ON MATHEMATICAL ANALYSIS OF COMPLEX FLUIDS IN ACTIVE
HYDRODYNAMICS
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ABSTRACT. This is a survey article for this special issue providing a review of the recent
results in the mathematical analysis of active hydrodynamics. Both the incompressible
and compressible models are discussed for the active liquid crystals in the Landau-de
Gennes Q-tensor framework. The mathematical results on the weak solutions, regular-
ity, and weak-strong uniqueness are presented for the incompressible flows. The global
existence of weak solution to the compressible flows is recalled. Other related results on
the inhomogeneous flows, incompressible limits, and stochastic analysis are also reviewed.

1. INTRODUCTION

This article provides a survey of recent mathematical analysis on the complex fluids
in active hydrodynamics. Active hydrodynamics describes the fluids with active con-
stituent particles in a collective motion that constantly maintains out of equilibrium by
the internal energy sources, which is quite generic in nature and has wide applications.
For example, many biophysical systems are considered as active hydrodynamics, such as
bacteria [10], microtubule bundles [59], dense suspensions of microswimmers [68]. Fur-
thermore, the collective motion usually induces the particles with elongated shapes to
demonstrate orientational ordering at high concentration. Thus, there are natural analo-
gies with nematic liquid crystals, and hence a large class of active systems are referred
to as active liquid crystals; see [5,13,26,27,52,57] and the references therein for more
information and discussions. There are different phases of liquid crystals, which can be
distinguished by their distinct optical properties. One of the most common liquid crys-
tal phases is nematic. In the nematic phase, rod-shaped or elongated organic molecules
have long-range orientational order with their long axes approximately parallel. Therefore,
the molecules flow freely as in a conventional liquid, but still maintain their long-range
directional order [12,62]. Active nematic systems are different from the typical passive
counterparts since the constituent particles are active and the system is out of equilibrium.
Consequently, active hydrodynamic systems are truly striking and leading to novel effects,
such as the occurrence of giant density fluctuations [46,48, 56], the spontaneous laminar
flow [24,45,63], unconventional rheological properties [20, 25, 60], low Reynolds number
turbulence [27,68], and very different spatial and temporal patterns [9,22, 46,47, 58].

Although active liquid crystals are popular in physics and applications, a rigorous math-
ematical description of active nematics is relatively new. A common approach of modeling
for active liquid crystals is to add phenomenological active terms to the hydrodynamic
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theories for nematic liquid crystals; see for example [55]. There are several classical mod-
els for nematic liquid crystals in the literature, such as the Doi-Onsager model [13], the
Oseen-Frank model [21,49], the Ericksen-Leslie model [15,37], and the Landau-de Gennes
model [12]. We refer the readers to [3,4,42] for the discussions of these models including
their advantages and differences. The Landau-de Gennes theory is one of the most com-
prehensive models for nematic liquid crystals, where the state of a nematic liquid crystal
is modeled by a symmetric traceless d x d matrix Q@ € M%¢ known as the Q-tensor or-
der parameter. The Landau-de Gennes Q-tensor order parameter describes primary and
secondary directions of nematic alignment along with variations in the degree of nematic
order [42]. A nematic liquid crystal is said to be (i) isotropic when @ = 0, (ii) uniaxial
when @ has a pair of equivalent non-zero eigenvalues, and (iii) biaxial if @ has three dis-
tinct eigenvalues. A model for the incompressible flow of active liquid crystal fluids in R,
d =2 or 3 is the following (see [4,23,26]):

dye + (u-V)e = DoAc,

ou+ (u-Vu+Vp—pAu=V-0c+V-7—=AV-(|QH),
2Q + (u-V)Q — S(Vu,Q) — N\|Q|D =TH,

V-u=0,

(1.1)

where ¢ = ¢(t,z) > 0 is the concentration of active particles; u = u(t,z) € R? is the
velocity field of the flow; p = p(t, z) € R is the pressure; Q = Q(t,z) € M%¢ denotes the
nematic tensor order parameter that is a traceless and symmetric d x d matrix; Dg > 0 is
the diffusion constant; u > 0 is the viscosity coefficient; 1/T" > 0 is the rotational viscosity;
A € R denotes the nematic alignment parameter. Moreover, H = H(c, Q) is the molecular
tensor, namely,

tr(Q?

D0 1)~ cuir(@?),
which describes the relaxational dynamics of the nematic phase; it can be obtained from
the Landau-de Gennes free energy, i.e., H;; = —%, where
ij

H=KAQ — g(c— c)Q +b(Q* —

P [ (SIVQP+5 (- c)ir@) - gr(@¥) + Slr(@)P ) da, (12)

K > 0 is the elastic constant for the elastic energy density, £ > 0, b € R are material-
dependent constants, ¢, denotes the critical concentration for the isotropic-nematic tran-
sition, and I; € M%*? denotes the identity matrix. Without loss of generality, we take
K =k = 1. Besides, the matrix valued function

S(Vu, Q) = ED(Q + 1) + E(Q + 210D~ 26(Q + 31a)tr(QVu) + 0Q — QO

describes how the flow gradient rotates and stretches the director field, as well as the
molecules can be tumbled and aligned by the flow, where

1 1
Dzi(Vu—l—VuT), and Q:E(W—vuT)

are the symmetric and antisymmetric part of the strain tensor with (Vu);; = 0ju;, and
¢ is the liquid crystal material parameter that describes the relationship between the
tumbling and aligning effects imposed by the shear flow on the liquid crystal directors. If
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the molecules only tumble in a shear flow but do not align, it tends to a simple case & = 0.
The stress tensor o = (0;) consists of two parts:

oc=o0"+0o%
where
o' =QH - HQ
is the elastic stress tensor from the nematic elasticity, and
0% = 0,2Q

is the active contribution due to the contractile (o, > 0) or extensile (o, < 0) stresses ex-
erted by the active particles in the direction of the director field. The symmetric additional
stress tensor is denoted by:

T = €@+ JL)H — EH(Q+ 110) + 26(Q + S L)r(QH) ~ V@ Q.

where the symbol VQ ® V@ denotes the d x d matrix whose (i,7)-th term is given by
(VQ ® VQ)ij = 0iQmn0jQmn. Here we use the Einstein summation convention, i.e., the
repeated indices are summed over, and 0; = 8%2,.

