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Abstract: Consider the relativistic Vlasov—-Maxwell-Boltzmann system describing the
dynamics of an electron gas in the presence of a fixed ion background. Thanks to recent
works Germain and Masmoudi (Ann Sci Ec Norm Supér 47(3):469-503, 2014), Guo
et al. (J Math Phys 55(12):123102, 2014) and Deng et al. (Arch Ration Mech Anal
225(2):771-871, 2017), we establish the global-in-time validity of its Hilbert expansion
and derive the limiting relativistic Euler-Maxwell system as the mean free path goes
to zero. Our method is based on the L?> — L> framework and the Glassey—Strauss
Representation of the electromagnetic field, with auxiliary H' estimates and W1
estimates to control the characteristic curves and corresponding L° norm.

Contents
1. Introduction . . .. .. .. .. . . .. .. 342
1.1 Relativistic Vlasov—-Maxwell-Boltzmann system . . . . .. ... .. 342
1.2 Hilbertexpansion . . . . . . . ... .. ... 345
1.3 Notations . . . . . . . . . . e 350
1.4 Mainresults . . . . . . . . . . . . e 350
2. LZ?Estimate for f& . . . . . . . . . ... 353
3. Characteristics and L estimates . . . . . . . . . .. . ... ... .... 356
3.1 Characteristics estimates . . . . . . . . . . . ... .. .. ...... 356
32 L%®estimateof h¢ . . . . . ... ... 359
4. W estimates for (ES, BR) 359
4.1 L% estimate for (E%, BL) . . . . . ... .o 359
4.2 W estimates for (E, BR) o o 363
5. WU Estimatesfor A . . . . . . ... 370
6. Auxiliary H' Estimates for f& . . . .. ... ... ... ... ...... 371
7. Proofofthe MainResult . . . . . ... ... ... ............. 377
8. AppendixX . . . . ... e e 379


http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-021-04079-x&domain=pdf
http://orcid.org/0000-0002-0520-0648

342 Y. Guo, Q. Xiao

8.1 Appendix 1: Derivation of the kernel k, . . . . . . .. ... .. ... 380
8.2 Appendix 2: Estimates of kernels . . . . . . ... ... ... .. ... 383
8.3 Appendix 3: Construction and estimates of coefficients . . . . .. .. 386

1. Introduction

1.1. Relativistic Vlasov—-Maxwell-Boltzmann system. Therelativistic Vlasov—Maxwell—
Boltzmann system is a fundamental and complete model describing the dynamics of a
dilute collisional plasma appearing in nuclear fusion and the interior of stars, etc. Cor-
respondingly, the relativistic Euler—Maxwell system, the foundation of the two-fluid
theory in plasma physics, describes the dynamics of two compressible ion and electron
fluids interacting with their own self-consistent electromagnetic field. It is also the ori-
gin of many celebrated dispersive PDE such as NLS, KP, KdV, Zaharov, etc, as various
scaling limits and approximations of such a fundamental model. Since the ion mass is
far larger than the electron mass in a plasma, the dynamics of ions is negligible for sim-
plification sometimes. In this special case, the plasma can be approximately described
by the one-species relativistic Vlasov—Maxwell-Boltzmann system in the mesoscopic
level and treated as a single fluid in the macroscopic level. It has been an important open
question if the general Euler—Maxwell system can be derived rigorously from its kinetic
counter-part, the Vlasov—-Maxwell-Boltzmann system, as the mean field path goes to
Zero.

In this paper, we are able to answer this question in the affirmative in the special case
when the ions form a constant background, and the relativistic Euler—Maxwell system
describes the dynamics of the electron gas. The relativistic Vlasov-Boltzmann system
can be written as:

1
9 FE +cp- ViFE — e,(Ee +px B*’") -V, F® = —Q(F*, F?), (1.1)
€
which is coupled with the Maxwell system

0;E° —cVy x B® = 47te,/ pFédp,
R3
;B +cV, x Ef =0,

V. Ef = 4drxe. (n —/ ngp>,
R3

Ve B =0.

