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Then, for any (£,7) € Q©),
pl® B 1
Oy ()2 — (@) = (5()2)

<0. (3.32)

Therefore, from equation (3.30), we can get a continuously differentiable function p®) with
respect to x, i.e., ﬁ(e) = ﬁ(e)(Dgo; B[()e), 5'(()6)). Finally, because

3 O _ (Oep)?+1
(%) (Onp)?’ O(9hp) (Onp)?
it follows from (3.32) that (3.31) holds. O

Remark 3.2. It follows from (3.27) and Proposition 3.1 that the pressure p(®) is also a function
of D, BS? and S, that is, p(© = p© (Dg; B{, 5.

Now, by (3.29), Proposition 3.1 and Remark 3.2, the equations (3.9) can be reduced to the
following nonlinear elliptic equation of second-order:

0 (5io=) + 0 (D B 557 =0 (3.33)
Next, for the boundary conditions of ¢, from (3.11), (3.18), (3.20) and (3.28), we know that
e = e(n),  on TL, (3.34)
p=g:€, on IV, (3.35)
and
7 (D By, 557) = polm),  on T, (3.36)

3.3. Equations (3.9) in the supersonic region Q. For smooth solutions in the supersonic
region QM we can rewrite the system (3.9) as the first-order nonlinear symmetric form:

Agh)(v(h))agv(h)+Agh)(v(h))3nv(h) =0, (3.37)
where V) (¢, ) = (a®, 5® 5®) 7 (¢, ) and
a® 0 ﬁ(lm 0 0 —pMm
APy = 0 a® 0 APV = 0 0 a®
A0 Gy Ao

System (3.37) is hyperbolic in QM By direct computation, the eigenvalue and the corre-
sponding right eigenvectors are

N pM M) (&h)2 <@(h) B V()2 — (5(h))2>

T (@M)2 — (&M)2 \ g(h) ¢(h) ’
Ao =0, (3.38)
L P a® (ah)2 (@(h) N V()2 — (a(h))2>

+ (a™)2 — (¢0))2 \ g®) a(h) ’
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where ¢ = \/(ﬂ(h))2 + (6®)2 and

A T
ro= (= + o™ —g® _x_g™)
(7w )
ro = (@™,5™,0) ", (3.39)
A s gy gm)T
Ty = |2 0V, U, = A0 ,
* ( P10 * )
respectively. The corresponding left eigenvectors are
le=(re)",  lo=(r)". (3.40)
Define
S 0wy V@R - (@@ (3.41)
MK p)em) (a(h))2

Multiplying the system (3.37) by I+ and ly, and by Bernoulli’s law (3.10), we have
9™ + A_9,0® — AW (9:5™ + A_8,5™) =0,

A o™ 4+ 21 9,0® + A® (5.5™ + A, 8,51)) =0, (342
and
5(h)
ag((ﬁpw) —0, (3.43)
which implies that
30, = A7 (Lo (em) = A7 ’ ) =58 (m) (3.44)
’ (30 )\ )y o ) ‘

holds along each streamline.

Remark 3.3. When the solution (0™, 5() of the system (3.42) is known, we can get the solution
(@™, 5(M) by (3.41) and (3.10) as the following:

J 2((7 —1)BM - V(A(ng))(ﬁ(h))v—l)%)
(v =D+ @M)?) ’

o =

(3.45)

v

2((r = DB = A(ASPNE™)-1)7)

(h) — () ,
(=11 + @)?)

where S(()h) is given by (3.44).

Therefore, in the supersonic region, it remains to solve equations (3.42). To this end, we will
further introduce the Riemann invariants.
Let = (@™, 5™)T then the system (3.42) can be rewritten as

U + F (U)W =0, (3.46)
where
s (&(m))25(Hh) (@M)2 4 (5(1))2_(z(h))2
(a)2—(zM))2 PI) ((ﬂ(h))Qi(E(h))2)

F(U) = (3.47)
(ﬁ(h))Z(E(h))Q(ﬂ(h))S ﬁ(h)(é(h))Q,D(h)

(@ )2—(&)? @Ry
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The generalized Riemann invariants zy4 for system (3.46) are defined as
z_ = arctano® + @( (M) B(g ), S(h)), Zy = arctano® — @(ﬁ(h); Béh), S’éh)), (3.48)

where

50 1/ (7 = D(AG) 7 (207 = 1B — (7 + 1) (ASM)) 7 775
o™ B, 5) / \/ ) ( 1 ( ) )dT. (3.49)

2w(< DB = y(AS) 77 )

Let z = (2_,24) . System (3.46) can be reduced to the following characteristic form:
dez + diag( A4, A=) dpz = 0. (3.50)

Finally, we remark that once z is solved, the solution in the supersonic region is solved by the
following proposition.

Proposition 3.2. If the flow is supersonic in QW then, for any given z = (z—,24), (ﬁ(h), dz(h))
can be uniquely solved by (3.48) as pM) = ph) (z; B(gh), géh)) and &M = oM (2).

Proof. By (3.48), we obtain that

For ¢™ > &M one has

Sm). g gy _ V(@)2 — (W)
0O (P™; By, S5) = FOECIGO)E

> 0,

then, by the straightforward computation, it follows that

oM 1 op™) 1
Oz 2050 By, 5Y) T 0 20,06 By, 55Y)

Thus the proposition follows from the implicit function theorem. O
Finally, for the boundary conditions of z, from (3.11), (3.18) and (3.48), we know that

(&m) =z0(m), on If (3.51)

n ~’

and

z_ + z; = 2arctan g’ (), on I'_. (3.52)

3.4. Free boundary value problem for (p, z). From the above two subsections, Problem B
can be reformulated as the following nonlinear free boundary value problem for (¢, z).

Problem C. For the given data (ﬁ(()e) (n), B(()e) (n), Sée) (1)) at the entrance Fl(n), the given data

(zo(n),é(gh)(n),géh)(n)) at the entrance 1;1(1111) satisfying (3.19), and the given data @, at the

exit T éi), find a piecewise smooth transonic flow (cp, z) (&,m) with a contact discontinuity and a
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positive constant m(©) for the following nonlinear free boundary value problem:

O ~(e) .ple) ale)y _ : 5 (e)

% <ﬁ(e>(Ds0;Bée),Sée))8nso> TP (Dei By’ 57) =0, n {2 ’

O¢z + diag(A4, A_)Opz = 0, in QM)

5 = (n), on T,

— ~(e)

(NP) 8580 - We(n)a on {‘ex s (353)

= Zo(n)a on Ffr}ll)’

Dep = ¢4 (6), on Ty,

dep = o™, pe) = ), on Ted,

(| 2— + 24 = 2arctang’ (§), on T_,

where m(®) on f(f) is determined by (3.25). To make the solution ¢ unique, without loss of the
generality, we prescribe the one-point condition:

©(0,0) = ¢(0,0) = 0. (3.54)

We have the following theorem for the nonlinear free boundary value problem (NP).

Theorem 3.2. For any given data (~ée) B(()e), gée))(n) at the entrance fi(s), (20, Béh) S(()h)) (n) at
(h)

the entrance f‘in satisfying (3.19) and the compatible conditions at the corner point (0, —m®™),

and e at the exit T with (3.20) and (3.21), there exist a pair of constants ap € (0,1) and

€0 > 0 depending only on U and L, such that, if the given data satisfy

Hﬁ[()e) . B(e)HLa%fi(s) + Z (HB((]k) _ E(k)Hl,a;f‘f:) + Hg((]k) B S(k)Hl,a;f‘i<:)>
k=e,h (3.55)
—l—a,{'Pth

;)

o [l

Do = 2lly g + o~ Uy, + 9=+ 2. <

and
w®

M® = iy > V1L, (3.56)
C

for any a € (0,a) and € € (0,€y), then the problem (NP) with (3.54) admits a unique solution

ze QM) pe 0(2’_0‘1_0 i<e>\{o})(Q(e))’ and a positive constant m'®). Moreover, the following
estimate holds: 7
—1—a,SE\{0 e e X~
lo = el aae P 1|z = 2|, g + 1M —m®] < Cog, (3.57)

where m\©) satisfies

m(e)
[ o017 = 9,00 (3.58)
0

Here, Cy = Co(U, L) is a positive constant independent of €.

Remark 3.4. As in Proposition 3.1 and Proposition 3.2, Remark 3.2, and Remark 3.3, we know
that Theorem 3.1 is a corollary of Theorem 3.2, which indicates that it suffices to consider the
solutions to Problem C instead of Problem B. Therefore, we are devoted to prove Theorem 3.2
in the rest of the paper.
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We will solve (NP) in two steps:
Step 1. Assign a value for m® and solve the corresponding fized boundary value problem.

Let m(® = B(e)y(e), which depends on the background solution given in (3.17). For any o > 0,
define

My = {m(e) . m® >0, and ’m(e) —m(e)| <o} (3.59)

For any given m(®) € M,, define F( ) by (3.13), and then consider the following nonlinear fixed
boundary value problem for (NP):

85<5<e>(p¢ 8(85)0 " ) + 0,59 (De; B, 59 =0, i giz(e),
O¢z + diag()\+, _)0yz =0, in QM
P =57 (n), on T,
Dep = @e(n), on T,
(FP) z = zp(n), on f‘i(r}ll), (3.60)
e = g4 (£), on Ty,
O¢p = tan (%), on T,
z_ — 2z, =20(p, B(()h), S(()h)), on T,
z_ + z4 = 2arctan g’ (x), on I'_,

where ]5(()) and p( ) satisfy (3.19). An outline on solving the above problem (FP) will be given
in the Section 3.5 below.

Step 2. Update the approrimate boundary fgf), (i.e., n = m(e)). To update the free boundary,
we solve the following problem:

m(e)

Then we define a map 7 such that 7m(®) = T(m(®)). We will show that

(1) T is well-defined, i.e., T exists uniquely and maps from M, to M,;
(2) T is a contraction.
This step will be achieved in Section 7.

3.5. Solving the Step 1, i.e., nonlinear fixed boundary value problem (FP). In order to
solve (FP), we will formulate an iteration scheme. We first construct a sequence of approximate
solutions by linearizing the problem (FP) partially near the background state U, and then show
its convergence to a unique limit that satisfies the problem (FP).

Step 1.1. The linearized problem that is a boundary value problem for elliptic-hyperbolic
mixed-type equations will be solved first in Q(®) and then in QM together (see Fig. 3.4). To do
this, we define the iteration set as

n n a5 n
Aoy = {200 £ o = pllg 57N 4

< q}, (3.62)

for some 0 < €7 < 1.
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S r- &,

Fia. 3.4. Iteration algorithm for the problem (FP)

19

For any given (¢, 2(0=1) ¢ Hae,;, the linearized boundary value problem of (FP) is

(FP),

DN (D ™; BY, 55)) + 0,N(Do™; BY, 5)) = o,
0:652™ + diag(A" ™D A®"g, 520 = 0,
o) = g (),

De00™ = @e (),

6z = 6z(n),

S = QS:I) ),

5o = [€ tan (ﬂ)( ,0)dr,
02 — 62\ = 280 Voo™ + 280
52" 4 62" = 2arctan g’ (€),

)9 000 4 2¢04(8),

where 6™ (0,0) = 0,

D™
p)(Dp®); B, 5§9)0,0m)

Ni(De™; B 51y =

9

Na(Dp™; Bi®, 57) = 5 (D™ B, 557,

in
in
on
on
on

on

on
on

on

(3.64)

(3.65)
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N _ ~(h) &(h
éd 11) / DO p( ) +T(p ) B(()e));Bé ),S(() ))dT

X /0 (93&@]5(6) (D£+TD5Q0(H71);Bée),gée))dT

(3.66)
TR /a@@ (B + (51 — 5); Bg" S5V ) dr
X /0 8377¢ﬁ(e) (Dg—&—TD&p(n_l);Bée),g(()e))dﬂ
cea(§) == O BM, S — 0(p©; BM, M), (3.67)
and
9" ) = 5— / o) (1) = B () — B 0066 ™ — (B — B, ,) 0206 ) d,
Zo,2 (3.68)
) ey . 0 (O) 4 o (n©
93 (€) = g+(&) — 9+(0) + g5 (m'?).
Here
Pilo(€m) =5 (D05 B SE), ) =5 (D B, 51). (3.60)
and
1
0 = /0 89,00 (D + vD3E™; BS?, 55 dv,
(3.70)

1
) = / 0,50 (D + vDé™; B, 5 dv
0

We remark that the linearized boundary condition (3.63)g on [eq is derived by first taking the differ-
ence between the boundary condition (3.60)g on I'eq and the corresponding background state, and then
applying the mean value theorem of the integral form. At the fixed point, the second boundary condition
(3.63)g on I'eq will recover the second boundary condition (3.60)g on I'eq.

Now, we can introduce the map

T+ Hae, — H,. (3.71)

For the given function (=1, 2("=1) € #5_ . we solve problem (f‘?)n to obtain the function (o™, (M) €
Hae,. Then the map J is defined as

((p(n)’ Z(n)) p— j(@(nfl)’ Z(nfl))_ (372)

For the map J, we are going to verify the following:

(1) J is well-defined, i.e., J exists and maps from %5, to H#ac,;

(2) J is a contraction.
These two facts will be achieved by Lemma 6.1 in Section 6. Then, it follows from the Banach fixed point
theorem that the sequence is convergent and its limit is a solution of the problem (FP). In fact, by taking
the tangential derivatives on the boundary conditions (3.63),, (3.63)4 and (3.63), along the boundaries

Fl(ﬁ), I, and Teq, it is easy to see that the solution of problem (FP), with (o™, zM) = (p0=1 ,0-1)
is actually the solution of problem (FP).

Step 1.2. One of the main difficulties in showing the existence and uniqueness of problem (FP), in
Je is due to the requirement of the higher order regularity of the solution ¢ near the corner point. In
order to overcome this difficulty, we need to define a Banach space:

W= {wcd : ch(o) = w(lzd(o) = Oawcd(L) = (:)C(O), ‘led|‘§Ta(?f£?e}) < OO} (373)
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Given any weq € W satisfying

Jlweall{ 257 < o, (3.74)
for a sufficiently small constant g > 0, let us consider the following nonlinear problem:
DN (D™ B 55 1+ 0, No (D™ B, 58y = o, in Q)
9:62™ + diag(A ™V A" D)g,620) = 0, in Q)
o) = g (), on T,
555<P(“) = Ge(n), on T©,
(FP), {020 =dz(), on M, (3.75)
Sp®) = gi)@), on T,
Sp) = fo Wed (V)dv, on T,
020 — 02" = 2807V 0c80™ + 28857 0,50™ + 2¢cq(€),  on Tea,
52 5z+ = 2arctan g’ (£), on T_,

in 5, for some e; > 0 sufficiently small with g(()n) and g_(f) given by (3.68). The a prior estimates of
the solution (5¢™,62(") to the problem (FP), will be obtained in Section 4.
Step 1.3. With the above solution (6o™,§2("), we define a iteration map Ty, : W — W, ie.,

@ed = T (wea, wp) by the equation
52(:1) + 52£Ln))

Weq = tan ( 5

(3.76)

where wo = (P 5 B(()C),SOC),Z B S( s @ey gy G—)-
Then, by applying the implicit functlon theorem, we shall show in Section 5 that T, has a fixed point
wea satisfying the equation (3.76).

In fact, for problem (FP), we have

Theorem 3.3. For any gwen m® € M, with o > 0 sufficiently small, there exist some
constants ag € (0,1) and €, > 0 depending only on U and L, such that, if the data satisfy

Hﬁ(()e) _B(e)HLa%fi(s) + Z (HB((Jk) 7 ;1;;:) + HS’SI‘) _S(k)Hl,a;ffrlf)>

k=e,h (3.77)
@l %N a0 — 2], g + g - o+ 1,00 <E
and
MM = “(h)) 14 L2/4, (3.78)
for any € € (0,&) and o € (0, ), then the fized boundary value problem (FP) admits a unique
solution (¢, z) € c(“; s e)\{o})(m )) x CLe QW) with
le=elsames P+l = 2, o < G (3.79)

where the constant C’1 > 0 depends only on Q and L.
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4. THE SOLUTIONS TO THE LINEARIZED PROBLEM (FP), 1N Q© U Q®

In this section we will first consider the solutions (¢, z(™) to the problem (ﬁ)n near (¢, z)
and then establish some a priori estimates for (o™, (") to show that the map J is well defined.

Theorem 4.1. For any gwen m'® € M, with o > 0 sufficiently small, there exist some
constants ag € (0,1), Cg > 0 and €] > 0 depending only on U and L, and some constant gy > 0

depending on € and U, such that for any o € (0,a0) and € < e; € (CZE, 61) € (0, 00) with
€ > 0 sufficiently small, if (5o, 520-D) € Ao, and weqg € W with ||weq || - {Pe}) < o, then

the linearized problem (f‘\ﬁ)n admits a unique solution (50", 62(™) € s, satzsfymg

(e)
80l ™M + 16201, g
C*(H@ée)\\l,mfg;) 1620 g + D5 N8B ppo + D2 10567 peo 41y
k=e,h k=e,h
eQe e
ol 7D+ a7+ s =, + o+ Up ).

where C* > 0 depends only on U and L. Here, 515(()9,) = ]5(()8) — Q(e) and 5Bék) = B(()k) — BW),
5§(k) = S((]k) — 5 for k =e,h.