Regarding modeling and analysis of the Ericksen-Leslie equations describing nematic
liquid crystals we refer the readers to the works [31-33, 35, 36, 38, 40, 43, 44, 65, 66] and
the survey papers [30,41,42,70] as well as the references therein for more discussions on
the physics and mathematical results. We now recall some analysis results for the Q-
tensor system in the Beris-Edwards hydrodynamics framework. Paicu-Zarnescu [50, 51]
proved the existence of global weak solutions to the full coupled Navier-Stokes and Q-tensor
system in R%, d = 2,3, and the existence of global regular solutions with sufficiently regular
initial data in the two-dimensional case with £ = 0 and ¢ smallness hypothesis respectively.
Wilkinson [69] obtained the existence of strictly physical global weak solutions on the two
and three-dimensional torus and global strong solutions in dimension two over a certain
singular potential proposed in Ball-Majumdar [3] with £ = 0. Feireisl-Rocca-Schimperna-
Zarnescu [18,19] derived the global-in-time weak solutions of the nonisothermal Landau-
de Gennes nematic liquid crystal flows in three-dimensional periodic space with Ball-
Majumdar’s singular free energy bulk potential for arbitrary physically relevant initial data
for general £. For the initial-boundary value problems, we refer to [1,2,28,29] where the
existence of global weak solutions, the existence and uniqueness of local strong solutions
were obtained. Furthermore, Wang-Xu-Yu [64] developed the existence and long-time
dynamics of globally defined weak solutions for the coupled compressible Navier-Stokes
and Q-tensor system. See [6,11,14,34,70] and the references therein for more results and
discussions. All the above results are about the passive nematic liquid crystals without
active terms and the concentration equation.

For the active systems, Chen-Majumdar-Wang-Zhang [7] analyzed active hydrodynam-
ics in an incompressible Beris-Edwards framework and established the existence of global
weak solutions in R%,d = 2,3, and the higher regularity of the weak solutions and the
weak-strong uniqueness in the two-dimensional case, under the assumption that the con-
centration of active particles is constant. For the inhomogeneous incompressible active
liquid crystals, Lian-Zhang [39] obtained global weak solutions in a three-dimensional
bounded domain. For the active system with non-constant particle concentration in the
fluid, Chen-Majumdar-Wang-Zhang [8] analyzed the initial-boundary value problems for
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compressible active nematic liquid crystals in the three-dimensional space and proved the
existence of global weak solutions for the active system by the three-level approximations
and weak convergence argument. The incompressible limit was studied in [67]. Some
stochastic analysis of active hydrodynamics was done in [53, 54].

More detailed survey on the analysis of active hydrodynamics will be given in the rest
of the paper. In Section 2, we present the results on the incompressible flow of active
liquid crystals from [7]. In Section 3, we present the results on the compressible flow of
active liquid crystals from [8]. In Section 4, we review various other related results and
discuss some open problems.

2. INCOMPRESSIBLE FLOWS: WEAK SOLUTION, REGULARITY, AND WEAK-STRONG
UNIQUENESS

For the incompressible flows of active liquid crystals, Chen-Majumdar-Wang-Zhang [7]
established the existence of global weak solutions in R?, d = 2,3, and the higher regularity
and weak-strong uniqueness in the two-dimensional case, for the constant concentration
of active particles. When the concentration of active particles changes, we consider the
system (1.1) and can prove the same results by some modifications of the arguments of
the paper [7]. Below we shall present the results of [7] but in the context of the system
(1.1), and give an outline for the proof of the existence of weak solutions; see [7] for the
more detailed arguments.

We rewrite system (1.1) as

Orc+ (u-V)e = DoAc,
8tu+(u~V)u+Vp—,uAu+V~(VQ@VQ)
- (Q+ ST H + H(Q + dw ~2Q + S T)r(QH)
V(@50 2QQ+ 0.20) LAV - Q. 21)
2.Q+ (u- V)@~ (0Q — Q) ~ NQID
= (D@ + 310) + (@ + D —2Q + L1)tr(QVw) + TH,
[ V-u=0,

where

(QQ)
H=AQ - “2Q+bQ* — “H 1) — e.Qtr(Q?),

and Do > 0, 4 >0, T >0, ¢, >0, b,04, )\, € R, (t,z) € Ry x R% and consider the

following initial condition:

(¢;u, Q)|i=o0 = (co,up, Qo)(z), for z € RY, (2.2)

with
co(z) —ée L2 (RY), 0<c< ey <E< 00, ¢g— ¢ asx— oo, (2.3)
up(x) € L*(RY), V- up = 0 in D'(RY), (2.4)

Qo(z) € H'(R?), Qo € S§ a.e. in R%. (2.5)
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For the sake of convenience, we shall use the same notation of [7]. We denote the Sobolev
space by H* for integer k& > 1, with the norm || - ||+ defined by

lollFe == > 1D"0]1Ze,

0<|v|<k
where DV := 0" --- 0,/ is the distributional derivative. The space H —k is the dual space
of H(])“, with the norm:

[ollg-x = sup (v, )],

where (-,-) denotes the inner product in L2. If a and b are vector functions, (a,b) :=
Jgaa(z) - b(z) dr and if A and B are matrices, (A, B) := [za A : B dz with A : B =
tr(ATB) = A;;jB;j. We can also write A : B = tr(AB) if A or B is symmetric. We denote
by Sg C M%*4 the space of symmetric traceless Q-tensors in d-dimension:

S(C)l = {Q S MdXd; QZ] = Q]Z7 tT(Q) = 07 /ij = 17 7d}7

with the Frobenius norm |Q| := 1/tr(QTQ) = v/Qi;Qij, and then define the Sobolev space
for the Q-tensors:

RS9 = {Q: R = 5 [ Q@) + V@) )iz < oo},

where ’VQ|2 = akaakQ” We also denote ’AQP = AQ”AQ”
Denote the Landau-de Gennes free energy for the nematic liquid crystals by

o 1 2 C—Csp b 3y 4 G4
PQ = [ (GIVQR + S 10r - 3@ + SlQr ) (26)
and the energy of the system (2.1) by
1 1
E(t) == F(Q) + /Rd (5]6 P+ §|u\2)dx. (2.7)

First we have the following basic energy estimate.