(1.2)

Here ¢ is the Knudsen number (the mean free path), F* = F*(t, x, p) is the number
density function for electrons at time t > 0, position x = (x1,x2,X3) € R3 and
momentum p = (pi, p2, p3) € R3. p¥ = /m2c2 + |p|? is the energy of an electron
and p = %. The constants —e_ and m are the magnitude of the electrons’ charge and rest

mass, respectively. c¢ is the speed of light, and E (¢, x), B(t, x) are the electromagnetic
fields.
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Corresponding to (1.1)—(1.2), at the hydrodynamic level, the electron gas obeys the
relativistic Euler-Maxwell system, which is an important ‘two-fluid’ model for a plasma:

19, (nu®) + V. - (nu) = 0,

19 1e + P)ulul + Vy - [(e + P)u @ u + >V P + ce_n[u’E +u x B] =0,
O E —cVy x B =4dme_=7,

»B+cV, x E=0,

Vy-E=4me_(n — %nuo),

V. -B=0,

(1.3)

where 7 is the particle number density, u = (uy, us, u3), u® = /|u|? +c2, P is the
pressure, e is the total energy which is the sum of internal energy and the energy in the
rest frame.

The purpose of this article is to rigorously prove that solutions of the relativistic
Vlasov—-Maxwell-Boltzmann system (1.1)—(1.2) converge to solutions of the relativistic
Euler—-Maxwell system (1.3) globally in time, as the Knudsen number ¢ tends to zero:

sup ([ (F* =M@ | ;1 + IE® — Eo) ()|l g1 + (BE — Bo) (1) [l 1) = O(e).

o<t<e 2

(1.4)

Namely, the solution (F?, E*, B?) to the relativistic Vlasov—Maxwell-Boltzmann sys-
tem converges to (M, Eq, By) in the H ! norm. The macroscopic variables ng, u, T
of the Maxwellian M (1.12), and Ey, By satisty the relativistic Euler—Maxwell system
(1.3).

Our contribution is a step forward to derive two-fluid models for describing a plasma
from kinetic theory. On the other hand, due to complexity of different scalings, such a
derivation for a general two-fluid model with both ions and electrons remains a major
open problem.

Now we briefly explain the strategy of our proof. Detailed explanations will be
followed after the statement of Theorem 1.1. In fact, the main part of our proof is
constructing solutions to equations of remainder terms Fy, E% and By in the Hilbert
expansion (1.8) for the relativistic Vlasov—Maxwell-Boltzmann systemina H' — W1
framework. First, it is simple to get the L? estimate of the remainder terms. Under
a priori assumptions (1.27) for the W1 estimates of the remainder terms, we can
proceed characteristics estimates and further obtain the L estimate of Fy, to close the
L% — L™ energy estimates. To justify the assumptions (1.27), the essential and delicate
part is the W > estimates of the electromagnetic fields F&, E % via the Glassey—Strauss
Representation. We succeed to bound the W1 estimates of the electromagnetic fields
through the combination of H' and W1 estimates of F, properly. Then we modify
the corresponding proof in [22] and bound the W' norm of Fg with its H ! norm.
Finally, we derive the H'! norm estimates of the remainder terms to close the energy
estimates and verify the assumptions (1.27) for ¢ € [0, e~1/?].

The relativistic Boltzmann collision operator Q(-, -) in (1.1) takes the form of

O(F,G) = /ﬂé /R / PG — FpG@). (15)
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Here the “transition rate" W = W(p, q|p’, ¢’) is defined as
W =150(2.0)8(p"+q° = p° =¢8P (p+q - p' —q). (1.6)

In a pioneering work of Glassey and Strauss [16], the collision operator Q in (1.5) was
represented as follows:

Q(F.G) = / [sz B(P 9, 0)[F(p)G(q") — F(p)G ()],

where the kernel B(p, g, w) is

(P’ +4"%w - (0% —4°p)|

(P +¢%? — (- (p+9)*P

Denote the four-momentums p* = (p°, p) and g* = (¢°, ¢). We use the Einstein
convention that repeated up-down indices are summed, and we raise and lower indices

