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Abstract: Consider the relativistic Vlasov–Maxwell–Boltzmann system describing the
dynamics of an electron gas in the presence of a fixed ion background. Thanks to recent
works Germain and Masmoudi (Ann Sci Éc Norm Supér 47(3):469–503, 2014), Guo
et al. (J Math Phys 55(12):123102, 2014) and Deng et al. (Arch Ration Mech Anal
225(2):771–871, 2017), we establish the global-in-time validity of its Hilbert expansion
and derive the limiting relativistic Euler–Maxwell system as the mean free path goes
to zero. Our method is based on the L2 − L∞ framework and the Glassey–Strauss
Representation of the electromagnetic field, with auxiliary H1 estimates and W 1,∞
estimates to control the characteristic curves and corresponding L∞ norm.
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1. Introduction

1.1. Relativistic Vlasov–Maxwell–Boltzmann system. The relativisticVlasov–Maxwell–
Boltzmann system is a fundamental and complete model describing the dynamics of a
dilute collisional plasma appearing in nuclear fusion and the interior of stars, etc. Cor-
respondingly, the relativistic Euler–Maxwell system, the foundation of the two-fluid
theory in plasma physics, describes the dynamics of two compressible ion and electron
fluids interacting with their own self-consistent electromagnetic field. It is also the ori-
gin of many celebrated dispersive PDE such as NLS, KP, KdV, Zaharov, etc, as various
scaling limits and approximations of such a fundamental model. Since the ion mass is
far larger than the electron mass in a plasma, the dynamics of ions is negligible for sim-
plification sometimes. In this special case, the plasma can be approximately described
by the one-species relativistic Vlasov–Maxwell–Boltzmann system in the mesoscopic
level and treated as a single fluid in the macroscopic level. It has been an important open
question if the general Euler–Maxwell system can be derived rigorously from its kinetic
counter-part, the Vlasov–Maxwell–Boltzmann system, as the mean field path goes to
zero.

In this paper, we are able to answer this question in the affirmative in the special case
when the ions form a constant background, and the relativistic Euler–Maxwell system
describes the dynamics of the electron gas. The relativistic Vlasov-Boltzmann system
can be written as:

∂t Fε + c p̂ · ∇x Fε − e−
(

Eε + p̂ × Bε
)

· ∇p Fε = 1

ε
Q(Fε, Fε), (1.1)

which is coupled with the Maxwell system

∂t Eε − c∇x × Bε = 4πe−
∫

R3
p̂Fεdp,

∂t Bε + c∇x × Eε = 0,

∇x · Eε = 4πe−
(

n̄ −
∫

R3
Fεdp

)
,

∇x · Bε = 0.

(1.2)

Here ε is the Knudsen number (the mean free path), Fε = Fε(t, x, p) is the number
density function for electrons at time t ≥ 0, position x = (x1, x2, x3) ∈ R

3 and
momentum p = (p1, p2, p3) ∈ R

3. p0 = √
m2c2 + |p|2 is the energy of an electron

and p̂ = p
p0
. The constants−e− andm are themagnitude of the electrons’ charge and rest

mass, respectively. c is the speed of light, and E(t, x), B(t, x) are the electromagnetic
fields.
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Corresponding to (1.1)–(1.2), at the hydrodynamic level, the electron gas obeys the
relativistic Euler–Maxwell system,which is an important ‘two-fluid’model for a plasma:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
c ∂t (nu0) + ∇x · (nu) = 0,
1
c ∂t [(e + P)u0u] + ∇x · [(e + P)u ⊗ u] + c2∇x P + ce−n[u0E + u × B] = 0,
∂t E − c∇x × B = 4πe− nu

c ,

∂t B + c∇x × E = 0,
∇x · E = 4πe−(n̄ − 1

c nu0),

∇x · B = 0,

(1.3)

where n is the particle number density, u = (u1, u2, u3), u0 = √|u|2 + c2, P is the
pressure, e is the total energy which is the sum of internal energy and the energy in the
rest frame.

The purpose of this article is to rigorously prove that solutions of the relativistic
Vlasov–Maxwell–Boltzmann system (1.1)–(1.2) converge to solutions of the relativistic
Euler–Maxwell system (1.3) globally in time, as the Knudsen number ε tends to zero:

sup

0≤t≤ε
− 1
2

(∥∥(Fε − M)(t)
∥∥

H1 + ‖(Eε − E0)(t)‖H1 + ‖(Bε − B0)(t)‖H1
) = O(ε).

(1.4)

Namely, the solution (Fε, Eε, Bε) to the relativistic Vlasov–Maxwell–Boltzmann sys-
tem converges to (M, E0, B0) in the H1 norm. The macroscopic variables n0, u, T0
of the Maxwellian M (1.12), and E0, B0 satisfy the relativistic Euler–Maxwell system
(1.3).

Our contribution is a step forward to derive two-fluid models for describing a plasma
from kinetic theory. On the other hand, due to complexity of different scalings, such a
derivation for a general two-fluid model with both ions and electrons remains a major
open problem.

Now we briefly explain the strategy of our proof. Detailed explanations will be
followed after the statement of Theorem 1.1. In fact, the main part of our proof is
constructing solutions to equations of remainder terms Fε

R, Eε
R and Bε

R in the Hilbert
expansion (1.8) for the relativistic Vlasov–Maxwell–Boltzmann system in a H1−W 1,∞
framework. First, it is simple to get the L2 estimate of the remainder terms. Under
a priori assumptions (1.27) for the W 1,∞ estimates of the remainder terms, we can
proceed characteristics estimates and further obtain the L∞ estimate of Fε

R to close the
L2 − L∞ energy estimates. To justify the assumptions (1.27), the essential and delicate
part is the W 1,∞ estimates of the electromagnetic fields Fε

R, Eε
R via the Glassey–Strauss

Representation. We succeed to bound the W 1,∞ estimates of the electromagnetic fields
through the combination of H1 and W 1,∞ estimates of Fε

R properly. Then we modify
the corresponding proof in [22] and bound the W 1,∞ norm of Fε

R with its H1 norm.
Finally, we derive the H1 norm estimates of the remainder terms to close the energy
estimates and verify the assumptions (1.27) for t ∈ [0, ε−1/2].

The relativistic Boltzmann collision operator Q(·, ·) in (1.1) takes the form of

Q(F, G) = c

p0

∫

R3

dq

q0

∫

R3

dq ′

q ′0

∫

R3

dp′

p′0 W [F(p′)G(q ′) − F(p)G(q)]. (1.5)
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Here the “transition rate" W = W (p, q|p′, q ′) is defined as

W = sσ(g, θ)δ(p0 + q0 − p′0 − q ′0)δ(3)(p + q − p′ − q ′). (1.6)

In a pioneering work of Glassey and Strauss [16], the collision operator Q in (1.5) was
represented as follows:

Q(F, G) =
∫

R3
dq
∫

S2
dω

sσ(g, θ)

p0q0 B(p, q, ω)[F(p′)G(q ′) − F(p)G(q)],
where the kernel B(p, q, ω) is

B(p, q, ω) = (p0 + q0)2|ω · (p0q − q0 p)|
[(p0 + q0)2 − (ω · (p + q))2]2 .

Denote the four-momentums pμ = (p0, p) and qμ = (q0, q). We use the Einstein
convention that repeated up-down indices are summed, and we raise and lower indices

using the Minkowski metric gμν
def= diag(−1, 1, 1, 1). The Lorentz inner product is

then given by

pμqμ
def= −p0q0 +

3∑
i=1

pi qi .

The quantity s in (1.6) is the square of the energy in the “center ofmomentum”, p+q = 0,
and is given as

s = s(p, q) = −(pμ + qμ)(pμ + qμ) = 2(p0q0 − p · q + m2c2) ≥ 4m2c2.

And the relativistic momentum g in (1.6) is denoted as

g = g(p, q) = √−(pμ − qμ)(pμ − qμ) =
√
2(p0q0 − p · q − m2c2) ≥ 0.

The condition for elastic collision is then given by

p0 + q0 = p′0 + q ′0, p + q = p′ + q ′, (1.7)

where p′ and q ′ are the post collisional momentums given as

p′ = p + a(p, q, ω)ω, q ′ = q − a(p, q, ω)ω,

a(p, q, ω) = 2(p0 + q0)[ω · (p0q − q0 p)]
(p0 + q0)2 − (ω · (p + q))2

.

The Jacobian for the transformation (p, q) → (p′, q ′) in these variables [15] is
∂(p′, q ′)
∂(p, q)

= − p′0q ′0

p0q0 .

The relativistic differential cross section σ(g, θ) measures the interactions between
particles. See [10,11] for a physical discussion of general assumptions. We use the
following hypothesis.
Hypothesis on the collision kernel. We consider the “hard ball” condition

σ(g, θ) = constant.

This condition is used throughout the rest of the article. In fact, without loss of generality,
we will use the normalized condition σ(g, θ) = 1 for simplicity. The Newtonian limit,
as c → ∞, in this situation is the Newtonian hard-sphere Boltzmann collision operator
[36].
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1.2. Hilbert expansion. We consider the Hilbert expansion for small Knudsen number
ε,

Fε =
2k−1∑
n=0

εn Fn + εk Fε
R,

Eε =
2k−1∑
n=0

εn En + εk Eε
R,

Bε =
2k−1∑
n=0

εn Bn + εk Bε
R, (k ≥ 3).

(1.8)

Todetermine the coefficients F0(t, x, p), . . . , F2k−1(t, x, p); E0(t, x), . . . , E2k−1(t, x);
B0(t, x), . . . , B2k−1(t, x), we plug the formal expansion (1.8) into the rescaled equations
(1.1)–(1.2) to have

∂t

( 2k−1∑
n=0

εn Fn + εk Fε
R

)
+ c p̂ · ∇x

( 2k−1∑
n=0

εn Fn + εk Fε
R

)

− e−
[( 2k−1∑

n=0

εn En + εk Eε
R

)
+ p̂ ×

( 2k−1∑
n=0

εn Bn + εk Bε
R

)]
· ∇p

( 2k−1∑
n=0

εn Fn + εk Fε
R

)

= 1

ε
Q
( 2k−1∑

n=0

εn Fn + εk Fε
R,

2k−1∑
n=0

εn Fn + εk Fε
R

)
),

∂t

( 2k−1∑
n=0

εn En + εk Eε
R

)
− c∇x ×

( 2k−1∑
n=0

εn Bn + εk Bε
R

)

= 4πe−
∫

R3
p̂
( 2k−1∑

n=0

εn Fn + εk Fε
R

)
dp,

∂t

( 2k−1∑
n=0

εn Bn + εk Bε
R

)
+ c∇x ×

( 2k−1∑
n=0

εn En + εk Eε
R

)
= 0,

∇x ·
( 2k−1∑

n=0

εn En + εk Eε
R

)
= 4πe−

(
n̄ −

∫

R3

( 2k−1∑
n=0

εn Fn + εk Fε
R

)
dp
)
,

∇x ·
( 2k−1∑

n=0

εn Bn + εk Bε
R

)
= 0. (1.9)

Now we equate the coefficients on both sides of equation (1.9) in front of different
powers of the parameter ε to obtain:

1

ε
:Q(F0, F0) = 0,

ε0 :∂t F0 + c p̂ · ∇x F0 − e−
(

E0 + p̂ × B0

)
· ∇p F0 = Q(F1, F0) + Q(F0, F1),
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∂t E0 − c∇x × B0 = 4πe−
∫

R3
p̂F0dp,

∂t B0 + c∇x × E0 = 0,

∇x · E0 = 4πe−
(

n̄ −
∫

R3
F0dp

)
,

∇x · B0 = 0,

. . . . . .

εn :∂t Fn + c p̂ · ∇x Fn − e−
(

En + p̂ × Bn

)
· ∇p F0 − e−

(
E0 + p̂ × B0

)
· ∇p Fn

=
∑

i+ j=n+1
i, j≥0

Q(Fi , Fj ) + e−
∑

i+ j=n
i, j≥1

(
Ei + p̂ × Bi

)
· ∇p Fj ,

∂t En − c∇x × Bn = 4πe−
∫

R3
p̂Fndp,

∂t Bn + c∇x × En = 0,

∇x · En = −4πe−
∫

R3
Fndp,

∇x · Bn = 0,

. . . . . .

ε2k−1 :∂t F2k−1 + c p̂ · ∇x F2k−1 − e−
(

E2k−1 + p̂ × B2k−1

)
· ∇p F0

− e−
(

E0 + p̂ × B0

)
· ∇p F2k−1

=
∑

i+ j=2k
i, j≥1

Q(Fi , Fj ) + e−
∑

i+ j=2k−1
i, j≥1

(
Ei + p̂ × Bi

)
· ∇p Fj ,

∂t E2k−1 − c∇x × B2k−1 = 4πe−
∫

R3
p̂F2k−1dp,

∂t B2k−1 + c∇x × E2k−1 = 0,

∇x · E2k−1 = −4πe−
∫

R3
F2k−1dp,

∇x · B2k−1 = 0. (1.10)

The remainder terms Fε
R, Eε

R and Bε
R satisfy the following equations:

∂t Fε
R + c p̂ · ∇x Fε

R − e−
(

Eε
R + p̂ × Bε

R

)
· ∇p F0

− e−
(

E0 + p̂ × B0

)
· ∇p Fε

R − 1

ε
[Q(Fε

R, F0) + Q(F0, Fε
R)]

= εk−1Q(Fε
R, Fε

R) +
2k−1∑
i=1

εi−1[Q(Fi , Fε
R) + Q(Fε

R, Fi )] + εke−
(

Eε
R + p̂ × Bε

R

)
· ∇p Fε

R

+
2k−1∑
i=1

εi e−
[(

Ei + p̂ × Bi

)
· ∇p Fε

R +
(

Eε
R + p̂ × Bε

R

)
· ∇p Fi

]
+ εk A,
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∂t Eε
R − c∇x × Bε

R = 4πe−
∫

R3
p̂Fε

Rdp,

∂t Bε
R + c∇x × Eε

R = 0,

∇x · Eε
R = −4πe−

∫

R3
Fε

Rdp,

∇x · Bε
R = 0, (1.11)

where

A =
∑

i+ j≥2k+1
2≤i, j≤2k−1

εi+ j−2k−1Q(Fi , Fj ) +
∑

i+ j≥2k
1≤i, j≤2k−1

εi+ j−2ke−
(

Ei + p̂ × Bi

)
· ∇p Fj .

From the first equation in (1.10), we can obtain that F0 should be a local Maxwellian
M = F0:

F0(t, x, p) = n0γ

4πm3c3K2(γ )
exp
{uμ pμ

kB T0

}
, (1.12)

where K j (γ )( j = 0, 1, 2, . . .) are the modified second order Bessel functions:

K j (γ ) = (2 j ) j !
(2 j)!

1

γ j

∫ λ=∞

λ=γ

e−λ(λ2 − γ 2) j−1/2dλ, ( j ≥ 0),

and γ is a dimensionless variable defined as

γ = mc2

kB T0
, (1.13)

kB is Boltzmann’s constant. Here n0(t, x), uμ(t, x) and T0(t, x) are the number density,
four-velocity and temperature. As proved in Proposition 3.3 of [33], it holds that

I α[M] = c
∫

R3

pα

p0
M dp = n0uα,

T αβ [M] = c
∫

R3

pα pβ

p0
M dp = e0 + P0

c2
uαuβ + P0gαβ,

(1.14)

where e0(t, x) is the total energy and P0(t, x) is the pressure satisfying

P0 = mnc2

γ
= kB

m
ρT ,

e0 = n0mc2

K2(γ )

[
K3 (γ ) − 1

γ
K2 (γ )

]
.

Noting the relationship p0 = √m2c2 + |p|2 and

−
∫

R3
p0
(

E0 + p̂ × B0

)
· ∇pMdp

=
∫

R3
E0 · p̂Mdp = n0u · E0

c
,
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we project the second equation in (1.10) onto the five collision invariants, 1, p, p0, for
the relativistic Boltzmann operator Q and use (1.14) to have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
c ∂t (n0u0) + ∇x · (n0u) = 0,
1
c ∂t [(e0 + P0)u0u] + ∇x · [(e0 + P0)u ⊗ u]

+c2∇x P0 + ce−n0[u0E0 + u × B0] = 0,
1
c ∂t [(e0 + P0)(u0)2 − c2|u|2P0] + ∇x · [(e0 + P0)u0u] + ce−n0u · E0 = 0.

(1.15)

Then, under the conditions

e0 + P0 = n0h(n0), and P ′
0(n0) = n0h′(n0) > 0, (1.16)

which were indicated in [20], we can further use the equations of ε0 power in (1.10) to
obtain equations of n0, u and E0, B0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
c ∂t (n0u0) + ∇x · (n0u) = 0,
1
c ∂t [(e0 + P0)u0u] + ∇x · [(e0 + P0)u ⊗ u]

+c2∇x P0 + ce−n0[u0E0 + u × B0] = 0,
∂t E0 − c∇x × B0 = 4πe− n0u

c ,

∂t B0 + c∇x × E0 = 0,
∇x · E0 = 4πe−(n̄ − 1

c n0u0),

∇x · B0 = 0.

(1.17)

In fact, we use (1.15)1 to have

n0u0

c
∂t

(e0 + P0

n0
u
)
+ n0u · ∇x

(e0 + P0

n0
u
)

+ c2∇x P0 + ce−n0[u0E0 + u × B0] = 0,

n0u0

c
∂t

(e0 + P0

n0
u0
)

− c∂t P0 + n0 · ∇x ·
(e0 + P0

n0
u
)
+ ce−n0u · E0 = 0.

(1.18)

We further employ u0(1.18)2 − u·(1.18)1 to obtain

u0
[
n0∂t

(e0 + P0

n0

)
− ∂t P0

]
+ u ·

[
n0∇x

(e0 + P0

n0

)
− ∇x P0

]
= 0. (1.19)

(1.19) automatically holds under the conditions (1.16). Namely, the third equation in
(1.15), the energy equation, can be expressed by the first and second equations in (1.15),
and (1.17) holds true.

Here and below, we assume that [n0(t, x), u(t, x), E0(t, x), B0(t, x)] is a global
smooth solution to the relativistic Euler–Maxwell 1-fluid system (1.17) constructed in
[20] with n0(t, x) − n̄, u(t, x), E0(t, x) and B0(t, x) sufficiently small and satisfying

sup
t∈[0,∞]

‖[n0(t) − n̄, u(t), E0(t), B0(t)]‖H N0 + sup
t∈[0,∞]

[
(1 + t)β0

× ( sup
|ρ|≤3

‖Dρ
x (n0(t) − n̄)‖∞ + sup

|ρ|≤4
‖[Dρ

x u(t), Dρ
x E0(t), Dρ

x B0(t)]‖∞)
]

� ε̄0,

(1.20)
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where N0 = 104, β0 = 101/100 and ε̄0 is a small positive constant.
For M given in (1.12), where (n0, u, T0)(t, x) is part of a solution to the relativis-

tic Euler–Maxwell 1-fluid system (1.17) constructed in [20], we define the linearized
collision operator L f and nonlinear collision operator �( f1, f2) :

L f = − 1√
M

[Q(
√
M f,M) + Q(M,

√
M f )] = ν(M) f − KM( f ),

�( f1, f2) = 1√
M

Q(
√
M f1,

√
M f2),

where the collision frequency ν = ν(t, x, p) is defined as

ν = �loss(1,
√
M) =

∫

R3
dq
∫

S2
dω

s

p0q0B(p, q, ω)
√
M(q),

and KM( f ) takes the following form:

KM( f ) =
∫

R3
dq
∫

S2
dω

s

p0q0B(p, q, ω)
√
M(q)[√M(q ′) f (p′) +

√
M(p′) f (q ′)]

−
∫

R3
dq
∫

S2
dω

s

p0q0B(p, q, ω)
√
M(q)

√
M(p) f (q)

= K2( f ) − K1( f ). (1.21)

Then from Lemma 3.1 in [37] and Lemma 6 in [25], we can similarly obtain

ν(t, x, p) ≈ 1, and |Dρ
pν(t, x, p)| � (p0)−1, |ρ| > 0.

Note that the null space of the linearized operator L is given by

N = span
{√

M, pi

√
M(1 ≤ i ≤ 3), p0

√
M
}

.

