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Abstract. We evaluate Beer-Lambert (BL) ray-tracing and Monte Carlo N-
Particle (MCNP) photon tracking simulations for prediction and comparison of
X-ray imaging system performance. These simulation tools can aid the methodical
design of laboratory-scale X-ray particle image velocimetry (XPIV) experiments
and tracer particles by predicting image quality. Particle image signal-to-noise
ratio (SNR) is used as the metric of system performance. Simulated and
experiment data of hollow, silver-coated, glass sphere tracer particles (AGSF-33)
are compared. As predicted by the simulations, the AGSF-33 particles are visible
with a SNR greater than unity in 100 ms exposure time images, demonstrating
their potential as X-ray PIV or particle tracking velocimetry (XPTV) tracers.
The BL approach predicts the image contrast, is computationally inexpensive,
and enables the exploration of a vast parameter space for system design.
MCNP simulations, on the other hand, predict experiment images slightly more
accurately, but are more than an order of magnitude more computationally
expensive than BL simulations. For most practical XPIV system design
applications, the higher computational expense of MCNP is likely not justified
by the modest accuracy improvement compared to BL.
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1. Introduction

Particle Image Velocimetry (PIV) [1] and particle
tracking velocimetry (PTV) can both provide space-
and time-resolved velocity field measurements that are
readily compared to theory and simulation. With no
probe to disturb the flow field, these are powerful
experimental techniques that are widely used in the
fluid dynamics community. In what follows we focus
on PIV, although much of this work would also apply
to PTV.

In typical 2D PIV, one illuminates tracer particles,
usually with a laser light sheet. Images of the tracer
particles in the fluid are captured by a digital camera.
The images are divided into windows, which are
then cross-correlated to corresponding windows in a
sequential frame to determine the displacement of the
tracer particles in each window. Since the frame rate
is known, the average velocity of the tracer particles
within a window can be calculated. Doing this for each
window in the frame reveals the velocity field, resolved
to the size of the windows. If the tracer particles
are sufficiently small and neutrally buoyant, they are
assumed to follow the flow field accurately without
affecting the flow field itself. In order for PIV to work,
optical access is required for the laser light to reach the
tracer particles, and the scattered light must be able
to reach the camera sensor. However, for many flows,
optical access is impossible due to the opacity of the
fluid itself or the surrounding material. For example,
in gas-liquid flows visible light is refracted at numerous
curved phase boundaries, making the system opaque in
the visible spectrum.

X-rays, on the other hand, have a refraction
index near unity, and can pass through materials
that are opaque at visible wavelengths. As a result,
XPIV would not have the optical access limitations
of standard PIV. The impact of XPIV cannot be
understated. The whole arsenal of three decades
of PIV algorithm development could be applied to
previously inaccessible systems such as biological flows
[2, 3, 4, 5], multiphase flows [6, 7, 8], and opaque
internal flow channels [9].

In 2003, Lee and Kim demonstrated quantitative
XPIV for the first time at a synchrotron by measuring
the depth-integrated flow profile in a cylindrical pipe
[10]. Since then, research to extend XPIV capabilities
[11, 12] has been mostly limited to synchrotrons
due to the formidable challenges in obtaining a
sufficient signal-to-noise ratio (SNR) given the reduced
attenuation contrast of micron-sized particles and
comparatively dim in-lab X-ray sources. Limiting
XPIV to synchrotrons hinders the pace of research
by imposing time, cost, and location limitations.
Furthermore, synchrotrons typically have illuminated
areas on the order of millimeters and place constraints

on experiment geometry, materials, and controls. It
is clear that developing laboratory-scale XPIV is
imperative for the technique to proliferate.

In order to achieve particle image contrast,
previous in-lab XPIV experiments have relied on
particles that are either density mismatched with the
surrounding fluid, are on the order of a millimeter
in size, or both [13, 14, 15]. Particles that are not
neutrally buoyant bias the velocity measurements, and
large particles – even if nominally density matched –
limit the spatial resolution and may not trace the flow
if the Stokes number is greater than unity. Hence
for all but narrow range of experimental conditions,
data from such measurements can only be taken as
qualitative. To the best knowledge of the authors,
there is no prior laboratory-scale XPIV study with
neutrally buoyant (in water) tracer particles on the
order of tens of micrometers.

Poelma [16] discusses additional challenges to
laboratory XPIV, such as shutter speeds and beam
width. Some proposed laboratory-scale XPIV systems
offer solutions that are not scalable to higher frame
rates, which limits their applicability to flow systems
of interest. For example, Lee et al. [14] developed
a system with a rotating lead mechanical shutter and
achieved a frame rate of 4.5 Hz and a 9 µm pixel pitch.
However, in such a system, the frame rate, field of view,
and exposure time are all coupled, making it difficult
to scale.

Although the photon flux of laboratory X-ray
sources is increasing [17], tracer particles can be
detected with more sensitive, “noiseless” imagers.
Photon-counting detectors (PCDs) have seen rapid
development in recent years, opening the door to X-ray
images with lower noise levels. Unlike traditional X-
ray detectors such as charge coupled device detectors,
PCDs count individual photons. While traditional
X-ray detectors have Gaussian thermal dark noise,
PCDs have no dark noise besides cosmic radiation. By
lowering the noise level, PCDs can capture higher SNR
X-ray images.

Thanks to modern manufacturing processes, it
is now feasible to develop O(10 µm) custom tracer
particles. However, this is a costly proposition.
For a given experimental geometry, X-ray source,
and detector, the properties of an ideal tracer may
be different. Image simulation tools are needed
to methodically and economically improve these
expensive XPIV systems. Polychromatic, attenuation-
based imaging is highly nonlinear; it is difficult to
intuit what effects a design change will have. For
example, it may be unclear if a tracer particle made
from new materials would improve image contrast
when a source with specific characteristics peaks is
used. Numerically exploring the parameter space
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for a variety of source, domain, detector, and tracer
properties can be advantageous when developing
laboratory-scale XPIV systems.