Proposition 2.1. Let (¢,u,Q) be a smooth solution of system (2.1) such that for any

given T > 0,
c—¢ e L(0,T; L*(RY) n L0, T; HY(RY)), (2.8)
we L®(0,T; L2(RY) N L?(0, T; HY(RY)), (2.9)
Q € L>=(0,T; HY(R%) N L*(0, T; H*(RY)). (2.10)

Then we have

dE(t)+D0/ |vc\2dx+“/ |Vu|2dx+F/ tr(H?)d
dt Rd 2 R4 Rd
< C(Do.cuvan) [ (1QF + VP + lr(QAQ) i

(2.11)

for any t € (0,7T).

Based on Proposition 2.1, Gronwall’s inequality and assumption of lower bound of initial
data c or the liquid crystal material parameter £, we obtain the following a priori estimates.



6 Y. CHEN, D. WANG, AND R. ZHANG

Proposition 2.2. Let (¢, u, Q) be a smooth solution of system (2.1)-(2.2) in R, d = 2,3.
There exist some positive constants ¢* and &, such that, if ¢ > ¢* or [£| < &, then for the
initial data (co,ug, Qo) € L x L? x H' and any t > 0, one has

0<c<ce<e<oo, (2.12)
1Q(t, )T < Cre®!||Qoll 31, (2.13)
and
t
I
lult, )|I7 + 2/0 IVu(s,)F2ds < Cs([|Qoll3: + lluoll72)e“™ + Cu, (2.14)

where constants Cy, 1 = 1,--- ,4, depend on Dy, i, A\, ', ¢, and the initial data (co,uo, Qo).

Remark 2.1. For the passive system considered in [50], the hypothesis of small [¢] is
necessary in R?. In our system, because of the varying concentration in the energy density,
we can obtain the a priori estimates without smallness condition on &.

Next, we introduce the definition of weak solutions to the system (2.1) subject to the
initial condition (2.2) in R? for d = 2, 3.

Definition 2.1. Let the initial data (cop, uo, Qo) satisfy (2.3)-(2.5). The triple (¢, u, @) is
called a weak solution to the system (2.1)-(2.2) if

c—ce L?(?C(R-F;LQ(Rd)) ﬂleoc(R-HHl(Rd))? (215)
u € LS. (Ry; L(RY) N LE,.(Ry; H' (RY)), (2.16)
Q € Lis.(Rys H'(RY)) N Lo (Ry; H(RY)), (2.17)

and the weak formulation holds:

_/OOO /Rd cOypdxdt — /OOO /Rd cu - Vodzdt + Dy /Ooo(vc, Vo)dt = /Rd co(x)9(0, x)dz,

(2.18)
- /0 (u, Opp)dt — /0 (u,u - Vo)dt + ,u/o (Vu, V)dt — /]Rd uo(x) - p(0,2)dx
= ¢ [ @+ JOH + HQ+ 51~ 2(Q + JLa(@H), V)t (2.19)
0

4 /0 (VQ O VQ - (QAQ — AQQ) — 0,.6Q + NQIH, Vi) dt,

and

_/(]m(Q,8t¢)dt—/OOO(Q,u'V@Z))dt—F/(]oo(AQ,@Z))dt—/Rd Qo(z) : (0, z)dx

o0 1 1 1 o0
— g/o (D(Q+ gId)+ (Q+ gId)D— 2(Q+ afd)tr(QVu),l/J)dt +/0 (QQ— QN,)dt

_ 2 00
0 [T (- 5520n(@ - T L) - @) [T (@D v
(2.20)

for all ¢ € C*®([0,00) x R%LR), ¢ € C®([0,00) x R%;RY) with V- = 0 and ¢ €
C*°(]0,00) x R%; S).
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We now state the results on the system (2.1)-(2.2). The first result is the the existence
of global weak solutions in two and three dimensions.

Theorem 2.1 (Existence of weak solutions). Let the initial data (co,uo, Qo) satisfy (2.3)-
(2.5). Then there exist some positive constants ¢* and &, such that if ¢ > ¢* or [§| < &,
there exists a weak solution (c,u, Q) to the system (2.1)-(2.2) for d = 2, 3.

The second result states that, in two-dimensional case, the system (2.1) has solutions
with higher regularity, subject to the initial data with higher regularity.

Theorem 2.2 (Higher regularity). For s > 0 and the initial data (co,uo, Qo) € H*(R?) x
H3(R?) x HTY(R?), there exist some positive constants c* and &, such that if ¢ > c* or
|€| < &, there exists a global solution (c,u,Q) of the system (2.1)-(2.2) satisfying

¢ — &€ LS (Ras HY(RY) 1 L}, (Ry: HYV (RY),

loc

u € LS. (Ry; H¥(R?)) N L, (Ry; HST(R?)),

loc

Q € Ly, (Ry; HPH(R?)) N L7, (Ry; H¥T2(R?)),

loc

and
le(t, ) = el ey + lult, M e gy + IVQE, ) Eswey < C,

where the constant C' depends only on t, Do, b, cx, p, I'; A and ¢, ug, Qo. Moreover, if £ =0
the increase in time of the above norms can be made only doubly exponential.

The third result is the weak-strong uniqueness, stated in the following theorem.

Theorem 2.3 (Weak-strong uniqueness). For s > 0 and the initial data (co,uo, Qo) €
H*(R?) x H*(R?) x H*"1(R?), there exist some positive constants c* and &, such that,
if ¢ > ¢* or [€| < &, the weak solution of the system (2.1)-(2.2) in Theorem 2.1 and the
strong solution in Theorem 2.2 are equal.