Let P be the orthogonal projection from L2
p onto N . Given f (t, x, p), one can express

P f as a linear combination of the basis in N :

P f = {a f (t, x) + b f (t, x) · p + c f (t, x)p0}√M.

Then we have [16]

〈L f, f 〉 ≥ δ0‖{I − P} f ‖2,
for some constant δ0 > 0. Define f ε as

Fε
R = √

M f ε. (1.22)

We further introduce a global Maxwellian

JM = nMγM

4πm3c3K2(γM )
exp{− p0

kB TM
},

and define

Fε
R = (1 + |p|)−β

√
JM hε =

√
JM

w(|p|)hε, (1.23)
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with w(|p|) ≡ (1 + |p|)β for some β ≥ 8. Here nM , TM = mc2/(kBγM ) satisfy the
conditions in (1.16) and

TM < sup

t∈[0,ε− 1
2 ],x∈R3

T0(t, x) < 2TM . (1.24)

Remark 1.1. Since the presence of physical constants do not cause essential mathemat-
ical difficulties, we will normalize all constants in the relativistic Vlasov–Maxwell–
Boltzmann system (1.1), (1.2) and in all related quantities to be one.

1.3. Notations. Throughout the paper, C denotes a generic positive constant which may
change line by line. The notation A � B implies that there exists a positive constant C
such that A ≤ C B holds uniformly over the range of parameters. The notation A ≈ B
means 1

C̄
A ≤ B ≤ C̄ A for some constant C̄ > 1. We use standard notations to denote

the Sobolev spaces W k,2(R3
x ) (or W k,2(R3

x ×R
3
p)) and W k,∞(R3

x ) (or W k,∞(R3
x ×R

3
p))

with corresponding norms ‖ · ‖Hk and ‖ · ‖W k,∞ , respectively. We also use the standard
notations ‖ · ‖ and ‖ · ‖∞ to denote the L2 norm and L∞ norm in both (x, p) ∈ R

3 ×R
3

and x ∈ R
3, respectively. The standard L2(R3 × R

3) inner product is denoted as 〈·, ·〉
for simplicity. Dx and Dp are used as any space and momentum derivative, respectively.

1.4. Main results. We now state our main results.

Theorem 1.1. Let F0 = M as in (1.12) and let [n0(0, x), u(0, x), E0(0, x), B0(0, x)]
satisfies the same assumptions in Theorem 2.2 of [20] and [n0(t, x), u(t, x), E0(t, x),
B0(t, x)] be a corresponding global solution. Then for the remainder terms Fε

R, Eε
R and

Bε
R in (1.8), there exists an ε0 > 0 such that for 0 ≤ ε ≤ ε0,

sup

0≤t≤ε
− 1
2

(
ε

3
2

∥∥∥ (1 + |p|)β Fε
R√

JM
(t)
∥∥∥∞ + ε2

∥∥∥ (1 + |p|)β Fε
R√

JM
(t)
∥∥∥

W 1,∞

)

+ sup

0≤t≤ε
− 1
2

(
ε

5
2 ‖[Eε

R(t), Bε
R(t)]‖W 1,∞

)
+ sup

0≤t≤ε
− 1
2

[∥∥∥ Fε
R√
M

(t)
∥∥∥

+‖[Eε
R(t), Bε

R(t)]‖ +
√

ε
(∥∥∥ Fε

R√
M

(t)
∥∥∥

H1
+ ‖[Eε

R(t), Bε
R(t)]‖H1

)]

� ε
3
2

∥∥∥ (1 + |p|)β Fε
R√

JM
(0)
∥∥∥∞ + ε2

∥∥∥ (1 + |p|)β Fε
R√

JM
(0)
∥∥∥

W 1,∞

+ε
5
2 ‖[Eε

R(0), Bε
R(0)]‖W 1,∞ +

∥∥∥ Fε
R√
M

(0)
∥∥∥ + ‖[Eε

R(0), Bε
R(0)]‖

+
√

ε
(∥∥∥ Fε

R√
M

(0)
∥∥∥

H1
+ ‖[Eε

R(0), Bε
R(0)]‖H1

)
+ 1. (1.25)

Remark 1.2. We only require k ≥ 3 for the expansion in (1.8). This requirement is the
same as the case of the Hilbert expansion for the Boltzmann equation [23,24,33] and
more relaxed than that for the Vlasov–Poisson–Boltzmann system [22]. Moreover, our
uniform estimates lead to the relativistic Euler–Maxwell limit (1.4).
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Our result guarantees that the Hilbert expansion for the relativistic Vlasov–Maxwell–
Boltzmann system is valid for any time if ε is chosen sufficiently small. Similar result
was also obtained in [22] for the Hilbert expansion of the Vlasov–Poisson–Boltzmann
system. Due to shock formations in the pure compressible Euler flow, as illustrated in
[5,32], corresponding Hilbert expansion, acoustic limit for the Boltzmann equation or
relativistic Boltzmann equation [4,23,24,33] is only valid local in time. Different from
the pure compressible Euler fluids where shock waves may develop even for smooth
irrotational initial data with small amplitude, the electromagnetic interaction in the two-
fluid models [17,20,21] could create stronger dispersive effects, enhance linear decay
rates, and prevent formation of shock waves with small amplitude.

Our method is based on an L2 − L∞ framework originated in [19]. In Sect. 2, we
first establish the basic L2 estimate for remainders ( f ε, Eε

R, Bε
R). In order to close the

energy estimate (2.3) in Proposition 2.1, we need L∞ estimate of hε along the curved
characteristic given by

d X (τ ; t, x, p)

dτ
= P̂(τ ; t, x, p),

d P(τ ; t, x, p)

dτ
= −Eε(τ, X (τ ; t, x, p)) − P̂(τ ; t, x, p) × Bε(τ, X (τ ; t, x, p)),

(1.26)

with X (t; t, x, p) = x , P(t; t, x, p) = p.
In Sect. 3, we study the characteristics and L∞ estimate of hε under the crucial

bootstrap assumptions:

sup
t∈[0,T ]

ε2‖hε(t)‖∞ ≤ ε
3
8 ,

sup
t∈[0,T ]

ε
5
2

(
‖∇x hε(t)‖∞ + ‖∇phε(t)‖∞

)
≤ ε

1
4 ,

sup
t∈[0,T ]

ε
11
4 ‖[Eε

R(t), Bε
R(t)]‖W 1,∞ ≤ 1, (1.27)

for given T ∈ [0, ε− 1
2 ]. We can repeat the L∞ estimate of hε in Sect. 5.1 of [22] and

obtain Proposition 3.1. Combing Propositions 2.1 and 3.1, we close the L2− L∞ energy
estimates. The rest of the paper is devoted to the proof of (1.27).

In Sect. 4, we estimate the W 1,∞ norm of Eε
R, Bε

R in term of the W 1,∞ norm of
f ε, via Glassey–Strauss Representation (see Theorem 3 and Theorem 4 in [14]). In
the previous work [22], the electric field Eε

R was calculated via elliptic estimate of the
Poisson system:

Eε
R = −∇xφ

ε
R, �φε

R = ρε
R, ρε

R ∈ L∞.

It is important to note that the relativistic nature of bounded velocity p̂ and the strong
weight (1 + |p|)k play key roles. We remark that the W 1,∞ estimate (4.1) in Proposition
4.1 fails for the classical Vlasov–Maxwell–Boltzmann system with unbounded velocity.
Our method relies crucially on the Glassey–Strauss representation, which fails for the
non-relativistic case. Once the relativistic two-fluid model is derived, it is then possible
to study the classical (non-relativistic) limit as the speed of light goes to∞. It is possible
to extend our result to the 2D case, with a similar Glassey–Strauss formulation in 2D
[13].
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In Sect. 5, we establish the W 1,∞ estimate for hε. In [22], such an estimate relies on
a second integration by parts

Dx hε(t, x, v) ∼ . . . +
1

ε2

∫ t

0

∫ s

0
exp
{

− 1

ε

∫ t

s
ν(τ )dτ − 1

ε

∫ s

s1
ν(τ )dτ

}

×
∫

R3×R3
lM,w(V (s), v′)lM,w(V (s1), v

′′)Dx hε(s1, X (s1), v
′′)|dv′

dy
|dv′′yds1ds + . . .

∼ . . . − 1

ε2

∫ t

0

∫ s−κε

0
exp
{

− 1

ε

∫ t

s
ν(τ )dτ − 1

ε

∫ s

s1
ν(τ )dτ

}

×
∫

B̂
lN (V (s), v′)lN (V (s1), v

′′)hε(s1, X (s1), v
′′)Dx (|dv′

dy
|)dydv′′ds1ds + . . . ,

(1.28)

where lM,w is the kernel corresponding to KM,w in [22], lN is a smooth approximation of
lM,w with compact support, y = X (s1), and B̂ = {|y−X (s)| ≤ C(s−s1)N , |v′′| ≤ 3N }.
Thanks to the elliptic regularity of the Poisson system, the electric field Eε = −∇xφ

ε is
bounded almost in W 2,∞ with the auxiliary W 1,∞ bound for the distribution function,
and ‖Dx (| dv′

dy |)‖L2
B̂
can also be bounded by CN /(ε4). Unfortunately, in the presence

of the magnetic field, the Maxwell system is hyperbolic, and such a gain of regularity
and bound of ‖Dx (| dv′

dy |)‖L2
B̂
are impossible. Instead, we estimate the first expression in

(1.28) by the H1 norm of f ε and W 1,∞ norm of (Eε, Bε).
We turn to an auxiliary H1 estimate in Sect. 6. Even though such an H1 estimate in

Proposition 6.3 leads to a loss of ε− 1
2 , it is still sufficient for the W 1,∞ estimate of hε in

the crucial bootstrap assumptions (1.27). Noting the fact

‖∇p f ε‖ � ‖∇pP f ε‖ + ‖∇p{I − P} f ε‖,
we estimate the norm ‖∇p{I − P} f ε‖ instead of a direct estimation of ‖∇p f ε‖ to avoid
estimates, such as the estimate related to the transport term

〈(Dp p̂) · ∇x f ε,∇p f ε〉 � ‖Dp f ε‖‖Dx f ε‖, (1.29)

which may lead to exponential growth of the H1 norm of remainders. In fact, we pro-
ceed energy estimate after employing momentum differentiation Dp to the equation of
{I − P} f ε via micro projection onto the equation of f ε. Thanks to the dissipation of
1
ε
∇p(L f ε), instead of (1.29), we can obtain

〈(Dp p̂) · ∇x f ε,∇p{I − P} f ε〉 � κ

ε
‖Dp{I − P} f ε‖2 + ε

κ
‖Dx f ε‖2

for some small positive constant κ > 0. Then (κ/ε)‖Dp{I − P} f ε‖2 can be absorbed
by the dissipation term and the factor ε of (ε/κ)‖Dx f ε‖2 can kill the increase of time

for t ∈ [0, ε− 1
2 ].

In Sect. 7, we finally verify (1.27) and close the energy estimates via a continuity

argument for 0 ≤ t ≤ ε− 1
2 . The proof of our main result Theorem 1.1 is given.

Appendix 3 is devoted to construction of coefficients Fn(t, x, p), En(t, x), Bn(t, x),

(1 ≤ n ≤ 2k − 1) in the Hilbert expansion (1.8) and estimation of their regularities
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(see Theorem 8.1). Due to the complex nature of the relativistic Boltzmann equation,
the construction and estimates are delicate.

We remark that the time decay rate (1 + t)−β0(β0 > 1) of the solutions [20] n0(t, x),
u(t, x), E0(t, x) and B0(t, x) in (1.20) is important. As in (2.7), (6.4) and (6.5), thanks
to the time decay of ‖∇x n0‖∞, ‖∇x u‖∞, ‖∇x E0‖∞ and ‖∇x B0‖∞, we obtain estimates
such as (1 + t)−β0‖ f ε‖2, which is bound by Grönwall’s inequality.

We briefly review works related to the relativistic Vlasov–Maxwell–Boltzmann sys-
tem. For the two species relativistic Vlasov–Maxwell–Boltzmann system with ε = 1,
global smooth solutions near a Maxwellian was constructed [25] in a periodic box
with new momentum regularity estimates. This result was extended to the whole space
in [30] and [29] for short range interaction. There are more studies about the non-
relativistic Vlasov–Maxwell–Boltzmann system. In [18], global classical solutions near
a Maxwellian were constructed in a periodic box. Since then, many works have been
done in global existence and asymptotic stability of solutions, and hydrodynamic limits,
such as [1,2,7–9,26–28,35].

2. L2 Estimate for f ε

In this section, we derive the L2 energy estimates for the remainder f ε = Fε
R√
M

.

To perform the L2 energy estimate, we first use (1.22) to rewrite (1.11) as

∂t f ε + p̂ · ∇x f ε +
u0

2T0
p̂
√
M · Eε

R − u
√
M

2T0
·
(

p̂ × Bε
R

)

−
(

E0 + p̂ × B0

)
· ∇p f ε +

L f ε

ε

= − f ε

√
M

[
∂t + p̂ · ∇x −

(
E0 + p̂ × B0

)
· ∇p

]√
M + εk−1�( f ε, f ε)

+
2k−1∑
i=1

εi−1[�(Fi , f ε) + �( f ε, Fi )] + εk
(

Eε
R + p̂ × Bε

R

)
· ∇p f ε

− εk 1

2T0

(
u0 p̂ − u

)
·
(

Eε
R + p̂ × Bε

R

)
f ε

+
2k−1∑
i=1

εi
[(

Ei + p̂ × Bi

)
· ∇p f ε +

(
Eε

R + p̂ × Bε
R

)
· ∇p Fi

]

−
2k−1∑
i=1

εi
[(

Ei + p̂ × Bi

)
· 1

2T0

(
u0 p̂ − u

)
f ε
]
+ εk Ā, (2.1)

and

∂t Eε
R − ∇x × Bε

R =
∫

R3
p̂
√
M f εdp,

∂t Bε
R + ∇x × Eε

R = 0,

∇x · Eε
R = −

∫

R3
Fε

Rdp, ∇x · Bε
R = 0, (2.2)

where Ā = A√
M
.
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Proposition 2.1. For the remainders ( f ε, Eε
R, Bε

R), it holds that

d

dt

(∥∥∥
√
2T0
u0 f ε(t)

∥∥∥
2
+ ‖[Eε

R(t), Bε
R(t)]‖2

)

+
(δ0TM

2ε
− Cεk−2‖hε‖∞

)
‖{I − P} f ε‖2

�
[
(1 + t)−β0 + εk‖hε‖∞ + εI1

] (
‖ f ε‖2 + ‖(Eε

R, Bε
R)‖2

)

+
[
ε

11
4 ‖hε‖∞ + εkI2(t)

]
‖ f ε‖, (2.3)

where I1 and I2 have the following form:

I1(t) =
2k−1∑
i=1

εi−1(1 + t)i−1
[
1 +

2k−1∑
i=1

εi−1(1 + t)i−1
]
,

I2(t) =
∑

1+2k≤i+ j≤4k−2

εi+ j−2k−1(1 + t)i+ j−2.

Proof. We take the L2 inner product with 2T0
u0

f ε on both sides of (2.1) to have

1

2

d

dt

∥∥∥
√
2T0
u0 f ε(t)

∥∥∥
2
+
〈
p̂ · Eε

R

√
M, f ε

〉
+
2δ0
ε

∥∥∥
√

T0
u0 {I − P} f ε

∥∥∥
2

≤ −
〈 f ε

√
M

[
∂t + p̂ · ∇x −

(
E0 + p̂ × B0

)
· ∇p

]√
M,

2T0
u0 f ε

〉

+
1

2

〈[(
∂t + p̂ · ∇x

)(2T0
u0

)]
f ε, f ε

〉

+
〈
u ·
(

p̂ × Bε
R

)√
M, f ε

〉
+ εk−1

〈
�( f ε, f ε),

2T0
u0 f ε

〉

+
2k−1∑
i=1

εi−1
〈
[�(Fi , f ε) + �( f ε, Fi )], 2T0

u0 f ε
〉

− εk
〈(

u0 p̂ − u
)

·
(

Eε
R + p̂ × Bε

R

)
f ε,

f ε

u0

〉

+
2k−1∑
i=1

εi
〈[(

Ei + p̂ × Bi

)
· ∇p f ε +

(
Eε

R + p̂ × Bε
R

)
· ∇p Fi

]
,
2T0
u0 f ε

〉

−
2k−1∑
i=1

εi
〈[(

Ei + p̂ × Bi

)
· 1

T0

(
u0 p̂ − u

)
f ε
]
,
2T0
u0 f ε

〉
+ εk

〈
Ā,

2T0
u0 f ε

〉
. (2.4)

On the other hand, from (2.2), we have

1

2

d

dt

(
‖Eε

R(t)‖2 + ‖Bε
R(t)‖2

)
=
〈
p̂ · Eε

R

√
M, f ε

〉
. (2.5)

Noting (1.24), we combine (2.4) and (2.5) to have

1

2

d

dt

(∥∥∥
√
2T0
u0 f ε(t)

∥∥∥
2
+ ‖[Eε

R(t), Bε
R(t)]‖2

)
+

δ0TM

ε
‖{I − P} f ε‖2
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≤ −
〈 f ε

√
M

[
∂t + p̂ · ∇x −

(
E0 + p̂ × B0

)
· ∇p

]√
M,

2T0
u0 f ε

〉

+
1

2

〈[(
∂t + p̂ · ∇x

)(2T0
u0

)]
f ε, f ε

〉

+
〈
u ·
(

p̂ × Bε
R

)√
M, f ε

〉
+ εk−1

〈
�( f ε, f ε),

2T0
u0 f ε

〉

+
2k−1∑
i=1

εi−1
〈
[�(Fi , f ε) + �( f ε, Fi )], 2T0

u0 f ε
〉

− εk
〈(

u0 p̂ − u
)

·
(

Eε
R + p̂ × Bε

R

)
f ε,

f ε

u0

〉

+
2k−1∑
i=1

εi
〈[(

Ei + p̂ × Bi

)
· ∇p f ε +

(
Eε

R + p̂ × Bε
R

)
· ∇p Fi

]
,
2T0
u0 f ε

〉

−
2k−1∑
i=1

εi
〈[(

Ei + p̂ × Bi

)
· 1

T0

(
u0 p̂ − u

)
f ε
]
,
2T0
u0 f ε

〉
+ εk

〈
Ā,

2T0
u0 f ε

〉
. (2.6)

Now we estimate the terms in the right hand of (2.6). For brevity, we only treat the first,
fourth and fifth terms since the remained terms can be estimated in the same way as
Proposition 3.1 in [22]. Note that 1√

M
[∂t + p̂ · ∇x − (E0 + p̂ × B0) · ∇p]

√
M is a linear

polynomial of p, (1 + |p|)| f ε| ≤ (1 + |p|)−7|hε| from (1.24), and

( ∫

|p|≥√
κ
ε

(1 + |p|)−7×2dp
)1/2

�
( ε

κ

) 11
4
,

where κ is a sufficiently small positive constant. Then the first term can be estimated as
follows:

−
〈 f ε

√
M

[
∂t + p̂ · ∇x −

(
E0 + p̂ × B0

)
· ∇p

]√
M,

2T0
u0 f ε

〉

� (‖∇x n0‖∞ + ‖∇x u‖∞ + ‖∇x E0‖∞ + ‖∇x B0‖∞) ‖ f ε‖2
+ (‖∇x n0‖ + ‖∇x u‖ + ‖∇x E0‖ + ‖∇x B0‖)
× ‖(1 + |p|){I − P} f ε‖L∞

x L2
p
‖{I − P} f ε‖

� (1 + t)−β0‖ f ε‖2 + ‖{I − P} f ε‖
× ‖(1 + |p|){I − P} f ε(1|p|≥√

κ
ε
+ 1|p|≤√

κ
ε
)‖L∞

x L2
p
‖{I − P} f ε‖

� (1 + t)−β0‖ f ε‖2 + κ

ε
‖{I − P} f ε‖2 + ε

11
4 ‖hε‖∞‖ f ε‖. (2.7)

By Theorem 2 in [25], we can estimate the fourth term as

εk−1
〈
�( f ε, f ε),

2T0
u0 f ε

〉

= εk−1
〈
�( f ε, f ε),

2T0
u0 {I − P} f ε

〉

� εk−1‖hε‖∞‖ f ε‖‖{I − P} f ε‖
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� εk−2‖hε‖∞‖{I − P} f ε‖2 + εk‖hε‖∞‖ f ε‖2.
For the fifth term, we use Theorem 2 in [25] and (8.17) in Theorem 8.1 to obtain

2k−1∑
i=1

εi−1
〈
[�(Fi , f ε) + �( f ε, Fi )], 2T0

u0 f ε
〉

=
2k−1∑
i=1

εi−1
〈
[�(Fi , f ε) + �( f ε, Fi )], 2T0

u0 {I − P} f ε
〉

�
2k−1∑
i=1

εi−1‖Fi‖L∞
x L2

p
‖ f ε‖‖{I − P} f ε‖

� κ

ε
‖{I − P} f ε‖2 + ε

( 2k−1∑
i=1

εi−1(1 + t)i−1
)2‖ f ε‖2.