We will show Theorem 4.1 by solving the problem (FP) first in Q(®) and then in Q® together.
To this end, we will first consider the problem (FP) for 6™ in the subsonic region Q) then
we can deduce the boundary condition of 6z on Led by gluing the solution dp™) obtalned in
Q). With this boundary condition for §z™ on T'rq, we can solve the problem (Fﬁ)n for 5z
in the supersonic region QM) by employing the characteristics method.

4.1. Estimates of solutions in the subsonic region Q(® for problem (f‘\ls)n Let us
consider the problem (FP), in the subsonic region Q) (see Fig. 4.5). Problem (FP), in Q)
is the following boundary value problem for ¢®™:

e N1 (Dp™); B((]e), 5’88)) + 0y N2 (Dp™); B(()e), Sée)) =0, in QO),
5™ = g5 (n), on T
060 = Qo(n), on T8, (4.2)
Sp® = M (e), on T4,
5™ = [§ wea(v)dv, on T,

where 60 (0,0) = 0, and N (j = 1,2), cea(€), and g((]n)(n), gf)(n) are given in (3.64) and
(3.67)-(3.68), respectively. Our main result in this section is the following proposition.

Proposition 4.1. For any given m® € M, with o > 0 sufficiently small, there exist some
constants ag € (0,1), Cep > 0 and ec9 > 0 depending only on U and L, such that for € <
€e € (Ce0€,€c,0) with € > 0 sufficiently small, o € (O,C;(}ae) and a € (0,0), if weq € W with

a,{Pe})
lwea |4

Lol < o, then the problem (4.2) admits a unique solution ™ € c* (Q(e))

(~1-a:S@\{0})
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r
_ n=m©
£y 6 i
.............................................. n=0
£€=0 Leq (=1L

Fia. 4.5. Boundary value problem for (i:‘\l;)n in Q©

10 SE\(0)

02O €e. Moreover, it holds that

satisfying H&P(n) Hz

)1 (—1—a, @ * ~(e n(e
H5s0( )‘ (2,;;@(@2 MY < 040(“51)6 )HLa;fi(j) + H‘SB( H1ar (o) + H(SS H1ar(e)

(4.3)
gaal“ije +flg+ - 1H27a;f+

-« e, Qe
@l r % o+ e

where the constant C}, > 0 depends only on U and L, and 5;5(()9), (53(()6), (55’66) are given by
Theorem 4.1.

Remark 4.1. From (4.3), it is easy to prove that there exists a constant C’ZO > ( depending only
on U, L and «ag such that

n a,{Pe ©
Hd‘P( )H2alF d{ gye (“51’0 Hmr(e) + H‘SB( )Hmr‘e) T H(SS Hlal“(e)

(4.4)

+ HWeH o (ae>{Pe 20 + H Hlaap{je )+ Hg+ - 1”2,a;f+

Proof. To prove Proposition 4.1, we will first consider the existence and uniqueness of solutions
to the problem (4.2) in the weight Holder space due to the complexity of boundary conditions
and the corner points of the domain. This can be achieved by developing a nonlinear iteration
scheme near the background state together with the Banach fixed point argument. Next, for
the solution of the nonlinear problem, we will further show the C?“-regularity of the solution
©™ near the corner point @ = (0,0) to ensure that the solution ™ in the supersonic region
QM is also solvable. The proof is divided into three steps.

Step 1. Linearization of problem (4.2) in Q). For fixed n, define the iteration set

— n 11—« E( e)
See = {‘P( Vil - ||2aQ(e) )< e}
Let
O1:=0¢, 0p:=0y. (4.5)

Notice that the background state ¢ satisfies
ON1(Dp; B, 8)) + 8,N3(Dyp; B, 8)) = (4.6)
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Taking the difference of equations (4.2); and (4.6), and then linearizing the resulting equation,

we have
S 0i(a)?0060) = 3 au,
1,j=1,2 i=1,2
where
ag?™ = /01 0y, Ni(Dg + 7D3; B, ), i j = 1,2,
and

bi = Ni(Dg; BY?, 3 — Ny(Dg; B©, 5©)), i =1,2.

Therefore, we can derive the following linearized elliptic problem for the problem (4.2) in Q.

Z i,5=1 23 ( (M( ))8 0¢ (n)) Zi:1,2 d;bi, in Q(e)’
e = gi" )(?7)7 on IfY,
0,560 = @, on T, (47)
o = g{(¢), on Ty,
300 = [ wea(v)dv, on T,

where gén) and gSLn) are given by (3.68).

Define the map T E., — E, as follows. For a given function o™ ¢ E.., we solve the
linearized fixed boundary value problem (4.7). Denote the solution by ¢™_ Then

0™ = T(0p™),  for 6p™ =™ — o, (4.8)

(n)
Step 2. Solve ¢\ by the fized point argument. For the coefficients az(?(p )(i,j =1,2), it is
easy to see that

o™ — a2 I i < oo (19)

where C is a positive constant depending only on U (©) and a. Moreover, we have that

(5¢) (69) PO ()3 ()2

er:=ay =u >0, eri=ayy = (c(9)2 — (ul®))2 >0, (4.10)
and agf) = aéﬁf) = 0, which yields
(e) (4 ((e))2
6p) (60)  (6p) (p) _ L7 W) ()
11<p 22£ —a12£ a21£ - ()2 — (u(®))2 > 0. (4.11)

If e > 0 is sufficiently small, there exist constants A, A>0 depending only on U (e), such
that for any c,o(n) € &,

v § (n) ~
ol < 3 alf? iy < A9l 9 = (91,9). (4.12)
i,j=1,2
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From (3.70), at the background solution the coefficients 5(()1,11) and 68?2) are

ﬁ(n - ﬁ(n)

I

o= B =B© §O—g@)
(p(e)g(e))2 (y(e))3 (4.13)

(n)zf’éée)zﬁ(e)’gée)zﬁ(e) = (g(e))2 — <E(e))2 > 0.

’802 - ﬁ(n)

Notice that for sufficiently small constant o > 0 defined by (3.59), one has || < |m(®)| < C
for (0,n) € f‘fﬁ) where the constant C > 0 depends only on U (¢). Then, we can deduce that

(n) | (—1—a,{0,01})
|‘27a;fi(s)

(—1—04,{0791})

n
[ (50 500~ 0549 — 52— 3,050 s

Q,Q;fi(:)
(4.14)

0
<H5ﬁff)H1ar<e> 1By g + 10567 50

50 $(e)
+ (BN 1B s + 1057 0 o S5 ),

() || (=1-e{Qr,Qe})
H2 oM F+

[ras

H —1-0,{Q1,Qc})

= [|g+(€) — g+(0) + g ( Dl

(_l_av{Qth})

m(©

(56 (1) = B9 () — 600186 — (5] — B,,)0256™ ) dp

5

< ||
B HBO’Q 0 2,a;f‘i(§)

(4.15)
1-0,{Q1,Qe})

+Hg+(§) HgarJr

— C<Hg+ o 1”2,a;f‘+ + Héﬁée)Hl,a;f‘i(s) + HéB(()e)Hl,a;f‘:) + Hég(ge)Hl,a;fi(s)

i (—1—a,5 - (e ~ (e i (—1—a,5©
(BN + 1B Nt + 1858, oo™,

and

(—1—&,{0,7)9})

<Clloalli gy (419)

|

3
I (—1—0&,{07733}) _ H/
Pllg of = wed (V) dv
2,a;5cq 0 ¢ 2,0:Teq
where C > 0 depends only on U®, L and «, and Oy = (0, m(®).
Now we can apply Theorem 2 in [38] and Theorem 3.2 in [39] as well as Lemma 6.29 in [35]

to conclude that the problem (4.7) admits a unique solution ™ € C’(QO‘1 N Z(e))(f)(e)) which
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satisfies
oo o™
sc(ll GO0 4 IO g P
3l + 6 zalpz{O’Pe})>
=

(4.17)

)| (~1—a,£© ~ (e “ (e 0, 5)
< C(H‘SSO( )H;,o};me)z '+ HéBé )HLa;fi(? + H‘SS((J )Hl,a;fgj)) o5 H;;mo)z

—1—0,{Pe,Qc})

+C<H5po o + 18BNy qupior + 105670, gpio + 2l s

s = U, + sl 557,

where C > 0 depends only on U®, L and a. X
Because o™ E.., it follows from Step I that ¢™ is uniquely solved, then 7 is well-defined.
Moreover, we have

|6 (n)Hgame)Ee))<C€ + Céee +C(€+ 0). (4.18)

Choosing EeO = min{ % i3 C+1 1}, CL o0 = 4C and taking € > 0 sufficiently small with € < . €

(Ci o€ €0), we see by (4.18) that o e B, forp € (O,C’;ése), which means that 7 map Z.,
to B, itself.

(n) (n) sm)

Next, we will show that 7 is a contraction map in Z.,. Choose 22 € E... Set 09,7 =
7'(5g0(n)) k =1,2. Then, we have
(5% , (n) _ b —
Z 0; ( ) = Z 0;bi, for k=1,2. (4.19)
1,7=1,2 i=1,2
Define

60 = 6" — ", 66 = 65" — 650"

Then, 6 satisfies the following boundary value problem:

()
Dijm 128(( )8(5€I>( ))
5ot () n o

— 2ij=12 81‘(( fg% . W ))3j5¢§ )>, in Q©)
56 = ) (n) — g3 (), on T, (120)
0169¢) =0, on fg‘f{)a
Sdm) — 95:1)1(5) - 932)2(5% on T,
5&)(n) = 07 on f‘cda
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where g(()fll) (n), g(()lg () represent the right hand side of (3.68) by replacing ¢™ with cp( M and

Lpgn), respectively. Notice that
al () — g$y ()

n
= /0 (ﬁé,lw_ 0180 + (B5D) oy = Byp) 02068 = By _ 0 O1005"
o < (n)‘ ﬂ >a ) (n) d
SO(n 20,2 2 902 14

n (n) ( 5(n) (n)
( Z / 503 P =" — B, )8 50! )d,u+/ 002 (BOJ |so<“>=<p§“) — o ’w(“>=@§n))du>'
7j=1,2

Then, similarly to (4.14)-(4.16), we get that, for o > 0 sufficiently small,

Hg& 902” —1 (Ocl){o QI}
. (—-1—,{0,Q1})
Boa 3212/ BO] e =py" ﬁo’j)ajé(b o 2,00
—1-a,{0,91})
+7 Z/ 0;0%2 ﬂOJLp“) = ﬁo]hﬁ(ﬂ) ‘p(n)) MH ol
=12 "
, a5
c<se+e>na<1>< { Fywreat

where the constant C > 0 depends only on U®), L and «. In the same way, for gf)l &) — gin)z &)
one also has

n a,{Q1,9c}) a,5©)
199 = g 15 51 < e+ ) o@|5 5,

provided that ¢ > 0 is sufficiently small, where the constant C > 0 depends only on U ©), L and
.
Thus, it follows from the estimate (4.17) that

(n a3 sp'™ sl L(n) ] (—a;2(©)
e (D S (e LR =l )
ij=1.2

(o) - I O ol oA )

H( 1—a,5(@)

<C(€e—|—6)H(5<I) 2.as(®) ,

where C > 0 depends only on U®), L and o

Therefore, we show that 7 is a contraction map by letting € > 0 sufficiently small so that
€ < e € (Clyéely) with /g =1 and !y = 5. As a result, the existence of solutions to the
problem (4.2) and the estimate (4.3) are established by (4.17) for e, € (C €, e )-
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(n) ()

For the uniqueness, consider two solutions ¢}, ¢, € B, for any e. € (Cy (¢, ;) and fixed

n. Notice that 7 is a contraction map, then we have

(n) 1-aS@) _ 1, @) (n) 1-a,500)
¢ — Hzag(e> < 5“901 Hgame) ’
which implies that gogn) = cp(n)
Finally, we take Ceo = max{C,Cq o} and e = min{eg g, €0}, then, for € > 0 sufficiently

small, if € < g¢ € (Ce0€,€c,0) and p € (O,Ceoese 0), the problem (4.2) admits a unique solution

n o (e n 1—a,5(®) .
o ¢ C(2_ o 2(9))(9( )) satisfying H&p( HzaQ ) < ge and the estimate (4.17).

Step 8. Higher order reqularity of the solution near the corner point O. We divide this step
into two sub-steps.

(Step 3.1) Introduce a new function and reformulate the problem (4.2) near the corner point
O. Set

P = 910 (4.21)
Then it is easy to see that
Ot = o™, o™ = ay™. (4.22)
By the equation (4.2),, we have
_ H(e)y a(e)
]le O = - N2 (By") = 050 N2 (57" (4.23)
which gives
2 ) N oo w2 (n) _ Ophe - (Bs )+8S(9)N2 (557
030 __W 11%¥ —Wam /\/'(n)
” ” “ (4.24)
NP 2NE L O N (B )+3<e>N2 (557
w 1¥ () 02 ® )
Ny Noy Ny,
where
(= ). B &) ()2 ()2 (Dap™)? — 1
Nll :88190(n)N1(D90 ;Bo 7S0 ): ~(e)\3 9o o) ~(e)\o 1401 p™)2 )
() (@B ()2 — et )
o (4.25)
~ _ ~(€)\2 (n) 2 1)
() (). 5O gy _ (@) ((01p™)? +
Noz' = gy N2 (D™ Bo”, S7) frop ¢(n))3((5(e))2_w>’
n 2 n (ﬁS,C))Q(azw(n))Q
and
~(e)y249 (n)
(n) _ prm) _ (). ple) &)y _ _ (en’)%01p
Nz = Mot = Do N (DR B, S07) 7 (Bap) 2 (@82 — L2y (4.26)
o (7)2 (D)2
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Obviously, A/;gn) satisfies (4.9)—(4.12), and
(5(9))2

(P82 (Do) (@) — e )

()2 (D20(m)?
~(e)y2/ =(e)y2/~(e)\2
_ (Cn ) (pn ) (uﬂ ) >0’
@) - @)
for any ﬁr(le)ﬁ,(le) > 0 in Q) where ﬁr(le), 61(1 ), i and qI(1 ®) are functions of D™ B(()e) , gée). More-
over, we know that

NIPNG ~ NGNS =

(4.27)

(n) (n)
Nll |@(“):£’Bée):§(e)75'(()6):§(e> > 07 N22 |@(Il):£?éée):§(e)’Sée)zﬁ(e) > 07 (428)

and

i i — N | i i
2 w(n)zf,Bée) :E(e)’sée) :ﬁ(e) 21 @(n):£7Bée):§(e)’Sée)zﬁ(e)

In order to derive the equation for ("), we take d; on (4.23) and then substitute (4.22) into
the resulting equation to obtain

>0 NP 3 b oMot = 0, (4.30)

i,j=1,2 k,j=1,2

where NV (i, j = 1,2) are given by (4.25)(4.26) with (4.27), and

N N N'(n)
b;l) — 6ak4p(n)./\/’1(1) — N(H) 68’6@(11)-/\/22 5
n w Ny
bl(£2) = 2(8ak4p(n),/\/’1(2) — (n) aak@(n)N12 ),
N3
for Kk =1,2 and
aa n)N22 8 (e) N
(n) _ aa By _ 92 2 (n) . pey
= Z ( A 8Bée)ak¢(n>N2>ak’1‘p (By )
1,j=1,2 22
() (4.31)
Dy pmNag () N2 )
+ Y 2 NGB ™ - (557
i7j172< N2(2) 55 o )
Next, let us consider the boundary conditions of ¥(®). Firstly, at the entrance fi(fl), we rewrite
(4.2), as
7 (D™, B, 557 = i (). (4.32)
Then, taking derivative 02 on (4.32) and by (4.21) and (4.24) to deduce that
Ao ™ 4 B opp™ = g™ on T, (4.33)
where
) DaymPONGY 2(n o 205, BON
/3((),1) = _8230—(1’1)11’ ﬂ(()g) = aalsp(r.)p( ) o L2 (4.34)

Ny ’ Nyy)
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and
88 w(n)ﬁ(e)aB(E)NQ
g™ = () + ( — <e>p(e)) (B
Nay (4.35)
882Lp<n)13(e)8§(e)/\/‘2 ~
D05 ) (S5
n S,
( N )
Here
~ e) 2 (n)
~(e Cn 8
8814p(n)p( )= - ~(e) (8 (n))2(<(é e)));f M) ’
Pn 2§ n (ﬁge))z(%(p(n))?
(4.36)

88250<n)ﬁ(e) = ~( )

e N3 (A2 _ _1H@ipM)2 1\’
Pn (82%0 ) ((CH ) (p(e)) (82<p(n))2>

Furthermore, from the construction of the approximate solutions, and by Proposition 3.1, (3.18),
(4.28), (4.29), (4.34) and (4.36), we know that

B ‘ (n)— SDB(C) B(e) S(C) S(e)

5(e) _ . _ s
862<p(n>p ‘So(n):gBée):E(e)7sée>:§(e)N11 ‘%,(n S07]5;((;%:5@)7S(<)e>:§<e> “0
E—— - ,

)
22 ‘ Oy :£7Bée) =B 7389) =5()

3(n)
BO 2 ‘ () =y, B =B(©) §{) =g(©) (4.37)

(e)
- 881%0(11)]) ‘ (n) — =g, B(e) (e) S(e) E(e)

~(e (n)
2832¢<,,>p( )‘<p<n>:£,gge>:§<e>Vg(ge):§<e>N 12 ‘¢<n>:£73(ge>:§<e>Vgée>:§<e>

Ny

b(ngf, B =B 5 =g

where 33],@(11)13(6) for j = 1,2 are given by (4.36).
Since 916p™ = weq on I'ed, then we have, on the contact discontinuity,

¢(n) - ch(f)’ on ch- (438)

(Step 3.2) Construct a comparison function and apply the mazximal principle near the corner
point O.  Let us introduce a coordinate transformation,

- {ézﬁﬁ,
0= \/ean,
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where e, ey are given as in (4.10). Then under the transformation 7, the domain Q) and
boundaries fl(i) and f‘cd become

O = {(€,7): 0<{<erL, 0 << eam®},

P ={(En): £=0,0<i < yem®},

12‘cd: {(é:ﬁ) : 0<€< \/aLv 77:0}
Let
20 3 NP Y W00, A = 00+ B0 (439
1,j=1,2 k,j=1,2

where él = 85, 62 = aﬁ and

N = N by = Nl Bo) = N ik, j=1,2, (4.40)
satisfying (4.%8), (4.29) and (4.37). Set (€, 7) = ™ (fr’l(é, 7)). Then ™ in the new
coordinates (,7) satisfies the following problem:

LW (pm)y = fo) in QO

D () = g, on T (4.41)

P = wea(é/ ver), on Teg,

where f ™) and §(™ are functions of £ and g™ under the coordinate transformation of 7.