Next we shall give an outline of the proof for the Theorem 2.1. We will construct the
approximation system and obtain the uniform estimates to prove the global existence of
the weak solutions for the system (2.1)-(2.2). The proof of Theorem 2.1 will be divided
into three steps following [7]. Firstly, we construct regularized solutions (c¢=", us", Q= (™)
to the following approximate system (2.21) by the classical Friedrich’s scheme. Secondly,
we obtain some a priori estimates and pass to the limit as n — oo to achieve the weak
solution (¢, u%, Q%) to the modified system (2.25). Finally, we finish the proof of Theorem
2.1 by passing to the limit as € — 0 in the modified system (2.25) with the uniform bounds.

Step 1: construction of the approzimation system. Let x € C5° be a radial positive func-
tion such that [, x(y)dy = 1 and we define R. as the convolution operator with kernel
e~y (e71-). We also define P as the Leray projector onto divergence-free vector fields,
i.e.,

P: L’ H={vel®: V-v=0}
and the mollifying operator J,, (n =1,2,---) as

F(Inf)(E) := La=n 201 (IE)F(f)(E),

where F is the Fourier transform. For any fixed € > 0 and n > 0, by using the convolution
operator R., the Leray projector P and the mollifying operator J,, n =1,2,---, adding
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some regularizing terms to the system (2.1), we construct the following approximation
system by the classical Friedrich’s scheme, which is similar to [7] (from now on, we denote
the solution (¢=™, u®™, Q™) by (¢, u™, Q™) for simplicity):

O™ + Jp((Reu - V)™) = DoAc™, (2.21a)
™ + Jn((Rew - V)u™) — pAu” + PV - J,R-(VQ™ & vQ™)
= — ePJpR (V" (Ru™ - V™))
— ePJ,R(VQ™ (Ru™ - VQ™)| Reu™ - VQ™))
+ &PV - JuR.(VRu"|V R.u"|?)

— &PV - TR ((QM) + %Id)JnHW + J B QM + é]d)) (2.21b)

+ 2PV - TR ((Q™ + é]d)tr(Q(”) T H™))

+ PV - SR (QMWAQM™ — AQMQ™ + 6, (c)2Q™)

— PV - JuR(|QM™ |1, H™), )
Q™ + Jn(Rew - VIQM) — J(RQ"Q™ — QM R.Q™))

= €1 (RD"(@) + 214) + (Q) + SI)R.D")
(2.21c)

— 267, ((Q™ + é[d)tr(Q(”)VRgu”))

+ Ao (|Q™|R.D™) +TJ, H™,
(Cn7 u”, Q("))\tzo = (JnR8007 JnReug, JnRsQ0)7 (2'21d)

where

n_ ¢, t (n)\2
T ey - T ) o)

and (¢",u", Q™) e CY([0,T;,); N2 H*). Then we have the existence and uniqueness
of the approximate system, which can be regarded as a system of ordinary differential
equations in L? as well as the conditions (P.J,)? = PJ,, (J.)?> = J,. We also have that
Q™ = (QM)T a.e. in [0,T}] x RY.

Step 2: the limit as n — oo. Before we pass to the limit as n — co, we need to derive the
following a priori estimates for the system (2.21):

H™ = AQM™ —

2

c:T "
S 1 (QM1Q™ )12

r n € n n € n . e . .
+§\|AQ( 2, + §||R€u Vs + 5H}{au VQW |3, 4 ZHVRaU I, (2.22)
< O(J[u"l72 + 1Q™ 72 + IVQ™ |72 + Q™| 74),

where M = M (c,b,c,) > 0 is a suitable large constant satisfying

IR~ (@) +

and C' = C(cy, ¢, 0,1, Do, 04, pt, A\, e, M) is independent of n.

d Iio,n
Z(E"®) + M|IQ™|72) + Dol Ve |72 + SNVl +

Cx
4

0< S IQUIP + S < (M + QU (223)
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From the above estimates, by Gronwall’s inequality, we can conclude the a priori bounds
of the solution (¢",u”, Q™) of the system (2.21) for any T' < oo as the following:

sup [[c" — &[| Lo (0,r;22)n20,mE1) < O, 0 <c <" < e < oo,
Sl}ip ||un||L°°(0,T;L2)QL2(07T;H1) <C,

sup HQ(n)HLoo(o,T;HlnL4)mL2(o,T;H2) + sup HJn(Q(n)‘Q(n)P)HLQ(O,T;L?) <
Sgp [ Ru™ - V™| L2002y < C, !

Sgp [ Rew™ - VQ(n)HLS(o,T;LS) <C,

(2.24)

n
sup HVRé‘unHL‘l(O,T;L‘I) < C,
n

where C' is independent of n.

Because of the symmetry properties of the Q-tensor Q™ it remains to show tr(Q(”)) =
0 to prove that Q) e S’g. We take the trace on both sides of the equation (2.21¢) to
obtain the following initial value problem:

" — ey

Atr(Q) + Jp(Reu™ - Vir(QU™)) = DI, Atr(QM™) — I'J,( tr(Q™))

— .0 (tr(QM™)tr(QM™)?)) — 26, (tr(Q™)tr (QWV Ru™)),
tr(QM™)| =0 = JnRetr(Qo) = 0,

where we have used the fact that (Q(™)T = Q™) and tr(QQ™) = tr(Q™ Q™). Then
one has the following estimate:

d " n||Tod n
%Htr(Q( N7z < (Cr+ Co| VR 159 [tr(Q™)175-

Hence, we conclude that tr(Q(”)) = 0 by using Gronwall’s inequality and the tracelessness
of the initial condition of Q™.