��

3. Characteristics and L∞ estimates

In this section, we first establish the characteristic estimates under the a priori assump-
tions (1.27). Then the L∞ estimate of hε will be presented.

3.1. Characteristics estimates. In this subsection,wewill provide several characteristics
estimates for the relativistic Vlasov–Maxwell–Boltzmann system. To this aim, we need
a uniform W 1,∞ estimate for the electro-magnetic field [Eε(t, x), Bε(t, x)].

We first note that, under the a priori assumptions (1.27),

sup
t∈[0,T ]

‖[Eε(t), Bε(t)]‖W 1,∞

≤
2k−1∑
i=0

εi‖[Ei (t), Bi (t)]‖W 1,∞ + εk‖[Eε
R(t), Bε

R(t)]‖W 1,∞ � 1, (3.1)

for T ∈ [0, 1√
ε
] and k ≥ 3.

With the uniform estimate (3.1), we can study the characteristics defined in (1.26).

Lemma 3.1. Let T ∈ [0, ε− 1
2 ] and assumptions in (1.27) hold. Then there exists a small

constant T̄ ∈ [0, T ] such that for τ ∈ [0, T̄ ],

|Dp X (τ )| � |t − τ |
p0

, (3.2)

d2Dp X (τ ; t, x, p)

dτ 2
� 1

(p0)2
, (3.3)

1

2(p0)5
|t − τ |3 ≤

∣∣∣∣det
(

∂ X (τ )

∂p

)∣∣∣∣ ≤
2

(p0)5
|t − τ |3. (3.4)
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Proof. We first prove (3.2). For i, j = 1, 2, 3, we differentiate (1.26) w.r.t. pi to have

d∂pi X j (τ ; t, x, p)

dτ
=
( (P0)2∂pi Pj − Pj (P · ∂pi P)

(P0)3

)
(τ ; t, x, p), (3.5)

and

d∂pi Pj (τ ; t, x, p)

dτ

= −[∇x Eε
j · ∂pi X ](τ, X (τ ; t, x, p))

−
[

P̂(τ ; t, x, p) × [∇x Bε · ∂pi X ](τ, X (τ ; t, x, p))
]

j

−
[( (P0)2∂pi P − P(P · ∂pi P)

(P0)3

)
(τ ; t, x, p) × Bε(τ, X (τ ; t, x, p))

]
j
. (3.6)

Note that ∂pi Pj (t; t, x, p) = δi j . We integrate (3.6) over [t, τ ] and use (3.1) to get

‖∂pi Pj (τ )‖∞ ≤ δi j + C |τ − t |
(

sup
τ∈[0,T̄ ]

‖∂pi X (τ )‖∞ +
supτ∈[0,T̄ ] ‖∂pi P(τ )‖∞
infτ∈[0,T̄ ] ‖P0(τ )‖∞

)
.

Then, for sufficiently small T̄ , it holds that

‖∂pi Pj (τ )‖∞ ≤ 5

4
δi j + C |τ − t | sup

τ∈[0,T̄ ]
‖∂pi X (τ )‖∞. (3.7)

Noting that ∂pi X j (t; t, x, p) = 0, and for some τ̄ between τ and t ,

P0(τ ) = p0 + (τ − t)
d P

dτ
(τ̄ ; t, x, p) ≤ p0 + C |τ − t |, (3.8)

we integrate (3.5) over [t, τ ] and use (3.8) to obtain

‖∂pi X j (τ )‖∞ ≤ 2|t − τ |
infτ∈[0,T̄ ] ‖P0(τ )‖∞

� |t − τ |
p0

, (3.9)

for T̄ small enough. Inserting (3.9) into (3.7) yields

‖∂pi Pj (τ )‖∞ ≤ 2, (3.10)

for sufficiently small T̄ . Moreover, from (1.26), one has

d2∂pi X j (τ )

dτ 2
= ∂pi

( 1

P0

d Pj

dτ
− Pj

(P0)3

d P

dτ
· P
)
(τ )

= ∂pi

[−Eε
j − [P̂ × Bε] j

P0 +
Pj P · Eε

(P0)3

]
(τ )

=
{−∇x Eε

j · ∂pi X − [P̂ × (∇x Bε · ∂p j X)] j − [∂pi P̂ × Bε] j

P0

+
∂pi Pj P · Eε + Pj∂pi P · Eε + Pj P · (∇x Eε · ∂pi X)

(P0)3
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+
Eε

j + [P̂ × Bε] j

(P0)3
P · ∂pi P − 3Pj P · Eε(P · ∂pi P)

(P0)5

}
(τ ). (3.11)

Thenwe use (3.8), (3.9) and (3.10) to bound
d2∂pi X j (τ )

dτ 2
by C

(p0)2
(1+|t −τ |). (3.3) follows

for small T̄ .
Finally, we prove (3.4). Expand ∂pi X j (τ ) at t to have

∂pi X j (τ ) = ∂pi X j (t) +
d∂pi X j (τ ; t, x, p)

dτ

∣∣∣
τ=t

(τ − t) +
(τ − t)2

2

d2∂pi X j (τ̄ )

dτ 2

= (τ − t)
(p0)2δi j − pi p j

(p0)3
+

(τ − t)2

2

{−∇x Eε
i · ∂p j X

P0

− [P̂ × (∇x Bε · ∂p j X)] j + [∂p j P̂ × Bε] j

P0

+
∂pi Pj P · Eε + Pj∂pi P · Eε + Pj P · (∇x Eε · ∂pi X)

(P0)3

+
Eε

j + [P̂ × Bε] j

(P0)3
P · ∂pi P − 3Pj P · Eε(P · ∂pi P)

(P0)5

}
(τ̄ ). (3.12)

Then, we have
∣∣∣∣det

(
∂ X (τ )

∂p

)∣∣∣∣ = |τ − t |3
∣∣∣∣det

(
I

(p0)3
− p ⊗ p

(p0)5
+

τ − t

2

d2∂pi X j (τ̄ )

dτ 2

)∣∣∣∣

= |τ − t |3
∣∣∣∣∣∣

1

(p0)5
+

τ − t

2

3∑
i, j=1

δi j + pi p j

(p0)4
d2∂pi X j (τ̄ )

dτ 2

+
O(1)|τ − t |2

p0

∥∥∥d2∂p X (τ̄ )

dτ 2

∥∥∥
2

∞ + O(1)|τ − t |3
∥∥∥d2∂p X (τ̄ )

dτ 2

∥∥∥
3

∞

∣∣∣∣ .

Here I is the 3 × 3 identity matrix. By (3.8) and (3.11), we can estimate
∣∣∣det

(
∂ X (τ )

∂p

)∣∣∣
as

|τ − t |3
∣∣∣∣∣∣
[1 + O(1)|τ − t |2]2 1

(p0)5
+

τ − t

2

3∑
i, j=1

δi j + pi p j

(p0)4
d2∂pi X j (τ̄ )

dτ 2

∣∣∣∣∣∣
. (3.13)

Inserting the expression of ∂pi X j (τ ) in (3.12) into (3.13), after a long computation, we

can further estimate
∣∣∣det

(
∂ X (τ )

∂p

)∣∣∣ as

|τ − t |3
(p0)5

∣∣∣[1 + O(1)|τ − t |2]2 + (τ − t)

2p0

[
P̂ · Eε

− ∇x · Eε +
3∑

i, j=1

P̂i P̂j∂xi Eε
j + P̂ · (∇x × Bε)

]
(τ̄ )

∣∣∣.
(3.14)

Then we combine (3.14) and (3.8), and choose T̄ sufficiently small to obtain (3.4). ��
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3.2. L∞ estimate of hε. With the characteristic estimates in Lemma 3.1, we can repeat
the L∞ estimate of hε in subsection 5.1 [22] to obtain the following proposition.

Proposition 3.1. For given T ∈ [0, ε− 1
2 ], assume the crucial bootstrap assumptions

(1.27). Then, for sufficiently small ε, we have

sup
0≤t≤T

(
ε

3
2 ‖hε(t)‖∞

)
�ε

3
2 ‖hε(0)‖∞ + sup

0≤t≤T
‖ f ε(t)‖ + ε

2k+3
2 .

4. W1,∞ estimates for (Eε
R, Bε

R)

In this section,we use thewell-knownGlassey–StraussRepresentation in [14] to perform
W 1,∞ estimates for (Eε

R, Bε
R).

Proposition 4.1. For t ∈ [0, T ], remainders (Eε
R, Bε

R) satisfy

‖[Eε
R(t), Bε

R(t)]‖W 1,∞

� 1

ε
(1 + t)

1
4 sup
0≤t≤T

(
‖hε(t)‖∞‖ f ε(t)‖

) 1
2

+ (1 + t) sup
t∈[0,T ]

(‖hε(t)‖W 1,∞ + 1)

+ (1 + t)2 sup
t∈[0,T ]

[(
εk−1‖hε(t)‖∞ + I1(t) + 1

)
(‖hε(t)‖∞ + 1)

]

+

√
1 + t

ε
sup

t∈[0,T ]
‖ f ε(t)‖H1 + (1 + t)

3
2 sup

t∈[0,T ]

(
εk‖hε(t)‖∞ + εI1(t) + 1

)

× sup
t∈[0,T ]

[
εk−1(‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1)

+ (
1

ε
+ I1(t))

(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖) + εk−1I2(t)
]

+
(
1 + sup

t∈[0,T ]
[εk‖hε(t)‖∞ + εI1(t)]

)√
1 + t sup

t∈[0,T ]

[( 1

ε2
+
I1(t)

ε

)
(‖ f ε(t)‖

+ ‖[Eε
R(t), Bε

R(t)]‖) + εk−2
(
‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

) ]

+ (1 + t)εk sup
t∈[0,T ]

[
‖ f ε(t)‖H1 + εk−1

(
‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

)

+ [1
ε
+ I1(t)](‖ f ε‖ + ‖[Eε

R(t), Bε
R(t)]‖) + εkI2(t)

]2
. (4.1)

Proof. Proposition 4.1 is a combination of Propositions 4.2 and 4.3. ��

4.1. L∞ estimate for (Eε
R, Bε

R). Define an operator S by

S = ∂t + p̂ · ∇x .

The remainder of the electro-magnetic field (Eε
R, Bε

R) can be explicitly expressed in
terms of Fε

R and SFε
R as follows:



360 Y. Guo, Q. Xiao

Lemma 4.1 [14]. For i = 1, 2, 3, one has

4π Eε,i
R (t, x) = Eε,i

R (0, x) + Eε,i
R,T (t, x) + Eε,i

R,S(t, x),

4π Bε,i
R (t, x) = Bε,i

R (0, x) + Bε,i
R,T (t, x) + Bε,i

R,S(t, x), (4.2)

where Eε,i
R (0, x) and Bε,i

R (0, x) are initial data of Eε,i
R and Bε,i

R , and

Eε,i
R,T (t, x) = −

∫∫

|x−y|≤t

dpdy

|y − x |2
(ωi + p̂i )(1 − | p̂|2)

(1 + p̂ · ω)2
Fε

R(t − |y − x |, y, p),

Eε,i
R,S(t, x) = −

∫∫

|x−y|≤t

dpdy

|y − x |
(ωi + p̂i )

1 + p̂ · ω
(SFε

R)(t − |y − x |, y, p),

Bε,i
R,T (t, x) =

∫∫

|x−y|≤t

dpdy

|y − x |2
(ω × p̂)i (1 − | p̂|2)

(1 + p̂ · ω)2
Fε

R(t − |y − x |, y, p),

Bε,i
R,S(t, x) =

∫∫

|x−y|≤t

dpdy

|y − x |
(ω × p̂)i

1 + p̂ · ω
(SFε

R)(t − |y − x |, y, p),

with ω = x−y
|x−y| .

From the kinetic equation of Fε
R in (1.11), we can obtain the upper bound of the

electro-magnetic field.

Proposition 4.2. For t ∈ [0, T ], the remainders Eε
R and Bε

R can be estimated as

‖[Eε
R(t), Bε

R(t)]‖∞
� (1 + t) sup

t∈[0,T ]

[
‖[Eε

R(0), Bε
R(0)]‖∞ + ‖hε(t)‖∞

]

+
√
1 + t sup

t∈[0,T ]

[
εk−1

(
‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

)

+ [1
ε
+ I1(t)](‖ f ε‖ + ‖[Eε

R(t), Bε
R(t)]‖) + εkI2(t)

]
. (4.3)

Proof. Since the estimate of Bε
R can be done in a same way, we only deal with Eε

R . We

first estimate Eε,i
R,T in (4.2). Note that

1 − | p̂|2 = (1 + | p̂|)(1 − | p̂|) ≤ 2(1 − | p̂|),
(1 + p̂ · ω)−m ≤ (1 − | p̂|)−m ≤ (1 + |p|)m .

for any m ≥ 0. Then we have

|Eε,i
R,T | � (1 + t) sup

t∈[0,T ]
‖hε(t)‖∞

∫

R3
(1 + |p|)

√
JM

w(|p|)dp � (1 + t) sup
t∈[0,T ]

‖hε(t)‖∞.

For Eε,i
R,S , we obtain from the definition of operator S and (1.11) that
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Eε,i
R,S(t, x)

= −
∫∫

|x−y|≤t

dpdy

|y − x |
(ωi + p̂i )

1 + p̂ · ω

[
(Eε

R + p̂ × Bε
R) · ∇p F0

]
(t − |y − x |, y, p)

−
∫∫

|x−y|≤t

dpdy

|y − x |
(ωi + p̂i )

1 + p̂ · ω

[
(E0 + p̂ × B0) · ∇p Fε

R

]
(t − |y − x |, y, p)

−1

ε

∫∫

|x−y|≤t

dpdy

|y − x |
(ωi + p̂i )

1 + p̂ · ω
[Q(Fε

R, F0) + Q(F0, Fε
R)](t − |y − x |, y, p)

−εk−1
∫∫

|x−y|≤t

dpdy

|y − x |
(ωi + p̂i )

1 + p̂ · ω
Q(Fε

R, Fε
R)(t − |y − x |, y, p)

−
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi−1 (ωi + p̂i )

1 + p̂ · ω
[Q(Fi , Fε

R) + Q(Fε
R, Fi )](t − |y − x |, y, p)

−εk
∫∫

|x−y|≤t

dpdy

|y − x |
(ωi + p̂i )

1 + p̂ · ω

(
Eε

R + p̂ × Bε
R

)
· ∇p Fε

R(t − |y − x |, y, p)

−
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi (ωi + p̂i )

1 + p̂ · ω

[(
Ei + p̂ × Bi

)
· ∇p Fε

R

]
(t − |y − x |, y, p)

−
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi (ωi + p̂i )

1 + p̂ · ω

[(
Eε

R + p̂ × Bε
R

)
· ∇p Fi

]
(t − |y − x |, y, p)

−εk
∫∫

|x−y|≤t

dpdy

|y − x |
(ωi + p̂i )

1 + p̂ · ω
A(t − |y − x |, y, p). (4.4)

For the first term in the right hand side of (4.4), by integration by parts w.r.t. p, it can
be controlled by

√
t sup

t∈[0,T ]

(
‖[Eε

R(t), Bε
R(t)]‖‖(1 + |p|)F0‖L1

p

)
�

√
1 + t sup

t∈[0,T ]
‖[Eε

R(t), Bε
R(t)]‖.

Integrating by parts w.r.t. p, we bound the second term in the right hand side of (4.4) by
√

t‖(1 + |p|)√M‖L2
p

sup
t∈[0,T ]

(‖[E0(t), B0(t)]‖∞‖ f ε(t)‖) �
√
1 + t sup

t∈[0,T ]
‖ f ε(t)‖.

Noting from (1.7) that,

(1 + |p|)(M(p′))
1
4 (M(q ′))

1
4 = (1 + |p|)(M(p))

1
4 (M(q))

1
4 � 1,

we use (8.17) in Theorem 8.1 to control the third term in the right hand side of (4.4) by

1

ε

∫∫

|x−y|≤t

dpdy

|y − x | (1 + |p|)(M(p))
1
4 (M(q))

1
4

[
Q( f εM

1
4 ,

F0

M
1
4

)
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+ Q(
F0

M
1
4

, f εM
1
4 )
]
(t − |y − x |, y, p)

� 1

ε

∫

|x−y|≤t

dy

|y − x | ‖ f ε(t − |y − x |, y)‖L2
p

�
√
1 + t

ε
sup

t∈[0,T ]
‖ f ε(t)‖.

Similarly, the fourth term and fifth term in the right hand side of (4.4) can be estimated
as

εk−1
∫∫

|x−y|≤t

dpdy

|y − x | (1 + |p|)(M(p))
1
4 (M(q))

1
4 Q( f εM

1
4 , f εM

1
4 )(t − |y − x |, y, p)

� εk−1
∫

|x−y|≤t

dy

|y − x | ‖ f ε(t − |y − x |, y)‖2L2
p

� εk−1√t sup
t∈[0,T ]

(
‖ f ε(t)‖L3

x
‖ f ε(t)‖L6

x

)

� εk−1
√
1 + t sup

t∈[0,T ]

(
‖ f ε(t)‖2 + ‖∇x f ε(t)‖2

)
,

and

2k−1∑
i=1

εi−1
∫∫

|x−y|≤t

dpdy

|y − x | (1 + |p|)(M(p))
1
4 (M(q))

1
4

[
Q( f εM

1
4 ,

Fi

M
1
4

)

+ Q(
Fi

M
1
4

, f εM
1
4 )
]
(t − |y − x |, y, p)

�
2k−1∑
i=1

εi−1(1 + t)i−1
∫

|x−y|≤t

dy

|y − x | ‖ f ε(t − |y − x |, y)‖L2
p

�
√
1 + t sup

t∈[0,T ]

( 2k−1∑
i=1

εi−1(1 + t)i−1‖ f ε(t)‖
)
,

respectively. Similar to above estimates, the sixth, seventh, eighth and ninth terms can
be controlled by

Cεk‖(1 + |p|)√M‖L2
p

√
t sup

t∈[0,T ]

(
‖[Eε

R(t), Bε
R(t)]‖L3

x
‖ f ε(t)‖L6

x

)

+ C
2k−1∑
i=1

εi‖(1 + |p|)√M‖L2
p

√
t sup

t∈[0,T ]
(‖[Ei (t), Bi (t)]‖∞‖ f ε(t)‖)

+ C
2k−1∑
i=1

εi√t sup
t∈[0,T ]

(
‖(1 + |p|)Fi‖L1

p
‖[Eε

R(t), Bε
R(t)]‖

)
+ Cεk sup

t∈[0,T ]
I2(t)
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�
√
1 + t sup

t∈[0,T ]

[
εk
(
‖[Eε

R(t), Bε
R(t)]‖2H1 + ‖∇x f ε(t)‖2

)

+ ε

2k−1∑
i=1

εi−1(1 + t)i−1 (‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖) + εkI2(t)
]
.