In this paper, we explore two X-ray simulation
methods: Monte Carlo N-Particle photon transport
(MCNP) and Beer-Lambert ray tracing (BL). We
compare the simulated images to images recorded
with a commercially available PCD, polychromatic X-
ray source, and tracer particle. Lastly, we utilize
the now experimentally validated simulation tools
to predict the SNR of X-ray images as a proof-of-
concept for the design utility of the simulation tools.
The experiments and simulations demonstrate the
feasibility of localizing 50 µm tracers for XPIV using
laboratory-scale equipment.

2. Experimental Setup

2.1. X-ray Imaging Setup

A schematic of the experimental setup is shown in
figure 1. The X-ray source used for these experiments
is an YXLON FXE225.99 TwinHead. TwinHead
refers to the ability to swap the source heads between
a transmission and directional head. This source
is capable of achieving up to 225 kV with either
head, with a maximum tube power of 64 W with
the transmission head and 320 W for the directional
head. The directional head is brighter, but sacrifices
sharpness due to a larger focal spot. Blurring from
the directional head increases the size of the minimum
detectable detail from <500 nm for the transmission
head to <3 µm [18]. The directional source head
has a water-cooled tungsten target and a millimeter-
thick aluminum window. For our experiments, the
directional head was used for higher flux.

The imager used is a Dectris Pilatus3 X 100K–
M cadmium telluride (CdTe) detector with a 1 mm
thick CdTe panel, 487x195 (172 µm)2 pixels, and a
single photon energy threshold. For the present study
the energy threshold is set to 20 keV. The detector
is capable of counting approximately 106 photons per
pixel per second without correction, which introduces
a limit for image quality. The detector can record
images at a rate of up to 500 frames per second, but
for these experiments it is operated at 10 Hz with an
exposure time of 100 ms. The detector temperature
was maintained with a chiller at 23.0 ±0.1◦C and a
continuous dry nitrogen gas purge was used to prevent
the buildup of humidity within the detector. The raw
data is recorded by the Pilatus3 detector. Prior to
recording the images of the particles, a series of flat
field images are recorded to generate a correction map.
This correction map eliminates detector artifacts and
dead pixels when applied to a data image.

Three ThorLabs NRT150 linear stages control the

Figure 1: A diagram of the X-ray imaging system. The
SOD and SID are 1 cm and 47.6 cm, respectively.

placement of the object to be imaged. Each stage has a
150 mm range of motion, 0.1 µm minimum incremental
motion, and a calibrated on-axis accuracy of 2 µm.
Samples are held in place with 3D printed mounts
that are bolted to the linear stages. When imaging
the particles on a glass slide, as shown in figure 1, the
source-to-object distance (SOD) is 1 cm to maximize
the geometric magnification effect. The source-to-
imager distance (SID) is 47.6 cm, so the geometric
magnification is 47.6 times.

2.2. Tracer Particle

For quantitative XPIV, the tracer particle must be
neutrally buoyant and have a Stokes number much less
than unity [1]. The AGSF-33 particles from Potters
Industries LLC are selected as a potential candidate for
XPIV because they are nominally neutrally buoyant
in water and their silver coating enhances X-ray
attenuation contrast. With a nominal diameter of
50 µm, AGSF-33 particles will have a Stokes number
less than unity for a wide range of flows of interest and
can provide reasonable spatial resolution in XPIV.

The particle geometry should be known to
accurately simulate a particle. While the actual
shape of a particle may deviate from a perfect
sphere, we will assume spherical symmetry so multi-
layer particles of arbitrary composition can be easily
modeled. In the case of AGSF-33, the particles are
known to be hollow Pyrex spheres that have been
coated with silver that accounts for approximately
33% (γ = 0.33) of the particle mass. The glass
wall and silver coating thickness can be calculated by
assuming neutral buoyancy in water and using the
manufacturer’s nominal outer diameter, 50 µm. Let
R0 be the inner radius and R1 be the outer radius of
the Pyrex wall, and R2 the outer radius of the silver
coating. In this case, R2 = D/2 = 25 µm. Then, given
the densities of air, Pyrex, silver, and known value of
γ, R1 and R0 are readily calculated by equations 1 and
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2, respectively.

R3
1 =

ρsilver − γρaverage
ρsilver

R3
2 (1)

R3
0 =

(1− γ)ρaverageR
3
2 − ρpyrexR

3
1

ρair − ρpyrex
, (2)

where ρi is the density of material i. For AGSF-33 we
find R0 = 21.9 µm and R1 = 24.7 µm. These radii are
used in the BL and MCNP simulations.

2.2.1. Particle Settling While the AGSF-33 particles
are nominally matched with the density of water they,
like most tracer particles, may have a non-uniform
density within a batch. Density mismatches with the
fluid induce relative motion due to buoyancy, which
can bias velocity measurements. While for PIV the
buoyancy induced velocity may often be neglected,
the first flows measured with XPIV are likely to be
creeping flows due to present technological limitations.
Hence, consideration of settling speeds and buoyancy
is warranted. When the relative velocity is low enough
for Stokes drag to be appropriate (Re < 1), the speed
with which particles will rise or settle in a fluid can be
calculated from equation 3.

USt = d2p
ρfluid − ρparticle

18µ
g (3)

Here, dp is the particle diameter, ρi is total density
of i, µ is the dynamic viscosity of fluid, and g is the
acceleration due to gravity.