Note that due to the already obtained C1® regularity of go(n) up to the origin, one has the
C% regularity of ™ hence the Dirichlet condition for w(n) on I'q can be extended to the
origin.

We fix a constant 79 > 0 and let B,,(O) be a disk with center at O and radius ry. Denote
B} = B,,(0)N Q). Let r = \/£2 + 72, and 0 = arctan g Define

v(r,0) = Krlt@sin (T0+w), (0<6< g

where e € (0,1), 7 = 22, w = %7 and K = f(roflfase for K > 0 being a constant to be
determined later. It follows from the direct computation that

), (4.42)

v =Kr® [(1+ a)sin (76 + w) cos 6 — 7 cos (76 + w) sin 6],

dov = Kr® [(1+ a)sin (76 + w) sin 6 + 7 cos (76 + w) cos 6],
and
Av = Kro! (1 +a)? — 72)sin (70 + w)
K(Ba+5)(1—a) (4.43)

= _ 1 r®lgin (70 + w),

where A := 5%1 + 832
Now let us consider the boundary value problem (4.41) near the corner O. By the estimates
(4.17), (4.31) and the condition (3.19), for ¢ € (Ce,0€, €c,0), We can show that

]f(n)] < Céeer?@t < Ce?pat, (4.44)
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By (4.30)-(4.31) and the estimates (4.17) and (4.9), we have
LWy — f0)
= Av+ (£ - Ay — f®
KBa+b)(1-a) o () 52 im4 4 i(n
= 1 r¢" " sin (79+w)+';2</\/’ij —5ij)8ijv+kzl2bkj vdjv — f
27]: I’ 7]: k)

K(3a+5)(1 —
_ ( Oé+4)( a)ralfara—leesin (7'9—|—U.))

Y o e ~o —2(1 _
+CKrytm o 12 4 CK?r, (+“)r2%§+cr2°‘ 12

IN

A~

K(3 5)(1 —
:To—l—aroe—lge<_ (044‘4)( @)

sin (70 + w) +CKeo + CIA(QTO_I_O‘ro‘Hse + CT8+1Ta€e>

K 1— . )
= ro_l_o‘r"‘lge< _KBa +i)( @) sin (70 + w) + CKee + CK?ce + Cr8a+1ae>,

where C > 0 depends only on the background state U®). Due to the choice of the constants a,l
and w, we know that

_K(Sa +i)(1 _ a)sin (7'9 —i—w) < 0.

Thus, for e, < ¢ and K sufficiently large, it holds that
LWy — f) <, (4.45)
Next, let us consider the boundary conditions. Obviously, we have
e }aBjomQ(@ = |aBT+OmQ<c>’ (4.46)

by letting K sufficiently large. X
On the boundary 8B;tJ N eq, due to the C%* regularity of )™, the Dirichlet condition for
1[1(11) on I'eq can be extended to the origin, thus one has

p —l-a, 1+ 1+ (ma{Pe}) _ pr
P —y < Crgtor a(Cro ancdHLa;de — Keesinw

< Cro_l_o‘rHa (Ceré"mg — Kegsin w)
(4.47)

IN

Cro_l_o‘rHo‘ae (Cr(l)+a — K sin w)

IN

0,

by choosing ¢ € (0,C; 'e,) and K sufficiently large.
Finally, on 0B;} N e by the estimate (4.17) and the assumptions (3.19), we have, for € > 0

n

sufficiently small and € < ¢ € (Ce€, €e ),

g™ | < Cer®™ < Ceer®. (4.48)
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Then, by (4.48), we can deduce that
M (v) — g™

= B(()?BKTO‘ [(1+ o) sin (76 4+ w) cos§ — 7 cos (70 + w) sin 6] ‘

2

3(n) - o : ~ EPAC)
+ By Kr® (1 + «)sin (76 + w) sinf + 7 cos (76 + w) cos i
0,2 [( ) ( ) ( ) ] ‘9727 (4.49)

. 3 N
(— J;a él)cos( T+w)+ (1+a) 82) n(I

5 57 + w)) To_l_o‘ro‘ae + Ceor®

:< K(32+ @) 5

1 —1—
50 1 |g,<n> B =B) 5 =g COS(27T +w) + Cec +Cr, +a> rg T
By choosing rp = €e < €¢,0, and noting that r < g, we deduce that

A () — g < _BEBTD) (32+ a) 5 el

¢<n) =, B(e) B(C) S(e) S(C) COS( ™ + W) + Cﬁe. (450)

We can take 0 < ap < 1 and K > 0 sufficiently large depending only on U and L so that

~

K1+ a)ﬂ

-
1o =p, B =@ 5§ =g() €O (5“ + W) +Cee <0,

holds for any « € (0, o), where we have used (4.37) and the fact: cos (37 +w) = cos (T427m) <
0. It implies that

M (v) = §™ <0.
Then, by the maximal principle, we have 1/1(“) < v. Similarly, we can also obtain w(n) > —v.
Thus, we have |1/1(n)| < Krlte, Using the standard scaling technique, we can get C'“-estimate
for (" and then C%“-estimate for ™ up to the corner point O. (|

4.2. Estimates of solutions to the problem (ﬁ)n in the supersonic region Q. In
this subsection, we will consider the solution §z(™ for the initial-boundary value problem (FP),
in the supersonic region Q®:

9:52® + diag(A" ™D AP )9, 52 — 0, in QW)
520 = 5z (n), on T wsl)
52" — 52 = 260 Voo™ +28%70,600 1 2¢q(€),  on T, '

{ 52 4 5z5rn) = 2arctan g’ (&), on I_,

where the functions ﬁég_ll), £3—21) and c.q(€) are defined in (3.66)-(3.67). We have the following
result.

Proposition 4.2. For any given a € (0, 1), there exist constants Cﬁ,o >0 and Eikl,o > 0 depending
only on U, L and o, such that for é < e; € (Cf;oé, ef;O) with € > 0 1is sufficiently small, if
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(620071 501 € s, then the solution 2™ to the problem (4.51) satisfies

||(5Z(_n)||17a;fz(h) + H(;Z_(,?)HLQ;Q(M

<C; (Héz(n)H st S IBBEI, oo
41 0 Lol kze?h 0 Lol (4.52)

+ > ”55(()1{)”1@5@ +lg- + 1y 0p + \\5¢(n)“;;};c;,{Pe})>7
k:e,h [t

where C;; > 0 depends only on U, L and .

:d,O Leq :d,l
------------------------------------------- 77 = O
~(h ~
le) 19 931) 1L
N KU ol 0
) 12 o) o
QIII QVI -
£=0 g T SO ¢=1L

F1G. 4.6. Initial-boundary value problem for (ﬁ)n in QM

The proof of the Proposition 4.2 will be divided into several steps to deal with the different

sub-domains which are constructed as follows (see Fig.4.6). Denoted by Qgh) the triangle which is

bounded by the inlet f‘i(rlf), the characteristics of (4.51) with the speed Ay issuing from the point
(0, —mM) (which we denote by 19) and another characteristics of (4.51) which corresponding

to A_ issuing from the point (0,0) (which we denote by °). Let ng}) be the triangle bounded

by 11 and the contact discontinuity Teq. Let Qg})] be the triangle bounded by the lower nozzle

walls f(_h) , lg and 1. Let le‘l/) be the diamond bounded by [, the characteristics l}r determined
(h)

by A, issuing from the point where [° and the lower nozzle walls '™ intersect, as well as the
characteristics [1 with the speed A_ issuing from the intersection point of lg and the contact

discontinuity Teq. Let le ) be the triangle bounded by I}, I* and the contact discontinuity I'sq.

Let QSI} be the triangle bounded by 1!, l}r and the lower nozzle wall T Sh). Finally, we remark
that different from the argument made in [36], we need to consider the Holder estimates, i.e.,

C%*norm on the charateristic curves and the solutions instead of the C'-norm used in [36].

4.2.1. Estimates on the characteristic curves. First, let us introduce several lemmas on the

Holder regularity of the characteristic curves. For any 14 ¢ € [—m® 0], let n = gbil) (&,m+,0) be

the characteristic curves corresponding to )\il b issuing from the point (0,74 0):

d¢(n) n— n
= APV o (nw0),

1 (0,11.0) = 0.

(4.53)
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Along the characteristics, we have

e,
n=1o+ / AP (r, 0 (7, 0)) - (4.54)
0

From (4.54), we can regard 74 (or 1—p) as a function of (£,n), i.e., nyo = n40(&,n) (or
n-0 = 1-,0(§m))-

For any two points P = (£p,np), Q = (£0,nQ) € Qgh)uflgl}) (or P, Q € Qgh)uflg}) ), there exist
unique points Py(0) = (0.7, (0)) Q+(0) = (0.ng @) € T (or P-(0) = (0.7 (). Q-(0) =
(0,m9_(0)) € fl(rl:)) such that the characteristics corresponding to )\5:171) (or )\(_n*l)) issuing from
P, (0) and Q4(0)(or P_(0) and @_(0)) pass through P and Q.

Define P4 (§) = (£, ¢+ (& mp, (0))) and Q@+ (&) = (&, ¢+(£, g, (0))) (or P-(§) = (&, 0—(&;mp_(0)))
and Q—(g) = (57 o (5777@7(0)))) Then

13
np.(e) = ¢+ (& 1P, 0) = 1P, (0) +/0 AP (P (7))dr,

¢ (4.55)
Q1 (6) = 0+(&:71Q4(0) = MQ4(0) + /0 APV (Qq () dr,
for Py, Q4 € Qgh) U Q([}}), (or
¢ (a-1)
np_(e) = 0-(&,1p_(0)) = Np_(0) + /0 AV (P (7)) dr,
(4.56)

13
No_(e) = ¢—(&:M0_(0)) = Mo_(0) +/0 AP(Q_(r))dr,

for P_,Q_ e M ualhy.
From the above arguments, we also have np, () = 7+,0(P) and 1g, (o) = 7+,0(Q). Finally, we
define the distance in the Euclidean norm as

d(PL(€),Q+(€)) = [P+(€) — Q£(€)], d*(Px(€),Q+(6)) = [Px(€) — Q£(§)|, Va € (0, 1(31 .
.5

Then, we have

Lemma 4.1. For any o € (0,1) and 5201 ¢ Hae;, there exist constants Cy1 > 0 and ey 1 > 0
Cui, (i = 1,2,3) depending only on U, L and o, such that for € < e € (Cn1€ €en1) with € > 0
sufficiently small, one has

(i) d*(P+(8),Q+(9)) < Cnd*(P,Q), £ €10,¢pql,
(H) d” (P:I: (5)7 Q:I:(g)) < Cypd” (P:I: (§PQ)7 Q:I: (§PQ))7 5 S [07 £PQ]7 (458)
(iil) Ci5'lépo — ol™ < d*(Q+(Sp@). Q) < Cuslépg — £ol*,

for any P,Q € Q(Ih) U le}) (or P,Q € Qgh) U le})l), where Epg = min{ép, &g}, Pi(§) =
(€7¢$)(€77IP¢(0))),Q¢(§) = (§,¢$)(§,77Qi(o)))7 Pi(&pg) = (§PQ7¢$)(§PQ777Pi(O)))7 and Q+(&pq) =
(&po, o (£PQ: 104 (0)))-
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Proof. Without loss of generality, we only consider the case that P, () € Qgh) UQS}}) and {pg = &p,
since the other cases can be treated similarly. By (4.53), we know that

0 106 :a)\(n_nacbgf) 96
n

S s O,T] ’0 = 1,
96\ o t Bme’ myg 0
which leads to
(n)
0Py _ JE 0,08 D (ro (rans0))dr
OMN40
Noticing that
(n—1) _ (n—1) _
A e spmsgim_g = AL e _spm s = A+ > 0, (4.59)

one has

n—1 n— ~(h S(h
IPE™Y = Aslly oo < C(10207 Dl g + IS, roo + 185871, o)
in T in (4.60)
< C(2¢1 +€),

and hence there exist constants Cf ; > 0 and ¢} ; > 0 depending only on U and L, such that for
€ > 0 sufficiently small, if € < e; € (C] ,€, €}, ), the following holds,

1 n— 3 1 ne 3
AL <IN gam <354 A <AV <AL (4.61)

Then, by (4.61), it follows that

64 €, 0) = 02 (€ 110, 0)] < Chiey )~ Mg, ) (462)
for 0 < ¢ < ¢pg. On the other hand, from (4.55) and (4.60), we have

@ )

P, 0) — 10, )] < 1P —ng| + AL TQ(r))dr
3
.

+ /0 ” (A7 (@Q4 () = ATV (Pi(r)) )ar

(4.63)

=(h) T HS((Jh)/ 070%&3)) ‘77P+(0) - 77Q+(0)‘

0,0;T°;,

< eL (|0 Y ygqem + 155

+ |np —ng| +Clép — &0

<c(ler — gol + |np — nal) +2CL(2¢; + &) |np, o) ~ no- 0|

By choosing constants Cj; > 0 and ¢;; > 0 depending only on U and L, so that for € > 0
sufficiently small and € < ¢; € (C} ;€ ¢, ), we have 2CL(2¢r + €) < L Then, it follows from

2
(4.63) that

e, 0) ~ - < 2¢([ér = €ql + [np — el )- (4.64)

Combining the estimates (4.62) and (4.64), we get the first estimate (i) in (4.58).
Next, taking {p = &g in (4.63) and then applying estimates (4.62) and (4.64) again, we have
the second estimate (ii) in (4.58).
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Finally, by (4.55) and the estimate (4.61), we have

13
4(Q+(r), Q) = |¢p — o] + \ /5 “AI(Q ()

S C’&P _gQ}u

and

13
/g AP (Qu(r))dr

Then the estimate (iii) in (4.58) follows. Finally, we take Cn1 = max{C] ;,C};} and ep1 =
min{e} |, €}, then, if € > 0 is sufficiently small and € < e; € (Cy,1€,€n,1), the results of the
lemma hold. 0

Now, we turn to the estimates for 74 o given by (4.54). For any point (§,7) € Qgh) N Qy}) (or

d(Q+(£p), Q) = |¢p — Eo| + >CHep — &gl

(&) € Qgh) N le})l), there exists a unique 74 o, such that the characteristic curve corresponding
to )\5:1_1) (or )\(n_l)) issuing from (0,74 0) (or (0,7—0)) passes through (&, n). Hence, by (4.61)

and the implici_t function theorem, from (4.54) we can regard 74 (or 14 ) as a function of
(&m), d-e, me0 =1n4,0(§,m) (or n—o =n-0(£,n)).
Lemma 4.2. For any o € (0,1) and 5201 ¢ Hoe,, there exist constants en 2 > 0, Cho > 0

and Cyy > 0 depending only on U, L and «, such that for € > 0 sufficiently small and é < e; €
(Ch,2€, €n,2), it holds that

1Dm+0llg 05000000 + 1010l 000 g0 < Caa- (4.65)
Proof. We only prove the estimate for Dny o in Qgh) U Qg}), since the estimate for Dn_ in

Q(Ih) U Q([}})I can be treated in the same way. First, HDT]_A'_’(]HO 0.0 _aMm can be estimated easily
Uiep Uy
by choosing constants Cp2 > 0 and e, 2 > 0 depending only on U and L such that € < ¢; €
(Ch,2€, €n,2) for € > 0 sufficiently small as done in [36, Lemma 4.1]. So it remains to estimate
[D77+70]0 LA Taking derivatives on (4.54) with respect to £ and 7, we have
[anthay ) II

Do _ NG
g L+ SR ely o s gy (4.66)
oMo 1

L N L e

Taking two points P, = (£1,m1) and P = (&2,12), which satisfy (4.55) with initial conditions
NP, +0) = NM+0(P1) and np, ) = n+,0(F2), respectively. Then we need to estimate the term
d=%(Py, Py)|Dnyo(P1) — Dy o(P2)|. Notice that

d=*(Py, P2)|Dnyo(P1) — Dy o(P2)|
< d™(P1, P2)|0gnt0(Pr) = 9eny o(P2)| + d™(Pr, P2)| 0y 0(P1) — Oynv 0(P2))]
=1 + Is.
For Iy, by (4.66), we have
AP (py) - AP (py)
1+ [8 90 Veld 0 Vs g p oy (82 g NV 0T sy

L =d (P, P)