We collect the estimates above to get (4.3). ��

4.2. W 1,∞ estimates for (Eε
R, Bε

R). Thegradient of the remainder of the electro-magnetic
field (Eε

R, Bε
R) can be explicitly expressed in the following:

Lemma 4.2 [14]. For i, j = 1, 2, 3, one has

∂x j Eε,i
R (t, x) = ∂x j Eε,i

R (0, x) +
∫∫

|x−y|≤t

dpdy

|y − x |3 a(ω, p̂)Fε
R(t − |y − x |, y, p)

+ O(1) +
∫∫

|x−y|≤t

dpdy

|y − x |2 b(ω, p̂)(SFε
R)(t − |y − x |, y, p) (4.5)

+
∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)(S2Fε
R)(t − |y − x |, y, p),

where ∂x j Eε,i
R (0, x) is a derivative of the initial datum. Moreover, the kernels a, b, c

above are smooth except at points where 1 + p̂ · ω = 0, and satisfy

(i) |a(ω, p̂)| � (1 + p̂ · ω)−4,

∫

|ω|=1
dωa(ω, p̂) = 0,

(i i) |b(ω, p̂)| � (1 + p̂ · ω)−3,

(i i i) |c(ω, p̂)| � (1 + p̂ · ω)−2. (4.6)

The gradient of the magnetic field ∂x j Bε,i
R admits a similar representation as (4.2), but

with slightly different kernels aB, bB and cB for which the properties (4.5) and (4.6)
remain valid.

Using again the definition of the operator S and the equation satisfied by Fε
R in (1.11),

we have the following gradient bound estimate.

Proposition 4.3. For t ∈ [0, T ], the gradient of remainders Eε
R and Bε

R can be estimated
as

‖[∇x Eε
R(t),∇x Bε

R(t)]‖∞

� 1

ε
(1 + t)

1
4 sup
0≤t≤T

(
‖hε(t)‖∞‖ f ε(t)‖

) 1
2

+ (1 + t) sup
t∈[0,T ]

(‖hε(t)‖W 1,∞ + 1)

+ (1 + t)2 sup
t∈[0,T ]

[(
εk−1‖hε(t)‖∞ + I1(t) + 1

)
(‖hε(t)‖∞ + 1)

]
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+

√
1 + t

ε
sup

t∈[0,T ]
‖ f ε(t)‖H1 + (1 + t)

3
2 sup

t∈[0,T ]

(
εk‖hε(t)‖∞ + εI1(t) + 1

)

× sup
t∈[0,T ]

[
εk−1(‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1)

+ (
1

ε
+ I1(t))

(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖) + εk−1I2(t)
]

+
(
1 + sup

t∈[0,T ]
[εk‖hε(t)‖∞ + εI1(t)]

)√
1 + t sup

t∈[0,T ]

[( 1

ε2
+
I1(t)

ε

)
(‖ f ε(t)‖

+ ‖[Eε
R(t), Bε

R(t)]‖) + εk−2
(
‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

) ]

+ (1 + t)εk sup
t∈[0,T ]

[
‖ f ε(t)‖H1 + εk−1

(
‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

)

+ [1
ε
+ I1(t)](‖ f ε‖ + ‖[Eε

R(t), Bε
R(t)]‖) + εkI2(t)

]2
. (4.7)

Proof. We estimate the three integrals in the right hand side of (4.7) one by one. Noting
that ∫∫

|x−y|≤t

dpdy

|y − x |3 a(ω, p̂)Fε
R(t − |y − x |, y, p)

=
∫ t

0

∫

S2

dpdωdτ

t − τ
a(ω, p̂)Fε

R(τ, x + (t − τ)ω, p),

we use (i) in (4.6) and (1.23) to have
∫∫

|x−y|≤t

dpdy

|y − x |3 a(ω, p̂)Fε
R(t − |y − x |, y, p)

=
∫ t

0

∫

R3

∫

S2

dpdωdτ

t − τ
a(ω, p̂)

[
Fε

R(τ, x + (t − τ)ω, p) − Fε
R(τ, x, p)

]

� t sup
t∈[0,T ]

‖∇x hε(t)‖∞
∫

R3
dp(1 + |p|)4(1 + |p|)−β

√
JM

� (1 + t) sup
t∈[0,T ]

‖∇x hε(t)‖∞.

For the second integral in the right hand side of (4.7), one has
∫∫

|x−y|≤t

dpdy

|y − x |2 b(ω, p̂)(SFε
R)(t − |y − x |, y, p)

=
∫∫

|x−y|≤t

dpdy

|y − x |2 b(ω, p̂)
[(

Eε
R + p̂ × Bε

R

)
· ∇p F0 +

(
E0 + p̂ × B0

)
· ∇p Fε

R

+
1

ε
[Q(Fε

R, F0) + Q(F0, Fε
R)] + εk−1Q(Fε

R, Fε
R)

+
2k−1∑
i=1

εi−1[Q(Fi , Fε
R) + Q(Fε

R, Fi )] + εk
(

Eε
R + p̂ × Bε

R

)
· ∇p Fε

R
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+
2k−1∑
i=1

εi
(
(Ei + p̂ × Bi ) · ∇p Fε

R + (Eε
R + p̂ × Bε

R) · ∇p Fi

)

+ εk A
]
(t − |y − x |, y, p). (4.8)

We only estimate the term 1
ε
[Q(Fε

R, F0) + Q(F0, Fε
R)] in (4.8) since other terms can be

estimated directly. For this term, by Hölder’s inequality, we have
∫∫

|x−y|≤t

dpdy

|y − x |2 b(ω, p̂)
1

ε
[Q(Fε

R, F0) + Q(F0, Fε
R)](t − |y − x |, y, p)

� 1

ε

∫

|x−y|≤t

dy

|y − x |2 ‖ f ε(t − |y − x |, y)‖
1
2
L2

p
sup

0≤t≤T
‖hε(t)‖

1
2∞

� 1

ε
t
1
3× 3

4 ‖ f ε(t)‖ 1
2 sup
0≤t≤T

‖hε(t)‖
1
2∞

� 1

ε
(1 + t)

1
4 sup
0≤t≤T

(‖hε(t)‖
1
2∞‖ f ε(t)‖ 1

2 ).

Then we use (4.3) to further estimate (4.8) as
∫∫

|x−y|≤t

dpdy

|y − x |2 b(ω, p̂)(SFε
R)(t − |y − x |, y, p)

� 1

ε
(1 + t)

1
4 sup
0≤t≤T

(‖hε(t)‖
1
2∞‖ f ε(t)‖ 1

2 )

+ (1 + t) sup
t∈[0,T ]

[
εk−1‖hε(t)‖2∞ + (1 + I1(t))‖hε(t)‖∞ + (εk‖hε(t)‖∞ + 1)

× ‖[Eε
R(t), Bε

R(t)]‖∞ + εI1(t)(‖hε(t)‖∞ + ‖[Eε
R(t), Bε

R(t)]‖∞) + εkI2(t)
]

� 1

ε
(1 + t)

1
4 sup
0≤t≤T

(
‖hε(t)‖

1
2∞‖ f ε(t)‖ 1

2

)

+ (1 + t)2 sup
t∈[0,T ]

[(
εk−1‖hε(t)‖∞ + I1(t) + 1

) (
1 + ‖hε(t)‖∞

) ]

+ (1 + t)
3
2 sup

t∈[0,T ]

(
εk‖hε(t)‖∞ + εI1(t) + 1

)
sup

t∈[0,T ]

[
εkI2(t) + εk−1(‖ f ε(t)‖2H1

+ ‖[Eε
R(t), Bε

R(t)]‖2H1) + (
1

ε
+ I1(t))

(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖)
]
.

Now we estimate the third integral in the right hand side of (4.7). It holds that

∫∫

|x−y|≤t

dpdy

|y − x | c(ω, p̂)(S2Fε
R)(t − |y − x |, y, p)

=
∫∫

|x−y|≤t

dpdy

|y − x | c(ω, p̂)(∂t + p̂ · ∇x )
[
(Eε

R + p̂ × Bε
R) · ∇p F0

]
(t − |y − x |, y, p)
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+
∫∫

|x−y|≤t

dpdy

|y − x | c(ω, p̂)(∂t + p̂ · ∇x )
[
(E0 + p̂ × B0) · ∇p Fε

R

]
(t − |y − x |, y, p)

+
1

ε

∫∫

|x−y|≤t

dpdy

|y − x | c(ω, p̂)(∂t + p̂ · ∇x )[Q(Fε
R, F0) + Q(F0, Fε

R)](t − |y − x |, y, p)

+εk−1
∫∫

|x−y|≤t

dpdy

|y − x | c(ω, p̂)(∂t + p̂ · ∇x )Q(Fε
R, Fε

R)(t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi−1c(ω, p̂)(∂t + p̂ · ∇x )[Q(Fi , Fε
R) + Q(Fε

R, Fi )](t − |y − x |, y, p)

+εk
∫∫

|x−y|≤t

dpdy

|y − x | c(ω, p̂)(∂t + p̂ · ∇x )
[(

Eε
R + p̂ × Bε

R

)
· ∇p Fε

R

]
(t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi c(ω, p̂)(∂t + p̂ · ∇x )
[(

Ei + p̂ × Bi

)
· ∇p Fε

R

]
(t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi c(ω, p̂)(∂t + p̂ · ∇x )
[(

Eε
R + p̂ × Bε

R

)
· ∇p Fi

]
(t − |y − x |, y, p)

+εk
∫∫

|x−y|≤t

dpdy

|y − x | c(ω, p̂)(∂t + p̂ · ∇x )A(t − |y − x |, y, p). (4.9)

For the first term in the right hand side of (4.9), we use the Maxwell system in (1.11)
and (1.17) to have

∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)(∂t + p̂ · ∇x )
[
(Eε

R + p̂ × Bε
R) · ∇p F0

]
(t − |y − x |, y, p)

=
∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)
[
(∂t + p̂ · ∇x )(Eε

R + p̂ × Bε
R) · ∇p F0

]
(t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)
[
(Eε

R + p̂ × Bε
R) · (∂t + p̂ · ∇x )∇p F0

]
(t − |y − x |, y, p)

≤
∫

|x−y|≤t

dy

|y − x |
(
|∇x Eε

R | + |∇x Bε
R | +

∫

R3
dp

√
M| f ε|

)
(t − |y − x |, y)

× sup
t,x

∫

R3
(1 + |p|)2|∇p F0|dp

+
√

t sup
t∈[0,t]

‖[Eε
R(t), Bε

R(t)]‖ sup
t,x

∫

R3
(1 + |p|)2|(∂t + p̂ · ∇x )∇p F0|dp

�
√
1 + t sup

t∈[0,t]
(‖[Eε

R(t), Bε
R(t)]‖H1 + ‖ f ε(t)‖) .
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Similar to the estimation of Eε,i
R,S , the second term in the right hand side of (4.9) can be

estimated as
∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)(∂t + p̂ · ∇x )
[
(E0 + p̂ × B0) · ∇p Fε

R

]
(t − |y − x |, y, p)

=
∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)
[
(∂t + p̂ · ∇x )(E0 + p̂ × B0) · ∇p Fε

R

]
(t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)
[
(E0 + p̂ × B0) · (∂t + p̂ · ∇x )∇p Fε

R

]
(t − |y − x |, y, p)

≤ −
∫∫

|x−y|≤t

dpdy

|y − x | Fε
R∇p ·

[
c(ω, p̂)(∂t + p̂ · ∇x )(E0 + p̂ × B0)

]
(t − |y − x |, y, p)

−
∫∫

|x−y|≤t

dpdy

|y − x | (∂t + p̂ · ∇x )Fε
R∇p ·

[
c(ω, p̂)(E0 + p̂ × B0)

]
(t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x | (1 + |p|)2[|∇x Fε
R |(|E0| + |B0|)](t − |y − x |, y, p)

�
√
1 + t sup

t∈[0,T ]

[
‖ f ε(t)‖H1 + εk−1

(
‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

)

+ [1
ε
+ I1(t)](‖ f ε‖ + ‖[Eε

R(t), Bε
R(t)]‖) + εkI2(t)

]
.

For the third term in the right hand side of (4.9), we only need to estimate the integral
of Q(Fε

R, F0) since the other integral can be estimated in the same way. Rewrite this
integral in the following form:

1

ε

∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)(∂t + p̂ · ∇x )[Q(Fε
R, F0)](t − |y − x |, y, p)

= 1

ε

∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)
[

Q(Fε
R, ∂t F0) + p̂ · Q(Fε

R,∇x F0)
]
(t − |y − x |, y, p)

+
1

ε

∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)
[

Q(∂t Fε
R, F0) + p̂ · Q(∇x Fε

R, F0)
]
(t − |y − x |, y, p)

= H1 +H2. (4.10)

Here we denote H1 and H2 as the two integrals in the right hand side of (4.10). As the
estimation for the third term in the right hand side of (4.4), H1 can be controlled by√

1+t
ε

supt∈[0,T ] ‖ f ε(t)‖. For H2, we have

H2 = 1

ε

∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)
[

p̂ · Q(∇x Fε
R, F0) − Q( p̂ · ∇x Fε

R, F0)
]
(t − |y − x |, y, p)
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+
1

ε

∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)Q[(Eε
R + p̂ × Bε

R) · ∇p F0, F0](t − |y − x |, y, p)

+
1

ε

∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)Q[(E0 + p̂ × B0) · ∇p Fε
R, F0](t − |y − x |, y, p)

+
1

ε2

∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)Q[Q(Fε
R, F0) + Q(F0, Fε

R), F0](t − |y − x |, y, p)

+ εk−2
∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)Q[Q(Fε
R, Fε

R), F0](t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi−2c(ω, p̂)Q[Q(Fi , Fε
R) + Q(Fε

R, Fi ), F0](t − |y − x |, y, p)

+ εk−1
∫∫

|x−y|≤t

dpdy

|y − x |c(ω, p̂)Q[(Eε
R + p̂ × Bε

R) · ∇p Fε
R, F0](t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi−1c(ω, p̂)Q[(Ei + p̂ × Bi ) · ∇p Fε
R, F0](t − |y − x |, y, p)

+
∫∫

|x−y|≤t

dpdy

|y − x |
2k−1∑
i=1

εi−1c(ω, p̂)Q[(Eε
R + p̂ × Bε

R) · ∇p Fi , F0](t − |y − x |, y, p)

+ εk−1
∫∫

|x−y|≤t

dpdy

|y − x |c( p̂)Q(A, F0)(t − |y − x |, y, p). (4.11)

Similar to the estimation of the third term in the right hand side of (4.4), the first, second

and third terms in the right hand sideof (4.11) canbe controlledby
√
1+t
ε

supt∈[0,T ](‖ f ε(t)
‖H1 + ‖[Eε

R(t), Bε
R(t)]‖), and the upper bound of the fourth term is

√
1 + t

ε2
sup

t∈[0,T ]
‖Q( f εM

1
4 ,

F0

M
1
4

)(t)‖ �
√
1 + t

ε2
sup

t∈[0,T ]
‖ f ε(t)‖.

For the fifth term in the right hand side of (4.11), its upper bound is

εk−2
√
1 + t sup

t∈[0,T ]
‖Q( f εM

1
4 , f εM

1
4 )(t)‖ � εk−2

√
1 + t sup

t∈[0,T ]
‖ f ε(t)‖2H1 .

Similarly, the sixth and tenth terms in the right hand side of (4.11) can be controlled by

√
1 + t

2k−1∑
i=1

εi−2 sup
t∈[0,T ]

(1 + t)i−1‖ f ε(t)‖ +
√
1 + tεk−1 sup

t∈[0,T ]
I2(t).

For the seventh, eighth and ninth terms in the right hand side of (4.11), after integration
by parts for the momentum variable, we obtain their upper bounds as follows:

√
1 + tεk−1 sup

t∈[0,T ]

(
‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

)
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+
√
1 + t

2k−1∑
i=1

εi−1 sup
t∈[0,T ]

(1 + t)i−1‖ f ε(t)‖

+
√
1 + t

2k−1∑
i=1

εi−1 sup
t∈[0,T ]

(1 + t)i−1‖[Eε
R(t), Bε

R(t)]‖

�
√
1 + t sup

t∈[0,T ]

[
εk−1(‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1)

+ I1(t)(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖)
]
.

Collecting the above estimates in (4.11), we further combine (4.11) and the estimate for
H1 to obtain a upper bound of the third term in the right hand side of (4.9):

√
1 + t

[ 1
ε2

sup
t∈[0,T ]

‖ f ε(t)‖ + sup
t∈[0,T ]

[I1(t)
ε

(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖)
]

+ εk−2(‖ f ε(t)‖H1 + ‖[Eε
R(t), Bε

R(t)]‖H1) + εk−1I2(t)
]
.

By slight modification, the fourth term in the right hand side of (4.9) can also be con-
trolled by

√
1 + t

[ 1
ε2

sup
t∈[0,T ]

‖ f ε(t)‖ + sup
t∈[0,T ]

[I1(t)
ε

(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖)
]

+ εk−2(‖ f ε(t)‖H1 + ‖[Eε
R(t), Bε

R(t)]‖H1) + εk−1I2(t)
]

sup
t∈[0,T ]

(εk‖hε(t)‖∞).

And the fifth term’s upper bound is

√
1 + t

[ 1
ε2

sup
t∈[0,T ]

‖ f ε(t)‖ + sup
t∈[0,T ]

[I1(t)
ε

(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖)
]

+ εk−2(‖ f ε(t)‖H1 + ‖[Eε
R(t), Bε

R(t)]‖H1) + εk−1I2(t)
]

sup
t∈[0,T ]

[εI1(t)].

Slightly modifying the estimation of the first term and second term in the right hand side
of (4.9), we bound the sixth term by

√
1 + t sup

t∈[0,T ]
(‖[Eε

R(t), Bε
R(t)]‖H1 + ‖ f ε(t)‖) sup

t∈[0,T ]
(εk‖hε(t)‖∞)

+
√
1 + t sup

t∈[0,T ]

[
‖ f ε(t)‖H1 + εk−1 (‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

)

+ [1
ε
+ I1(t)](‖ f ε(t)‖ + ‖[Eε

R(t), Bε
R(t)]‖) + εkI2(t)

]
sup

t∈[0,T ]
(εk‖[Eε

R(t), Bε
R(t)]‖∞)

� (1 + t)
3
2 εk sup

t∈[0,T ]

[ (
1 + ‖hε(t)‖∞

) [εk−1 (‖[Eε
R(t), Bε

R(t)]‖2H1 + ‖ f ε(t)‖2H1

)

+ ‖ f ε(t)‖H1 + ‖[Eε
R(t), Bε

R(t)]‖H1 +
(1

ε
+ I1(t)

)
(‖ f ε(t)‖ + ‖[Eε

R(t), Bε
R(t)]‖)

+ εkI2(t)]
]
+ (1 + t)εk sup

t∈[0,T ]

[
εk−1 (‖[Eε

R(t), Bε
R(t)]‖2H1 + ‖ f ε(t)‖2H1

)
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+ ‖ f ε(t)‖H1 +
(1

ε
+ I1(t)

)
(‖ f ε(t)‖ + ‖[Eε

R(t), Bε
R(t)]‖) + εkI2(t)]

]2
.

Correspondingly, the upper bound of the seventh, eighth, and ninth terms in the right
hand side of (4.9) is

√
1 + t sup

t∈[0,T ]
[εI1(t)] sup

t∈[0,T ]
(‖[Eε

R(t), Bε
R(t)]‖H1 + ‖ f ε(t)‖)

+
√
1 + t sup

t∈[0,t]
[εI1(t)] sup

t∈[0,T ]

[
‖ f ε(t)‖H1 + εk−1 (‖ f ε(t)‖2H1 + ‖[Eε

R(t), Bε
R(t)]‖2H1

)

+ [1
ε
+ I1(t)](‖ f ε‖ + ‖[Eε

R(t), Bε
R(t)]‖) + εkI2(t)

]
+

√
1 + tεk sup

t∈[0,T ]
I2(t)

�
√
1 + t sup

t∈[0,T ]

[
εI1(t)[εk−1 (‖[Eε

R(t), Bε
R(t)]‖2H1 + ‖ f ε(t)‖2H1

)
+ ‖ f ε(t)‖H1

+ ‖[Eε
R(t), Bε

R(t)]‖H1 + (
1

ε
+ I1(t))(‖ f ε(t)‖ + ‖[Eε

R(t), Bε
R(t)]‖) + εkI2(t)] + εkI2(t)

]
.