The manufacturer of AGSF-33 states that the
particle densities can range from 0.9 g/cm3 to
1.1 g/cm3, with a nominal mean density of 1 g/cm3.
Additionally, we sieved the particles to between 45 and
53 µm. We assume that the particle diameters are
distributed uniformly across the sieved range, and that
the density is normally distributed with a 0.033 g/cm3

standard deviation, truncated at 0.9 g/cm3 and
1.1 g/cm3. As a first approximation, we further
assume that the diameter and density are independent
random variables. Taking the Monte-Carlo approach,
we simulate equation 3 108 times for particles in water
at 20◦C, yielding the distribution shown in figure
2. The distribution mean is ≤O(±0.01 µm/s); the
standard deviation σ = 49 µm/s. As seen in figure 2,
99.7% of particles will travel less than three particle
diameters in a second. Current XPIV limitations
necessitate exposure times on the order of 10ms to
100ms. Over the course of a 100 ms exposure, 99.7%
of AGSF-33 particles in water will move less than
15 µm, or 0.3 particle diameters. It is desirable to
minimize the particle motion in a single exposure.
Mixing water and glycerol increases the fluid viscosity,
thus dramatically reducing the particle Stokes velocity
spread, as seen in figure 2. This suggests that presently

Figure 2: The probability density function of the
terminal velocity (in particle diameters per second)
for sieved, uniformly distributed, 45-53µm AGSF-33
tracer particles in the Stokes drag regime in water and
in a 30% glycerol, 70% water mixture.

available particles may be suited to study a wide
range of creeping flows with appropriately chosen fluid
properties.

3. X-Ray Image Simulation Methodology

3.1. Beer-Lambert Simulation

Equation 4 is the Beer-Lambert law, which describes
the attenuation of photons at energies ϵ as they pass
through J media of thickness sj that have mass
attenuation coefficient µj(ϵ) and density ρj . The
attenuation coefficient for each material is obtained
from the NIST X-ray attenuation database [19].

I =

∫ E

Ethresh

Q(ϵ)I0(ϵ)∆te
−
∑J

j=1
ρjµj(ϵ)sjdϵ (4)

Here, Ethresh is the detector threshold energy, E is
the maximum photon energy, Q is the efficiency of the
detector, ∆t is the exposure time, I is the detected
photon intensity, and I0 is the source photon intensity,
the spectrum for which can be seen in figure 3.

Equation 4 is a steady state form of the Beer-
Lambert equation. Assuming the subject being imaged
does not move or change in composition over the course
of a single exposure (PIV exposures are ideally shorter
than the characteristic time of a flow) the steady state
form can predict a detector image. A diagram of the
BL simulation geometry as implemented in the present
study can be seen in figure 4. The SID is 47.6 cm as
measured from the center of the detector. An AGSF-33
particle is set on a glass slide and the SOD as measured
from the center of the particle to the source was 1 cm.
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The AGSF-33 particle geometry is discussed in Section
2.2.

A ray-tracing MATLAB code was developed to
calculate the number of photons that are detected by
each pixel. Critically, each pixel is divided into sub-
pixels to account for geometry projection variations
across a single pixel. The error associated with sub-
pixel variation was found to be negligible (below 10%
in the worst case scenario) when 121 (11×11) sub-
pixels were considered. The Dectris Pilatus3 crystal
surface components are to the first order transparent
to the incoming radiation, so the pixels have a 100%
fill factor. We therefore consider each sub-pixel to
detect photons equally. The convergence of the pixel
photon count with increasing sub-pixels is discussed in
Appendix A. The photon intensity for each sub-pixel
is calculated using equation 4. For each object along
the ray, the thickness sj was calculated by taking the
Eulerian distance between the two intersection points
(entry and exit) of the ray with the object. The
detected photon intensity for all sub-pixels within a
pixel are summed to calculate the number of detected
photons for that pixel. In this way, the number of
detected photons are calculated for each pixel in the
detector, thus initially simulating a noiseless X-ray
image taken with a PCD.

While PCDs exhibit no Gaussian thermal white
noise, the emission process of the X-ray source and
the binomial nature of photon attenuation introduce
Poisson noise. To simulate a more realistic image,
Poisson noise is added to the image calculated with
equation 4. To add Poisson noise, we take each
noiseless calculated pixel value to be the expected value
of a Poisson distribution for that pixel. A random
value is selected from said distribution to be the noisy
pixel value. It is important to note that adding pure
Poisson noise assumes that the effects of photon pileup
are negligible [20].

The source intensity spectrum I0, shown in figure
3, is calculated using SpekCalc [21, 22, 23]. The
true source intensity spectrum and spatial distribution
are not known precisely. In order to calculate the
number of photons to simulate for a given exposure
time, experimental flat images are used to calculate the
average number of photons emitted from the source
that were detected. The solid angle of the detector
is known; the source has a 15◦ cone angle, so the
total number of source photons is calculable, assuming
uniform emission. Attenuation through 47.6 cm of air
was accounted for by taking the average air attenuation
ratio across all photon energies, then calculating an
estimate for I0 based on equation 4. In reality, the
source emission is not spatially uniform due to the
heel effect, and the attenuation of X-rays through
air is strongly energy-dependent. Improved source

Figure 3: SpekCalc source spectrum of a 22.5◦ half-
angle conical tungsten target at 55 kV with a 1 mm
thick aluminum window.

characterization could eliminate errors originating
from spectrum and flux approximations, improving
simulation accuracy. In the absence of an X-ray source
and detector to measure the source flux, SpekCalc has
been found to adequately estimate the source flux in
addition to the intensity spectrum. In this study, we
approximately measure flux as described above, but
rely on SpekCalc for the intensity spectrum.

While BL simulations are computationally cheap,
the approach entails several simplifying assumptions.
Most consequential of these is that BL simulations
assume all scattered photons are attenuated and not
detected. In general, this is not true. Many scattered
photons may experience a shallow scattering angle and
will be detected even if they are scattered from their
original ray. Photons may also experience scatter
within the detector, a process discussed in greater
detail in section 3.2.2. As a result of the scattering
attenuation assumption, BL will underestimate the
number of detected photons and noise intensity.