< Ii1 + o,
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where
d—(Py, PQ))\Sflfl)(Pl)( 052 371)\31_1*1)6%7 anAf—l)dsdT o fo 1 an)\gfl—l)ef(; 871)\3?_1)‘136{7-)
I = T D T D ’
(14 fS a0V els 0 Vdsgr) (14 [£ 9, AP Dely 92 dsgr)
and

AC ) - APV ()

& Ay (n— -1
L1y = d™%(P1, P) +/ DA els o 1)dsdT>
0

By Lemma 4.1 and by choosing constants still denoted by Cp, 2 > 0 and €, 2 > 0 depending only
on U, L and «a such that for € < ey € (Cp2€, €,2) with € > 0 is sufficiently small, we have

52 T n—
Ly = Cd=°(Py, Py) / (AL Vel oA (L (7))
1

61 n— T (n—1) n— T (n—1)
+Cd™(PL, P) / (DALl 0T (py (7)) = (@, ATV T (i (7)) dr
0

<C,

where C > 0 depends only on U, L and a. Similarly, we can get the estimates for 12 and I3 to
obtain I15 + Is < C for some constant C > 0 depending only on U, L and «. Then, with the

estimates for I11, 112 and Iy, we have the desired estimate on [D77+,0]0 I ONIOR This completes
[anthy | II

the proof of the lemma. O
Next, let us consider the characteristic curves issuing from the lower nozzle wall. Let £, , be
the &-coordinate of the intersection point of characteristic n = <Z>(J:1 ) (&, —m(h)) and the transonic

contact discontinuity n = 0, and let 5im(h>,o be the &-coordinate of the intersection point of the

characteristics n = gb(_n) (€,0) and the nozzle wall n = —m®, i.e.,

&
/ d,0 ( ( (Z)(n)( T, — (h)))d’r:m(h)7

05* (4.67)
/ _m(h),o )\(_1’171) (7_, gb(_n) (7-’ 0))d7’ = —m(h)

0

Let £ = XSf) (n,g_m(h)’o) be the characteristic curves corresponding to )\Sf_l)

issuing from the
point (gfm(h)yov _m(h))a ie.,

dxﬂf) _ 1
dn AP (M€, (0) o)o1) ’ (4.68)

X (=m® € 0) = € o
for £, m g€ [0,§jm(h> 0], where §* ) is given by (4.67). Integrating (4.68) from —m® to ),

one has
dr

n
e s / __ , 1.69
O L AP (e 0), ) o

+

Given any two points P = Eprnp), Q (fQ,nQ) S Q(H)I U Q(h) U le), there exist unique
points Py (—m®) = (€p, (Cmm); —mM) and Q4 (—mW) = (o, ( _m(h))v_m(h)) such that the
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characteristics corresponding to )\Sf*l) issuing from them pass through P and Q, respectively.

Define Py () = (X" (0,€p, (_py): ) and Q1 (1) = (X (1,65, (_pnwy)>m)- Then

9

£, = X 01, L)) = €2 s e
Pl = X0 DS cm)) = 8Py ) T NG )

£ X(n)(n § m )=¢ m /77 ar
5 oy =X M €h . ) = €5 (o ay + NI PO
Q+(n) Q+( ) Q+( ) —m®) )\S_ 1)(Q+(7'))

Now, we define the distance in the Euclidean norm for this case as

d(p+(77)aQ+(77)) = p+(77) - Q+(7I) ) da(er(??)a Q+(77)) = ‘p+(77) - Q+(ﬁ)‘a- (4.71)
We have the following lemma.

(4.70)

Lemma 4.3. For any o € (0,1) and 52071 ¢ Hoe,, there exist positive constants Cn g > 0,
ens > 0 and 6'4]-, (j = 1,2,3) depending only on U, L and «, such that for € > 0 sufficiently
small and € < er € (Cn3€, €n,3), we have

(1) d* (P+(77)7 Q+("7>) < CA’41d0[ (Pv Q)v ne [_m(h)a 77]5@]7

(i) d*(Py(n), Q+(n) < Caad® (Py(npg), Q+ (npp)) ne[-m®™ npel,  (472)

«
)

(i) Cip'lnpg —mgl" < d*(Q+(npg), Q) < Cas|npy — g
(ng)(np@fm(_m(h)))v7715@)-

Proof. Without loss of the generality, we only consider the case that 7 po = "p because the other
case can be dealt similarly. First, taking derivatives with respect to §_,,m) o in (4.69), we have

2 - )
I \0E_, ) /\f_l)(xﬁf)(n,ﬁ_m(h)70),77) 9_,m,’

8X<n)
m(—m(h)aﬁ_mm),o) =1,
which implies that
n K 0 L dr
3XSF) B J2 §(>\Srn71)(xgrn)(7’§7 o 0),7))
—— —=e mATs,
ag_m(h)p
By (4.59)-(4.61), we can obtain
1 1 - 5(h) &(h)
B <c<5z<n My wam + 16BPL ) + (165 i )

Then, there exist some constants C, 3 > 0 and e, 3 > 0 depending only on U and L, such that
for € > 0 sufficiently small and € < €7 € (C 3€, €3), we can further get

! < H ! i 4.74
2[A| AP qsam  2[Ax] (474)

Thus, for 0 <7 < 7p, by (4.74), we have
‘Xsf) (U»ﬁm(_m(h))) - XS:I) (777§Q+(—m<h)))| < C‘fm(_m(h)) - €Q+(—m(h)) : (4.75)
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On the other hand, we can also deduce from (4.70) that

€6, (cm) ~ 0 (cmo)]

-
S}fp—ﬁQ\Jr/Q

5
p
+ /
—m(®)

< cm® <HD62(“1) Ho,o;fz<h> + (5Béh)/7 5§éh),)

1
)\(f_l) (Q+(7))
1 _ 1
AET(Qu(m) AT (Pu(r)

dr

dr

(4.76)

‘0,0;fi(fl‘)> |§ﬁ+(—m(h)) - £Q+(_m(h))

+1€p = ol +Clmp = mg

= C(‘fﬁ — &l + Inp - ”QD +Cm™ (2e1 + &)[€p, () = €0, ()

)

where C is a positive constant depending only on U and L. Therefore, by choosing constants
still denoted by Cp, 3 > 0 and e, 3 > 0 depending only on U and L, such that for € > 0 sufficiently
small and € < €7 € (Cp3€, €n,3), we have cm® (26[ + €) < %, which implies that

€5, () = €0 (cmi| < 2C<|§p —&o| +|mp — UQD- (4.77)

Hence, the estimate (i) in (4.72) follows from the estimates (4.75) and (4.77).

Next, by taking 75 = 7 in (4.76), the estimate (ii) in (4.72) follows from the estimates (4.75)
and (4.77).

Finally, by (4.70) with k& = @Q, and the estimates (4.61) and (4.74), we have

d(Q+(np), Q) = |np — o) +

/r:Q A(H—UC(ZL(T)) ’

P4
<Clnp —np);
and
A A nqQ dr
d(Q+(np) Q) = np — 14 ‘1“/ n_A’
( P ) ‘ P Q‘ e )\3_ 1) (Q+(T))
>C M np — 6]
which gives (iii) in (4.72). The proof is completed. O

Based on the definition, for any point (£,7) in Q(I}})[ N Qg}‘l/) U le), there exists a unique
§_mm o, such that the characteristics corresponding to )\S:Fl) issuing from (f_m(hm, —m(h))
passes through (§,7). Hence, by (4.74) and implicit function theorem, we can regard §_,,m) g
as a function of (£,7n) in Q(I}})I N Q(I}‘l/) U Qg), i€ & g = &_m (& m). We have the following
lemma.

Lemma 4.4. For any o € (0,1) and 5201 ¢ Hae;, there exist constants Cha > 0 and ey 4 > 0

depending only on U, L and a, such that for é > 0 sufficiently small and € < ef € (Cp 4€,€r,4),
one has

HDg_m(h)voH07CY;Q¥})IUQS}€/)UQ$]) S C447 (478)



TRANSONIC CONTACT DISCONTINUITY IN A NOZZLE 41

where the constant Cyy = C’44(Q, L,«a) > 0 is independent of e and n.

Proof. By choosing the constants Cy, 4 > 0 and €, 4 > 0 depending only on U and L, such that for

€ < € € (Cpa€, eng) with € > 0 sufficiently small, the estimate for [[DE_,,m) oll, 0:00 AQMLAM

follows easily as done in [36, Lemma 4.2]. Next, let us consider [Dgfm(h)70]0,a;§2§}}}m9§}{)uﬂ$‘)' By
(4.69), the straightforward computation shows that
O _mmo 1
g I O (S )ds
—m (n—1)
L+ 7w ()\(nl,n)e A+ dr
+
0wy 1
n B S, a&(;)ds .
) m = (n—1)
(1 + S O (fn—l) Je ™ dT) AL
For the two () () () i i i
points P = (€p,mp)s Q= (fQ,nQ) € QIU U QIV U Q , there exist unique points

p_,’_(—m(h)) = (§I3+(—m(h))’ _m( )) - (é—m(h),O(P% ( )a’nd Q-i-(_m(h)) = (€Q+(—m(h))7 _m(h)) =
(f,mw)’o(Q), —m®™) so that the characteristics determined by )\Sffl) issuing from them pass
through P and Q, respectively. Direct computation yields that

~(P,Q)|D¢_ ) o(P P) — D¢ m(h)o(Q)’

_a(Pv Q)’aﬁf—m(h),O(P) - 8§€—m(h),0(Q)‘

NP, Q)| 0(P) = O 0(Q)

::jl + fg.
For I1, by (4.70), we have
I = d™*(P,Q)|0e&_m o(P) — & 0(Q)]

f_m L n— f_Tm 0 n% ds
v g(k(* e dr — | m(maS(A(nl m)e N é(ki ) dT‘

S, O¢ (7@11) )ds
dT) (1 +f o (h) (/\i:},l))e A+ d7'>

—a(p’ Q)‘ fj,i(h) 6&(@)

S ) Oc (A(;%l))ds

‘ (1 + 0w 3&(@)6
NIV 1 J7 i 9 (S ) s
cere (| [“or( s )T
np )\+ (Q+(7))

np
w7l
_m(h)

5<A$‘”<P+<T>>

1 ) Jom 3&(@)@ ( 1 ) I m 35(@)‘“
€ B WNCEN NI
APV(Q4 (7))

Then, we can get, for € < e; € (Ch4€, €, 4) with € > 0 sufficiently small,

dT}.

i <l = g !+ Cm® (18D g+ | 05 5567 500 ) < €
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by (4.73) and by choosing constants Cp 4 > 0 and ey, 4 > 0 depending only on U and L. Similarly,
one can also get I, < C. We therefore have
[Dﬁ—m@,o]o,a;ﬁgl;gu@yyufzgﬁ
= sup TP, Q)| DE_ 0 0(P) = DE_pym o(Q)
P,QEQ?EUQ(}’)UQ(}‘)
<C.
This completes the proof of this lemma. ]

Now we consider the characteristics issuing from the transonic contact discontinuity [eq. Let
(n-1)

& = X(_n) (m,&cd,0) be the characteristic curves corresponding to AL/, and issuing from point
(£cd,0,0), where &eq0 € (0,82 o] and £y is given by (4.67), i.e., they are defined by

dX(,w _ 1
dn AP M ,gean)m) (4.79)
(1} €ed,0) = &ed,05

where £ea0 € 0,83 o] Then,

n dr
TS0t /0 ACTD O (7, €ea0), 7). (450)

For any two points P = Eprmp), Q@ = (fQ,nQ) € Qg}) U Qg‘l) U Qg‘}, there exist unique
points P_(0) = (€p_(0),0); Q_(0) = (€9_(0),0) so that the curve § = (n)(n,écd 0) issu-
ing from them pass through P and @, respectively. Define P_(n) = (x ) (1,€p_(0))>n) and
Q-() = ™ (1,€5_(0)) ). then

n n dr
&b =X 1.6p ) = Ep o) /0 O E )
- (4.81)

[ R !
o () = X= "7’5Q_(0>)—5Q_(o>+/0 NG :

Define

d(P_(n),Q—(n)) =

P_(n) = Q-(n)|*, Ya € (0,1).
(4.82)

Then, we have the following lemma, the proof of which is analogous to that of Lemma 4.3 and
thus omitted.

Lemma 4.5. For any o € (0,1) and 5201 ¢ Hae;, there exist constants Cy 5 > 0 and ey 5 > 0
depending only on U, L and o, such that for € > 0 sufficiently small and € < e € (Cn5€,€15),
the following holds

(a) d” (p*(n)’ Q*(n)) < C4lda (p Q) ne [0777]5@]7
(b) d*(P-(n),Q-(n)) < Ca2d®(P-(1pg), Q- (1p3)), n € [0,np); (4.83)

(©) Ci'lnpo —nol” < d*(Q-(npg), Q) < Cus|npg —no|”

Y
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where the constants Cyj > 0,(j = 1,2,3) depend only on U, L and o, and npo = min{np, nQ}
and P_(155) = (X (1p0: €p_(0)):150) and Q—(1p5) = (x™ (1p0+€6_0))150)-

Finally, for any point (£,7) in le}) U Q%l/) U leg, there exists a unique &40, such that the
characteristics corresponding to A0 issuing from (§cq,0,0) passes through (&,7). So we can

regard &40 as a function of (£,7) in Qg}}) U Q%l/) U QSI}, i-e., €ed,0 = &ed,0(&,m). Then, we also
have the following lemma, the proof of which is similar to that of Lemma 4.4 and thus omitted
as well.

Lemma 4.6. For any o € (0,1) and §20-1) ¢ Hoe,, there exist constants Chg > 0 and e > 0
depending only on U, L and o, such that for € > 0 sufficiently small and € < e € (Cp €, €np),
one has

||D£Cd,0||07Q;Q(I};)UQ§I€)UQ$I) < Cu, (4.84)
where the constant Cyy > 0 depends only on Q, L and o.

4.2.2. Estimates of the solutions to the problem (ﬁ)n m Qgh) U Qg}) U Qg}})l In this subsection,

we will consider the estimate of solutions in the supersonic region Q) for the problem (FP),
near the background state z, which can be written as the following:

002" + A V9,6:" =0, n oM ualual,
0:62" + A"V, 5.0 =0, i QMua®uoh (4.85)
620 = 6z, on f‘l(il)

Our main result in this subsection can be stated below.

Proposition 4.3. For any given o € (0, 1), there exist constants Cr, 7 > 0 and e, 7 > 0 depending
only on U, L and o, such that for € < e; € (Cn 7€, en7) with € > 0 sufficiently small, if 6201 ¢
Hae,, the solution 62" of the problem (4.85) satisfies

1821, oo + 19271, gorge < Cir (1620l ypoo + 1020l g ), (4:86)

where Cy > 0 depends only on U, L and «.

Proof. We only consider the estimate for the solution 2 in Q(Ih) UQ?}), because the proof for z

(n
in Qgh) UQ?})I is similar. First, for any point (£,7) € Qgh) UQ?}), we can draw a characteristic line
n= gZ)Sf) (&,m4,0) defined by (4.53)-(4.54) such that it intersects with fl(r}:) at the point (0,74 ).
Then, one has 5z£n)(£,n) = 02_0(n+,0). Moreover, differentiating the equation (4.85); with

respect to £ and 7, and then integrating them along the characteristics n = ¢$) (&,m4,0), we
have

() (n) S @D o @)y )
057 (€m) = 05 0.m20) = [ (0N 0,62) (1,6 (o)) r
‘ (4.87)

3
— Detg 0By, 062 (0,74.0) — /0 (0:A08,5:) (r, 6™ (7, m1.0))dr,
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and

n) (n) C @D o )y ()
52 (€, m) = 0,55 (0, ms.0) — / (0,2 "70,6:0) (7, 6 (7, m1.0))
° (4.88)

£
= 11400, 007 (0, 714.0) — /0 (0,200,627, 0T (7, m4.0))dr-

Therefore, we can follow the approach in [36] for proving the Proposition 4.1 and apply the
Lemma 4.2 as well as the estimate (4.61) to get

Hdz(n)

- Hl 00U = QCH(S"’—,OH1 0P (4.89)

provided that € < e¢; € (C], 765 eh ;) with € > 0 is sufficiently small, where the constants C’h 7 >
max{Ch,1,Chz2}, 0 < eh’7 < min{ep 1, ep2} and C > 0 depends only on U and L.