From the uniform energy estimate (2.22) with respect to n, we can conclude that T, =
oo. Moreover, from the system (2.21) and the estimates (2.24), we can compute the bounds
for Oy (c™, u™, Q(")) in some L' (0,T; H~V) space for sufficiently large N. Therefore, by the
classical Aubin-Lions compactness lemma, as n — oo, we have

QM — @ in L*(0,T; H?), Q™ — Q in L*(0,T; HZ.?) for any & > 0,

Q™ (t) — Q(t) in H', for any t > 0,

Q™ — Qin LP(0,T; H'), Q™ — Q in LP(0,T; H..°) for any § >0, p > 2,

" —¢—c—¢in L*(0,T;H'), " —é— c— ¢ in L*(0,T; Hzlozé)’ for any 6 > 0,
(t) —é—c(t) — ¢ in L?, for any ¢t > 0,

u™ = u in L2(0,T; HY), u™ — u in L?(0,T; Hlloz‘s), for any § > 0,

u™(t) — u(t) in L%, for any t > 0.

Hence we can pass to the limit as n — oo to obtain a weak solution (¢%,u®, Q°) for the
following modified system (from now on, we denote the solution (%, u®, Q°) by (¢, u, Q)
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for simplicity):

( Oic+ (Reu - V)e = DyAc,
Ou~+ P(Reu-V)u — pAu+ PV - R(VQ & VQ)
= —ePR.(Ve(Reu - Ve)) — ePR(VQ(Reu - VQ)|Reu - VQ))
+ePV - R.(VR.u|VR.ul?)
1
—EPV - R((Q+ SIo)H + H(Q+ dld) —2(Q + dId)tr(QH)) (2.25)
+PV - R.(QAQ — AQQ +0.2Q) — APV - R.(|Q|H),
9Q + (Reu - V)? (RQQ — QR Q) — AQ|R- i?
=¢(R.D(Q + gl 2) +(Q+ Id)R D —2(Q + dId)tr(QVREu)) +TH,
(c,u, Q)]t=0 = (Reco, Re U07R Qo).

From the above analysis, we have the following proposition about the existence of weak
solutions of the modified system (2.25).

Proposition 2.3. Assume the initial data (co,up, Qo) satisfies (2.3)-(2.5). Then there
exists a weak solution (¢, u®, Q%) to the modified system (2.25), for d = 2,3, satisfying

¢ — &€ Lig(R; L*(RY)) N Lise(Ry ;s H' (RY)),
ut € Lis.(Ry; LP(RY) N L, (Ry; H'(RY)),
Q° € Lis(Ry; H (RY) N L, (Ry; H*(R)).
Step 3: the limit as ¢ — 0. Now we will complete the proof of Theorem 2.1 by passing

to the limit in system (2.25) as ¢ — 0. Through the similar procedure in Step 2 and the
classical Aubin-Lions lemma, we can conclude that there exists (¢, u, Q) satisfying

c—¢e€ L2 (Ry; LARY)) N
u € L (Ry; LA(RY) N L
)

loc(R-i-? Hl (Rd))
(Ry; H'(RY)
(Ry; H2(R?

loc

Q€ L (Ry; H(RY) N L

)
loc ))7
such that, as € — 0, we have
Q° — Qin L*(0,T; H?), Q° — Q in L*(0,T; HZ®) for any & > 0,
Q°(t) — Q(t) in H', for any t > 0,
Q° — Qin LP(0,T; HY), Q° — Q in LP(0,T; H.°) for any § > 0, p > 2,
¢ —¢—=c—¢in L*(0,T;H'), ¢ —¢é— c— ¢ in L?(0,T; Hlloc‘s) for any § > 0,
(t) — ¢ —c(t) — ¢ in L2, for any t > 0,
u® — uin L?(0,T; HY), u — w in L?(0,T; Hlloc‘s) for any 6 > 0,
uf(t) — u(t) in L%, for any t > 0.

Hence, by passing to the limit in system (2.25) as ¢ — 0, we can obtain a weak solu-
tion (c,u, Q) of the system (2.1) satisfying (2.18)-(2.20). The proof of Theorem 2.1 is
completed.
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3. COMPRESSIBLE FLOWS: WEAK SOLUTIONS IN A BOUNDED DOMAIN

In this section we shall present the result taken directly from [8] on the existence of
weak solutions for the compressible flows of active liquid crystals (c.f. [23,26]) in a bounded
domain O C R3:

Orc+ (u-V)e = DoAc,
Op+V-(pu)=0,
O(pu) + V- (pu@u)+ VP(p) — pAu— (v + p)Vdivu =V -7+ V - 0,
9Q+ (u-V)Q+ QO - QQ =TH[Q, ],
where p is the density of the fluid, v € R? is the flow velocity, P = kp” denotes the
pressure with adiabatic constant v > 1 and constant x > 0, and all the other variables

are the same as in the system (1.1) of incompressible flows. Consider the initial-boundary
value problem of (3.1) under the following initial condition:

(¢, p, pu, Q)li=0 = (co, po, Mo, Qo)(x)  for x € O C R, (32)

(3.1)

with
co € HY(O), 0<c<ey<e< oo,
Qoc HY(0), QoeS5 ae inO,
and the following boundary condition:
Ve-iilogo =0,  ulpo =0,  VQ-iilgpo =0, (3.3)
with the compatibility condition:

2
po € L(0), po>0; mgeL'(O), mg=0 if pp=0; ‘77)0’ e LY (0), (34
0
where 77 is the unit outward normal on 0O.
We shall construct the global finite-energy weak solution to (3.1)—(3.4) in the following
sense:

Definition 3.1. For any 7' > 0, (¢, p, u, Q) is a finite-energy weak solution of the initial-
boundary value problem (3.1)—(3.4) if the following conditions are satisfied:
(i) ¢ > 0, c € L>(0,T;L*(0)) N L*(0,T; HY(0)); p > 0, p € L*(0,T; L7(O));
u € L2(0,T; H}(0)), Q € L*(0,T; HY(O)) N L*(0,T; H*(0)), and Q € S§ a.e. in
OT = [O,T] x O.
(ii) The system (3.1) is valid in D'(Or). Moreover, the continuity equation is valid in
D'(0,T;R3), if (p,u) are extended to be zero on R3\ O.