��

5. W1,∞ Estimates for hε

In this section, we present the W 1,∞ estimates for hε.

Proposition 5.1. For given T ∈ [0, ε− 1
2 ], assume the crucial bootstrap assumptions

(1.27). Then, for sufficiently small ε, we have

sup
0≤t≤T

(
ε

3
2 ‖hε(t)‖W 1,∞

)
�ε

3
2 ‖hε(0)‖W 1,∞ + sup

0≤t≤T
‖ f ε(t)‖H1 + ε

2k+3
2 .

Proof. With the basic estimates along the curved characteristics in Lemma 3.1 and
the nice estimates of k̄1 and k̄2 in Corollary 8.1, the proof can be done in a similar
way as the L∞ bound estimate in Sect. 5.1 of [22]. However, different from the W 1,∞
estimates in [22], we don’t apply integration by parts to avoid estimating the norms
‖∇x,p f ε(t)‖ during treating the most difficult term KM,w(hε), and we directly use the
norms ‖∇x,p f ε(t)‖ instead. Take the L∞ estimate of Dx hε for example. In Sect. 5.2 of
[22], Dx hε was written as

Dx hε(t, x, v)

= . . . − 1

ε

∫ t

0

∫ s

0
exp
{

− 1

ε

∫ t

s
ν(τ)dτ

}
(KM,w Dx hε)(s, X (s), V (s))ds + . . .

= . . . +
1

ε2

∫ t

0

∫ s−κε

0
exp
{

− 1

ε

∫ t

s
ν(τ)dτ − 1

ε

∫ s

s1
ν(τ)dτ

}

×
∫

B
lN (V (s), v′)lN (V (s1), v

′′)Dx hε(s1, X (s1), v
′′)dv′dv′′ds1ds + . . .

= . . . +
1

ε2

∫ t

0

∫ s−κε

0
exp
{

− 1

ε

∫ t

s
ν(τ)dτ − 1

ε

∫ s

s1
ν(τ)dτ

}

×
∫

B̂
lN (V (s), v′)lN (V (s1), v

′′)Dx hε(s1, X (s1), v
′′)|dv′

dy
|dydv′′ds1ds + . . . ,
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(5.1)

where B = {|v′| ≤ 2N , |v′′| ≤ 3N }. Noting that the volume of B satisfies |B| � N 6

and | dv′
dy | � ε−3, the upper bound of the last expression in (5.1) is

CN

ε3/2
‖Dx f ε‖.

It should also be pointed out that in our case, we don’t need extra weighted L∞
estimate for hε. In fact, for estimates related to K̄ (hε), no extra weight arises due to

Corollary 8.1. For a typical term w(|p|)√
JM

Dx Q(
√

JM
w

hε, Fi ), extra weight for hε is not

necessary because JM is a global Maxwellian and Dx Fi√
JM

can also be controlled by a

Maxwellian. While for w(|p|)√
JM

Dp Q(
√

JM
w

hε, Fi ), it can be estimated similarly as Lemma

2 and Lemma 5 in [25] without extra weight for hε arises either. ��

6. Auxiliary H1 Estimates for f ε

In this part, we continue to perform the L2 energy estimates for the first order derivatives
of the remainders ( f ε, Eε

R, Bε
R). We first deal with the space derivative estimate.

Proposition 6.1. For the remainders ( f ε, Eε
R, Bε

R), it holds that

d

dt

(∥∥∥
√
2T0
u0 ∇x f ε(t)

∥∥∥
2
+ ‖[∇x Eε

R(t),∇x Bε
R(t)]‖2

)

+
(δ0TM

2ε
− Cεk−2‖hε‖∞

)
‖∇x {I − P} f ε‖2

�
[
(1 + t)−β0(1 + I1(t)) + εk‖hε‖W 1,∞ + εI1

] (
‖ f ε‖2H1 + ‖(Eε

R, Bε
R)‖2H1

)

+
(1

ε
(1 + t)−2β0 + (1 + t)−β0 [εk−1‖hε‖∞]2

)
‖ f ε‖2

+ ε− 7
4 (1 + t)−β0‖hε‖∞‖ f ε‖ + εkI2(t)‖∇x f ε‖.

(6.1)

Proof. We take Dx to (2.1) and (2.2), and proceed similar derivation as (2.6) to have

1

2

d

dt

(∥∥∥
√
2T0
u0 Dx f ε(t)

∥∥∥
2
+ ‖[Dx Eε

R(t), Dx Bε
R(t)]‖2

)
+
1

ε
〈Dx L{I − P} f ε, Dx f ε〉

−
〈
Dx

[(
E0 + p̂ × B0

)
· ∇p f ε

]
,
2T0
u0 Dx f ε

〉

= −
〈Dx f ε

√
M

[
∂t + p̂ · ∇x −

(
E0 + p̂ × B0

)
· ∇p

]√
M,

2T0
u0 Dx f ε

〉

−
〈

f ε Dx

{ 1√
M

[
∂t +

p

p0
· ∇x − (E0 + p̂ × B0) · ∇p

]√
M
}
,
2T0
u0 Dx f ε

〉

+
1

2

〈[(
∂t + p̂ · ∇x

)(2T0
u0

)]
Dx f ε, Dx f ε

〉

−
〈
Dx

[ (u0 p̂ − u) · Eε
R

T0

]
,

T0
u0 Dx f ε

〉
+
〈
Dx

[u
√
M

T0
·
(

p̂ × Bε
R

)]
,

T0
u0 Dx f ε

〉
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+
〈
Dx

[
(E0 + p̂ × B0)

]
· ∇p f ε,

2T0
u0 Dx f ε

〉

+ εk−1
〈
Dx�( f ε, f ε),

2T0
u0 Dx f ε

〉

+
2k−1∑
i=1

εi−1
〈
Dx [�(Fi , f ε) + �( f ε, Fi )], 2T0

u0 Dx f ε
〉

− εk
〈
Dx

[ 1

T0

(
u0 p̂ − u

)
·
(

Eε
R + p̂ × Bε

R

)
f ε
]
,
2T0
u0 Dx f ε

〉

+ εk
〈
Dx

[(
Eε

R + p̂ × Bε
R

)
· ∇p f ε

]
,
2T0
u0 Dx f ε

〉

+
2k−1∑
i=1

εi
〈
Dx

[(
Ei + p̂ × Bi

)
· ∇p f ε

]
,
2T0
u0 Dx f ε

〉

+
2k−1∑
i=1

εi
〈
Dx

[(
Eε

R + p̂ × Bε
R

)
· ∇p Fi

]
,
2T0
u0 Dx f ε

〉

−
2k−1∑
i=1

εi
〈
Dx

[(
Ei + p̂ × Bi

)
· 1

2T0

(
u0 p̂ − u

)
f ε
]
,
2T0
u0 Dx f ε

〉

+ εk
〈
Dx Ā,

2T0
u0 Dx f ε

〉
, (6.2)

For brevity, we only estimate the second term in the left hand side of (6.2), the second,
seventh, eighth terms in the right hand side of (6.2). The rest of terms can be estimated
similarly as these terms or the corresponding terms in Proposition 2.1.

We first estimate the second term in the left hand side of (6.2). Noting

− Dx L({I − P} f ε)

= Dx

( ∫

R3
dq
∫

S2
dω

s

p0q0B(p, q, ω)
√
M(q)[{I − P} f ε(p′)

√
M(q ′)

+ {I − P} f ε(q ′)
√
M(p′) − {I − P} f ε(p)

√
M(q) − {I − P} f ε(q)

√
M(p)]

)

=
∫

R3
dq
∫

S2
dω

s

p0q0B(p, q, ω)Dx

√
M(q)

(
{I − P} f ε(p′)

√
M(q ′)

+ {I − P} f ε(q ′)
√
M(p′) − {I − P} f ε(p)

√
M(q) − {I − P} f ε(q)

√
M(p)

)

+
∫

R3
dq
∫

S2
dω

s

p0q0B(p, q, ω)
√
M(q)

(
{I − P} f ε(p′)[Dx

√
M(q ′)]

+ {I − P} f ε(q ′)[Dx

√
M(p′)] − {I − P} f ε(p)[Dx

√
M(q)]

− {I − P} f ε(q)[Dx
√
M(p)]

)
− L(Dx {I − P} f ε)

by the expression of the operator L , and

‖{I − P}Dx f ε − Dx {I − P} f ε‖ = ‖PDx f ε − DxP f ε‖ � (‖∇x n0‖∞ + ‖∇x u‖∞) ‖P f ε‖,
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we have

1

ε
〈Dx L({I − P} f ε),

2T0
u0 Dx f ε〉

≥ 2δ0TM

u0ε
‖Dx {I − P} f ε‖2 − C

ε
(‖∇x n0‖∞ + ‖∇x u‖∞) ‖P f ε‖‖Dx {I − P} f ε‖

− C

ε
(‖∇x n0‖∞ + ‖∇x u‖∞) ‖ f ε‖(‖Dx {I − P} f ε‖ + ‖{I − P} f ε‖)

≥ 3δ0TM

2ε
‖Dx {I − P} f ε‖2 − C

ε
(1 + t)−2β0‖ f ε‖2.

Here we used the integration by parts w.r.t. x when the operator Dx hits the local
Maxwellian in the operator L . Note that D2

x { 1√
M

[∂t +
p
p0

·∇x − (E0 + p̂ × B0) ·∇p]
√
M}

is a cubic polynomial of p, (1 + |p|)3 f ε ≤ (1 + |p|)−5hε, and

( ∫

|p|≥√
κ
ε

(1 + |p|)−5×2dp
)1/2

�
( ε

κ

) 7
4
.

Then, similar to the estimation of (2.7), the second term in the right hand side of (6.2)
can be controlled by

(1 + t)−β0‖ f ε‖2H1 +
κ

ε
‖{I − P}Dx f ε‖2 + ε

7
4 (1 + t)−β0‖hε‖∞‖ f ε‖.

Now we estimate the seventh term in the right hand side of (6.2). Note that

Dx�( f ε, f ε)

= Dx

( ∫

R3
dq
∫

S2
dω

s

p0q0B(p, q, ω)
√
M(q)[ f ε(p′) f ε(q ′) − f ε(p) f ε(q)]

)

= �( f ε, Dx f ε) + �(Dx f ε, f ε)

+
∫

R3
dq
∫

S2
dω

s

p0q0B(p, q, ω)Dx

√
M(q)[ f ε(p′) f ε(q ′) − f ε(p) f ε(q)].

Though M is a local Maxwellian, we can obtain from (1.24) that

√
M + |Dx

√
M| � J

1
4

M , (6.3)

for ε̄0 sufficiently small in (1.20). In Theorem 2 of [25], energy estimates for derivatives
of the nonlinear operator � corresponding to a global Maxwellian were given. Then, we
can use (6.3), Theorem 2 in [25] to obtain

εk−1
〈
Dx�( f ε, f ε),

2T0
u0 Dx f ε

〉

≤ εk−1
〈
[�( f ε, Dx f ε) + �(Dx f ε, f ε)], 2T0

u0 {I − P}Dx f ε
〉

+ Cεk−1(‖∇x n0‖∞ + ‖∇x u‖∞)‖hε‖∞‖ f ε‖‖Dx f ε‖
� εk−2‖hε‖∞‖∇x {I − P} f ε‖2 + εk‖hε‖∞‖∇x f ε‖2
+ (1 + t)−β0‖Dx f ε‖2 + (1 + t)−β0 [εk−1‖hε‖∞]2‖ f ε‖2. (6.4)
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Similarly, by (8.17) in Theorem 8.1, the eighth term in the right hand side of (6.2) can
be estimated by

2k−1∑
i=1

εi−1
〈
[�(Fi , Dx f ε) + �(Dx f ε, Fi )], 2T0

u0 {I − P}Dx f ε
〉

+
2k−1∑
i=1

εi−1
〈
[�(Dx Fi , f ε) + �( f ε, Dx Fi )], 2T0

u0 {I − P}Dx f ε
〉

+ C(‖∇x n0‖∞ + ‖∇x u‖∞)

2k−1∑
i=1

εi−1‖Fi‖L∞
x L2

p
‖ f ε‖‖Dx f ε‖

� κ

ε
‖{I − P}Dx f ε‖2 + ε

( 2k−1∑
i=1

εi−1(1 + t)i−1
)2

(‖ f ε‖2 + ‖∇x f ε‖2)

+ (1 + t)−β0

2k−1∑
i=1

εi−1(1 + t)i−1(‖ f ε‖2 + ‖∇x f ε‖2). (6.5)

��
Next we deal with the momentum derivative estimate for f ε. Due to the Maxwellian

structure in theMacroscopic part, it is enough to performmomentum derivative estimate
for {I − P} f ε. Moreover, as illustrated in the Introduction part, this technique is also
necessary for us to make use of the strong dissipation term L f ε

ε
and close our energy

estimates. Take microscopic projection onto (2.1) to have

∂t {I − P} f ε + p̂ · ∇x {I − P} f ε + {I − P}
[√M
2T0

(
u0 p̂ − u

)
·
(

Eε
R + p̂ × Bε

R

)]

−
(

E0 + p̂ × B0

)
· ∇p{I − P} f ε +

L f ε

ε

= (P∂t f ε − ∂tP f ε
)− {I − P} f ε

√
M

[
∂t + p̂ · ∇x −

(
E0 + p̂ × B0

)
· ∇p

]√
M

+ εk−1�( f ε, f ε) +
2k−1∑
i=1

εi−1[�(Fi , f ε) + �( f ε, Fi )] + εk
(

Eε
R + p̂ × Bε

R

)

· ∇p{I − P} f ε − εk 1

2T0

(
u0 p̂ − u

)
·
(

Eε
R + p̂ × Bε

R

)
{I − P} f ε

+
2k−1∑
i=1

εi
[(

Ei + p̂ × Bi

)
· ∇p{I − P} f ε + {I − P}

(
(Eε

R + p̂ × Bε
R) · ∇p Fi

)]

−
2k−1∑
i=1

εi
[(

Ei + p̂ × Bi

)
· 1

2T0

(
u0 p̂ − u

)
{I − P} f ε

]

+ εk{I − P} Ā + [[P, τE,B]] f ε, (6.6)
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where [[P, τE,B]] = PτE,B − τE,BP denotes the commutator of two operators P and
τE,B given by

τE,B = p̂ · ∇x −
(

E0 + p̂ × B0

)
· ∇p

+
1√
M

[
∂t + p̂ · ∇x −

(
E0 + p̂ × B0

)
· ∇p

]√
M

− εk
(

Eε
R + p̂ × Bε

R

)
· ∇p +

εk

2T0

(
u0 p̂ − u

)
·
(

Eε
R + p̂ × Bε

R

)

−
2k−1∑
i=1

εi
(

Ei + p̂ × Bi

)
·
[
∇p − 1

2T0

(
u0 p̂ − u

)]
.

The momentum derivative ∇p{I − P} f ε can be estimated as follows:

Proposition 6.2. For the remainders ( f ε, Eε
R, Bε

R), it holds that

d

dt
‖∇p{I − P} f ε(t)‖2 +

( δ0

2ε
− Cεk−2‖hε‖∞

)
‖∇p{I − P} f ε‖2

�
[
(1 + t)−β0 + ε[1 + I1(t)] + εk‖hε‖W 1,∞

] (
‖ f ε‖2H1 + ‖(Eε

R, Bε
R)‖2H1

)

+
1

ε
‖{I − P} f ε‖2 + ε

11
4 ‖hε‖∞‖ f ε‖ + εkI2(t)‖∇p f ε‖. (6.7)

Proof. We apply Dp to (6.6) and take the L2 inner product with Dp{I − P} f ε on both
sides to have

1

2

d

dt
‖Dp{I − P} f ε(t)‖2 + 1

ε
〈Dp L f ε, Dp{I − P} f ε〉

+ 〈(Dp p̂) · ∇x {I − P} f ε, Dp{I − P} f ε〉
+
〈
Dp{I − P}

[ (u0 p̂ − u)

2T0
·
(

Eε
R + p̂ × Bε

R

)]
, Dp{I − P} f ε

〉

−
〈
Dp

[(
E0 + p̂ × B0

)
· ∇p{I − P} f ε

]
, Dp{I − P} f ε

〉

= −
〈
Dp

[ {I − P} f ε

√
M

(
∂t + p̂ · ∇x − (E0 + p̂ × B0) · ∇p

)√
M
]
, Dp{I − P} f ε

〉

+
〈
Dp
(
P∂t f ε − ∂tP f ε

)
, Dp{I − P} f ε

〉
+ εk−1

〈
Dp�( f ε, f ε), Dp{I − P} f ε

〉

+
2k−1∑
i=1

εi−1
〈
Dp[�(Fi , f ε) + �( f ε, Fi )], Dp{I − P} f ε

〉

+ εk
〈 1

2T0
Dp

[
(u0 p̂ − u) ·

(
Eε

R + p̂ × Bε
R

)
{I − P} f ε

]
, Dp{I − P} f ε

〉

+ εk
〈
Dp

[(
Eε

R + p̂ × Bε
R

)
· ∇p{I − P} f ε

]
, Dp{I − P} f ε

〉

+
2k−1∑
i=1

εi
〈
Dp

[(
Ei + p̂ × Bi

)
· ∇p{I − P} f ε

]
, Dp{I − P} f ε

〉
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+
2k−1∑
i=1

εi
〈
Dp{I − P}

[(
Eε

R + p̂ × Bε
R

)
· ∇p Fi

]
, Dp{I − P} f ε

〉

−
2k−1∑
i=1

εi
〈
Dp

[(
Ei + p̂ × Bi

)
· 1

2T0

(
u0 p̂ − u

)
{I − P} f ε

]
, Dp{I − P} f ε

〉

+ εk
〈
Dp{I − P} Ā, Dp{I − P} f ε

〉
+
〈
Dp{I − P} ([[P, τE,B]] f ε

)
, Dp{I − P} f ε

〉
.

(6.8)

For brevity, we only prove the second, fourth terms in the left hand side of (6.8) and the
first, second, third, fourth terms and the last term in the right hand side. We first estimate
the second term in the left hand side of (6.8). Similar to (6.3), one has

√
M + |Dp

√
M| � J

1
4

M . (6.9)

Note that energy estimates for the momentum derivative of the collision frequency ν

and operator K , which correspond to a global Maxwellian were proved in Propositions
7, 8 [25] via a splitting technique and different expressions of the relativistic collision
operator in the Glassey–Strauss frame and the center of mass frame. We combine (6.9)
and Propositions 7, 8 in [25] to estimate the third term in the left hand side of (6.8) as

1

ε
〈Dp L f ε, Dp{I − P} f ε〉 ≥ 7δ0

8ε
‖Dp{I − P} f ε‖2 − C

ε
‖{I − P} f ε‖2.

For the fourth term in the left hand side, it can be estimated by

δ0

8ε
‖Dp{I − P} f ε‖2 + Cε

(
‖Eε

R‖2 + ‖Bε
R‖2
)

.

For the first term in the right hand side, we integrate by parts w.r.t. p when Dp doesn’t
hit f ε and bound it by

κ

ε
‖Dp{I − P} f ε‖2H1 + ε

11
4 ‖hε‖∞‖ f ε‖.

Noting

‖P∂t f ε − ∂tP f ε‖ � (‖∂t n0‖∞ + ‖∂t u‖∞)‖P f ε‖,
we can bound the second term in the right hand side of (6.8) by

δ0

8ε
‖Dp{I − P} f ε‖2 + Cε(1 + t)−2β0‖ f ε‖2.

By Theorem 2 in [25] and (6.9), we can bound the third term in the right hand side by

εk−2‖hε‖∞‖∇p{I − P} f ε‖2 + Cεk‖hε‖∞‖ f ε‖2H1 .

Similarly, we control the fourth term in the right hand side by

δ0

8ε
‖Dp{I − P} f ε‖2 + Cε

[ 2k−1∑
i=1

εi−1
(
‖Fi‖L∞

x L2
p
+ ‖Dp Fi‖L∞

x L2
p

) ]2‖ f ε‖2H1
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≤ δ0

8ε
‖Dp{I − P} f ε‖2 + Cε

( 2k−1∑
i=1

εi−1(1 + t)i−1
)2‖ f ε‖2H1 .