Next, let us turn to the estimate of [Déz(_n)]o a0 (@0, ) For the two points P = (Ep,1p),

Q= (&.,ng) € Qgh) U Qg}) lying on the characteristics corresponding to )\Sfl_l)

with fl(r}:) at the points P (0) = (0,7p, ) and Q+(0) = (0,79, (0)), respectively, by (4.87)-
(4.88), we have

and intersecting

&p B N
0021 (P) = ey o(P)3y, 0% (P1(0)) - / (9,287 10,02) (Py(7))
(4.90)

&p
0,62"(P) = Dy 0(P)dy, o7 (P1(0)) — /0 (0,20 V0,6:M) (P (r))dr,
and
£Q
902" (Q) = 0en+.0(Q)Dy. 02— (Q4(0)) — / (0-287Y0,6:)(Q+ (7)) dr,
0£ (4.91)
0,5:(@) = 01 0(Q)0y. 82 (@+(0)) = [ (N0 0,8:) Q1 ()i

where 1p, () = 71+,0(P) and ng, ) = 7+,0(Q)-
Without loss of the generality, we asume that £p < {g and let Q4 ({p) = (£p, qﬁ(f)(gp, 104 (0)))-
Then, by a direct computation and by Lemma 4.1, one can get that

d=(P,Q)

D" (P) - D" (@)
a-(P,Q)[ D= (P) - D6:" (@4 (&p)
a*(P,Q)|Ds=" @+ (¢p)) — D3 (Q)| (4.92)
<Cd(P,Q4(&p)) ‘Daz(,“) (P) - Daz(,“)(m(&p))\

+Cd™*(Q+(¢p), ’D52( M(Qx(ep)) — Déz(_n)(Q)‘
=:C(J1+ J2),

where constant C > 0 depends only on U, L and .
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Now, we will estimate J; and Jy. For the term J;, by (4.90) and (4.87)-(4.88) for Q4 (&p), we

have

Ji < 7 (P.Q4(Er)) | D1t 0(P) Oy, 167 (P (0)) = Digs o Q4 (€0))0y 82-(Q(0))|

ép
+d (P, Q. (¢p)) /0 ‘(mﬁl*”@az&“))(a(ﬂ)f (DA&H)aTaz(_“))(Q+(T))‘d7

=: Ji1 + Jio.

For Jq1, it follows from Lemma 4.1 and Lemma 4.2 that

T = d7(P, Q- (€p)) | Di1s0(P)y. 402 (P1(0)) = D o(Q+(€9)) B0, 107 (Q4(0)
47 (P.Q+(€r)) | Dn0(P) = D o(Q+(69))| |0y 05— (P4 (0)
47 (P, Q- (69)) |0, 402- (P(0) = Dy 102 (Q(0))|| Do+ (Q (€p))|
< |1 082 (P (0)|d™ (P, Q4(6p)) [ Dso(P) - Dn+,o<Q+<§P>>]

+ €| D1 0@+ (6) |47 (P (0), Q4(0)) |, 105 (P4(0)) = By, 82 (Q+(0))|

< CH(SZI_70HO7Q;I:§:),

where C =C (Q ,L,a) > 0 is independent of ¢; and n. Next, for Ji2, a direct computation shows

that

Do =4 (P.Q+ter) [ 7 (DA 9,5:) (Pa () - (AR 0,62 (@ ()]
4" (P, Q4+(p)) /0 7 (DA (Po(r) = DA (Qu (7)) 0182 (P ()

(e [ ] (050 () - 205:(Q1 () DAL (@ )

Then, by the estimates (4.61) and (4.89), we obtain

(n-1) )
Ji2 < NSV /0 |D6=)(P(r))|dr
+C([1620 V| g + [ (658 655"

.~(h>>
7T in

&p
x /O 4 (Py(7), Q4 (7)) |Do=" (P (7)) = D" (@4 (7)) |dr

ép

< C[[dz—ol, gz +C (261 +) /0 d_a(P+(T),Q+(T))‘D5Z£n)(P+(T)) D& Q4 (7))|dr

where C = C(Q7 L,«) > 0 is independent of €; and n.
Combining the estimates on Ji; with Jio, we can deduce by the Gronwall inequality that

Ty = d~(P,Q4(¢p)) | D" (P) — D5=") Q4 (¢p))| < C||62 0llg apm e G,
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which implies

N s (PQ(ER) D (P) - Do (Qu )

PQ+ (6p)e0V LAY (4.93)

<26, oo

Here, we also choose the constants C/ , > 0 and €] » > 0 depends only on U and L, such that
for € > 0 sufficiently small and € < e; € (C] ;€ €. ), it holds eXCL(2e1+6) < 9,

The remaining task is to deal with J. By the equations in (4.91), (4.87)-(4.88) for Q4 (&p)
and the estimate (4.61), and Lemmas 4.1-4.2, we have

“(Q+(¢r),Q) | D32 Q1 (6p)) — DIV(Q)

~(Q4(&p), Q )Dmo Q+(p)) — Dy o(@Q ‘! 1 002-(Q+(0))]

&
H0 Qi) Q) [ |(DAT0,8:) (Qu )]s

ép
< (1Pl 15l 6~ ol I 50,

S CHéz_’OHLOTﬁ}.’)'
(4.94)

Combining all the estimates from (4.92) to (4.94) above together, we therefore get that

[D(SZ(_H)]O’OC;Qgh)UQy})

= sup d’a(P,Q)’Déz(_n)(P)—Déz(_n)(Q)’

P,RedMuat

<c s d(PQ4(E)| Do (P) - Do (@ (6p))| (4.95)

PQy(£p)EOT LA

+ o sw “(Q+(¢r), Q)| D8 (@4 () — Do (Q)
Q+(§P)7Q69§h>u529})

SCH(Szivo Ho,a;f\(h) )
where the constant C > 0 depends only on U, L and a.
Finally, it follows from the estimates (4.89) and (4 95) that we can choose the constants

Ci >0, Chy = = max{C}, ;,C} 7} and en7 = min{e;, 7, € ;} depending only on U, L and o such
that for € < e; € (Cp 7€, eh,7) with € > 0 sufficiently small it holds that
Haz<_n>Hm;QSh)Uﬁg}) < Ciilldz—oll, . pm-

The proof of this proposition is completed. O



TRANSONIC CONTACT DISCONTINUITY IN A NOZZLE 47

Remark 4.2. By the estimate (4.86), we actually have the estimates of 525;1 ) in Qgh). Moreover,

on the contact discontinuity T'eq N le}) and the lower wall of the nozzle T'_ N Qg})[, we also have

152 ity + 158ty < o162l i + Dozl o ). (496)

4.2.3. Estimates of the solutions to the problem (]/.5‘\15)n in Q(II})[ U le‘l/) U QSI). Problem (FP), in
Q?})I U Qy‘l/) U le ) can be formulated as the following:

0 0V S0 B UAA) )
: 4.97
52 4 5z5:‘) = 2arctang’, on I'_N{0<&<&" oot

Similar to the argument in Section 4.2.2, we also study problem (4.97) via the characteris-
tics method, but the difference is that there are reflections of the characteristics on the lower

wall T'_ of the nozzle. Let n = ng)(f & 0) be the reflected characteristics which issues

from (€* ) o —m®™) and intersects with the transonic contact discontinuity I'eq at the point

( :dJ,O). Then, it holds that

0 dr N
D) = &ed,1- (4.98)

) AP (P, § o) 7)

We have the following estimates for 6z£n) in Q(I}})I U Q(Il‘l/) U le ),

Proposition 4.4. For any given o € (0, 1), there exist constants C, g > 0 and e, g > 0 depending
only on U, L and o, such that for € < e; € (Cp 8¢, eng) with € > 0 sufficiently small, if 521 €
Hae;, the solution 2 4o the problem (4.97) satisfies

(n)
[LERa PO
" (4.99)
< ZS(H‘SZ+ H1,a;f,m{0§§§§i o) + Hg_ + 1“2,a;f,m{0§§§€i (h) 0)’
where £* ) o Us given in (4.67) and the constant 6'13 > 0 depends only on U, L and o.
Proof. By (4.97),, we have
0,02 4~ 552" = ¢
no%Z— NG €0z~ =0 (4.100)
_l’_

For any point (§,n) € Q(I}})IUQ?‘I/)UQSI), we can define a characteristic line £ = ng) (1€ o)
by (4.68)-(4.69) such that it intersects with the boundary I'_ at the point (£ )00 —mM).
Then, by the boundary condition on I'_ N {0<eg<e

_m(h

}, we get

mh) ,0

62 (€,m) = 82 (€ 02 —m M) = 2arctan g (€ 0) = 94 (€ 0, —mM). (4.101)
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Next, differentiating the equation (4.100) with respect to £ and 7, and then integrating them
along the characteristics £ = x (7] §_ ) o), We obatin

0:02" (€, )
n
= 9:62")(¢_ g0 —m™) — / 85( 7 002 (A (7, o), 7T
—m®) /\+
n n 1
:aﬁf—m(h),oaﬁ_m(h)7062£)(g—m(m,O’_m(h))_/ (h>8 ()\(n 1)>8£62( )( () (Tﬂg—m(h),o)aT)dTu
(4.102)
and
9,02 (€,m)
_ (n) h ! 1 (n) (. (n)
= OpdzZ (f,m(h>70,—m( )) _/_m(h)(9 ()\(n 1))8552 (X+ (7, ffm(m,o)ﬂ')dT
(n) (h) K 1 (n) /(n)
= 0 0% 95 (€ g =) = [ 07<A( 50602 (P (7, ), 7).
Jr
(4.103)

By using the boundary condition (4.97), on r_n {0 <¢< & O}, we further have for

ag_m(h)’oéz(—n) (g—m(h>707 7m(h)) that

2g//
1+ (g )2

Then, following the same argument as in [36] for the proof of Proposition 4.2 and by Lemma
4.4, there exist constants C] ¢ > max{Cn3,Cha}, €, 3 < min{ep 3, ey 4} and C > 0 depending only

a§,m<h>,o 52(*n)(§fm(h),0’ _m(h)) = o 8577”(}‘))05,25?) (gfm(h),()v _m(h))' (4.104)

on U and L, such that for € < ¢; € (Cfl’gg, €h.g) With € > 0 sufficiently small, we have

3T Hgl—HLo;fm{oggggim(m’o})- (4.105)

Héz H1 000 uamuad) = C(’ S g

Therefore, it remains to obtain the estimate of [Déz For the given two

O i A
points P = (§P,77P) Q= (§Q,7]Q) € le})l U le‘l/) U Q( ), satisfying (4.70) with Py (—m®) =

(§P+(7m(h))’ —m®) and Q(—m™) = (£Q+(fm(h>)’ —m(h)), substituting them into (4.102)-(4.103),
we obtain
0:62"(P) = 9 P)od 52" (B (—=m®
(P) = 86ty o(P)Oe_ ) 52 (P (=m)
np
_ n)
/m(h> 5()\(n1))8§52 (P+(7'))d7,

) ) (4.106)
02" (P) = 04 _uin o(P)Oe_ 620 (P (=m ™))
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and

(4.107)

Sumlarly to the arguments in proving the Proposition 4.3, we first derive the estimate for
P Q ’Déz P) — D52 )(Q)’ To this end, we assume that 75 < 74 and let Q+(7715) =

( (7715’5@+(7m<h>))v np), and the other cases can be treated in the same way. By (4.106) and
(4. 103) (4.104), we have

(P, Q4 (np))| D82 (P) = D82 (Qu (1))

<A™ (P, Q4 (np)| DE i o P2 1y 0 (P (=m™))

_ Df_m(h)70(QA+(77p))8§7m(h) ,052,(_11) (Q+(—m(h) ) ‘

np 1

Alph

d (PO (np)) /

—m(h)

0652 ) (Q+ (7)) |dr

(D( N )22 (By() — (D

=: jl + jg.
(4.108)

For jl, by Lemma 4.3 and Lemma 4.4, one has
J1 < A7 (P, Qe (0p)) | D€ 0(P) = DE_ 0 (@ (mp))| 8 oy 02 (P (=ml™))|
+C|DE_ym o(Q+ (np))|d=* (P(=m), Q(=m ™))

$ [0 32 (Pr(=m®™) =8 ) 820(Q(~m™))|

7”m(h) ,0

< CHDgfm(h),OH(),a;f‘,l"l{()fﬁgﬁ*_ }H@géz Ho 0;1' - n{o<g<er

(h) (h),o}

—o (P A (4109)
+CHD&*m‘h%OHo,o;fm{ossssj L (P(=m™),Q(=m™))

X ‘85_,”(1])70

< ||z

x |0 32 Pe(=m) =8y 828(Qi(~m™M)),

7m(h>,0
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where the constant C = C(U, L, a) > 0 is independent of ¢; and n. By (4.104), we know that

y T Haéézgl) Ho,o;ﬁn{ogggg*

Haé(sz(n)Hoor MO=E<E™ o — <o HUOF nfo<g<er T o}

(h),O
For the last term in (4.109), by using (4.104) again and choosing the constants Cj/g > 0, €/ ¢ > 0

depending only on U and L, such that for € < ¢; € (Ch 36 eh '¢) with € > 0 be sufficiently small,
we have

- (P=m®), Q(=m™))|0g_ ) 022 (Pr(=m®™) =8¢, 627 Q1 (-m™))]

97 (Ep, (—mm)) 970, (—mm))

1+ (g/—(§15+(—m<11))>)2 1+ (g/— <€Q+(—m<h))))2
+ a7 (P=m®), Q(=m ™)) |3, oA (Pr=m®) =0, 64 (Qu(—m™))|
(—m™))|g”
€l [a (P(=m™), Q(=m™)) | (9" (€5, (_n))’ = (-5, )|

<d~*(P(=m™),Q(-=m™))

(§ﬁ+(—m(h))) - g,i (£Q+(_m(h)))‘

A
)
—~
—_
_|_
<l
s
~—
5
Q
—~
~
—
~—
QO

+ Haé"(sz-(ifl) “07a;f7m{0§£§§im(h) 0}

<C<H865Z+ o, MO<E<E™ y l9% o n{o=g=¢r (h)o}>’

where the constant C = C (Q , L, ) > 0 is independent of €; and n. Hence, substituting the above
two estimates into (4.109), we obtain the estimate for J; that

+| 7

where the constant C > 0 depends only on U, L and a.
Let us consider J; now. By Lemma 4.3, a direct computation yields

Jo < d"*(P,Q+(np)) /%(h) D(/\(nl_l)>(15+(7))
. 5

D(A(;D)(P+(T)) —D(A(;D)( “a 5:(Q4 ()| dr

. m(hm}), (4.110)

Jr <C<H3£5Z+ oot n{ose<er ) 0}

‘8552(_n)(15+(7')) 85(52( ) (Q4 (1 ‘dT

. p
+d_a(P,Q+(7715))/_ "

= j21 + j22-

For jgl, by Lemma 4.3 and (4.72), there exists a constant C > 0 depending only on U, L and «
such that

a1 < C(H&(n_l)\\l,o;mh) + [ (635", 656")

|1 or(“>>

<[ (), Qul0) [0 (P (7)) — D2 Q)i
<cg+e) [ d (P Qu )| Do (P () — D (Qu )i

—m(h)
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For Jao, by (4.74)(4.105) and Lemma 4.3, we have

~ n— - np
T <) i [

<C(

D6 ()| dr

H(SZ+ HIOF ﬂ{0<£<£* ) o } Hg HIOF ﬂ{0<£<5 m®) o })

where C > 0 depends only on U, L and a. By (4.110) as well as the estimates for Jo1 and j22,
we have

(P Qi (np)) | Do (P) — D5(Qu (1))

<H(52’+ HlaF n{o<e<er + Hg;HLa;f‘fﬂ{OSESfi,o})
np

+C(2e1 +¢) / d—*(P(r), ‘Ddz(n) P(r)) — D5="V(Q(7))|dr

—m(h)

Then it follows from the Gronwall inequality that

(P, Q1 (1) | D= (P) = D82 Q1. (1))

H(SZ+ Hl il ﬂ{0<§<5* s 0} + Hgif'Hl,a;f‘,ﬁ{Oﬁﬁﬁf*_m(h) 0}

Taking the constants Cis > 0, s > 0 depending only on U, L and «, and letting € > 0 be

sufficiently small such that for € <e € (Cl's€, €1 g), one has

s (P Qi) | Do (P) = Do Qi (np)|
P01 (np)edm ua®uai (4.111)

<2 (I, it _nioseser o 1+ 194wt mpsese )

On the other hand, by (4.103)—(4.104) and (4.107), we can also deduce that
d—“ (QJr(nﬁ)v Q)
_d_a (Q+(77]3)7 Q)

Ds=" (Q+(7lp)) - Déz(—n)(@‘

D¢ o(Q+(np)) — DE_m 0(Q)

_m(h)’oD(sZ* (Q+(O))‘
+d (04 (1), O) / (o e )92 (Q. ()
+
which implies by Lemma 4.3 and (4.105) that

sup d=*(Q+(np), Q)

Q4 (np),Qem uOM UGN

D52 (Q+(np)) — D82 (Q)

(n) N "
C(”D5Z+ "o,a;r_m{oggggim(h) O} + HngHO,a;f_m{oggggi (h) O})’
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provided that € < e; € (Cf 46, €}, 5) with € > 0 be sufficiently small. Here, the constant C =
C(U, L,a) > 0 is independent of e; and n. Combining (4.110) and (4.111) together, we get

sup d_“(P,Q)‘Ddz(,n)(A) Do (Q)
P,0e0® uatual

< sup (P, Q1 (np)) |62 (P) = D3=(Qs(np))
P,Q+(np)etuafuady (4.112)
+ sup A (Q+(1p), Q) |D6=")(Q4(1p)) — D&="(Q)

Q4 (np),0e0m LA™ UGN

(Héer Hl ol No<E<€” ) 0} * Hgi&-HLa;f,ﬁ{OSﬁSﬁim(h) o}>.