For computational efficiency, source photons are
emitted uniformly from a single, infinitesimal point.
We assume uniform emission for simplicity, but in
reality the source emission is not uniform due to
the heel effect. An infinitesimal source neglects the
blurring effects from a finite focal spot. Blurring
from a finite focal spot reduces image contrast. One
could account for a finite focal spot in BL simulations
with distributed emission locations, spatial non-
uniformity of emissions, and randomness of emission
flux could additionally be considered. However, the
computational advantage of BL simulations as a design
tool would diminish if we consider thousands of
emission sources and hundreds of sub-pixels.
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Figure 4: A point source generates rays along which the
Beer-Lambert law is evaluated at the detector plane.
The detector itself is not in the geometry. Here, an
AGSF-33 particle is placed on the front surface (surface
towards source) of a glass slide. Figure not to scale.

Although we make simplifying assumptions to
reduce the computational cost of the BL simulations,
the MATLAB code developed for this study is
not optimized for computational efficiency. The
calculations are done on a CPU and are not
parallelized. Parallelization on a GPU is low-hanging
fruit for improvement. There is a wealth of literature
on ray-tracing methods [24, 25, 26, 27] that the reader
can refer to for pathways to speed up the BL simulation
method. For more recent advances in ray-tracing,
we refer the reader to [28, 29]. For the purposes of
this study, we simply consider the accuracy of the
BL simulations compared to real X-ray images as the
benchmark of simulation performance as a potential
design tool.

Lastly, X-ray fluorescence [30] is not considered
in the BL simulations. We ran identical simulations
using MCNP to observe the effects of scattering,
fluorescence, and a finite focal spot. MCNP is
discussed in section 3.2.

3.2. Monte Carlo N-Particle Simulations

Monte Carlo N-Particle (MCNP) is a particle transport
simulation code developed by Los Alamos National Lab
[31]. In MCNP, each photon is assigned an energy,
departure vector, and position in the focal spot based
on known or assumed distributions. Using databases
compiled from experiment data over the past five
decades, MCNP calculates the probability of different
photon interactions with a medium as well as the
probability of the outcome of said interactions. For
example, as a photon passes through water, there are
probabilities for that photon being scattered, absorbed,

or passing through unperturbed. By simulating as
many photons as the experiment source emits for a
given exposure time, one can reconstruct the detector
image. Although MCNP is more computationally
expensive than the BL simulations discussed in 3.1, it
incorporates scattering effects both in the domain and
the detector, a finite source size, and fluorescence.

MCNP is a highly optimized program that has
been used, particularly in the nuclear engineering
and radiation protection communities, for nearly five
decades. The user provides the MCNP program with
an input file that dictates the domain, geometry, source
characteristics, data to be exported etc., without
modifying the MCNP code itself.

3.2.1. MCNP Simulation Setup The MCNP domain
geometry defined for the present study can be seen
in figure 5. A 6 µm radius finite source emits a 15◦

conical beam with uniform photon flux [18]. The
source photon energy probability density function is
calculated from the same SpekCalc spectrum used for
the BL simulation. Unlike the BL simulations, which
do not have a detector in the domain, the detector
in MCNP is modeled as a uniform CdTe panel in
the domain. In order to reduce unnecessary photon
tracking, the domain is 60 cm by 20 cm by 20 cm with
non-reflective boundary conditions. In other words, it
is assumed that any photons that leave this domain
will not scatter back to the detector.

MCNP simulates a path for each source photon
with the Monte Carlo method based on the probabili-
ties of an interaction between the photon and the do-
main object(s). If a photon enters the CdTe panel, the
location and energy of that photon are outputted as
the photon scatters or is absorbed and deposits energy
within the CdTe panel. Then, in post-processing, we
count how many photons entered each pixel and de-
posited enough energy to be detected, i.e., deposited
energy greater than or equal to our experiment energy
threshold. In a PCD such as the one we use in this
study, the simulated image pixel intensity is simply
the number of photons that are counted for each pixel.
The post-processing to generate the image is done in
MATLAB.

Notably, MCNP does not simulate the number
of source photons emitted per unit time, but rather
simulates a fixed number of photons that in the
physical world corresponds to an actual emission
time with some probability. Using the same
procedure as was described in 3.1, MCNP simulated
approximately the same number of source photons
as the BL simulations and experiment images, thus
approximating an image with an exposure time equal
to the experiment images.
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Figure 5: The MCNP geometry is similar to the BL
simulation setup of figure 4, but includes a CdTe-
detector crystal of finite thickness (omitting housing
and electronics for simplicity) and accounts for the
finite X-ray source spot. Figure not to scale.

3.2.2. MCNP Processing Methodology The output
method of choice for our purposes is the particle
track (PTRAC) file. A PTRAC file contains
every interaction that every photon has with the
environment. To simulate the image formed at the
detector, two filters are applied to the PTRAC file in
order to restrict the output to relevant interactions.
The first filter reduces the reported interactions to
only those that occur within the detector. The second
filter is applied to only include interactions that would
generate a signal within the photon-counting detector.
A snippet of a PTRAC file can be seen in figure
22 in Appendix B along with a detailed explanation.
A PTRAC file output gives us the ability to change
pixel size and detector energy thresholds a posteriori.
Since MCNP simulations take so long to run, it is
beneficial to be able to reuse one set of output data. As
mentioned previously, the PTRAC file(s) are inputted
into MATLAB for post-processing to generate the
simulated image.