Similar to the above estimates, the upper bound of the last term in the right hand side is

δ0

8ε
‖Dp{I − P} f ε‖2 +

[
ε[1 + I1(t)] + εk‖hε‖∞

] (
‖ f ε‖2H1 + ‖(Eε

R, Bε
R)‖2H1

)
.

��
Finally, we multiply (2.3) in Proposition 2.1 by a sufficiently large constant C0, combine
it and (6.1) in Proposition 6.1, (6.7) in Proposition 6.2, and use (1.27) to obtain

Proposition 6.3. Let 0 ≤ t ≤ T ≤ ε− 1
2 . Under the assumptions (1.27), one has

d

dt

[
C0

(∥∥∥
√
2T0
u0 f ε(t)

∥∥∥
2
+ ‖[Eε

R(t), Bε
R(t)]‖2

)
+
∥∥∥
√
2T0
u0 ∇x f ε(t)

∥∥∥
2

+ ‖[∇x Eε
R(t),∇x Bε

R(t)]‖2 + ‖∇p{I − P} f ε(t)‖2
]

�
[
[(1 + t)−β0 + ε](1 + I1(t)) + εk‖hε‖W 1,∞

] (
‖ f ε‖2H1 + ‖(Eε

R, Bε
R)‖2H1

)

+
1

ε
(1 + t)−2β0‖ f ε‖2 + (1 + t)−β0 [εk−1‖hε‖∞]2‖ f ε‖2

+ [ε 7
4 (1 + t)−β0 + ε

11
4 ]‖hε‖∞‖ f ε‖ + εkI2(t)‖ f ε‖H1 . (6.10)

7. Proof of the Main Result

This section is devoted to the proof of Theorem 1.1.

Proof. For 0 ≤ t ≤ T ≤ ε− 1
2 , one has

I1(t) �
∑

1≤i≤2k−1

[(1 + t)ε]i−1
( ∑
1≤i≤2k−1

[(1 + t)ε]i−1 + 1
)

� 1,

εkI2(t) � εk
∑

1+2k≤i+ j≤4k−2

ε1−2k[(1 + t)ε]i+ j−2

�
∑

1+2k≤i+ j≤4k−2

ε1−kε
i+ j−2

2 � ε
1
2 .

(7.1)

We combine the a priori Assumptions (1.27), (2.3) and Proposition 3.1 to have

d

dt

(∥∥∥
√
2T0
u0 f ε(t)

∥∥∥
2
+ ‖[Eε

R(t), Bε
R(t)]‖2

)
+

δ0TM

4ε
‖{I − P} f ε‖2

�
(
ε

3
2 ‖hε(0)‖∞ + sup

0≤t≤ε
− 1
2

‖ f ε(t)‖ + ε
2k+3
2

)

×
[
εk− 3

2

(
‖ f ε‖2 + ‖(Eε

R, Bε
R)‖2

)
+ ε

5
4 ‖ f ε‖

]

+
[
(1 + t)−β0 + εI1(t)

] (‖ f ε‖2 + ‖(Eε
R, Bε

R)‖2
)
+ εkI2(t)‖ f ε‖.
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Then, for T ≤ ε− 1
2 , Grönwall’s inequality yields

‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖ + 1

�
[‖ f ε(0)‖ + ‖[Eε

R(0), Bε
R(0)]‖ + 1

]
exp
{ ∫ t

0

[
(εk− 3

2 + ε
5
4 )

×
(
ε

3
2 ‖hε(0)‖∞ + sup

0≤s≤ε
− 1
2

‖ f ε(s)‖ + ε
2k+3
2

)

+ [(1 + s)−β0 + εI1(s) + εkI2(t)
]
ds
}

�
[‖ f ε(0)‖ + ‖[Eε

R(0), Bε
R(0)]‖ + 1

]

× exp
{

C(1 +
√

ε) + [ε 3
4 + εk−2]

(
ε

3
2 ‖hε(0)‖∞ + sup

0≤s≤ε
− 1
2

‖ f ε(s)‖ + 1
)}

.

Here we used
∫ t
0 (1 + s)−β0ds � 1 and (7.1). For ε sufficiently small and T ≤ ε− 1

2 , we
further obtain

‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖ + 1

�
[‖ f ε(0)‖ + ‖[Eε

R(0), Bε
R(0)]‖ + 1

]

×
[
1 + (ε

3
4 + εk−2)

(
ε

3
2 ‖hε(0)‖∞ + sup

0≤s≤T
‖ f ε(s)‖ + 1

)]
.

Letting ε be small enough, we obtain that for t ≤ T ≤ ε− 1
2 , k ≥ 3,

sup

0≤t≤ε
− 1
2

(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖) + 1

� ‖ f ε(0)‖ + ‖[Eε
R(0), Bε

R(0)]‖ + ε
3
2 ‖hε(0)‖∞ + 1.

From Proposition 3.1, we further obtain

sup

0≤t≤ε
− 1
2

(
ε

3
2 ‖hε(t)‖∞

)
+ sup

0≤t≤ε
− 1
2

(‖ f ε(t)‖ + ‖[Eε
R(t), Bε

R(t)]‖) + 1

� ‖ f ε(0)‖ + ‖[Eε
R(0), Bε

R(0)]‖ + ε
3
2 ‖hε(0)‖∞ + 1.

(7.2)

Now we combine (6.10) and (7.2) to have

d

dt

[
C0

(∥∥∥
√
2T0
u0 f ε(t)

∥∥∥
2
+ ‖[Eε

R(t), Bε
R(t)]‖2

)
+
∥∥∥
√
2T0
u0 ∇x f ε(t)

∥∥∥
2

+ ‖[∇x Eε
R(t),∇x Bε

R(t)]‖2 + ‖∇p{I − P} f ε(t)‖2
]

�
[
[(1 + t)−β0 + ε](1 + I1(t)) + εk‖hε‖W 1,∞

]

×
(

‖ f ε‖2H1 + ‖(Eε
R, Bε

R)‖2H1 +
1

ε

)
+ εkI2(t)‖ f ε‖H1 ,

Noting

‖ f ε‖2H1 + ‖(Eε
R, Bε

R)‖2H1 ≈
∥∥∥
√
2T0
u0 f ε

∥∥∥
2
+ ‖(Eε

R, Bε
R)‖2
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+
∥∥∥
√
2T0
u0 ∇x f ε

∥∥∥
2
+ ‖(∇x Eε

R,∇x Bε
R)‖2 + ‖∇p{I − P} f ε‖2,

we further applyGrönwall’s inequality in the above inequality to obtain that for T ≤ ε− 1
2 ,

and ε sufficiently small,

‖ f ε(t)‖H1 + ‖[Eε
R(t), Bε

R(t)]‖H1 +
1√
ε

�
(

‖ f ε(0)‖H1 + ‖[Eε
R(0), Bε

R(0)]‖H1 +
1√
ε

)

× exp
{

C(1 + t
√

ε) + tεk− 3
2

(
ε

3
2 ‖hε(0)‖W 1,∞ + sup

0≤s≤1/
√

ε

‖ f ε(s)‖H1

)}

�
(

‖ f ε(0)‖H1 + ‖[Eε
R(0), Bε

R(0)]‖H1 +
1√
ε

)

×
[
1 + εk−2

(
ε

3
2 ‖hε(0)‖W 1,∞ + sup

0≤s≤1/
√

ε

‖ f ε(s)‖H1

)]
. (7.3)

Taking ε sufficiently small in (7.3), we get for k ≥ 3 that

sup
0≤t≤1/

√
ε

(
‖ f ε(t)‖H1 + ‖[Eε

R(t), Bε
R(t)]‖H1

)
+

1√
ε

� ‖ f ε(0)‖H1 + ‖[Eε
R(0), Bε

R(0)]‖H1 +
1√
ε
+ εk− 5

2

(
ε

3
2 ‖hε(0)‖W 1,∞

)
.

(7.4)

From Proposition 5.1, we further obtain

sup
0≤t≤T

(
ε2‖hε(t)‖W 1,∞

)
� ε2‖hε(0)‖W 1,∞ +

√
ε(‖ f ε(0)‖H1 + ‖[Eε

R(0), Bε
R(0)]‖H1) + 1.

(7.5)

We combine (4.1), (7.2), (7.4) and (7.5) to obtain (1.25). Note that (1.25) implies the
assumptions in (1.27) and these assumptions can be verified by a continuity argument

for all time t ≤ T ≤ ε− 1
2 . ��
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8. Appendix

Our Appendix is about three problems: the derivation of the kernel of operator KM in
(1.21), estimates of the kernels related to K1 and K2, and the construction and regularity
estimates of the coefficients in the Hilbert expansion (1.8).
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8.1. Appendix 1: Derivation of the kernel k2. In this part, we derive the kernel k2 of the
operator K2. For Ki , (i = 1, 2) given in (1.21), their kernels are defined as

Ki ( f ) =
∫

R3
dqki (p, q) f (q), i = 1, 2.

Following the derivation of k2(p, q) for a global Maxwellian case in the Appendix of
[37], we can obtain the following expression of k2(p, q) for our case:

k2(p, q) = C1s
3
2

gp0q0 U1(p, q) exp{−U2(p, q)}, (8.1)

where C1 is some positive constant, U2(p, q) and U1(p, q) are smooth functions satis-
fying

U2(p, q) = [1 + O(1)|u|]
√

s|p − q|
2T0g

,

U1(p, q) = 1

U2(p, q)
+

(p0 + q0)[1 + O(1)|u|]
2[U2(p, q)]2 +

(p0 + q0)[1 + O(1)|u|]
2[U2(p, q)]3 .

The proof of (8.1) can be proceeded similarly as in the Appendix [37] except for the esti-
mation of additional terms w.r.t. the velocity u, which arises due to the local Maxwellian
M.

As in [37], we first write the operator K2 as

K2( f ) = 1

p0

∫

R3

dq

q0

∫

R3

dq ′

q ′0

∫

R3

dp′

p′0 W
√
M(q)[√M(q ′) f (p′) +

√
M(p′) f (q ′)].

After the same exchanges of variables q, p′, q ′ and changes of integration variables as
in [37], we obtain the following form of kernel k2

k2(p, q) = C

p0q0

∫

R3

d p̄

p̄0
δ((qμ − pμ) p̄μ)s̄ exp

{uμ p̄μ

2T0

}
,

where the integration variable p̄μ = p′
μ + q ′

μ and s̄ = ḡ2 + 4 with

ḡ2 = g2 +
1

2
(pμ + qμ)(pμ + qμ − p̄μ).

Introduce a Lorentz transformation�whichmaps into the center-of-momentum system:

Aμ = �μ
ν (pν + qν) = (

√
s, 0, 0, 0), Bμ = −�μ

ν (pν − qν) = (0, 0, 0, g).

Here � is the following Lorentz transform derived in [34]:

� = (�μ
ν ) =

⎛
⎜⎜⎜⎜⎝

p0+q0√
s

− p1+q1√
s

− p2+q2√
s

− p3+q3√
s

�1
0 �1

1 �1
2 �1

3
0 (p×q)1

|p×q|
(p×q)2
|p×q|

(p×q)3
|p×q|

p0−q0

g − p1−q1
g − p2−q2

g − p3−q3
g

⎞
⎟⎟⎟⎟⎠

,
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where �1
0 = 2|p×q|

g
√

s
and

�1
i = 2[pi (p0 + q0 pμqμ) + qi (q0 + p0 pμqμ)]

g
√

s|p × q| , i = 1, 2, 3.

Define ūμ = �
μ
ν uν :

ū0 = �0
νuν = (p0 + q0)u0

√
s

− (p + q) · u√
s

,

ū1 = �1
νuν = 2|p × q|u0

g
√

s
+
2[p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ)] · u

g
√

s|p × q| ,

ū2 = �2
νuν = (p × q) · u

|p × q| ,

ū3 = �3
νuν = (p0 − q0)u0

g
− (p − q) · u

g
.

Then we have
∫

R3

d p̄

p̄0
δ((qμ − pμ) p̄μ)s̄ exp

{uμ p̄μ

2T0

}
=
∫

R3

d p̄

p̄0
δ(Bμ p̄μ)s̄� exp

{uμ p̄μ

2T0

}
,

where Bμ p̄μ = p̄3g,

s̄� = ḡ2 + 4 = g2 +
1

2
Aμ(Aμ − p̄μ) = g2 +

1

2

√
s( p̄0 − √

s),

ūμ p̄μ = p̄0
(

− (p0 + q0)u0

√
s

+
(p + q) · u√

s

)

+ p̄1
(2|p × q|u0

g
√

s
+
2[p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ)] · u

g
√

s|p × q|
)

+ p̄2
(p × q) · u

|p × q| + p̄3
( (p0 − q0)u0

g
− (p − q) · u

g

)
.

Switch to polar coordinates

d p̄ = | p̄|2d| p̄| sin φdφdθ, p̄ = | p̄|(sin φ cos θ, sin φ sin θ, cosφ),

and use cosφ = 0 for φ = π
2 to rewrite k2(p, q) as

C

gp0q0

∫ 2π

0
dφ

∫ ∞

0

| p̄|d p̄

p̄0
s̄� exp

{ 1

2T0

[
p̄0
(

− (p0 + q0)u0

√
s

+
(p + q) · u√

s

)

+
(2|p × q|u0

g
√

s
+
2[p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ)] · u

g
√

s|p × q|
)
| p̄| cosφ

+
(p × q) · u

|p × q| | p̄| sin φ
]}

= C

gp0q0

∫ ∞

0

| p̄|d p̄

p̄0
s̄� exp

{ p̄0

2T0

(
− (p0 + q0)u0

√
s

+
(p + q) · u√

s

)}

× I0
(√g2s|(p × q) · u|2 + 4[|p × q|2u0 + (p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ)) · u]2

2T0g
√

s|p × q| | p̄|
)
,
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where I0 is the first kind modified Bessel function of index zero:

I0(y) = 1

2π

∫ 2π

0
ey cosφdφ.

By further changing variables of integration and applying some known integrals as in
the Appendix [37], we obtain (8.1) with the following exact form of U2(p, q):

4T 2
0 sU 2

2 = |(p0 + q0)u0 − (p + q) · u|2 − s|(p × q) · u|2
|p × q|2

− 4[|p × q|2u0 + (p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ)) · u]2
g2|p × q|2

= g2(p0 + q0)2 − 4|p × q|2
g2 (u0)2 + |(p + q) · u|2 − s|(p × q) · u|2

|p × q|2

− 2u0[g2(p0 + q0)(p + q) + 4(p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ))] · u

g2

− |(p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ)) · u|2
g2|p × q|2 . (8.2)

Now we estimate the terms in the right hand side of the second equality in (8.2). For the
first term, we have

g2(p0 + q0)2 − 4|p × q|2
= 2[(2p0q0 + 2 + |p|2 + |q|2)(p0q0 − p · q − 1) − 4|p|2|q|2 + 4(p · q)2

= 4[(|p|2 + |q|2) − (p0q0 + 1)p · q]
+ 2(|p|2 + |q|2)(p0q0 − p · q − 1) + 4(p · q)2

= 2(|p|2 + |q|2)(p0q0 − p · q + 1) − 4p · q(p0q0 − p · q + 1)

= s|p − q|2.

(8.3)

It is straightforward to see that the upper bound of the second term is s|u|2. Noting
g2(p0 + q0)(p + q) + 4(p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ))

= 2p[(p0 + q0)(p0q0 − p · q − 1) − 2p0|q|2 + 2q0 p · q)]
+ 2q[(p0 + q0)(p0q0 − p · q − 1) − 2q0|p|2 + 2p0 p · q)]

= 2p(p0 − q0)(p0q0 − p · q + 1) − 2q(p0 − q0)(p0q0 − p · q + 1)

= s(p0 − q0)(p − q),

the fourth term can be bounded by

2u0|u|s|p − q|2
g2 .

For the corresponding fifth term, we rewrite its numerator as

|p(p0 + q0 pμqμ) + q(q0 + p0 pμqμ)|2
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= |p|2[(p0)2|q|4 − 2p0q0|q|2 p · q + (q0)2(p · q)2]
+ |q|2[(q0)2|p|4 − 2p0q0|p|2 p · q + (p0)2(p · q)2]
+ 2p · q[p0q0|p|2|q|2 − ((p0)2|q|2 + (q0)2|p|2)p · q + p0q0(p · q)2]

= |p|2|q|2
{
[(p0)2|q|2 + (q0)2|p|2 + 2p0q0 p · q] − 4p0q0 p · q

}

+ [|p|2(q0)2 + |q|2(p0)2 − 2(|q|2(p0)2 + |p|2(q0)2)](p · q)2 + 2p0q0(p · q)3

= |p|2|q|2|p0q − q0 p|2 − (p · q)2[(p0)2|q|2 + (q0)2|p|2 − 2p0q0(p · q)]
= |p × q|2|p0q − q0 p|2.

Then it can be bounded by

|u|2|p × q|2|p0q − q0 p|2
g2|p × q|2 = |u|2|p0q − q0 p|2

g2 .

On the other hand, we have

s|p − q|2 − |p0q − q0 p|2
= 2(p0q0 − p · q + 1)(|p|2 + |q|2 − 2p · q) − |q|2(p0)2 − |p|2(q0)2 + 2p0q0 p · q

= 4(p · q)2 − 2[(p0)2 + (q0)2 + p0q0]p · q

+ 2(|p|2 + |q|2)(p0q0 + 1) − [(p0)2|q|2 + (q0)2|p|2]
≥ 4|p|2|q|2 − (2|p|2 + 2|q|2 + 2p0q0 + 4)|p||q|
+ 2(|p|2 + |q|2)p0q0 + |p|2 + |q|2 − 2|p|2|q|2

= 2(|p|2 + |q|2 − |p||q|)(p0q0 − |p||q|) + (|p|2 + |q|2 − 4|p||q|)
≥ 3(|p| − |q|)2

since p0q0 − |p||q| ≥ 1. We combine the above estimates in (8.2) to get

4T 2
0 U 2

2 (p, q) = [1 + O(1)|u|]2 s|p − q|2
g2 .

8.2. Appendix 2: Estimates of kernels. We first prove some important estimates for
kernels k1 and k2. As a corollary, estimates for corresponding kernels of K̄ (hε) =
w(|p|)√M√

JM
K (

√
JM

w
√
M

hε) will also be established.

Lemma 8.1. For k2 given in (8.1) and i = 1, 2, 3, it holds that

k2(p, q) � 1

p0|p − q| exp
{

−
√

s|p − q|
8T0g

}
, (8.4)

and
∫

R3
dqk2(p, q) � 1

p0
,

∫

R3
dq∂xi k2(p, q) � 1

p0
,
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∫

R3
dq∂pi k2(p, q) � 1

p0
. (8.5)

It is straightforward to verify that k1(p, q) also satisfies the same estimates.

Proof. We first prove (8.4). Note that, by Lemma 3.1 in [16], s = g2 + 4 ≤ 4p0q0 + 4
and

|p − q|√
p0q0

≤ g ≤ |p − q|.

We use the smallness assumption of |u| in (1.20) to have

U2(p, q) ≥
√

s|p − q|
4T0g

, U1(p, q) � p0 + q0

2[U2(p, q)]2 .

Then we can further estimate the kernel k2 as

k2(p, q) � s
3
2

gp0q0 (p0 + q0) × g2

s|p − q|2 exp{−
√

s|p − q|
4T0g

}

= (p0 + q0)g2

p0q0|p − q|3
√

s|p − q|
g

exp{−
√

s|p − q|
4T0g

}

� 1 + |p − q| + q0

p0q0|p − q| exp{−|p − q|
6T0

}

� 1

p0|p − q| exp{−
|p − q|
8T0

}.

Now we prove (8.5). Noting that

|p|2 ≤ 2|p − q|2 + 2|q|2, |q|2 ≤ 2|p − q|2 + 2|p|2,
we get from (8.4) that

∫

R3
dqk2(p, q) �

∫

R3
dq

1

p0|p − q| exp
{

− |p − q|
8T0

}
� 1

p0
.

For the second inequality in (8.5), again from (8.4), we obtain
∫

R3
dq∂xi k2(p, q)

�
∫

R3
dqk2(p, q)

√
s|p − q|

g
exp{−

√
s|p − q|
4T0g

}

�
∫

R3
dqk2(p, q) exp{−

√
s|p − q|
8T0g

}

� 1

p0
.