Finally, by (4.105) and (4.112), we can choose constants C, > 0, Ci g = max{C}, ¢, Cp 5, Ci'g

and epg = mln{ehg,ehg,ehg} depending only on U and L such that for € < e; € (Ch,8€, €ng)
with € > 0 be sufficiently small, the inequality (4.99) holds. O

4.2.4. Estimates of the solutions to the problem (i?‘\ls)n in the supersonic region Q?}) UQ(Ih)UQ%.

Based on the results in Sections 4.1—4.2.3, we will consider the problem (]/F‘\f’)n in Q?})UQ%UQ%,
W/}E/Ch involves the transonic contact discontinuity [.q as well as the refection on it. Problem
(FP), in this region is
9:62" + A" Vo520 — o, n QP ua®ual s
62 = 02" — 2501 Voo™ — 250170,00® — 2cca(€), on Tean{0<€ <€y},

Suppose that the characteristics £ = x n)(r] £ 0) issuing from the point (£Cd0,0) on T'eq
intersects with the lower nozzle wall I'_ at the point ({_71, —m® )). Then, it satisfies that

_mh)
m dr
D, (@ =& (4.114)
/o A (€20 0).7) ’

We first have the following proposition for 5z5r) in Q§ 1) U Q( Ju Q&}

Proposition 4.5. For any given o € (0,1) and for € > 0 sufficiently small, there exist constants
Cis >0, Chog >0 and en g > 0 depending only on U, L and «, such that for € < ef € (Cp o€, €n),
if (601 520-D) € s, the solution z(f) of the problem (4.113) satisfies

(n)
102371 o Lamuae

o (n) _ (n) B
<O (1861, o7 oposses o * 102 D uniosessin (4115)

+ 3 6B g + 32 Hééék)\h,a;ff?>’

k=e,h k=e,h

where §%y ) is defined by (4.67).
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(n)

Proof. We first rewrite the equation for 0z~ as

n 1 n
0,62\ + Wagdzs_) =0, (4.116)

and still consider n > 0, otherwise we can replace n by —n.

For any point (£,n) € le) U ng) U Qg/}, we can define a characteristic line £ = X (n €cd,0)
by (4.79) and (4.80) such that it intersects with the boundary Teq N {0 < € < §edo) at the point
(€¢d,0,0). Then, by the boundary condition (4.113), on LqN{0<€< f:d’o}, we can derive that

028 (€,m) = 621 (€ea0, 0) = 02 (€ea0.0) — 285 1V 9eboa 00, 0 00™ (€ea0, 0)

(4.117)
- 2523,_21)577&(1,05%,0 3™ (€ca0,0) = 2cea(€ea 0)-

Thus, by Lemma 4.6, there exist positive constants C| o > max{Cps,Che} and 0 < € 4 <
min{ep 5, en 6} depending only on U and L, such that for ¢ < ¢; € (C o€ €h9) With € > 0
sufficiently small, it holds that
18251l
+ lloofeanfose<er, o}

(n) (n—1)
< 1022 o o amtosesez, o) + 21Fean aféCd’Oa&deéSO(n)H070;chﬁ{0§§§§:do}

)
+ 21|82 O 096, 0™ loofantozeser, o T 2alootuuntozeser, o) (4.118)

CTI o) )
= C(H‘Sz— HO,O;chﬂ{Ogééﬁéd’o} + Doy Ho,o;fcdm{ogggggdvo}

+C< Z H(sB(()k)Hop;fi(:) + Z H(SS(()k)Hop;fi(:))’

k=e,h k=eh

where C = C(U, L) > 0.
Next, differentiating the equation (4.116) with respect to £ and 7, and then integrating them

along the characteristics £ = Xff) (n,&ca,0), we have

n n 1 n
0028 (€,m) = 962 (€ca0,0) — / ag(A( —17 ) 082 (7 (7, ), 7)

(4.119)
(n) ! 1 (n) [ ()
= 0g€ed 0064007+ (§ed,0,0) —/0 35()\(111))@5524 (X2 (7, &eayp), 7)dr,
and
0,62 (€, 1) = 0,62\ (€ea0,0) — "a( L) 0e620 (6™ (7, ea). )
nt <4 » 1 nU<4 cd,0> 0 )\(n ) 0~ »Sed,0)/5
(4.120)

1 n n
1 )ag(szi ) (XE ) (7—7 ng,O)a 7—) dr.

= Onfeaoeus o2 Cea ) — [ 0r(
n5cd,008cq,09%+ \Scd 0, 0 T)\(_n,)
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For the terms J¢, 5Z$1)(§cd,07 0), we employ the boundary condition (4.113), on T,qN{0 < & <
£:d,0} again to deduce that

aﬁed,o(;z—(:l) (gcd,Uv 0)
= Oc.q, 052 (€cd 0,0) — 2<3g€cd,oagcd,05$,_11) + 3n§cd,oagcd,050(d 9 ))aécd 200™ (€ca0,0) (4.121)

-2 (agfcd 0/303_1 + Opéed, oﬁcd 5 )3&(1 oed, 200 (€ea,0,0) = 2¢-q(Eea)-

Thus, by Lemma 4.6 and (4.121), and by letting € > 0 sufficiently small, there exist positive
constants C; g and €; ¢ depending only on U and L, such that for € < e; € (C] g€, €} g), it holds
that

(n) (n)
1D023 " Mo 05f g foseer, o = I1DEed0lly o000 a0 uam 10600024 o oF anfo<eer, o)

(n)
<C (IID&Z_n lo.o7anfo<e<ez, oy T 1P opt™ ||1,o;fcdm{osssszd,o}>

()
<C (”D 02 lo o unfoseser, o3 + IDI0™ | 1,o;fcdn{osssszd,0})

+c( S JleBd o+ > [lasg” HOOF“‘))

k=e,h k=e,h

(4.122)

where C = C(U, L) > 0.

By the estimates (4.117) and (4.122), following the proof of Proposition 4.3 in [36], we can
choose positive constants C} ¢ and € ¢ depending only on U, such that for ¢ < ¢; € (C} s, €7 g)
with € > 0 sufficiently smallg it holds that 7 7

(n) (n) (n)
[z Hl,o;ﬁﬁuﬁﬁ)uﬂﬁ < C(H52+ Hl,o;fcdm{ogggggd@} + Doz ”1,0;fcdﬂ{0§£§€§d,o}>

(n) _
SC(W‘P szo;fcdm{ogggég +”5Z ”1orcdm{0<g<§cdo (4.123)

318 g + X 1050 )

k=e,h k=e,h

Then we only need to estimate [Dézf)] As in the proof of Proposition

0,a:mN QM UaMUOE)”
4.4, we take two points P = &pymp)s Q= (ﬁQ,nQ) € Qy}) U Q%l/) U Qg‘l), satisfying (4.81) with
P_(0) = (€p_(0),0) and Q_(0) = (€o_(0),0)- Next, we substitute them into (4.119) and (4.120)

to obtain

. . np
00020 (P) = Betuan P00 80" (P-(0) = [

)\( ))8§52(n)( (T))dTa

(4.124)

1 o
=) 0021 (P (7)) dr,

n) /15 » ) p "
002 (P) = Oyeao(P-(0))P.y 102" (P-(0) /0 Or(
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and

. . o), < G .
0622(Q) = Dcbea o( @)y 1024 (Q—(0)) - /0 “o( NG 7 )06 (@ () r

, (4.125)

At

(1) (3 > > T >
0,5:27(Q) = Ohteanl Q- (0)0e. 057 (@-(0) ~ [ 0. 5)060:7 (@ (r)ar

Without loss of generality, we also assume that 7 < 7, and let Q_(np) = (X(_n) (Mp>€6_(0))>1p)-
By (4.124) and (4.122) on the contact discontinuity Teq N {0 < € < €}, we have

“(P,Q- (1)) | DEcao(P) ey o021 (P-(0)) = Déeao( Q- (1)) 0e.0 007 (Q-(0))]
<d™(P,Q-(np)) )chd,o@) — Dol Q-(1p)| |40 (P-(0))]
+ €| DEao(@-(0)]d™* (P-(0), Q-(0)) B,y 017 (P-(0)) — D0 82(Q-(0))]
<C[Dea0) g om0 1652 o 0.5 noceser, o)
+C[[Décaolly patramuamd (P-(0), Q- (0))|de.y 828 (P-(0)) = By 10 (Q-(0))]:

For the last term, by (4.121), we can choose positive constants Cﬁ,g and eﬁ’g depending only
on U, L and a, such that for € < e; € (Cl 4€, €l ) with € > 0 sufficiently small, it holds that

47 (P (0), Q=(0) |02 (P (0) — Dy 024" (Q—(0)
=<C (HDZW(H) lo.oFantoseser, oy + 1P o2 lo.csFeantoseses, o

+ Z H((SBS(()k)),HQa’f‘f:) + Z H((Sg((]k))/HO’a’fl(rlr)>7

k=e,h k=eh

where the constant C > 0 depends only on U, L and a.
From the estimate (4.123) and by Lemma 4.6, we can obtain

47(P, Q- (1p)) | Decao(P)e.y 027 (P-(0)) — Déeaol @ (1p)e.0 025 (@-(0))

=¢ (H(s@m) loofuntosesyor + 165 hafantoseses, o

+ Z Hééék)“l,a;fﬂf) + Z H‘Sgék)\h,a;fﬁf’>’

k=eh k=e,h

where the positive constant C depends only on U, L and o
Similarly to the arguments in the proof of Proposition 4.4, we can also choose positive con-
stants Cj'q and €y depending only on U, L and «, such that for € < e € (C}'4¢, €) with € >0
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sufficiently small, the following

swp 7 (PQ-(0p)) [D0:(P) = DS (Q-(rp)
Pa-pealuant

<C (H&P(n) ly ofanioseses, o o= Lol ean{0<E<ez, o}

#3198, g+ 3 1958, 0 )

k=e,h k=e,h

holds by the Gronwall inequality.
On the other hand, by the equations (4.119)-(4.120) and (4.125), and the estimates (4.73)-

(4.74) and (4.123), we can also deduce that

sup a7 (Q-(np), Q)| D= (Q-(np)) — DI=(Q)
Q- (np),QeQ ) UORLAN)
< Sup d"*(Q-(np), Q)| Déean(Q-(np)) — Déean(Q) 523)(—(0)”
Q- (np), Qe uaMua)
§ L [0 .
+ (0 _(ns), 0 D 8:5:(0_
(WP)QE?ZUPUQ(h)UQ<) (- (mp) )/np <)\(_ ))gz (@-(r))jer

, ;fi(if))’

provided that € < e/ € (C}y€,€g) with € > 0 sufficiently small. Here, the constant C > 0

depending only on U, L and .
With the two estimates above, we thus obtain

SC<HD2590(H)H00chﬂ{0<§<§*d0}+ Z H 530 ’55( ))

sup d—*(P,Q) ’D(Szg:l)(p) - Dézgf) (Q)’
P,QedmMuaMual)
< sup a= (P(1p). Q(np)) [ Do (P(np)) — Do (Qp))|
P(1p),Qnp) QY uaRual)
+ sup 4™ (QMnp). Q1)) | P3=L(Qnp)) — Doz (Q(ng))|

~ > ~(h ~(h ~(h
Qnp),Qng)eYuaualr)

<C <HD25QO(H) }|O,a;(fch{(’)})ﬁ{Oggggg‘d’O} i HD&ZEH)

# 30 1088 i+ 3 19587 0 )

k=e,h k=e,h

saiTean{0<é<er, o}

which gives the estimates on [DézJr ]O,a;fzf})ufz?“)ufzg‘}'
. .. . (n) (n)
Finally, combining the estimates on [0z ||10Q(h)uﬁwuﬁ$; and [DCSZJr ]Oya;ﬁ(lh)uﬁ(h)uﬁ(h),
n

there exist constants Cfs > 0, and Cho = max{C} ¢, Cj ,Cp'g} and en9 = min{ej g, € g, €19
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depending only on U, L and «, such that for € < e; € (Ch,9€, €n,9) with € > 0 is sufficiently small,
the estimate (4.115) holds. O

With Propositions 4.3-4.5, we now give the proof of Proposition 4.2.

Proof of Proposition 4.2. We will show the estimate (4.52) by adopting the induction argument.
It follows from (4.86), (4.96), (4.99) and (4.114) that

H6280H1#HQILWMIUQIINJQIV 55(7i‘*<”5Z0H1¢uf$? +_Hg_'__1H2¢Mf—rW0§E§§ip}>’ (4.126)

and

H(k
H(;ZS’”)||1,a;Q[UQ[]UQ[I[UQ[V SC{,+(||5’ZOHLa7f‘f:) + Z ||5B(() )HLa,f‘l(rl)()
k=e,h
(4.127)

&(k)
£ 30 1658, 0 + 180 ot unose<es, 1)
fi=e.h in ,
Let §5 = min{¢Z, o fim(h),o} and Qéh) = QM N {0 < ¢ < &} Then, there exist constants

Ct > 0 and Chp = max{Ch,7,Chs,Cho} and ey o = min{ey 7, €n s, €n9} depending only on U, L
and «, such that for € < e; € (C o€, en0) with € > 0 is sufficiently small, it holds that

5 (k &k
1021 o0 < G (10200l o + D2 IOBEN, g0 + D 1858100
in k:e’h in k:e’h in

186, o srposesepy + 19- = Uaa nposeses) )
Let ( :d,p 0) be the intersection point of the characteristics with the speed A starting from
1 —mM) stand for the
point where the characteristics with the speed A_ starting from (£, 0) and the lower nozzle wall
™ intersect. Set Qgh) = QM N {gF < € <€) Regarding the line € = & as € = 0 and then
repeating the arguments for proving Propositions 4.3—4.5 again, we have

* B k 3 k
162, 0 < O3 (102l augemery + D IBE, g+ 3 16561, g
k:e,h k:e,h

(&5, —m™) and the transonic contact discontinuity n = 0. Let (€,

) |l -
U0 M, o F s <e<ery T 19- 1”2:a;F—ﬂ{53££§£r})

~ 5k &k
< G5 (11920l p0 + 2= 18BN, 0 + D 1571, 00
k=e,h k=e,h

(4.128)

(n) _ _ .
0™, o 7 npoze<ery T 19- 1”2,a;F—ﬂ{0§£§£1‘}>'

Finally, by (4.67), we notice that £; depends on )\in_l) and m® . Furthermore, (4.74) and

the uniform bound of m™ imply that &y also has a uniform lower bound independent of n and
€7. Thus, we can repeat the process ¢ times with ¢ = [é] + 1 for the finite length L, where £
has a uniform upper bound.

Define ¢; and Qéh). Obviously QM) = Uogkg@,(fh). By taking the summation of all the
estimates as in (4.128) altogether for kK =0, - - -, ¢, we obtain (4.52). This completes the proof
of Proposition 4.2. O

Now we give the proof of the main result in this section.
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Proof of Theorem 4.1. By the estimate (4.4) and Proposition 4.2, we have

||5Z(n)||1,a;§~l(h) < C<H620H1,a§fi(f) + H(Sﬁ(()e)Hl,a;fi(ﬁ) + Z HéBék)”l,a;ffff)
k=e,h

+ 20 10851, e + llo= + Uy g+ llow = Uy, (4229)
k=e,h

|( 1—a,{Pe, Qe})+H ” a{?%}))

+ H(:)e} F(e 1,a;Tcq

The we can choose constants ag € (0,1) depending only on U, L, and gy > 0 depending on
€, U, and let € = min{e., fﬁ,o}’ Cy = max{Ce0,Cho0}, such that for any a € (0, ), 0 € (0, 0o)
and € < e; € (C3E,€5) with € > 0 sufficiently small, if (5™~ 520071) € A5, and weq € W
with HdeH a{?}) < p, we can get the estimate (4.1) by Proposition 4.1 and (4.129). This

completes the proof of the Theorem 4.1.
O

5. DETERMINATION OF THE FLOW SLOPE FUNCTION w.q AS A FIXED POINT

In this section, we employ the implicit function theorem to show that the map T, admits a
unique fixed point w.q. For the precise statement of the implicit function theorem, we refer to
Theorem 4.B on page 150 of the book [54]. For a fixed n, we define

62(,11) + 5z(n)

F (weai w0) = Tu(wedi wo) = wea = tan (———— ) — wia, (5.1)
where wo = (ﬁ(() )7 (()e)v (g )72073(()11)7 S( ) wev.ng’ ) Let
Wo = CH(I()) x CH(T)) x M (D)) x (Ch(T))?
(5.2)

x O (IW) x ot (I) x o2 (D) x C2(Iy) x C2(T_).

(-1-a {Pevge})
Then the map

F:WxWy — W with F(0,w)=0, (5.3)
with w = (Q(e), B(e),5(6)7§7 B(h),s(h), 0,1,—1) has the property in the following proposition.

Proposition 5.1. For any given m(®) € Mg, with o > 0 sufficiently small, there exists a constant
€y > 0 depending only on U and L, such that if

MM >\ /1+ L2/4, (5.4)
with M®™ = i(:)) and
lwo — wllw, <6 (5.5)
with € € (0,€)), the equation F(weq;wo) = 0 admits a unique solution weq € C’( a{Pe})(de)
satisfying
. 'Pe
Jweall{ 227 < Cue, (5.6)

where C,, > 0 is a constant depending only on w and L.
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Proof. We will divide the proof into three steps. For the simplicity of notation, we write
F (weq; wo) and its derivatives Z,_ [wea; wo] with respect to weq as Z (wed) and Fy,, [wWed], re-
spectively.