For the present study, a major benefit of using a
PTRAC file output in combination with a CdTe panel
in the domain is the ability to simulate multi-detection
photons. Multi-detection photons are photons that
deposit sufficient energy to be detected in one pixel
before scattering to an adjacent pixel and being
detected again, a process we refer to as internal
scattering. A single photon can then be detected two
or more times. Figure 6 depicts how multi-detection
could occur. Figure 7 shows a multi-detection event
from an MCNP simulation.

In order to ascertain the impact of internal
scattering, one set of MCNP simulation data was
processed in two ways. First, the simulation data was

Figure 6: An incoming photon can enter one pixel,
deposit sufficient energy to be counted, then scatter to
another pixel where it is counted once more.

Figure 7: A single photon in an MCNP simulation is
detected in two separate pixels. Multi-detections such
as this one lower the image SNR.

processed such that a photon was detected once in the
pixel it first enters. Processing in this way will not
count multi-detections. Next, the simulation data was
processed to include internal scattering effects. The
difference between the former and latter processing is
approximately 8% of the average multi-detection pixel
count. Internal scattering clearly should be included
when simulating a PCD image. The ability to do so in
MCNP is an advantage over BL.

4. Results and Discussion

4.1. Experiment and Simulation Image Comparison

Figure 8 shows a flat field corrected image of a particle
taken at a source voltage of 55 kV, target current of
500 µA, and a 100 ms exposure time. The nominal
detector threshold is 20 keV. The SOD is 1 cm; the
SID is 47.6 cm. In figure 8 we see a single AGSF-33
particle taped to a 1 mm thick glass slide. Although
the particle is clearly detectable, the ability to localize
the particle for PIV can be enhanced with simple de-
noising techniques specific to Poisson-noisy images.
Figure 9 shows the image in figure 8 after applying
a PURE-LET deconvolution [32], a CLAHE filter [33],
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(a) Flat field corrected X-ray image of an AGSF-33 particle
on a glass slide. The particle can be seen in the center of
the image.

(b) The mean-normalized X-ray image of data shown in (a).
The average pixel intensity is 5,540 photons.

Figure 8: A sample image from the experiment images
collected at 55 kV, 500 µA for a 100 ms exposure time.

Figure 9: A PURE-LET deconvolution then a CLAHE
filter with a square span of 8×8 pixels is applied to the
glass slide image in figure 8. A median filter with a 3×3
span is applied last. The particle contrast improves,
which in turn would improve the PIV correlation peak.

and finally a median filter. After filtration, the particle
is even more visible. PIV image correlation could
be performed on an image containing many of these
particles. For the purposes of this paper, however,
we will not attempt to optimize settings for localizing
a single particle in the shortest possible exposure.
Instead, we will focus our discussion on the simulation
accuracy and design utility.

Figure 10 shows the BL image with Poisson noise
added. The simulation settings are the same as the
experimental settings for figures 8 and 9, with the
source flux matched. The BL simulation assumes a
point source, which produces an image without the
realistic blurring due to a finite focal spot. In the BL
image, the silver coating is clearly resolved, whereas
in the experiment image the coating is blurred with

Figure 10: A normalized BL simulated Poisson-noisy
image. The simulated source flux was matched to the
experimentally calculated value. The average pixel
intensity is 4,661 photons.

the rest of the particle. Simple blurring can be added
to the BL image without the computational cost of
simulating multiple source locations if we add Gaussian
blur, as seen in figure 11. Clearly, blurring degrades
SNR; figure 11c qualitatively resembles the experiment
data. As previously noted in section 3.1, more could
be done to quantitatively address image blurring in BL
simulations while balancing computational expense.

The most significant limitation of the BL
simulation, however, is that it cannot simulate internal
or external scattering. As noted in the caption of the
normalized images, the average intensity of the BL
image is notably lower than the experiment data. The
depressed photon detection count can be attributed
to the attenuation assumption for scattered photons.
Scattered photons in BL are not detected, which in
general is not true. Many scattered photons may
experience shallow scattering angles, and so could still
be detected. Furthermore, photons may be detected
multiple times due to scattering within the detector
panel.

The MCNP image, seen in figure 12, matches the
experiment image better than the BL image seen in
figure 10. Qualitatively, the first thing we notice is
that the particle is slightly blurred, primarily due to
MCNP modeling an idealized circular finite focal spot.
If all blurring were attributable to focal spot blurring,
the blur kernel should be approximately 1.6 pixels
across. The MCNP image qualitatively matches figure
11a, which has a kernel standard deviation of σ = 1
pixel. However, the experiment image qualitatively
agrees best with figure 11c, where the kernel standard
deviation is σ = 3 pixels. This suggests that additional
blur is attributable to a non-circular focal spot, the
resulting heel effect, detector imperfections, or some
combination thereof.

Quantitatively, the average photon detections per
pixel in the MCNP image approaches that of the
experiment image, suggesting that scatter attenuation
is the main reason for depressed photon detections in
BL. Figure 13 compares the distribution of photon
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(a) 55 kV, 500 µA BL simulation with Gaussian blur; σ = 1,
blur span = 5 pixels square.

(b) 55 kV, 500 µA BL simulation with Gaussian blur; σ = 2,
blur span = 9 pixels square.

(c) 55 kV, 500 µA BL simulation with Gaussian blur; σ = 3,
blur span = 13 pixels square.

Figure 11: Gaussian blur degrades the SNR of the BL
simulated image. In the future, a finite source focal
spot may be simulated by adding Gaussian blur. The
average pixel intensity for all images is 4,661 photons.

detections per pixel from the experiment, BL, and
MCNP. The distribution moment data are shown
in table 1. While MCNP more closely predicts
the experimental statistics, it still does not align
exactly with what was measured. This is to be
expected, since MCNP cannot account for detector
crystal imperfections, anisotropy in the detector, or
non-Poisson noise behavior due to photon pile-up
in the detector. MCNP did not simulate photons
scattering to the detector from outside the domain or
the detector housing and electronics, as these external
materials were not included in the simulation geometry.
Furthermore, neither MCNP nor BL can account
for inaccuracies in the simulated source spectrum
or calculated source flux. Improving the source
characterization is one way to improve the simulation
accuracy in the future.