Now we prove the third inequality in (8.5). Note that

∂pi U2(p, q) = [1 + O(1)|u|]∂pi

(√
s|p − q|
2T0g

)
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= [1 + O(1)|u|]
( |p − q|∂pi s

4T0g
√

s
+

√
s(pi − qi )

2T0g|p − q| −
√

s|p − q|∂pi g

2T0g2

)

= [1 + O(1)|u|]
[−4|p − q|
2T0g2

√
s

q0

g

( pi

p0
− qi

q0

)
+

√
s(pi − qi )

2T0g|p − q|
]

� s
3
2 |p − q|3

g3

q0

s2|p − q|min{p0, q0} +

√
s|p − q|
2T0g

1

|p − q|

� s
3
2 |p − q|3

g3

min{p0, q0} + |p − q|
|p − q|min{p0, q0} +

√
s|p − q|
2T0g

1

|p − q| ,

where we have used the following inequality:

pi

p0
− qi

q0 ≤ |p − q|
min{p0, q0} .

Then we use (8.4) to obtain
∫

R3
dq∂pi k2(p, q)

�
∫

R3
dq
( s

3
2 |p − q|3

g3

min{p0, q0} + |p − q|
|p − q|min{p0, q0} +

√
s|p − q|
2T0g

1

|p − q|
)

k2(p, q)

�
∫

R3
dq

1

p0

( s
3
2 |p − q|3

g3 + 1
)(

1 +
1

|p − q|2
)
exp
{

−
√

s|p − q|
8T0g

}

�
∫

R3
dq

1

p0

(
1 +

1

|p − q|2
)
exp
{

−
√

s|p − q|
16T0g

}

� 1

p0
.

��
According to the definition of hε in (1.23), the operator K corresponding to the equation

satisfied by hε is K̄ (hε) = w(|p|)√M√
JM

K (
√

JM

w
√
M

hε). Correspondingly, we can also define

K̄i , (i = 1, 2) and kernels k̄i as follows:

K̄i ( f ) =
∫

R3
dqk̄i (p, q) f (q) =

∫

R3
dq

w(|p|)√JM (q)
√
M(p)

w(|q|)√JM (p)
√
M(q)

ki (p, q) f (q), i = 1, 2.

Namely, k̄i (p, q) = w(|p|)√JM (q)
√
M(p)

w(|q|)√JM (p)
√
M(q)

ki (p, q), i = 1, 2. Then k̄i (p, q) also satisfy the
same estimates in Lemma 8.1.

Corollary 8.1. For i = 1, 2, 3, it holds that

k̄2(p, q) � 1

p0|p − q| exp
{

− c0
√

s|p − q|
T0g

}
, (8.6)

for some small constant c0, and
∫

R3
dqk̄2(p, q) � 1

p0
,
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∫

R3
dq∂xi k̄2(p, q) � 1

p0
,

∫

R3
dq∂pi k̄2(p, q) � 1

p0
. (8.7)

k̄1(p, q) also satisfies the same estimates.

Proof. In fact, we only need to note that

k̄2(p, q) ≤ (1 + |p|)β
(1 + |q|)β

s
3
2

gp0q0 U1(p, q)

× exp
{

− [1 + O(1)|u|]
√

s|p − q|
2T0g

+
(T0 − TM )(p0 − q0)

2TM T0

}

� s
3
2

gp0q0 U1(p, q)(1 + |p − q|)β exp
{
[(T0 − 2TM ) + O(1)|u|]

√
s|p − q|
2T0TM g

}

� s
3
2

gp0q0 U1(p, q) exp
{

− c0

√
s|p − q|
T0TM g

}

by (1.24). Then, similar to the proof of Lemma 8.1, we can obtain (8.6) and (8.7). ��

8.3. Appendix 3: Construction and estimates of coefficients. We will present the exis-
tence of coefficients Fn, (1 ≤ n ≤ 2k − 1), and their momentum and time regularities
estimates. For i ∈ [1, 2k − 1], we decompose Fn√

M
as the sum of macroscopic and

microscopic parts:

Fn√
M

= P
( Fn√

M

)
+ {I − P}

( Fn√
M

)

= [an(t, x) + bn(t, x) · p + cn(t, x)p0]√M + {I − P}
( Fn√

M

)
.

Toobtain the linear systemsatisfiedby the abstract functionsan(t, x), bn(t, x), cn(t, x)

and En(t, x), Bn(t, x), we first derive the explicit expression of the third momentum
T αβγ [M], (α, β, γ ∈ {0, 1, 2, 3}) :

T αβγ [M] =
∫

R3

pα pβ pγ

p0
M dp.

We will first get the expression of T αβγ [M] in the rest frame where (u0, u1, u2, u3) =
(1, 0, 0, 0). For convenience, we denote T αβγ [M] as T̄ αβγ in the rest frame, p as p̄
in the rest frame, and −v as the velocity of general reference frame relative to the rest
frame. Then, the corresponding boost matrix �̄ is

�̄ = (�̄μ
ν ) =

⎛
⎜⎜⎜⎜⎜⎝

r̃ r̃v1 r̃v2 r̃v3

r̃v1 1 + (r̃ − 1)
v21
|v|2 (r̃ − 1) v1v2

|v|2 (r̃ − 1) v1v3
|v|2

r̃v2 (r̃ − 1) v1v2
|v|2 1 + (r̃ − 1)

v22
|v|2 (r̃ − 1) v2v3

|v|2
r̃v3 (r̃ − 1) v1v3

|v|2 (r̃ − 1) v2v3
|v|2 1 + (r̃ − 1)

v23
|v|2

⎞
⎟⎟⎟⎟⎟⎠

,
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where r̃ = u0, vi = ui
u0
. Noting

pμ = �̄μ
ν p̄ν,

dp

p0
= d p̄

p̄0
,

we have

T αβγ [M] = �̄α
α′�̄

β

β ′�̄
γ

γ ′ T̄ α′β ′γ ′
. (8.8)

Then, we can obtain the expression of T αβγ [M] by the expression of T̄ αβγ and (8.8).
Now we give the expression of T̄ αβγ as follows:

Lemma 8.2. Let i, j, k ∈ {1, 2, 3}. For the third momentum T̄ αβγ which corresponds to
T αβγ [M] in the rest frame, we have

T̄ 000 = n0[3K3(γ ) + γ K2(γ )]
γ K2(γ )

, (8.9)

T̄ 0i i = T̄ ii0 = T̄ i0i = n0K3(γ )

γ K2(γ )
, (8.10)

T̄ αβγ = 0, if (α, β, γ ) �= (0, 0, 0), (0, i, i), (i, i, 0), (i, 0, i). (8.11)

Proof. It is straightforward to verify (8.11) by the symmetry of the variable of integration.
Now we prove (8.9). It holds that

T̄ 000 =
∫

R3
(p0)2

n0γ

4π K2(γ )
exp{−γ p̄0} dp.

As the proof of Proposition 3.3 in [33], we let y = γ p̄0 to get p̄0 = y
γ
, | p̄| =

√
y2−γ 2

γ
,

and d| p̄| = 1
γ

ydy√
y2−γ 2

. Then we have

T̄ 000 =
∫ ∞

γ

1

γ 2 y2
n0γ

K2(γ )
e−y 1

γ 2 (y2 − γ 2)
1

γ

ydy√
y2 − γ 2

= n0

γ 4K2(γ )

∫ ∞

γ

[(y2 − γ 2)
3
2 + γ 2

√
y2 − γ 2]ye−ydy

= n0[3K3(γ ) + γ K2(γ )]
γ K2(γ )

.

Similarly, (8.10) can be proved as follows:

T̄ 0i i = c
∫

R3

|p|2
3

n0γ

4π K2(γ )
exp{−γ p̄0} dp

=
∫ ∞

γ

1

3γ 2 (y2 − γ 2)
n0γ

K2(γ )
e−y 1

γ 2 (y2 − γ 2)
1

γ

ydy√
y2 − γ 2

= n0

3γ 4K2(γ )

∫ ∞

γ

(y2 − γ 2)
3
2 ye−ydy

= n0K3(γ )

γ K2(γ )
.

��
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Now we can use Lemma 8.2 and (8.8) to derive the explicit expression of T αβγ [M].
Lemma 8.3. For i, j, k ∈ {1, 2, 3}, we have

T 000[M] = n0

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)3 + 3K3(γ )u0|u|2],

T 00i [M] = n0

γ K2(γ )

[
(5K3(γ ) + γ K2(γ ))(u0)2ui + K3(γ )|u|2ui

]
,

T 0i j [M] = n0

γ K2(γ )

[
(6K3(γ ) + γ K2(γ ))u0ui u j + δi j K3(γ )u0

]
,

T i jk[M] = n0

γ K2(γ )
(6K3(γ ) + γ K2(γ ))ui u j uk

+
n0K3(γ )

γ K2(γ )
(uiδ jk + u jδik + ukδi j ).

(8.12)

Proof. We first prove T 000[M] in (8.12). By Lemma 8.2 and (8.8), we have

T 000[M] = �̄0
α�̄0

β�̄0
γ T̄ αβγ

=
∑
α=0

r̃
(

r̃2
n0[3K3(γ ) + γ K2(γ )]

γ K2(γ )
+ r̃2|v|2 n0K3(γ )

γ K2(γ )

)

+
3∑

α=1

r̃vα × 2r̃2vα

n0K3(γ )

γ K2(γ )

= n0

γ K2(γ )

(
[3K3(γ ) + γ K2(γ )](u0)3 + K3(γ )u0|u|2

)
+
2n0K3(γ )

γ K2(γ )
u0|u|2

= n0

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)3 + 3K3(γ )u0|u|2].

For T 00i [M], we have

T 00i [M] = �̄0
α�̄0

β�̄i
γ T̄ αβγ

=
∑
α=0

r̃
(

r̃2vi
n0[3K3(γ ) + γ K2(γ )]

γ K2(γ )

+
3∑

j=1

r̃v j

( r̃ − 1

|v|2 viv j + δi j

)n0K3(γ )

γ K2(γ )

)

+
3∑

α=1

r̃vα

[
r̃2vαvi + r̃

( r̃ − 1

|v|2 vivα + δiα

)]n0K3(γ )

γ K2(γ )

= n0

γ K2(γ )
[4K3(γ ) + γ K2(γ )](u0)2ui +

n0K3(γ )

γ K2(γ )
ui [|u|2 + (u0)2]

= n0

γ K2(γ )

[
(5K3(γ ) + γ K2(γ ))(u0)2ui + K3(γ )|u|2ui

]
.
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Similarly, we obtain

T 0i j [M] = �̄0
α�̄i

β�̄ j
γ T̄ αβγ

=
∑
α=0

r̃
(

r̃2viv j
n0[3K3(γ ) + γ K2(γ )]

γ K2(γ )

+
3∑

k=1

( r̃ − 1

|v|2 vivk + δik

)( r̃ − 1

|v|2 v jvk + δ jk

)n0K3(γ )

γ K2(γ )

)

+
3∑

α=1

r̃vα

[
r̃
vi

c

( r̃ − 1

|v|2 v jvα + δ jα

)
+ r̃v j

( r̃ − 1

|v|2 vivα + δiα

)]n0K3(γ )

γ K2(γ )

= n0

γ K2(γ )
{[4K3(γ ) + γ K2(γ )]u0ui u j + δi j K3(γ )u0} + 2

n0K3(γ )

γ K2(γ )
u0ui u j

= n0

γ K2(γ )

[
(6K3(γ ) + γ K2(γ ))u0ui u j + δi j K3(γ )u0

]
,

and

T i jk[M] = �̄i
α�̄

j
β�̄k

γ T̄ αβγ

=
∑
α=0

r̃vi

(
r̃2v jvk

n0[3K3(γ ) + γ K2(γ )]
γ K2(γ )

+
3∑

l=1

( r̃ − 1

|v|2 v jvl + δ jl

)( r̃ − 1

|v|2 vkvl + δkl

)n0K3(γ )

γ K2(γ )

)

+
3∑

α=1

( r̃ − 1

|v|2 vivα + δiα

)[
r̃v j

( r̃ − 1

|v|2 vkvα + δkα

)

+ r̃vk

( r̃ − 1

|v|2 v jvα + δ jα

)]n0K3(γ )

γ K2(γ )

= n0

γ K2(γ )
{[3K3(γ ) + γ K2(γ )]ui u j uk + ui (u j uk + δ jk)K3(γ )}

+
n0K3(γ )

γ K2(γ )
[u j (ui uk + δik) + uk(ui u j + δi j )]

= n0

γ K2(γ )
[6K3(γ ) + γ K2(γ )]ui u j uk

+
n0K3(γ )

γ K2(γ )
(uiδ jk + u jδik + ukδi j ).

��
With the preparation, nowwe construct the coefficients (Fn, En, Bn), 1 ≤ n ≤ 2k−1

in a conductive way, and estimate their regularities.
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Theorem 8.1. For any n ∈ [0, 2k − 2], assume that (Fi , Ei , Bi ) have been constructed

for all 0 ≤ i ≤ n. Then the microscopic part {I − P}
(

Fn+1√
M

)
can be written as:

{I − P}
( Fn+1√

M

)
= L−1

[
− 1√

M

(
∂t Fn + p̂ · ∇x Fn −

∑
i+ j=n+1

i, j≥1

Q(Fi , Fj )

−
∑

i+ j=n
i, j≥0

(
Ei + p̂ × Bi

)
· ∇p Fj

)]
.

And an+1(t, x), bn+1(t, x), cn+1(t, x), En+1(t, x), Bn+1(t, x) satisfy the following sys-
tem:

∂t

(
n0u0an+1 + (e0 + P0)u

0(u · bn+1) + [e0(u0)2 + P0|u|2]cn+1

)

+ ∇x ·
(

n0uan+1 + (e0 + P0)u(u · bn+1) + P0bn+1 + (e0 + P0)u
0ucn+1

)

+ ∇x ·
∫

R3

p

p0
√
M{I − P}

( Fn+1√
M

)
dp = 0, (8.13)

∂t

(
(e0 + P0)u

0u j an+1 +
n0

γ K2(γ )
[(6K3(γ ) + γ K2(γ ))u0u j (u · bn+1)

+ K3(γ )u0bn+1, j ] + n0

γ K2(γ )
[(5K3(γ ) + γ K2(γ ))(u0)2 + K3(γ )|u|2]u j cn+1

)

+ ∇x ·
(
(e0 + P0)u j uan+1 +

n0

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u j u[(u · bn+1) + u0cn+1]

)

+ ∂x j (P0an+1) + ∇x ·
[n0K3(γ )

γ K2(γ )
(ubn+1, j + u j bn+1)

]

+ ∂x j

(n0K3(γ )

γ K2(γ )
[(u · bn+1) + u0cn+1]

)

+ E0, j

(
n0u0an+1 + (e0 + P0)u

0(u · bn+1) + [e0(u0)2 + P0|u|2]cn+1

)

+
[(

n0uan+1 + (e0 + P0)u(u · bn+1) + P0bn+1 + (e0 + P0)u
0ucn+1

)
× B0

]
j

+ n0u0En+1, j +
(

n0u × Bn+1

)
j

+
∑

k+l=n+1
k,l≥1

Ek, j

(
n0u0al + (e0 + P0)u

0(u · bl) + P0bl + [e0(u0)2 + P0|u|2]cl

)

+
∑

k+l=n+1
k,l≥1

[(
n0ual + (e0 + P0)u(u · bl) + (e0 + P0)u

0ucl

)
× Bk

]
j

+ ∇x ·
∫

R3

p j p

p0
√
M{I − P}

( Fn+1√
M

)
dp +

[ ∫

R3
p̂ × B0

√
M{I − P}

( Fn+1√
M

)
dp
]

j

+
∑

k+l=n+1
k,l≥1

[ ∫

R3
p̂ × Bk

√
M{I − P}

( Fl√
M

)
dp
]

j
= 0, (8.14)
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for j = 1, 2, 3 with bn+1 = (bn+1,1, bn+1,2, bn+1,3), En+1 = (En+1,1, En+1,2, En+1,3),

∂t

(
[e0(u0)2 + P0|u|2]an+1 +

n0

γ K2(γ )
[(5K3(γ ) + γ K2(γ ))(u0)2 + K3(γ )|u|2]

× (u · bn+1) +
n0

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)2 + 3K3(γ )|u|2]u0cn+1

)

+ ∇x ·
(
(e0 + P0)u

0uan+1 +
n0

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u0u(u · bn+1)

+
n0K3(γ )

γ K2(γ )
u0bn+1 +

n0

γ K2(γ )
[(5K3(γ ) + γ K2(γ ))(u0)2

+ K3(γ )|u|2]ucn+1

)
+ n0u · En+1 + n0u · E0an+1

+ (e0 + P0)(u · bn+1)(u · E0) + P0E0 · bn+1

+ (e0 + P0)u
0(u · E0)cn+1 +

∫

R3
p̂
√
M{I − P}

( Fn+1√
M

)
dp · E0

+
∑

k+l=n+1
k,l≥1

[
n0u · Ekal + (e0 + P0)(u · bl)(u · Ek) + P0Ek · bl

+ (e0 + P0)u
0(u · Ek)cl +

∫

R3
p̂
√
M{I − P}

( Fl√
M

)
dp · Ek

]
= 0, (8.15)

∂t En+1 − ∇x × Bn+1

= n0uan+1 + (e0 + P0)u(u · bn+1)

+ (e0 + P0)u
0ucn+1 +

∫

R3
p̂
√
M{I − P}

( Fn+1√
M

)
dp,

∂t Bn+1 + ∇x × En+1 = 0,

∇x · En+1 = −
(

n0u0an+1 + (e0 + P0)u
0(u · bn+1)

+ [e0(u0)2 + P0|u|2]cn+1

)
,

∇x · Bn+1 = 0. (8.16)

Furthermore, assume an+1(0, x), bn+1(0, x), cn+1(0, x), En+1(0, x), Bn+1(0, x) ∈ H N ,

N ≥ 0 be given initial data to the system consisted of equations (8.13), (8.14), (8.15)
and (8.16). Then the linear system is well-posed in C0([0,∞); H N ). Moreover, it holds
that

|Fn+1| � (1 + t)nM1− , |∇p Fn+1| � (1 + t)nM1− ,

|∇x Fn+1| � (1 + t)nM1− , |∇2
p Fn+1| � (1 + t)nM1− ,

|∇x∇p Fn+1| � (1 + t)nM1− ,

|En+1| + |Bn+1| + |∇x En+1| + |∇x En+1| � (1 + t)n . (8.17)
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Proof. From the equation of Fn in (1.10), the microscopic part {I − P}
(

Fn+1√
M

)
can be

written as

{I − P}
( Fn+1√

M

)
= L−1

[
− 1√

M

(
∂t Fn + p̂ · ∇x Fn −

∑
i+ j=n+1

i, j≥1

Q(Fi , Fj )

−
∑

i+ j=n
i, j≥0

(
Ei + p̂ × Bi

)
· ∇p Fj

)]
.

We first prove the equation (8.13). Note that, from (1.14),
∫

R3
Fn+1dp =

∫

R3
[an+1 + bn+1 · p + cn+1 p0]Mdp

= n0u0an+1 + (e0 + P0)u
0(u · bn+1) + [e0(u0)2 + P0|u|2]cn+1,∫

R3
p̂ j Fn+1 dp = n0u j an+1 + (e0 + P0)u j (u · bn+1) + P0bn+1, j

+ (e0 + P0)u
0u j cn+1 +

∫

R3
p̂ j

√
M{I − P}

( Fn+1√
M

)
dp, (8.18)

for j = 1, 2, 3, and
∫

R3

(
En+1 + p̂ × Bn+1

)
· ∇p F0dp =

∫

R3

(
E0 + p̂ × B0

)
· ∇p Fn+1dp = 0.