Step 1: Definition of the map .Z,,_, [wed]-
For any weq, dweq € W satisfying the Theorem 4.1, and for 7 > 0, we consider the limit of

|7 (wed + T0wea) — F(wea) — T-Feq [wed] (Bwea) ||| 227V

;O ch
o {Pe})
TH&"}C H1 a;leq
as 17— 0.
Let (5@&2+T5wcd, (5252()1+T5wcd) and (&pg%zi, 5z£,cgl) be the solutions of the problem (FP), with
the boundary conditions:
855<P§Jrll+75wcd = Wed + T0Wed, 655904(521 = Wed
on eq, respectively. Denote
(n) (n) (n) (n)
(n,7) _ 0Pyt rii0ea ~ OPea (n,r) _ 02 gy gy ~ 0%
Spwcd T ) chd - T :

(

By the direct computation, we know that (gbwrif), 2&22:)) satisfies the following boundary value
problem:

( (n) (n)

Z‘,j—l 5 0; ( E;Lcdang(‘;)) = Z}jzl,z 8i( if,wed ii_,wcderéwcd j5¢5)231+T5w0d>’ in Q©,
91207 AP Ya, ) — o, i QM
91207 4 Ao, — o, in QM)
g = g8l (), on 19,
(n7) _ =(0)
s =0 on Lo 57y
zu(jg) =0, on Fi(fll),
‘Pgidﬂ = g(fzfc)d (€), on f+,
0 gsz) f()g dweq (v)dy, on fcd,
s _sn) B D el 1280 Dl on Tea,
\ Z(—nczc)d + S-n;)d =0, on T_,

where )\(n b, (()ni_l) and Bégzl)( 1,2) are defined as in (3.65)-(3.66) and (3.70),

/ Gaﬂ, (D<p + gDégp(n) B(g ),S(e))d§, (i, = 1,2), k= weq, wWed + TOWed,

satisfying (4.10)-(4.13),

gér,l‘;:()i (77) = / (ﬁO,] Wed+T0wed 50 ]> a] (pg;:)du

02] 1,2

(n) n)
1 m(B j\Wed+T0Weq B j W
— Z /0 ( 0,J,wed+ 4 cd 0,7,wed ) 8]54,0((,221dﬂ,

§0,2 j=1,2 T
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and g(n’T) &) = g(nw:) (m(®)), with

+7WCd
1
50?].)7%(1 by = / 8@,@15(6) (Df + uD&pfu n) s B(()e)7 g(e))d

(5.8)
Pl / 00,0 (D +vDe): By, 517 ) v

As a special case of Section 4, the problem (5.7) has a unique solution @ff;;r) C’é;l*a’i@\{o}) Q)
and zﬁ,cd 2 e CHo(QM) satisfying

1—a,2E\{0})
el bt Etl s
1—a,2(\{0}) 1—a,2(\{0}) Pe
< C(106% rsal im0 MY a2
Pe}) Pe 1—a, BN\ {0
< (Jlwn = wlhwy + leall 287 + 7dtea PP ploan | L= NOD (59

+ [ dweall{ 227V

a,{Pe}) 1—a,2@O\{O a,{Pe
<c(e+g+ﬂ\5wcdula§d NGNS L™ MO 4 Clldwea o8P,

for o € (0,) with ag € (0,1) depending only on U and L, where we have used the estimate
(4.1) in Theorem 4.1 for 5@521 e by changing the boundary data weq to weq + Téweq on Ceq.
Here, the constant C > 0 depends only on U, L and «a. B

First, we choose €; > O 0 > 0 and 79 > 0 depending only on U, L and « such that Cej < i,
Cop < Z and CToHéwcdﬂ a{je}) < 1
get by (5.9) that

. Then, for € € (0,€}), 0 € (0,0;) and 7 € (0,7), we can

1—a,2(ON\{0O P
IS oo O+ 180 e < Clloweall] 2P, (5.10)

where the constant C > 0 depends only on U, L and «. Therefore, by the compactness, we can
let (4,0810?), zu(fcl do)) be the limit of the solutions (gbgi’dﬂ, z'g;‘r)) as 7 — 0. Then, we have

n n,0 . (n,0 n . ~

AL ) - T (D, DAOSA). e
B z(nf)d + AV, z(_“f)d =0, n Qo

01200 4 A, 0 — o, o Qm.

Pod) = g0 (), on T,
D¢y =0, on TR
£ =0, on T,
Q'OgidO) g-(iflu?c)d (g) on f+,
prtdO) fog dwea (v)dv, on Ted,

Sn“(})c)d zf U(J)c)d = 2553 11 2} SOwch) + 25(;(1 2 Do, @Sido), on I,
Z(*no?c)d + ‘(ﬁl:))c)d =0, on f‘,,
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with g2 (¢) = ¢! (m©) and

0,wea
) =g 3 [ (880 By, ) 0600
90.wea\" ' 0 0jswea 20,5 i Pisea At

§0)2 ]_1 2
(5.12)
1 (n)
- 3 [ D8 DD 08 dn
0,2 j=1,2"0
Moreover, by the methods used in Section 4, we have the following estimate
n 1-a,2\{0}) n Pe
IS e MY+ 1RO, am < Clowall] 57, (5.13)
where the constant C > 0 depends only on U, L and .
Now, let us consider the convergence rate of the limits gof%d) — cpgzdo ) and Zo(f;) - zo(fido) as

7 — 0. By (5.7) and (5.11), @jﬁj’ - gofucc?) and zgsz) zu(chO) satisfy the following problem:

n n, 7 n,0
12 0i(al), 958 — i)
0y~ En)w b (n) (n) . (n,0) (n) A

=i jm12 0| T 0100, by — Dl Db 33'5%@)7 in Q)
o1z sy A(“ Doy (zn7) — 20 ) — g, in Q)
81(z'$1;j)d — zsr ;,)d) + A Dy, (zs:l(j)d - zfgc)d) =0, in QM
Pl — ol = g8 () — g8 (), on T,
(el — b =0, on I (5.14)
zo(chT) - zo(fzdo) =0, on fi(rl;‘),
el — D) = 1) () — g0 (o), onT,
go‘(’-)(;d ) - SDL(‘JIldO) - 07 on f‘Cda
.(n,7 .(n,0 n,T .(n,0
Z(_:Wc)d - Z(—,wzd (z-(*- wc)d - -(i-wc)d>

=285 V018 — i) + 2855 a5 — b)), on Teq,
Z:(_nazjf—c)d - Z(—n:})c)d + ‘(i‘;)d - Z—(&flcgc)d - 0 on f‘,,

with g7 (€) — g (€) = g7 (m©) — gi) (m®) and
n,T n,0

9 %3< )~ 9 wcl<

_ (n) n,7 n,0

- 7]7wcd+7—5wcd 60,]) (aj ()O(chd ) - a] SOL(UCd )) d/,L

0 2 j= 1 2

. H(0,0)
1]1ch+76wcd - BOJ wcd) aj (chd d/,[/

(n) _
O,J,wcd+75wcd BUJ Wed Dﬁ(()nj) L,O(H O)> aj&p(n) du
»J,Wed Wed ’

Wed

G
_02J12 ((
I

02]1
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satisfying
(n T (11,0) (717047{0791})
Hg() sWed - Oawcd ‘2704;]'_:‘.(6)
1 (-1-,{0,01})
,0
< 5 (ﬁo,]wcd—l—ﬁwcd _/60]> ( ]Sowd _8]9081(1))03#
=02 2,a;f‘i<§)
1 (—l—a,{O,QI})
,0
+ B Z / <ﬁ07] wcd+75ch B /807.7 wcd) j(p‘(*-’r(ljd )du
0.2l j=1,2 2,0;7()
(—1—04,{0,Q1})

1 5 Wed+Tow, _B w, n
L Z/ ( 0,§,Wed+T0weq 0,7,weca DIB(()J)de (nO))a(SSOL(U?jd,u

T ~
Boal /5 2,051

n —a, 5N\ {0}) —a, BN\ {0
S CH(;SD(E)CJ_i_T(gwcd }; oifl(o‘i) \{ } “¢wcd Spwcd H; Qiﬁ(o‘i) \{ })
n a,SEN\{O n OIS
+CH(‘0WC(:-) H2 Ne'S Q(e) \{ }) H ‘(’cho Hé alQ(O;) \{ })

’ —1— az(e)\{O})
2,0;2(e) ™

0
re (e I 2O ot

for ¢ > 0 sufficiently small. Here the constant C > 0 depends only on U®, L and «. In the
same way, by choosing o > 0 sufficiently small, we also have

(n,7) (HU (-1-a,{91,Qc})
H +wcd +wcd ’2,a;f‘+
a,SEN\{O n SEN{o
<CH5 wcd+T50ch ‘2&9(9) \{ })H ‘(’Jcc’lr (prO)HZ a]-QZ) \{ })
o) ||(—l—asE\{o 1—a, 5\ {0 (5.16)
S el v el Sl Pt

o — 2(9>\{0})

e
20499

r (el Iyt

Similarly to the proof of Proposition 4.1 in Section 4.1, we have in Q(®) that

—1—a.5©
I8y — 6P lsme

2,a;Q<e>
(n) (n) (—a,5N\{0})
aijvwc B al]awc +Téwe (1’1) (n) . 0 '
SC( P A Y L o]
ij=1,2 Lox;$2(®)
mr) _ @0 || @) [|(lreelQned)
+C (‘ 90,weq ~ 90,weq 9. 0 Fiwed T HWed ||y Ty

(~a SN\ {0))
20 (9,007 2i6¢83))

l] w cd Ploca Wed+T0weq La®)
7a;

<CZ

1,7=1,2
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ey (n)

—a,5EN\{0
Qs wea Clij,wcd+r5wcd . Da(n) D@(n 0)>8J5¢(n) ( \{0})

+C >

ij=1,2 o 1 Wed Wed +T0wed L
L owerra el e
+ el e MO o \»gsgé'zf““w”
+C<H9%Cd H;;;QZSE(Q)\{O}> H5 —1- ag(e)\{@})
<Cllel g M ;1J>|12;Qé’f<e’\{o” (e
+ 00 sl — o g
+C||pm) HMIQ%E(Q)\{O})H 500 Hé ;Qi>z(e)\{0})
+C|5p, 2;9&2(6 \{O})(H wth)HMle)z e>\{0})> .

where the constant C = C(U, L, a) > 0 is independent of n. Proposition 4.1 and (5.5) yield

a, 2@
H(pwcd sowc 0) H2 alﬂ(e)z \{O})

—a,{Pe}) Pe}) 1—a,5E\{0
< € (llwo = wlhwo + llwoa 27D 4 rlldweall 21D ) [ pfon) — | oo D

1 aF ZQ;Q(Q)
o (llfwall 5P PY

a3 a,{Pe 2
< (et o+ w2 ) ) — 0 oSN o [lwea | 2)

Wed ;) ;T eq

Thus we can choose € > 0, o5 > 0 and 79 > 0 depending only on U, L and « such that Cep < %
Cof < and CTOH(chdH ’{Pe}) < i, and then for € € (0,€), 0 € (0,05) and 7 € (0,70), we
obtain

a, @ a,{Pe
HSOMCd s0“*’cd H;alﬂ e)z oD <C(||5WC Hgar{cf })> i (517)

where C > 0 is a constant depending only on U, L and c.

With the estimate for ¢5§; 2 gogz do) and together with the boundary condition on I'rq, we can

further estimate the solution zo(ch o _ ZU(JH 9'in O as in Section 4.2 to deduce that

. (n,7 n,0 n,7 n,0 1-a,% e)\{o})
HZ"(Ucd ) - ‘chd)HICMQ(e) CH<p£JCd) (pwc )HZQQ(C) (518)
Hence, it follows from (5.17) and (5.18) that

(0,7 1-a,8\{0}) (n,7

2
ngwcd gowcd HQaQ(e) +szcd - ‘-’-’cd Hlth) <C<H5wc Q{Pc})> T (519)

Hlal"cd

Therefore, (gpg,cd ), zu(fsz)) — (gp&cd), zﬁ}id“)) as 7 — 0 in C( 1-e, E(e)\{o})(ﬂ( )Y x Che(QM),
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Define

(n) (n)
o 020, +6z+,wcd> (00 4 00y s (5.20)

Frpeq|Wed] (dwed) = 5 sec 5 S s T Al

which is a linear map. Then, we have

y(wcd + 7—&Ucd) - y(wcd) - Tﬁwcd [ch} ((5ch)

52 + 520 52 + 52

_ —Wed +T0Wed +,wed+T0wWea o —Wed +owed \

tan ( 5 ) tan ( 5 ) TOWed

52 45
2 —We +,we (n,0) :(n,0)

f§7-sec d2 d)(_%d+ +wd)+7‘5wcd
_T 2 (9= wea +wd —wd +wcd (n,7) (n,7)
—2/0 sec 5 )dg(z,wd—i-zurwcd)

— —Sec

T 5Z(_HZJ + 021, (n (n
2 2( sWed +, cd)(z( 70) + ( 702 )

Thus, by (5.10) and (5.19), we can further deduce that

|7 (wed + TOwea) — F (wea) — 7Py [ed] (Bwea) ||| 7
< C(TIEGD I o + 1257 = 280 )7
Pe
< (|Jgweall 7Y,
which implies that
Hg@ucd + wacd) F (wcd> — TFu ed [ch](dwcd Hl aar{fc})
= —0
5 a,{Pe}) ’
|| oweal || o

as T — 0. Thus, Z,_,[weq] is a Fréchet derivative with respect to weq for the functional .7 (weq).

Step 2: Continuity of the map .# and .Z,,_, [wed] at the point (weq, wo) = (0,w).

The continuity of map % at the point (weq,wo) = (0,w) follows directly from Theorem
4.1. Now, let us consider the continuity of the map P [ch] For any fixed dw.q with

Swea| TP < 4o, we assume wk, — weq in CM° as k — oo, and will show
a;leq cd (—a,{Pe })

that as k — oo,

FroeaWea) (0wed) = Fuolwed) Swea), in C % 1 (Tea). (5.21)
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By (5.11), the solutions (gbu(dnk’o), Z'S,t’o)) corresponding to wfd satisfy
cd cd

( n n,0 . (n,0 n .
Zij 128( Ej)w 3j<PL(U d)) = Zz] 12a (Da( " Wk, 'DSOEde)aj&Pié), in Q)
) z<“0,1 +/\(“ ”a z( 0 —o, in OO,
LL) — (.d d
So(n 0) - g(()n ?c) ) on f‘l(g)v
wcd (IJ ~
o go(‘}f)) =0, on T, (5.22)
Ked - 5.22
;00 _ on TM,
Wed
QOSZO) = _(Elfl)g ) on f+,
cd _
nO) = o dwea(v)dv, on T,
E“jj,ld -0 =260 Y0100 Y + 26005 000 on o,
(_nfzcd +z E:logd =0, on f‘,,
(n,0) (n,0) (0,0) (. (e)
where 9ok, is given in (5.12) by changing weq to w® oy and 9ok p (&) = gow (m'®)).
Wed
In the same way as in Step 1, we know that
n -\, n n . a, (e) O e arés
(00 200) = (0D A00), i TN @) x ce@),
and
522:7) k. — 5z§[ZJ o in C’l’a(ﬂ(h)), as k — oo.
Then
a,{Pe
| P o) (Fed) = P eea) Buvea) || 277
o, 5 L T 62" w0 o) RN (88
< o (P s e (o |
1’10 n
< (165 = 028y augon + 1257 = 2001, i )
— 0, as k — o0,

which implies that (5.21) holds by (5.18) and Theorem 4.1.
Step 3: Z_,[wed] ‘(w w0l =(0w) is an isomorphism.

We need to show that for any given function f € C(l’_O; {Pe})(de)’ there exists a unique

Sea € C1°% cp.y(Fea) such that (ﬁwcd [wea | (de’wO):m@)(@d) — f,ie.,

1 — — o~ ~
= (300 + 209 ) = Gwea = f,  on Ly, (5.23)
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—

At the background state, the solution 6z(™0),, , satisfies

( 61311@%d +62822m =0, in 0,
DAy A 0pEm0) =0, in Q"
Ay +A 02000, =0, in 0",
0, , =0, on LYY,
81@wcd =0, on Eg?? (5.24)
s00), =0, on LY, |
P00, =0, on I,
31@%01 = Swed, on L,
Hw0_, 00, = 2§Cd,ga2mwcdv on Ty,
F0)_, 4200, =0, on I,

where e1, ey are given by (4.10) and
A= - Wy c®) 5 - (pOc®)2 ()3 /()2 — (cM)2 -

\/(y(h))Q _ (Q(h))z’ Eed,2 B(h)g(h)(g( ))2 ((7(6)) — (E(e))Q)

From (5.4), since

(h) (h) 4, (h)
e (YIRS}

Ay Ay
by the characteristic method we know that 2(0)_ , = 0 in Q(h). By (5.23), the boundary
condition for 9 on Lo is
0190, + By 0200, =—f, on T (5.25)

Then solving &\ch is equivalent to solving the following boundary value problem for gb(nvo)wc in

Q( ? for a given function f € C’ Lo {Pe })(f‘ 1)

101100, |+ eadan ™0, =0, in 0
PO, =0, on [
— - (©) (5.26)
algb(nvo)de = 07 on Eex ,
8192)(“70)de + écd,Zazc‘b(mO)wcd = _f’ on icd'

In order to show the existence and uniqueness of problem (5.26), we introduce a new function

o —

), = 9 gm0, (5.27)
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Then, ({D(\n) satisfies
6@1#@(\“)%d + €2<922(5Tﬁ(\n)wcd =0, in Q(e),
81%&;@1 = 07 on il(li)’
_ o (5.28)
sy, =0, on I/,
10y, 4 B_ 0209, = -1, on L.