In figure 13 there is a slight bump in the MCNP

Figure 12: The MCNP simulation image of an AGSF-
33 particle on a glass slide. The MCNP image shows
blurring from the finite focal spot. The average pixel
intensity is 5,074 photons.

Figure 13: The MCNP, BL, and experiment image
photon detection distributions. A small peak to the
left in the MCNP distribution is due to the depressed
photon counts in the MCNP edge pixels. MCNP
is more accurate than BL, but still does not match
experiment exactly.

Mean Variance

Experiment 5,540 5,622
MCNP (with edges) 5,074 7,344

MCNP (without edge pixels) 5,079 5,604
BL 4,661 4,803

Table 1: BL, MCNP, and experiment image photon
detection distribution moments.

histogram at about 4,800 photon detections. This
bump is an artifact of the MCNP model geometry.
Our model geometry does not have any material
surrounding the CdTe panel, so the edge pixels have
less adjacent material from which photons may scatter
back into the detector pixels. Statistics in table 1 are
provided for the MCNP image with and without the
edge pixels.

Despite the greater computational expense, it may
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be best to use MCNP for imaging conditions in which
scatter, fluorescence, and focal spot blurring are more
substantial. In the following section, however, we
demonstrate that in some cases, BL can offer effectively
the same accuracy as MCNP at a fraction of the
computational cost.

4.2. Predicting Image SNR For XPIV System Design

MCNP and BL simulations can be used as tools
to help XPIV experiment designers methodically
improve their system. BL simulations prove useful
in design applications such as predicting image SNR
behavior. SNR can be used as a metric to gauge
the detectability of tracer particles in an image.
XPIV system performance improves as the particle
detectability improves. Figure 14 shows the SNR
as a function of source voltage for the experimental,
BL, and MCNP images. As expected, the BL
simulations overestimate the SNR; MCNP is more
accurate, but only slightly. Practically speaking, BL
simulations are the preferred predictive tool by virtue
of being computationally inexpensive. As figure 14
demonstrates, BL simulations are able to explore a
wide parameter space relatively quickly, unlike MCNP.

The SNR is calculated as the ratio of the
particle-background contrast and the background noise
intensity. The particle contrast was calculated by
taking the difference in average pixel value for the
particle and for all pixels within one particle diameter
of the particle edge (i.e., the background pixels). The
contrast was then divided by the standard deviation
of the background pixels. The standard deviation
approximates the background noise intensity. For
the BL SNR, the standard deviation was calculated
assuming a perfect Poisson distribution, so the
standard deviation is taken to be the square root of
the average background pixel value.

The BL simulations predict the SNR behavior
best in the low source voltage regime where scattering
is less likely and the Poisson noise regime holds.
However, the predicted and measured curves diverge
at higher source voltages as BL underestimates the
noise intensity and overestimates the contrast, as seen
in figure 15. The contrast is higher in the BL images
because there are no blurring effects, as discussed in
figure 11. MCNP, on the other hand, incorporates
blurring effects due to scatter and a finite focal spot
with ease, and as a result predicts contrast slightly
more accurately. Both MCNP and BL underestimate
the noise intensity. This makes sense, considering both
BL and MCNP are limited to Poisson noise and idealize
the detector. Experiment images must contend with
detector artifacts and anisotropy in the CdTe crystal.
The noise intensity is also a function of the number of
source photons, so improving source flux modeling is

Figure 14: The image SNR from experiments and
BL simulations as a function of the source voltage.
The MCNP SNR for the 55 kV image is shown for
comparison.

crucial for improving SNR prediction.
It is important to note that in PCDs in particular

the image noise is not perfectly Poisson due to pileup
effects [20]. In some situations it may be advantageous
to consider energy integrating or scintillator-based X-
ray imagers. When the photon flux rate is small
compared to the maximum photon count rate of the
imager, the effects of pileup can be neglected and the
noise can be taken to be Poisson. The BL and MCNP
simulations neglect pileup effects. As the source
voltage increases, modeling image noise as Poisson
becomes less tenable, which could partially explain the
noise intensity divergence seen in figure 15, in addition
to the effects mentioned previously.

4.3. Multiple-Particle Simulations

In this study, we focus on single-particle images. They
are simpler to simulate and provide an easily replicable
geometry for measuring SNR in an experiment.
However, in realistic XPIV experiment geometries,
particles will be seeded at much higher densities,
which would increase the image noise intensity due
to scattering from the particles to the detector. We
examine this effect by simulating multiple particles
on a glass slide. Here, we did not investigate the
effects of overlap because the likelihood of photon
scattering from one particle to another, then having
enough energy to be detectable, is extremely low. To
confirm this, we ran a simple MCNP simulation with a
30keV pencil beam pointed through the center of two
tracer particles in a vacuum. The two particles are
separated by 1 µm. Photon scatter between particles
and to the detector should be much more prevalent
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Figure 15: The image contrast and noise intensity
are plotted as a function of the source voltage. BL
underestimates the noise intensity, likely due to the
simplistic scattering model.

under these circumstances than normal XPIV seeding
conditions. We choose a 30keV beam because that is
the average photon energy of our polychromatic 55kV
source spectrum. After simulating 1.2 million photons,
we found the photon counts from MCNP to be only
4.4% lower than BL (we neglected multi-detection for
these simulations). For overlapping particles, direct
transmission attenuation is the primary phenomenon
for simulating overlapped particle images. Both BL
and MCNP simulate this phenomenon accurately.
Furthermore, we did not consider overlapping particles
in order to isolate the effect that multiple particles’
scatter to the detector will have on image noise
intensity.