(iii) Energy E(t) is locally integrable on (0,7") and satisfies the energy inequality:
T EO + L IVeliz + SIVullZz + (v + mlldivulfz + S 1AQIZ: + = 1Q1 s
< C(lullz: +IVQIZ: + 1QI7: +IQl7s)  inD'(0,T),
where
07

1 1 1 1 c
(t) A}2M<+¢m\+7_1+2@\+gv@-+4@|dx
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(iv) The continuity equation is satisfied in the sense of renormalized solutions; that is,
for any function ¢ € C1(R) with the property:

d(z)=0 for all z > M for a sufficiently large constant M,
the following holds
ig(p) + div (g(p)u) + (4'(p)p — g(p))divu =0 in D'(0, 7).
The main result on the existence of solutions can be stated as follows.

Theorem 3.1 ([8]). Let v > % and O C R3 be a bounded domain of the class C*T7 for
some T > 0. Assume that the initial data (co, po, mo, Qo)(x) satisfies the compatibility
condition (3.4). Then, for any T > 0, the initial-boundary value problem (3.1)—(3.3)
admits a finite-energy weak solution (c, p,u, Q)(t,x) on Or.

Theorem 3.1 can be proved by the Faedo-Galerkin’s method [61] with three levels of ap-
proximations in [8], as well as the weak convergence argument in the spirit of [16,17]. The
first level of approximation is to add the artificial pressure in order to increase the integra-
bility of the density. The second level approximation is to add the artificial viscosity in the
continuity equation for the higher regularity of the density. The third level approximation
is the Faedo-Galerkin’s approximation from the finite-dimensional to infinite-dimensional
space. This approach was used to construct weak solutions to the compressible Q-tensor
system in [64]. New difficulties arise from the concentration equation and its coupling
with both the fluid and Q-tensor equations, and thus new techniques are needed.

The approximate problem for (3.1)—(3.3) is the following: for fixed § > 0 and £ > 0,

Oc+ (u-V)e = DoAc, (3.5)
Op+ V- (pu) = eAp, (3.6)
A(pu) + V- (pu@u) + V(p? +6Vp?) +e(Vp- V)u

= pAu+ (v + p)Vdivu + V- (F(Q)I3 — VQ © VQ)

+ V- (QAQ - AQQ) + 0.V - (PQ), (3.7)
0Q+ (u-V)Q+QQ—QQ =THI[Q, d, (3.8)

subject to the modified initial condition:
Cli=o = co € Hl((’)), 0<c<colx) <e, (3.9)
plizo = po € C*(0),  0< o< po(x) <, (3.10)
(pu) =0 = mo(z) € C*(0), (3.11)
Qli=0 = Qo(x) € H(0), Qo € S5 a.e. in O, (3.12)

and the boundary condition:

Ve - iilpo =0, Vp - iilgo =0, (3.13)
ulpo =0, ggbo =0, (3.14)

where ¢, ¢, o, and g are positive constants, and 7 is the unit outward normal on 00O.
The classical Faedo-Galerkin method can be used to construct a solution (cy, pn, U, @n)
of the initial-boundary value problem (3.5)—(3.14). We know that the family of smooth
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eigenfunctions {1, }22; of the Laplacian operator form an orthogonal basis of H}(O).
Define a sequence of finite-dimensional spaces: X,, = span{y, 9, - ,¥,} for n € N.
First, it is shown that there is a unique solution (p[uy,], c[u,], Q[u,]) to the initial-boundary
value problem (3.5)—(3.6) and (3.8) for any given u, € C(0,7;X,). Then, substituting
(plun], clun], Quy]) into the variational formulation of the momentum equation, one can
obtain a local solution (pn, ¢n, Un, @) of the approximation system (3.5)—(3.14) on the time
interval [0,7,,] by using the contraction map theorem. Using some cancellation property
of the system and some maximum principle argument, one can extend the local solution
to a global solution by the uniform energy estimates of the system with respect to n and
also obtain the existence of the first level approximation solution as n — co. The next
step is to let the artificial viscosity € — 0 to recover the original continuity equation, for
which the convergence of the effective viscous flux sequence is applied to deal with the lack
of regularity of the density sequence to retrieve the compactness results of the solutions.
The last step is to pass to the limit of the vanishing artificial pressure sequence (6 — 0) to
obtain a finite-energy weak solution of the original problem, including the vacuum case.
The details of the proof can be found in [8].

4. OTHER RESULTS AND OPEN PROBLEMS

Inhomogeneous incompressible flow of active liquid crystals: In [39] the incompressible
flow of the active liquid crystals with inhomogeneous density was discussed in the Q-
tensor framework. Global solutions are constructed by the Faedo-Galerkin method for
the initial-boundary value problem. Two levels of approximations are used and the weak
convergence is obtained through compactness estimates to obtain the existence of global
weak solutions in a two or three dimensional bounded domain.

Incompressible limit: In [67] the connection between the compressible flows and the
incompressible flows of liquid crystals was studied when the Mach number is low. The
convergence of the weak solutions of the compressible model to the incompressible model
is proved as the Mach number approaches zero based on the uniform estimates of the weak
solutions and various compactness criteria.

Stochastic analysis: In [53,54] the martingale solution and strong solution were obtained
for the stochastic active liquid crystal system. The three-dimensional compressible flow
of active nematic liquid crystals with the random force was studied in [53] and the global
martingale solution via an approximation scheme was constructed. The strong solution to
the compressible stochastic Navier-Stokes equations coupled with the Q-tensor system of
active liquid crystals was established in [54] through the energy method up to a stopping
time. The incompressible limit was also proved for the stochastic flows of active liquid
crystals in [67].

Open problems: Many fundamental mathematical problems remain open for the active
hydrodynamics, for example, the global existence of smooth solutions with large data and
uniqueness for the compressible flows, large-time behavior of strong and weak solutions,
singular limits of solutions. The stochastic analysis is widely open for the active hydrody-
namics, for example, global strong solutions, qualitative behavior of solutions, noise effect
on the stability of solutions, and so on.



14

Y. CHEN, D. WANG, AND R. ZHANG

ACKNOWLEDGMENTS

The research of Y. Chen was supported in part by National Natural Sciences Foundation
of China No.11671027, 11901025. The research of D. Wang was supported in part by the
National Science Foundation under grant DMS-1907519. The research of R. Zhang was
supported in part by the National Science Foundation under grant DMS-1613213 and
DMS-1613375.