Then, we integrate the equation of Fn+1 in (1.10) w.r.t. p to get (8.13).
Now we prove (8.14). From (1.14) and Lemma 8.3, it holds that
∫

R3
p j Fn+1dp

=
∫

R3
p j [an+1 + bn+1 · p + cn+1 p0]Mdp

= (e0 + P0)u
0u j an+1 +

n0

γ K2(γ )
[(6K3(γ ) + γ K2(γ ))u0u j (u · bn+1)

+ K3(γ )u0bn+1, j ] + n0

γ K2(γ )
[(5K3(γ ) + γ K2(γ ))(u0)2 + K3(γ )|u|2]u j cn+1,

∫

R3

p j p

p0
Fn+1dp

=
∫

R3

p j p

p0
[an+1 + bn+1 · p + cn+1 p0]Mdp +

∫

R3

p j p

p0
√
M{I − P}

( Fn+1√
M

)
dp

= (e0 + P0)u j uan+1 +
n0

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u j u[(u · bn+1) + u0cn+1]

+ e j P0an+1 +
n0K3(γ )

γ K2(γ )
(ubn+1, j + u j bn+1)

+ e j
n0K3(γ )

γ K2(γ )
[(u · bn+1) + u0cn+1] +

∫

R3

p j p

p0
√
M{I − P}

( Fn+1√
M

)
dp,
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where e j , ( j = 1, 2, 3), are the unit base vectors in R
3, and

−
∫

R3
p j

(
En+1 + p̂ × Bn+1

)
· ∇p F0dp

=
∫

R3
En+1, j F0dp +

∫

R3

(
p̂ × Bn+1

)
j
F0dp

= n0u0En+1, j +
(

n0u × Bn+1

)
j
,

−
∫

R3
p j

(
E0 + p̂ × B0

)
· ∇p Fn+1dp

=
∫

R3
E0, j Fn+1dp +

∫

R3

(
p̂ × B0

)
j
Fn+1dp

= E0, j

(
n0u0an+1 + (e0 + P0)u

0(u · bn+1) + [e0(u0)2 + P0|u|2]cn+1

)

+
[(

n0uan+1 + (e0 + P0)u(u · bn+1) + P0bn+1 + (e0 + P0)u
0ucn+1

)
× B0

]
j

+
∫

R3

(
p̂ × B0

)
j

√
M{I − P}

( Fn+1√
M

)
dp.

Then, we multiply the equation of Fn+1 in (1.10) by p j and integrate the resulting
equation w.r.t. p to get (8.14).

Next, we show that (8.15) holds. By (1.14) and Lemma 8.3, one has
∫

R3
p0Fn+1dp

=
∫

R3
p0[an+1 + bn+1 · p + cn+1 p0]Mdp

= [e0(u0)2 + P0|u|2]an+1 +
n0

γ K2(γ )
[(5K3(γ ) + γ K2(γ ))(u0)2 + K3(γ )|u|2]

× (u · bn+1) +
n0

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)2 + 3K3(γ )|u|2]u0cn+1,

and

−
∫

R3
p0
(

En+1 + p̂ × Bn+1

)
· ∇p F0dp

=
∫

R3
En+1 · p̂F0dp = n0u · En+1,

−
∫

R3
p0
(

E0 + p̂ × B0

)
· ∇p Fn+1dp

=
∫

R3
E0 · p̂Fn+1dp

= n0u · E0an+1 + (e0 + P0)(u · bn+1)(u · E0) + P0E0 · bn+1

+ (e0 + P0)u
0(u · E0)cn+1 +

∫

R3
p̂
√
M{I − P}

( Fn+1√
M

)
dp · E0.

We integrate the equation of Fn in (1.10) with p0 over R3
p to obtain (8.15). Finally, it is

straightforward to obtain the Maxwell system (8.16) of En+1, Bn+1 from (8.18).
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Now we prove the well-posedness of the system (8.13), (8.14), (8.15) and (8.16). By
conditions (1.16) and the equation ∂t (n0u0) + ∇x · (n0u) = 0 in (1.17), we simplify
equations (8.13), (8.14), (8.15) as follows:

n0u0∂t

(
an+1 + h(u · bn+1) + hu0cn+1

)
− ∂t (P0cn+1)

+ n0u · ∇x

(
an+1 + h(u · bn+1) + hu0cn+1

)
+ ∇x · (P0bn+1)

+ ∇x ·
∫

R3
p̂
√
M{I − P}

( Fn+1√
M

)
dp = 0, (8.19)

n0u0∂t

(
hu j an+1 +

1

γ K2(γ )
[(6K3(γ ) + γ K2(γ ))u j (u · bn+1 + u0cn+1)

+ K3(γ )bn+1, j ]
)

− ∂t

(n0K3(γ )

γ K2(γ )
u j cn+1

)

+ n0u · ∇x

(
hu j an+1 +

1

γ K2(γ )
[(6K3(γ ) + γ K2(γ ))u j [(u · bn+1) + u0cn+1]

+ K3(γ )bn+1, j ]
)
+ ∂x j (P0an+1) + ∇x ·

[n0K3(γ )

γ K2(γ )
u j bn+1

]

+ ∂x j

(n0K3(γ )

γ K2(γ )
[(u · bn+1) + u0cn+1]

)

+ E0, j

(
n0u0an+1 + (e0 + P0)u

0(u · bn+1) + [e0(u0)2 + P0|u|2]cn+1

)

+
[(

n0uan+1 + (e0 + P0)u(u · bn+1) + P0bn+1 + (e0 + P0)u
0ucn+1

)
× B0

]
j

+ n0u0En+1, j +
(

n0u0 × Bn+1

)
j

+
∑

k+l=n+1
k,l≥1

Ek, j

(
n0u0al + (e0 + P0)u

0(u · bl) + [e0(u0)2 + P0|u|2]cl

)

+
∑

k+l=n+1
k,l≥1

[(
n0ual + (e0 + P0)u(u · bl) + P0bl + (e0 + P0)u

0ucl

)
× Bk

]
j

+ ∇x ·
∫

R3

p j p

p0
√
M{I − P}

( Fn+1√
M

)
dp +

[ ∫

R3
p̂ × B0

√
M{I − P}

( Fn+1√
M

)
dp
]

j

+
∑

k+l=n+1
k,l≥1

[ ∫

R3
p̂ × Bk

√
M{I − P}

( Fl√
M

)
dp
]

j
= 0, (8.20)

and

n0u0∂t

(
hu0an+1 +

1

γ K2(γ )
[(6K3(γ ) + γ K2(γ ))u0](u · bn+1)

+
1

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)2 + 3K3(γ )|u|2]cn+1

)

− ∂t (P0an+1) − ∂t

(n0K3(γ )

γ K2(γ )
(u · bn+1)

)
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+ n0u · ∇x

(
hu0an+1 +

1

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u0(u · bn+1)

+
1

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)2 + 3K3(γ )|u|2]cn+1

)

+ ∇x ·
(n0K3(γ )

γ K2(γ )
u0bn+1

)
+ ∇x ·

(2n0K3(γ )

γ K2(γ )
ucn+1

)

+ n0u · En+1 + n0u · E0an+1 + (e0 + P0)(u · bn+1)(u · E0)

+ P0E0 · bn+1 + (e0 + P0)u
0(u · E0)cn+1

+
∫

R3
p̂
√
M{I − P}

( Fn+1√
M

)
dp · E0

+
∑

k+l=n+1
k,l≥1

[
n0u · Ekal + (e0 + P0)(u · bl)(u · Ek) + P0Ek · bl

+ (e0 + P0)u
0(u · Ek)cl +

∫

R3
p̂
√
M{I − P}

( Fl√
M

)
dp · Ek

]
= 0. (8.21)

Equations (8.19), (8.20), (8.21) can be further written as:

n0u0
(
∂t an+1 + h(u · ∂t bn+1) + hu0∂t cn+1

)
− P0∂t cn+1

+ n0u0
(
∂t

(
hu
)

· bn+1) + ∂t (hu0)cn+1

)
− (∂t P0)cn+1

+ n0u ·
(
∇x an+1 + h∇x bn+1 · u + hu0∇x cn+1

)
+ P0∇x · bn+1

+ n0u ·
(
∇x

(
hu
)

· bn+1) + ∇x

(
hu0
)

cn+1

)
+ bn+1 · ∇x P0

+ ∇x ·
∫

R3
p̂
√
M{I − P}

( Fn+1√
M

)
dp = 0, (8.22)

n0u0
(

hu j∂t an+1 +
1

γ K2(γ )
[(6K3(γ ) + γ K2(γ ))u j (u · ∂t bn+1 + u0∂t cn+1)

+ K3(γ )∂t bn+1, j ]
)

− n0K3(γ )

γ K2(γ )
u j∂t cn+1 − ∂t

(n0K3(γ )

γ K2(γ )
u j

)
cn+1

+ n0u0
[
∂t

(
hu j

)
an+1 + ∂t

(m2(6K3(γ ) + γ K2(γ ))

γ K2(γ )
u j u
)

· bn+1

+ ∂t

( 1

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u j u

0
)

cn+1 + ∂t

( K3(γ )

γ K2(γ )

)
bn+1, j

]

+ n0u ·
(

hu j∇x an+1 +
1

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u j [(∇x bn+1 · u) + u0∇x cn+1]

+ K3(γ )∇x bn+1, j ]
)
+ P0∂x j an+1 + ∂x j P0an+1

+ n0u ·
[
∇x

(
hu j

)
an+1 + ∇x

( 1

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u j u

)
· bn+1

+ ∇x

( 1

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u j u

0
)

cn+1
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+ ∇x

( K3(γ )

γ K2(γ )

)
bn+1, j

]
+

n0K3(γ )

γ K2(γ )
u j∇x · bn+1

+
n0K3(γ )

γ K2(γ )
[(u · ∂x j bn+1) + u0∂x j cn+1]

+ ∇x ·
(n0K3(γ )

γ K2(γ )
u
)

bn+1, j + ∇x

(n0K3(γ )

γ K2(γ )
u j

)
· bn+1

+ ∂x j

(n0K3(γ )

γ K2(γ )
u
)

· bn+1 + ∂x j

(n0K3(γ )

γ K2(γ )
u0
)

cn+1

+ E0, j

(
n0u0an+1 + (e0 + P0)u

0(u · bn+1) + [e0(u0)2 + P0|u|2]cn+1

)

+
[(

n0uan+1 + (e0 + P0)u(u · bn+1) + (e0 + P0)u
0ucn+1

)
× B0

]
j

+ n0u0En+1, j +
(

n0u0 × Bn+1

)
j

+
∑

k+l=n+1
k,l≥1

Ek, j

(
n0u0al + (e0 + P0)u

0(u · bl) + [e0(u0)2 + P0|u|2]cl

)

+
∑

k+l=n+1
k,l≥1

[(
n0ual + (e0 + P0)u(u · bl) + (e0 + P0)u

0ucl

)
× Bk

]
j

+ ∇x ·
∫

R3

p j p

p0
√
M{I − P}

( Fn+1√
M

)
dp

+
[ ∫

R3
p̂ × B0

√
M{I − P}

( Fn+1√
M

)
dp
]

j

+
∑

k+l=n+1
k,l≥1

[ ∫

R3
p̂ × Bk

√
M{I − P}

( Fl√
M

)
dp
]

j
= 0, (8.23)

and

n0u0
(

hu0∂t an+1 +
1

γ K2(γ )
[(6K3(γ ) + γ K2(γ ))u0](u · ∂t bn+1)

+
1

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)2 + 3K3(γ )|u|2]∂t cn+1

)

+ n0u0
[
∂t (hu0)an+1 + ∂t

( 1

γ K2(γ )
[(6K3(γ ) + γ K2(γ ))u0]u

)
· bn+1

+ ∂t

( 1

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)2 + 3K3(γ )|u|2]

)
cn+1

]

− P0∂t an+1 − n0K3(γ )

γ K2(γ )
(u · ∂t bn+1)

− ∂t P0an+1 − ∂t

(n0K3(γ )

γ K2(γ )
u
)

· bn+1

+ n0u ·
(

hu0∇x an+1 +
1

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u0(∇x bn+1 · u)
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+
1

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)2 + 3K3(γ )|u|2]∇x cn+1

)

+ n0u ·
[
∇x

(
hu0
)

an+1 + ∇x

( 1

γ K2(γ )
(6K3(γ ) + γ K2(γ ))u0u

)
· bn+1

+ ∇x

( 1

γ K2(γ )
[(3K3(γ ) + γ K2(γ ))(u0)2 + 3K3(γ )|u|2]

)
cn+1

]

+
(n0K3(γ )

γ K2(γ )
u0
)
∇x · bn+1 +

(2n0K3(γ )

γ K2(γ )
u
)

· ∇x cn+1

+ ∇x

(n0K3(γ )

γ K2(γ )
u0
)

· bn+1 + ∇x ·
(2n0K3(γ )

γ K2(γ )
u
)

cn+1 + n0u · En+1

+ n0u · E0an+1 + (e0 + P0)(u · bn+1)(u · E0) + P0E0 · bn+1

+ (e0 + P0)u
0(u · E0)cn+1 +

∫

R3
p̂
√
M{I − P}

( Fn+1√
M

)
dp · E0

+
∑

k+l=n+1
k,l≥1

[
n0u · Ekal + (e0 + P0)(u · bl)(u · Ek) + P0Ek · bl

+ (e0 + P0)u
0(u · Ek)cl +

∫

R3
p̂
√
M{I − P}

( Fl√
M

)
dp · Ek

]
= 0. (8.24)

Now we can write the equations (8.22), (8.3), (8.24) as a linear symmetric hyperbolic
system:

A0∂tU +
3∑

i=1

Ai∂iU + B1U + B2Ū = S, (8.25)

where U and Ū are

U =
⎛
⎝

an+1
bn+1
cn+1

⎞
⎠ , Ū =

(
En+1
Bn+1

)
.

For simplicity, denote

h1 = h1(t, x) ≡ n0

γ K2(γ )
(6K3(γ ) + γ K2(γ )), h2 = h2(t, x) ≡ n0K3(γ )

γ K2(γ )
.

5 × 5 Matrixes A0, Ai , (i = 1, 2, 3) in (8.25) are

A0 =
⎛
⎝

n0u0 n0u0hut [e0(u0)2 + P0|u|2]
n0u0hu (h1u ⊗ u + h2I)u0 (h1(u0)2 − h2)u

[e0(u0)2 + P0|u|2] (h1(u0)2 − h2)ut (h1(u0)2 − 3h2)u0

⎞
⎠ ,

and

Ai =
⎛
⎝

n0ui n0hui ut + P0et
i n0hu0ui

n0hui u + P0ei h1ui u ⊗ u + h2(ui I + Ãi ) (h1ui u + h2ei )u0

n0hu0ui (h1ui ut + h2et
i )u

0 (h1(u0)2 − h2)ui

⎞
⎠ ,
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where (·)t denotes the transpose of a vector in R3, I is the 3 × 3 identity matrix and Ãi
is a 3 × 3 matrix with its components

(Ãi ) jk = δi j uk + δiku j , 1 ≤ j, k ≤ 3.

The components of matrixes B1 and B2, and the remainder terms S can be written
explicitly as functions of Fi , Ei , Bi , (0 ≤ i ≤ n) and their first order derivatives. For
the matrix A0, its determinant is

n5
0

∣∣∣∣∣∣∣

u0 u0ut h h(u0)2 − P0
n0

0 u0[h3u ⊗ u + h4I] (u0)2h3u
0 (u0)2h3ut (u0)3h3 − u0h4 + 1

γ 2u0

∣∣∣∣∣∣∣

= n5
0(u

0)6
∣∣∣∣
h3u ⊗ u + h4I h3u

h3u0ut u0h3 − 1
u0

h4 + 1
γ 2(u0)3

∣∣∣∣

= n5
0(u

0)6

∣∣∣∣∣∣
h4I h3u

ut

u0

[
h4 − 1

γ 2(u0)2

]
u0h3 − 1

u0
h4 + 1

γ 2(u0)3

∣∣∣∣∣∣

= n5
0(u

0)6

∣∣∣∣∣
h4I h3u

0t
[−|u|2

u0h4

(
h4 − 1

γ 2(u0)2

)
+ u0

]
h3 − 1

u0
h4 + 1

γ 2(u0)3

∣∣∣∣∣

= n5
0(u

0)6h3
4

{[−|u|2
u0h4

(
h4 − 1

γ 2(u0)2

)
+ u0

]
h3 − 1

u0 h4 +
c4

γ 2(u0)3

}
,

where 0 denotes the column vector (0, 0, 0)t , h3 and h4 are functions with the following
forms:

h3 = −
(K1(γ )

K2(γ )

)2 − 2

γ

K1(γ )

K2(γ )
+ 1 +

8

γ 2 , h4 = K1(γ )

γ K2(γ )
+

4

γ 2 .

Noting

−
(K1(γ )

K2(γ )

)2 − 3

γ

K1(γ )

K2(γ )
+ 1 +

3

γ 2 > 0

by Proposition 6.3 in Appendix 3 [31], we can further obtain

|A0| > n5
0(u

0)6h3
4
1

u0 (h3 − h4)

= n5
0(u

0)5h3
4

[
−
(K1(γ )

K2(γ )

)2 − 3

γ

K1(γ )

K2(γ )
+ 1 +

4

γ 2

]

>
n5
0(u

0)5h3
4

γ 2 .

On the other hand, the system (8.16) can also be written as a linear symmetric
hyperbolic system of (En+1, Bn+1):

∂t Ū +
3∑

i=1

Āi∂i Ū + BU = 0, (8.26)
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where B is a 6×5 matrix whose components are functions of n0, u. DenoteO as a 3×3
matrix with all components be 0, and define matrixes:

Ā11 =
⎛
⎝
0 0 0
0 0 1
0 −1 0

⎞
⎠ , Ā12 =

⎛
⎝
0 0 0
0 0 −1
0 1 0

⎞
⎠ , Ā21 =

⎛
⎝
0 0 −1
0 0 0
1 0 0

⎞
⎠ ,

Ā22 =
⎛
⎝

0 0 1
0 0 0

−1 0 0

⎞
⎠ , Ā31 =

⎛
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎠ , Ā32 =

⎛
⎝
0 −1 0
1 0 0
0 0 0

⎞
⎠ .

Then Āi in (8.26) can be expressed as

Āi =
(

O Āi1

Āi2 O

)
.

Combining (8.25) and (8.26),we canobtain thewellposedness of (an+1, bn+1, cn+1, En+1,
Bn+1) ∈ C0([0,∞); H N )with initial dataan+1(0, x), bn+1(0, x), cn+1(0, x), En+1(0, x),

Bn+1(0, x)∈ H N , N ≥ 0 by the standard theorem of linear symmetric system [3] (Chap-
ter 4.2). Moreover, for n = 0, one has

‖∂tA0‖∞ +
3∑

i=1

‖∇xAi‖∞ +
2∑

i=1

‖Bi‖∞ + ‖S‖∞ � (1 + t)−β0 .

Therefore, standard energy estimates on systems (8.25) and (8.26) yield

d

dt

(
‖(a1(t), b1(t), c1(t))‖2H N + ‖[E1(t), B1(t)]‖2H N

)

� (1 + t)−β0 [
(
‖(a1(t), b1(t), c1(t))‖2H N + ‖[E1(t), B1(t)]‖2H N

)

+
(‖(a1(t), b1(t), c1(t))‖H N + ‖[E1(t), B1(t)]‖H N

)].
Namely,

‖(a1(t), b1(t), c1(t))‖H N + ‖[E1(t), B1(t)]‖H N � 1 (8.27)

by Grönwall’s inequality. Let L f1 = ν f1 + K ( f1) = f2 = w0(p)M, where w0(p) is
any polynomial of p. Note that, by (1.2), (1.21) and (8.1),

|K ( f1)| �
∫

R3

s
3
2

gp0q0 U1(p, q) exp{−[1 + O(1)|u|]
√

s|p − q|
2T0g

}| f1(q)|dq,

and f1 = f2
ν

− K ( f1)
ν

. Then, we can verify that | f1| � M1− . Therefore, it holds that

{I − P}
( F1√

M

)
� (1 + |p|)M1− .

It is straightforward to obtain (8.17) by the structure of F1 and (8.27). Assuming (8.17)
holds for 1 ≤ i ≤ n, the case i = n + 1 for (8.17) holds again by the structure of the
equation for Fn+1 in (1.10), the induction assumption and similar analysis as the case
i = 1 ( n = 0). ��
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