To demonstrate that the effect of scatter from
the particles to the detector is small, and that
our simulation tools can simulate multiple-particle
images, we provide MCNP and BL images of multiple
particles on a glass slide, seen in figures 16 and 17.
The particle images cover approximately 10% of the
detector imaging area, a typical percentage for low
density seeding applications that may be more likely
to be used in early XPIV experiments.

To calculate the SNR, we use a smaller back-
ground area compared to the single-particle simula-
tions in order to avoid including pixels with other par-
ticle images. Using identical background areas and
particles, the background noise intensity in the multi-
particle MCNP simulation increases approximately 4%
compared to the single-particle MCNP simulations; the
contrast decreases by roughly 1%. The SNR decreases
by 5%. In the multi-particle BL simulation, the SNR
changes by less than 1%. The background noise inten-

Figure 16: An MCNP-simulated image of multiple
particles on a glass slide. The imaging settings are
identical to the single-particle image.

Figure 17: The BL-simulated image of multiple
particles on a glass slide. As for the MCNP
simulation, the settings are identical to the single-
particle simulations.

sity is constant at 68 detections. The contrast increases
from 106 to 107 detections from the single-particle sim-
ulation to the multi-particle simulation. As expected,
the BL simulations are insensitive to multiple particles
in the domain because it cannot simulate scatter.

In realistic imaging scenarios, scatter is dominated
by the surrounding liquid, containers, and mounting
equipment. Hence, the observed impact of multiple
particles on noise intensity and contrast are likely
exaggerated in the multi-particle simulations, where
the tracer particles comprise a larger percentage of the
geometry than they likely would in a early in-lab XPIV
experiments. These results imply that a single-particle
simulation is an adequate simplification for estimating
SNR for practical design of experiments purposes. In
particular, single particle simulations are adequate for
comparing tracer particle designs.

5. Conclusions

Two approaches to predict X-ray images were explored:
BL ray tracing and MCNP photon tracking. Of
the two, MCNP is marginally more accurate because
it models the physics better. However, MCNP is
also significantly more computationally expensive than
even the non-optimized BL code. BL is able to predict
system behavior effectively to the same degree as
MCNP at a fraction of the computational cost. Both
simulation techniques predict the detectability of the
AGSF-33 tracer particles with an SNR greater than
unity with laboratory equipment; these predictions are
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confirmed by experiment images. Combined, these
results imply that AGSF-33 particles could be used for
laboratory-scale XPIV.

The capacity of BL simulations to cheaply predict
SNR behavior for X-ray images makes it easier
for XPIV system designers to select X-ray sources,
exposure times, tracer particles, and source settings
intelligently. XPIV system designers could also
compare different tracer particles to evaluate if new
coatings or particle materials will improve the image
SNR.

The 55 kV, 500 µA, 100 ms MCNP simulation
output all of the photon track data in 6.9 hrs. Then,
we completed processing the MCNP output data in
MATLAB in 10.5 hrs for a total MCNP computation
time of 17.4 hrs. The 55 kV, 500 µA, 100 ms
non-optimized, MATLAB-based BL simulation ran in
0.56 hrs on the same workstation that the MCNP data
was processed on. In spite of the higher computational
cost, MCNP may still be helpful. For geometries where
phenomena such as focal spot blurring, scattering, and
X-ray fluorescence are more dominant effects, using
MCNP simulations may still be prudent despite the
higher computational cost.

MCNP simulations may be difficult to improve
upon besides using better source spectrum and flux
approximations specific to the experiment. MCNP is
also agnostic to time, so modelling photon counting
dead time and pileup should be done after the MCNP
simulation by assigning event times based on the
statistics. Without such an addition, MCNP is
incapable of predicting non-Poisson image noise. BL
simulations, on the other hand, have ample room for
improvement with regard to noise modeling, source
spectrum and flux modeling, and quantitative blurring.
Furthermore, the BL code for this study is far from
optimized. An optimized and parallelized GPU code
will only add to the computational expense advantage
that BL has over the already-optimized MCNP code.
Efforts to improve BL may be more fruitful than trying
to use MCNP as an XPIV design tool. In all but the
most extreme cases it is hard to justify the need to use
MCNP for the design of XPIV experiments.

The data presented in this study shows that X-
ray images of AGSF-33 particles on a glass slide
show the particles clearly and with image quality
adequately predicted by the models. Using SNR
as a performance metric, we have the ability to
methodically simulate XPIV images to improve XPIV
systems with less of a trial-and-error approach. In
a follow up study we will demonstrate quantitative
in-lab XPIV of a flow. XPIV has great promise
for rapid improvement in coming years thanks to
rapidly improving system components. As new PCDs
are released with higher count rates, frame rates,

and more energy thresholds, new measurements are
possible. With finer energy resolution, for example,
one can determine the materials in the flow, making
particle detection even easier and enabling new noise
and artifact suppression techniques. Additionally,
techniques that are common in standard PIV, such
as computed tomography (CT) reconstruction, can
be easily extended to XPIV. The first generation of
XPIV systems may be limited to two-dimensional
projections, but CT reconstruction will enable full
three-dimensional velocimetry. Besides advancements
in PCD technology, laboratory X-ray sources are also
steadily improving. X-ray sources with liquid metal
targets [17] are able to generate much higher photon
flux and are becoming more common in laboratory
settings.

The techniques developed herein can be used to
harness these improvements. As laboratories adopt
XPIV as a measurement tool, they can apply BL or
MCNP simulation methods to quantify the expected
performance of their source, tracer particle, and imager
systems for a variety of flows.
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Appendices
A. BL Simulation Validation

Depth and Attenuation Validation

The BL equation is evaluated along rays that extend
from the source to the center of a sub-pixel. It is
implicitly assumed that the photon flux across a sub-
pixel is homogeneous.