(1]
2]

3]
4]
(5]

(6]

7
8]
9

[10]

[11]

12

[13)

[14]

[15]
[16]

(17]
(18]
(19]
[20]

(21]

REFERENCES

H. Abels, G. Dolzmann, and Y.-N. Liu, Well-posedness of a fully-coupled Navier-Stokes/Q-tensor
system with inhomogeneous boundary data, SIAM J. Math. Anal. 46 (2014), 3050-3077.

H. Abels, G. Dolzmann, and Y .-N. Liu, Strong solutions for the Beris-Edwards model for nematic liquid
crystals with homogeneous Dirichlet boundary conditions, Adv. Differential Equations. 21 (2015), 109-
153.

J. M. Ball and A. Majumdar, Nematic liquid crystals: from Maier-Saupe to a continuum theory,
Molecular Crystals and Liquid Crystals, 525 (2010), 1-11.

A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure,
Oxford University Press: New York, 1994.

M. L. Blow, S. P. Thampi, and J. M. Yeomans, Biphasic, lyotropic, active nematics, Phys. Rev. Lett.
113 (2014), 248-303.

C. Cavaterra, E. Rocca, H. Wu, and X. Xu, Global strong solutions of the full Navier-Stokes and Q-
tensor system for nematic liquid crystal flows in two dimensions, STAM J. Math. Anal. 48(2) (2016),
1368-1399.

G.-Q. Chen, A. Majumdar, D. Wang, and R. Zhang, Global existence and regularity of solutions for
the active liquid crystals, J. Differential Equation. 263 (2017) 202-239.

G.-Q. Chen, A. Majumdar, D. Wang, and R. Zhang, Global weak solutions for the compressible active
liquid crystal system, STAM J. Math. Anal. 50(4) (2018) 3632-3675.

H. Chaté, F. Ginelli, and R. Montagne, Simple model for active nematics: Quasi-long-range order and
giant fluctuations, Phys. Rev. Lett. 96 (2006), 180602.

N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, Dynamics of bacterial swarming, Biophys. J.
98 (2010), 2082.

F. De Anna, A. Zarnescu, Uniqueness of weak solutions of the full coupled NavierStokes and Q-tensor
system in 2D, Commun. Math. Sci. 14(8) (2015) 7-11.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals. Second Edition, Oxford University
Press: New York, 1995.

M. Doi, and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press: New York,
1986.

H. Du, X. Hu, C. Wang, Suitable weak solutions for the co-rotational Beris-Edwards system in di-
mension three, Arch. Ration. Mech. Anal. 238 (2020), no. 2, 749-803.

J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheology. 5 (1961), 23-34.

E. Feireisl, Dynamics of Viscous Compressible Fluids. The Clarendon Press, Oxford University Press:
New York, 2004.

E. Feireisl, A. Novotny, and H. Petzeltovd, On the existence of globally defined weak solutions to the
Navier-Stokes equations, J. Math. Fluid Mech. 3 (2001), 358-392.

E. Feireisl, E. Rocca, G. Schimperna, and A. Zarnescu, Evolution of non-isothermal Landau-de Gennes
nematic liquid crystals flows with singular potential, Commun. Math. Sci. 12 (2014), 317-343.

E. Feireisl, E. Rocca, G. Schimperna, and A. Zarnescu, Nonisothermal nematic liquid crystal flows
with the Ball-Majumdar free energy, Ann. Mat. Pura Appl., 194 (2015), 1269-1299.

S. M. Fielding, D. Marenduzzo, and M. E. Cates, Nonlinear dynamics and rheology of active fluids:
Simulations in two dimensions, Phys. Rev. E. 83 (2011), 041910.

F. C. Frank, On the theory of liquid crystals, Discussions Faraday Soc. 25 (1958), 19-28.



[22]
23]
[24]
[25]
[26]
[27]
28]
[29]

(30]

(31]
32]
(33]
(34]
(35]
(36]
37]
(38]
(39]
[40]
[41]
(42]
(43]
[44]
(45]
[46]

(47]

ON COMPLEX FLUIDS IN ACTIVE HYDRODYNAMICS 15

F. Ginelli, F. Peruani, M. Bar, H. Chaté, Large-scale collective properties of self-propelled rods, Phys.
Rev. Lett. 104 (2010), 184502.

L. Giomi, M. J. Bowick, X. Ma, and M. C. Marchetti, Defect annihilation and proliferation in active
nematics, Phys. Review Lett. 110 (2013), 228101.

L. Giomi, M. C. Marchetti, and T. B. Liverpool, Complex spontaneous flows and concentration
banding in active polar films, Phys. Rev. Lett. 101 (2008), 198101.

L. Giomi, T. B. Liverpool, and M. C. Marchetti, Sheared active fluids: thickening, thinning, and
vanishing viscosity, Phys. Rev. E. 81 (2010), 051908.

L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan, Excitable patterns in active nematics,
Phys. Rev. Lett. 106 (2011), 218101.

L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan, Banding, excitability and chaos in active
nematic suspensions, Nonlinearity, 25 (2012), 2245.

F. Guillén-Gonzélez and M. Rodriguez-Bellido, Weak time regularity and uniqueness for a Q-tensor
model, STAM J. Math. Anal. 46(5) (2014), 3540-3567.

F. Guillén-Gonzélez and M. Rodriguez-Bellido, Weak solutions for an initial-boundary Q-tensor prob-
lem related to liquid crystals, Nonlinear Anal. 112 (2015), 84-104.

M. Hieber, J. W. Priiss, Modeling and analysis of the Ericksen-Leslie equations for nematic liquid
crystal flows. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 1075-1134, Springer,
Cham, 2018.

X. Hu, Q. Liu, Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable
density. J. Differential Equations 264 (2018), no. 8, 5300-5332.