—

By Theorem 1.1 in [39], (5.28) admits a unique solution dyp™, € C(‘a’i(e)\w})(@("‘)). Then,

1,
by (5.27) and the boundary condition on T S() for dip(™m), . we see that

o —

§ —
¢(n’0)wcd(£an) = . 5@0(“)%1 (San)d‘s'

3 _1—a.2() ~
By (5.28), it implies p(0),, € C{ 17 MOD (g,
Now, we can apply the implicit function theorem to conclude that, there exists a small constant
€5 > 0 depending only on U and L such that for € € (0, &), the equation .% (weq, wo) = 0 admits
a unique solution weq = weq(wq) satisfying

—a,{Pe ~ = -
Jweall} 247D < Cullwo — wilw, < Cué,

where C,, depends only on w and L.

6. EXISTENCE AND UNIQUENESS OF PROBLEM (FP)

Based on the arguments in Sections 3-4, we will prove in this section that the map 7 in (3.73)
constructed by the iteration algorithm (FP), is a well-defined contractive map so that there
exists a fixed point, which is actually the solution of the fixed boundary value problem (FP).
We summarize this in the following lemma.

Lemma 6.1. For any given m'® € M, with o > 0 sufficiently small and under the assump-
tions (3.77)-(3.78) in Theorem 5.3, there ewist some constants ag € (0,1), C; o >0 and €75 >0
depending only on U and L, such that for each o € (0,00) and € < ej € (Ciog, €?70) with € > 0 suf-
ficiently small, the iteration algorithm (FP), generates a well-defined sequence {(ga(n), z(n))}:o:l
in JHae,. Moreover, the sequence {(cp(n),z(n))}zozl is convergent in C'H* (Q(e)) x OO (Q(h)) and
its limit is the unique solution of the fized boundary value problem (FP).

Proof. Firstly, it follows from Theorem 4.1 and Proposition 5.1 that

“1—a,5@ n
[ g P+ 182

<0 (188, + 3 19BN, + 3 195870,
k=e,h k=eh

—1—(1,{736796

D el ™D+ o = Uy, + o=+ 1)

Liasleq

+ H520

1,o¢;f‘i(:) + HdeH
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where the constant C* = C*(U, L) > 0 is independent of n and é. By taking ¢ small enough
we can get that C*€ < 2¢;, which in turn indicates that the iteration algorithm (FP), is well-
defined in J#,. This means that the map J given in (3.71) is well defined and maps %5, to
itself:

J <%/261 — </4i/261-
Next, we will show that J is a contraction mapping in C*(Q®) x C°(QM) which admits a
fixed point in C( 1 i<e>\{(’)})(Q(e)) x C1(QM). Let (ot 20Dy .= 7(oM™) 2 and

570D — 5D _ 5 ) 50t — w50 (6.1)

I

where 6z0tD | 520 and §p( 1) 5™ are the solutions to the (FP),, respectively. Then,
620+ and 6™+ gatisty

2 ij=1,29) (az(?)ai‘sq)(nﬂ)) =2ij=120) ((az('?) - a§;+l))8¢5¢(n+1))7 in Q©),
01620+ 4 diag(A, A™M)0y5 201D

= —diag()\gf) — )\Sfl*l), )\@) — )\(_n*l)>825z(n), in QM
580D = g™ () — g5 (), on T
815®(n+1) = 07 on S(),
§Zm+1) = q, on fi(r}:)7 (6.2)
s+ = g D(e) — g (), on Ty,
52V 4 620D = 2arctan 8, (5p™ + 60(0FD) — 2arctan 160™,  on  Teq,
620t 57D = 28%) 9,500+ 4 251, 960+
+2(5cd 1 5§3,11))81590 + 2(6§d,2 - 5£3,21))82590(n)7 on f‘cd,
5Z(,n+1) + 5Z(n+1) =0, on I_,

where a fo OiNi (D + ¢Dép)ds for £ =n, n+1, and

g(()nJrl) _ Z/ < ﬁ0n+1 )aé(b(n—i-l <ﬁ(n+1) 5(n)>3 580 )>d,u,
02] 1,2 ( )
6.3
m(®
g g — L% / ( (B850 = 8, , ) 050000 — (8550 = 1)) 006" ))du-
02] 1,2

Here BOHH , ﬁon j = 1,2 are defined by (3.70) for (5(,0(“) and dp+D).

Choosing € > 0 sufficiently small with [A+|/m® > L/2 and then following the argument in

Section 4.2, we know that there exists a constant C' > 0 depending only on U, L and « such
that

|62+ o000 < <H( ) op62" HOaQ(h) [ = AETY) 9,02 Hoo‘mh)> (6.4

< Cer]|6Z2™]] 0 am-
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On the other hand, eliminating 6Z4(rn+1) on I'eq gives the boundary condition:

,B(n) ) 5(I)(n+1) +B 8 5(I)(n+1)

) (6.5)
=(Beih — Bean 080" + (B = iy ) Dae™ 4520 on T,
where
1
) _ 5 ds 50 _ g
Bcd,l - Bcd,l +/(; 14+ (81590(n) + §81(5¢)(n+1))27 ’Bcd,Q - 5Cd,2'
For the solution d®® 1) in Q) with boundary condition (6.5), we have
[62E VL, oo
n n+1 n n+1) n+1)
<CH 226 ( 5 ( ' )>a&p( +1)>‘ 0,a502() Hg " _90 HOaF(e) + Hg( o —g+ HOaF+
irj
n n— n n n—1 n n+1
+ 0 (80— B0 + (35 — B onde o2
<C Z / << (n+1) BOJ-)aj(S(I)(IH_I) 7 (ﬁé?jrl) _ ﬁé?)@ﬁgp(n))du
j=1,2 ’ 0,050

+C’H cdl ﬁégil))a S (ﬁch 50“ ))3 S +5Z(n+1))

0,a;92(e)

(—1-a,ZEN\{0})
2,o¢,§~2<e)

<C(e+er) (|loz™

+Cllae™] 1681, 0 g0 + 1025 Pl o

) Hl,a,ﬁ(e)> T CGIH5(D(H+I) H 1,0,Q()°

where we have used the estimate (6.4), provided that o > 0 is sufficiently small. Then, similarly
to Section 4.2, we can solve 5Z(n+1)

T together with the estimates (6.4) and (6.6). Thus,

H(SZJ(:H—I)

with the boundary condition on f‘cd and the initial data on

0,05 cq

<cll2s 0000 + 2685 usnt)

- "‘CH2(5$,)1 5§d1))8 590(11)

0,05Tcq

(6.7)

- CH2(ﬁ(EE,)2 Bédz ))825g0( ) + H(;Z(_nJrl)

oo,
SC(E+61)<}|5Z(H)HO,O¢,Q(}1) + H(S(I)(n)Hl,a,Q@)) +C€IH5‘I>(HH)H1,a,Q(e>-
Finally, combining the estimates (6.4), (6.6) and (6.7) together, we get
[62™ V], | qe + 1820 aa
< O(e+en) (182 0 00 + 09|, o) + Cerll8™HV, g

where constant C' > 0 depends only on U, L and .
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Then we can choose constants Cj, > 0, €] , > 0 and ag € (0,1) depending on U and L, such
that for any o € (0, ) and € < ¢; € (C;OE, €7) with € > 0 sufficiently small, the following holds

H(;@(nﬂ) Hl,a;ﬁ(e) + H(SZ(HJFU HO,a,Q m S5 <||5@(H)H1 a;Qe) + H(52 HO ,Q Q(h)> (68)
ie.,

|7 (60 520 < Slleat 5z

Mera Q) xCOa Q) = NMere (Q€)) x CO.a (M)

This implies that J is a contraction mapping. Hence, there exists a fixed point (6p,d2) €
CL(Q@) x C0*(QM) such that
(6™ 5200y — (6p,62)  in CHYQE)) x O (QM),

as n — oo.
On the other hand, by the estimate (4.3) and the compactness of the approximate solutions

in 0(20‘1 N E(e)\{o})(fl(e)) x C1(QM) there exists a subsequence {(590(‘“), Jz(ni))}zo such that

(590(111)7 62(111)) — (590*7 53*) i C?Loifa,g(e)\{o})(ﬂ(e)) X CI’Q(Q(h))a

as ¢ — 0o. By the uniqueness of the limit, one has

(09, 02) = (pu, 02:) € C2%__ 0 vy (1) x CH(@M),

Define
p:=0p+p, z:=0dz+z

Obviously, (¢, %) € C(QO; N E(e)\{o})(ﬁ(e)) x C1(QM) is a weak solution of the problem (FP).
U

Proof of Theorem 3.3. Now we are ready to prove Theorem 3.3. The existence of solutions to
the problem (FP) can be derived directly from Lemma 6.1. Next, for the uniqueness, we take
two solutions (1, 21) and (2, z2) which satisfy the estimate (3.79). Define

0b = (5(,01 — 5(p2, 07 = 521 — 522.

Then, following the same method as in the proof of the Lemma 6.1, one can show that (60®,02)
satisfies the estimate (6.8), where (6&"+1) §Z®+1)) and (&™), §Z™) are replaced by (6®,57).
This means that (§®,62) = (0,0). Thus we have (¢1,21) = (p2, 22). O

7. EXISTENCE AND UNIQUENESS OF THE FREE BOUNDARY VALUE PROBLEM (NP)

Up to now, we have proved that for any m(® € M,, the problem (FP) admits a unique
solution (go, ) satisfying the estimate (3.79). Then, we can define a new number () by

m(e) dr
/0 POu@)0,7) 9+(0). (7.1)

By Theorem 3.3, we know that p(®u(®) > 0. Then the unique existence of the number 7m(®) of
equation (7.1) follows from the implicit function theorem, and hence the mapping 7 m(e =
T (m®)) is well defined on M, (see (3.59)). Notice that

/m(e) dr _1
0 B(e)g(e) ’
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then

5 (e) (e)
m dr m dr
/O (p©u®)(0,7) N /0 P©ul =9+(0) — 1,

ie.,

(e dr m(e) 1 1
SOaN 0 - d 0) — 1.
/m<c> (p©ul)(0,7) /0 ((p(e)u(e))(O,T) PICIC )) 7 +9+(0) -

Therefore,

|m(e) e)‘ < C(H@ 90H2alﬂi SE\{0}) + g+ — 1”2,a;f+> < Ce,
where the constant C > 0 depends only on U, L and «. Hence, we can choose € > 0 sufficiently
small such that Cé < o. Then the mapping 7 is from M, to M,.
Next, we will show that the mapping 7T is contractive. Give two numbers m&l), msg) e M,
and the corresponding solutions are (p4,24) and (¢p, zp), which are defined respectively in the
domains Qf) U pr and Q(,f) U le). Let

A y oo Ma . (7.2)
§=¢ n=n, (€,m) € O,
and
3 = ) I = T]e M ) G Q(e)7
5257 77:777 (6777 EQB

Then, under the coordinate transformation ;, the domain Qg-e) U Qgh) (j = A, B) is transformed
into the same domain:

QO UOM =€) :0<E<1, 0<i<1}U{(E7):0<E<L, —mM <i<o0}.

The boundaries T\© ., T(©) 7). f‘+7j, deJ and f‘_J, (j = A, B) become

in,j° ~ ex,j? ~in,j’

v

PO = (€ :0<i<1,E=0}, TO ={(EM:0<i<1,E=LY,

i) —mM < <0, =0}, Tea={(£,M):0<E<L,ij=0},

and
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)

for (¢,7) € QM Then, @; and Zj, (j = A, B) satisfy

INL (DD B, 55)) +mP0uNa (DVy B, 85)) =0, i O,
0% + diag(Ay j, A ;)95 = 0, in QM)
2 = fo(m i), on T,
Ogpj = Qe(mge)ﬁ% on T,
Zj = z0(n), on fi(il),
0s3; = 9+ (8), on Ty,
ey = 0\, p =\, on [,
| Z-j t 2+ = 2arctan g (&), on I'_,

where S\i = A\t (é; B(()h), S'[()h)) and

wj(h) _ @;h)(g, ), 13( e) _p(e) (D(])QOJ,B(()]),S'(()Z)-), ﬁ(h _pj (57 7).

(7.7)

Set oap = 94 — ¢p and Zap = Z4 — Zp. Then, ¢ap and Z,p satisfy the following initial

boundary value problem:

(1o O (a5 (€, ﬁ)éj(-A)sEAB) =b, in Q)
OV z2ap + diag(Apa, A )5 245
 ding(he — Aons A — A a) ot -
$aB = go,aB(1), on T,
NV ap = Ge(m')ii) — @e(mi), on I,
Zap =0, on Iv‘i(rlz)’
BB = J+.48(8), on Iy,
Z_AB+ Z4y aB =2 arctan(éfA)gbAB + 5§A)¢B) — 2arctan 5§B)¢B, on I,
Z_AB — Z4 AB = 2Bcd,15£A)¢AB + 25cd,25§A)¢AB + 26eq(£), on Teq,
\ Z—AaB+ Z+ 4B =0, on I'_,

where éij(g,ﬁ) = a;j (D(A)ﬂﬁA,D(A)SbB,ﬁ): and

Boe = Bog(DN@a, DN op, 1),  Bear = Beae(DVpa, DN g5, 1)
for £ =1,2;
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do.a(i) = 5 / o0 () 0) — 94 (mS ) — 50§ ) + 5 (S ) )
—0,2
Z/ A) 5,.) 3( )G apdy
023 1,2
- Z/ B()] A&PBdN
02] 1,2
1 T B) S(A) _ A(A)) 5 -
W Z/O (Bo.j _ﬁo,j)( i 9 )WBd“’
—0,2 j=1,2

and g4 ap(&) = go,ap(1). Here Bv(g?, (k= A,B,j=1,2) are given by

1
/0 Oy, (DWg +vD Wi, B S,

1
g / Dy 5 (DM o+ vDW sz, B SV,
0 2 -

and 0@y = @ — p for k= A, B.
By direct computations, we can choose og > 0 which depends only on the background state

U such that for any o € (0, 00), we have

||b||0age) < Z H@ (M(DBSOB,B(I)L, ¢ ) M(DAQOB, éej)él,SéA)) N
/=1,2 ”
+ > |07 (Ne(Dogs By, Sich) = Ne(Doos: B S|
621,2 bhat}

|08 - 8w Boges B

o _1—a.(e) = (e e) &le e
< (sl toe™ MY + B - B, 87 = SO, g ) Im) = ms

< cim ~m)|,

1€ea(E)llg aitv,

< 2H®(p(e) (Dapp; B (()21 ué‘i&),f?éh), uéh)) _ @(p(e) (ﬁ3¢3,éé?j)37 V((f])g)’é((]h)7 G .
;0L ed
< C(1808l g + (B~ B8 = SN, o )y = |

(e)

B |’

< Cé‘mf) -m
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and

1g0.481l; ,p@ + 19+.48 o,

< ||t m ) — 567 ) — 5O i) + 50 m )

0,051

+ |35 = 8,,)8 3.5

SCRT

o

O,Ct;fi(e)

[ - 5,,) (8 - 8(A>5¢BH07a;fi(§)

< (1685l o + 155 2Ol o ) Im§) — |

< Cé‘mf) — mg)‘.

Here, the constant C > 0 depends only on the background state U and «. Now from the similar
argument in the proof of Theorem 3.3, due to (3.78), if € > 0 is sufficiently small, then in Q)
there exists a constant C > 0 depending only on the background state U, L and « such that

‘ v

Next, we can solve @ 4p in Q) with the following boundary condition on I ed:

~H'\Z/ABHO,a;Q(h) :

Bean é( AB + [5’cd ,(7A)¢AB = Zca(€),
where
g v 1 dg g o
/Bcd,l = /Bcd,l + / S(A) < <(A) - ) ﬁcd,2 = /Bcd,2a
0 1+ (cO¢ " pap+ 0 ¢p)?
and Ecd(é) = —Ecd(g) + arctan 8( ) pp — arctan 55(‘4)953 +Z_AB.

Thus, by choosing a constant ag € (0, 1) depending only on U and L such that for o € (0, ag),
we have

H(‘BABHI,(X;Q(G)

<C (Il s + a4 5.4, + o) = G D+ Il o,

<C€|mA - mB | +C€(HZABHOaQ(h) + HSDABulaQ(e))

Finally, we further estimate Z, sp by using the boundary condition on I'.q and the initial
condition on Iv‘l(fll) to establish

124,48l .

SC <H2Bcd,15§A)¢AB + 25Cd7257(7A)¢AB + Qécd(g)

07a;fcd + Hé*:AB ||0,a;fcd> + C€H5AB HO,a;Q(h)
<C||@anll; o + Cllécal@)llg e +CellZaBllo a0

<celm) —m) +Ce([zan o + 1845y )
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Hence,

HéABmaﬁ®>+HZ“ﬂ%aﬁ®>SC%OwAB%a@w>+H¢A3mﬂ@wr+hﬁ?—'m§”»

where constant C > 0 depends only on U, o and L. Thus, for é > 0 sufficiently small, it follows
that

88l s+ aB gz < Cmy = ) 79)
Therefore, by (7.1), we have that
© (©)
/ , (ec>h<e> - / ' ( (e)l © (e)l (e))dT' (7.10)
mi) g up 0 PaUs" PR UR

Then it follows from (7.9) that
e e) v ~ e e)
mis) = mP| < Clleas|, g < CEm —mi].
Let € > 0 be sufficiently small such that Ce < % Then

© _ @ <1 @ _ ()
my’ —my| < §‘mA —mg|,
which implies that the mapping 7 is contractive.
Based on the above argument, we can prove Theorem 3.2 easily.

Proof of Theorem 3.2. The existence and uniqueness of the solution to (NP) follow from the
Theorem 3.3 and the fact that the mapping 7 is contractive. O
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