The first validation test was conducted by
calculating the true depth and attenuation ratio by
hand. A hand calculation for an individual pixel
was compared to the simulation results. Then,
the monochromatic photon attenuation ratio and the
polychromatic intensity spectrum were calculated by
hand to compare to simulation. Both the depth and
attenuation errors can be attributed to computational
round-off.

An 86 mm × 86 mm pane of glass with a depth of
172 µm is placed 1 cm from the point source such that
the upper left corner aligns with the origin. The ray
from the source to the pixel (270,122) passes through
the front and back faces of the glass pane. The path
length of the ray passing through the glass can be
calculated by

l =
t

cos θ cosϕ
(5)

where t is the glass pane thickness, θ is the angle
between the ray and the axis pointed in the thickness

Figure 18: The error between the hand-calculated
polychromatic spectrum and the MATLAB-simulated
spectrum using our BL code is less than one millionth
of a percent. (At low photon energies, the number
of photons at that energy approaches zero, hence the
singularity.)

direction, and ϕ is the angle between the ray and the
direction perpendicular to the thickness direction. The
difference between the hand-calculated depth and the
simulation-calculated depth for the pixel (270,122) is
−3.429× 10−12 m.

For the same (270,122) pixel, the error between the
hand-calculated (using path length calculated above)
and simulated attenuation ratio I

I0
is −6.711× 10−11.

From figure 18 it is clear that the error between the
polychromatic spectrum calculated by hand and with
the simulation is order of round off error.

Sub-pixel Homogeneity

In order to validate the homogeneity assumption (i.e.
that a sufficient number of sub-pixels was considered),
an upper bound on the maximum “lost area” is
established. Lost area is the area of a pixel that is
erroneously attributed as covered (or not covered).
For example, in Figure 19, the lost area is the
white region. The sub-pixels detect the blue material
projection, but the projection does not physically cover
the entire pixel. Assuming a continuous, non-convex,
projected shape whose dimensions are larger than a
pixel side length, the maximum lost area can be readily
calculated. The scenario depicted in Figure 19 is the
maximum possible lost area that meets the stated
assumptions. The area lost as a fraction of the pixel
area is given as a function of the number of sub-pixels,
N , by

Alost

Apixel
=

1√
N

− 1

4N
. (6)
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Figure 19: The scenario with the maximum lost area
given a continuous, non-convex shape with dimensions
greater than or equal to a pixel side-length. A sub-
pixel is assumed to be uniformly covered or uncovered
based on the state of its center.

Figure 20: The maximum lost area scenario for a hole
with a diameter greater than or equal to the pixel side
length.

A pixel is sufficiently homogeneous when the maximum
lost area is no more than 10% of the pixel area. For
N = 121 sub pixels (11×11), the maximum lost area
is less than 9%.

If the non-convex assumption is relaxed to allow
for holes, the maximum lost area bound increases.
Figure 20 shows the maximum possible lost area after
relaxing the non-convex assumption. The lost area was
calculated in MATLAB; the results are plotted in figure
21. It is clear that the criteria for the homogeneity
assumption, discussed above, is again met for N ≥ 121
(11×11).

B. MCNP PTRAC File Explanation

MCNP [31] with PTRAC files is a powerful simulation
tool, but care must be taken when analyzing the data
as the PTRAC file format is not intuitive. We will
briefly make a few comments on this so that anyone
interested on building on this this study may better
navigate some of the challenges.

The PTRAC file denotes different types of
interactions – henceforth referred to as events – and the

Figure 21: As the number of sub-pixels increases,
the maximum area lost decreases rapidly. The
homogeneity assumption criteria is met for N ≥ 121
(11×11).

associated event data: location, direction, and post-
event photon energy. The physically relevant event
types are: surface, collision, and termination events
(sur, col, and ter, respectively). Each event has an
associated event ID, which is a number reported in the
PTRAC file. A surface event flags a photon entering
the CdTe detector panel; its event ID is 3000. With the
filters discussed prior, a surface event flags a photon
entering the detector panel. A collision event flags
a photon imparting some energy to the detector; its
event ID is 4000. Collision events can refer to either a
scattering event or an absorption event. Termination
events flag the end of a photon’s recorded track history;
its event ID is 5000. When a photon is absorbed,
identical collision and termination events are reported
in the PTRAC file. In addition to the physical event
types, there is a fourth event type: history termination
events. Their event IDs are 9000. History termination
events denote the end of recording a photon track. This
may occur when a photon is absorbed or when it leaves
the domain of interest (in this case, the detector panel).
When a photon is absorbed, a history termination
event identical to the collision and termination events
is recorded.

Figure 22 shows a snippet of the PTRAC file from
one of our trial MCNP simulations. In this example,
the first particle track is for the fifth source particle.
As with every particle track in this PTRAC file, the
history begins with a surface event. The “5 3000” line
at the very beginning states that the initial event for
the track history of source particle five is a surface
entry event. The data associated with this event can be
seen on the third line. The first three numbers on line
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three are the x-, y-, and z-coordinates in centimeters;
the next three numbers are the direction of travel
component vectors after the event occurs. The last
three numbers are photon energy in MeV, particle
weighting, and track time in shakes.

In the case of this first particle track, the
photon enters the detector at (50, -0.40716, 1.4224)
centimeters with 0.31738 MeV of energy. The photon
then collides (event ID 4000 on line two) at (50.002,
-0.40718, 1.4245) cm and departs with 0.23153 MeV
of energy. Note that the particle direction of travel
is reversed in the x-direction due to this collision; the
particle leaves the detector (event ID 9000 on line 4)
before being absorbed, i.e., terminated (event ID 5000).
In this track history, the photon deposits 0.08585MeV
of energy in the detector.
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Figure 22: Example particle history tracks from an MCNP PTRAC file.