X. Hu, D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals.
Comm. Math. Phys. 296 (2010), no. 3, 861-880.

X. Hu, H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals. STAM J.
Math. Anal. 45 (2013), no. 5, 2678-2699.

J.-R. Huang and S.-J. Ding, Global well-posedness for the dynamical Q-tensor model of liquid crystals,
Sci. China Math. 58 (2015), 1349-1366.

F. Jiang, S. Jiang, D. Wang, On multi-dimensional compressible flows of nematic liquid crystals with
large initial energy in a bounded domain. J. Funct. Anal. 265 (2013), no. 12, 3369-3397.

F. Jiang, S. Jiang, D. Wang, Global weak solutions to the equations of compressible flow of nematic
liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214 (2014), no. 2, 403-451.

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal. 28 (1968),
265-283.

X. Li, D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals.
Trans. Amer. Math. Soc. 367 (2015), no. 4, 2301-2338.

W. Lian, R. Zhang, Global weak solutions to the active hydrodynamics of liquid crystals., J. Differ-
ential Equations 268 (2020), no. 8, 4194-4221.

F.-H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure
Appl. Math. 48 (1995), 501-537.

F.-H. Lin, C. Liu, Static and dynamic theories of liquid crystals. J. Partial Differential Equations 14
(2001), no. 4, 289-330.

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals,
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014), no. 2029, 20130361, 18 pp.

F. Lin, C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension
three. Comm. Pure Appl. Math. 69 (2016), no. 8, 1532-1571.

Q. Liu, C. Wang, X. Zhang, J. Zhou, On optimal boundary control of Ericksen-Leslie system in
dimension two. Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 38, 64 pp.

D. Marenduzzo, E. Orlandini, M. E. Cates, and J. M. Yeomans, Steady-state hydrodynamic instabil-
ities of active liquid crystals: Hybrid lattice Boltzmann simulations, Phys. Rev. E. 76 (2007), 031921.
S. Mishra and S. Ramaswamy, Active nematics are intrinsically phase separated, Phys. Rev. Lett. 97
(2006), 090602.

S. Mishra, A. Baskaran, and M. C. Marchetti, Fluctuations and pattern formation in self-propelled
particles, Phys. Rev. E. 81 (2010), 061916.



16

Y. CHEN, D. WANG, AND R. ZHANG

[48] V. Narayan, S. Ramaswamy, and N. Menon, Long-lived giant number fluctuations in a swarming

granular nematic, Science. 317 (2007), 105.

[49] C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc. 29 (1933), 883-899.
[50] M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and

Q-tensor system, STAM J. Math. Anal. 43 (2011), 2009-2049.

[61] M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor

system, Arch. Ration. Mech. Anal. 203 (2012), 45-67.

[62] T.J. Pedley and J. O. Kessler, Hydrodynamic phenomena in suspensions of swimming microorganisms,

Annu. Rev. Fluid Mech. 24 (1992), 313.

[63] Z. Qiu, Y. Wang, Martingale solution for stochastic active liquid crystal system. To appear in Discrete

and Continuous Dynamical Systems, 2020.

[64] Z. Qiu, Y. Wang, Strong solution for compressible liquid crystal system with random force. Submitted,

2020, arXiv:2003.06074 [math.AP].

[65] S. Ramaswamy, The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys. 1

(2010), 301.

[66] S. Ramaswamy, R.A. Simha, and J. Toner, Active nematics on a substrate: Giant number fluctuations

and long-time tails, Europhys. Lett. 62 (2) (2003), 196-202.

[57] M. Ravnik and J. M. Yeomans, Confined active nematic flow in cylindrical capillaries, Phys. Rev.

Lett. 110 (2013), 026001.

[68] D. Saintillan and M. J. Shelley, Instabilities and pattern formation in active particle suspensions:

Kinetic theory and continuum simulations, Phys. Rev. Lett. 100 (2008), 178103.

[69] T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic, Spontaneous motion in

hierarchically assembled active matter, Nature. 491 (2012), 431.

[60] A. Sokolov and I. S. Aranson, Reduction of viscosity in suspension of swimming bacteria, Phys. Rev.

Lett. 103 (2009), 148101.

[61] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 Edition.

AMS Chelsea Publishing: Providence, RI, 2001.

[62] E. Virga, Variational Theories for Liquid Crystals, Chapman & Hall: London, 1994.
[63] R. Voituriez, J. F. Joanny, and J. Prost, Spontaneous flow transition in active polar gels, Europhys.

Lett. 70 (2005), 404.

[64] D. Wang, X. Xu, and C. Yu, Global weak solution for a coupled compressible Navier-Stokes and

Q-tensor system, Commun. Math. Sci. 13 (2015), 49-82.

[65] D. Wang, C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid

crystals. Arch. Ration. Mech. Anal. 204 (2012), no. 3, 881-915.

[66] D. Wang, C. Yu, Incompressible limit for the compressible flow of liquid crystals. J. Math. Fluid Mech.

16 (2014), no. 4, 771-786.

[67] Y. Wang, Incompressible limit of the compressible Q-tensor system of liquid crystals. Preprint.
[68] H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Lowen, and J. M. Yeomans,

Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. 109 (2012), 14308.

[69] M. Wilkinson, Strict physicality of global weak solutions of a Navier-Stokes Q-tensor system with

singular potential, Arch. Rational Mech. Anal. 218 (2015), 487-526.

[70] A. Zarnescu, Mathematical problems of nematic liquid crystals: between dynamical and stationary

problems. Phil. Trans. R. Soc. A 379 (2021): 20200432. https://doi.org/10.1098 /rsta.2020.0432. .

COLLEGE OF MATHEMATICS AND PHYSICS, BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, BEIJING

100029, CHINA

E-mail address: chenyz@mail.buct.edu.cn

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA 15260, USA.
E-mail address: dwang@math.pitt.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA 15260, USA.
E-mail address: roz14@pitt.edu



	1. Introduction
	2. Incompressible Flows: Weak Solution, Regularity, and Weak-Strong Uniqueness
	3. Compressible Flows: Weak Solutions in a Bounded Domain
	4. Other Results and Open Problems
	Acknowledgments
	References