B(p,q,w) =

using the Minkowski metric g, def diag(—1,1,1,1). The Lorentz inner product is
then given by

def

Plan = —p°q° + Z Pidi.
The quantity s in (1.6) is the square of the energy in the “center of momentum”, p+q = 0,
and is given as

s=s5(p.q) =—(p" +q") (pp+q.) =2(p°¢° — p - g + m*c?) = 4m*c?.
And the relativistic momentum g in (1.6) is denoted as

g§=28(p.a)=v-p" =" (pp —qu) = \/2(p°q° —p-q—m*?) =0.
The condition for elastic collision is then given by
PP+q’=p"+q"  prq=p'+q. (1.7)
where p’ and ¢’ are the post collisional momentums given as
p'=p+alp,q 0o, ¢ =q—alp,q, 0o,
a(p g, @) = 2(p° +¢")w - (p°q — q°p)]
o (P°+49? = (- (p+9))?
The Jacobian for the transformation (p, g) — (p’, ¢’) in these variables [15] is

3(])/, 61/) p/Oq/O

I(p,q) p%°
The relativistic differential cross section o (g, #) measures the interactions between
particles. See [10,11] for a physical discussion of general assumptions. We use the
following hypothesis.
Hypothesis on the collision kernel. We consider the “hard ball” condition

o (g, 0) = constant.

This condition is used throughout the rest of the article. In fact, without loss of generality,
we will use the normalized condition o (g, 6) = 1 for simplicity. The Newtonian limit,
as ¢ — 00, in this situation is the Newtonian hard-sphere Boltzmann collision operator
[36].
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1.2. Hilbert expansion. We consider the Hilbert expansion for small Knudsen number
8’

2k—1
F = Z " F, + " F5,
n=0
2k—1
E® = Z §"E, + X ES, (1.8)
n=0
2k—1
Bt = Z "B, +eB5, (k> 3).
n=0

To determine the coefficients Fy(t, x, p), ..., For—1(t, x, p); Eo(t,x),..., Eor_1(t, x);
Bo(t,x), ..., Bo—1(t, x), we plug the formal expansion (1.8) into the rescaled equations
(1.1)—(1.2) to have

2k—1 2k—1

oD e ke FR) 4 ep V(Y " Fuk et )
n=0 n=0
2%—1 2%—1

2k—1
— e,[( Z e"E, +5kE}’}) +p X ( Z "B, +skB§i,)] . Vp( Z &"F, +8kF1§)
n=0 n=0 n=0

2k—1 2k—1

1
- _Q< N ey et FR Y €, +skF;;>),
€ n=0 n=0
2k—1 2k—1

8,( Z e"E, +8kE%) — ¢V, x ( Z "B, +(9ka¢)
n=0 n=0
2k—1

= 4rre_/ ﬁ( Z " F, +8kFI§>dp,
R3
n=0

2k—1 2k—1
a,( > "B, +s’<B,§) +cVy x ( > e"E, +g’<E;) =0,
n=0 n=0
2k—1

2k—1

Vo (0 e Byt e ER) = 4me (i - / (D e Fu+ et Fy)dp).
n=0 R n=0
2k—1

Vx.<z(:)g”Bn+8kB%) =0. (1.9)
-

Now we equate the coefficients on both sides of equation (1.9) in front of different
powers of the parameter ¢ to obtain:

1
z :0(Fop, Fo) =0,

e :0,Fo+cp - ViFo — e (Eo+j x Bo) - VyFo = O(Fi, Fo) + Q(Fo, 1),
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0:Ey — cVy X By = 47re,/‘ pFodp,
R3

0;By+cV, x Eg =0,

V, . Ey = 4me_ (n - / Fodp),
R3

" 23, Fy +cp - Vi Fy — e,(En +hx Bn) -V, Fy — e,(Eo+ﬁ x B0> -V, F,

= Y 0. Fpre Y. (Ei+pxBi)-V,F;,
i+j=n+1 i+j=n
i,j=0 i,j=1
0, E, —cVy X B, = 47‘[6_[ pF.dp,
R3
3By +cV, x E, =0,

V- E, = —4716_/ F.dp,
R3

e 19 Fopy +cp - ViFoy—1 — e (EZk—l +p x sz—1> -VpkFy
- e,(Eo +p x Bo) Yy
= Y 0. Fp+e Y (Ei+ﬁxB,->-Vij
i+j=2k i+j=2k—1
i,j=1 i,j=1
01Eoj—1 — cVy X By =4me_ /112{3 pFy—_1dp,
0;Bok—1+cVy x Eyp_1 =0,
Vi Ey_1 = —4me_ /R3 Fyi—1dp,
V.- By =0. (1.10)

The remainder terms F, E% and By satisfy the following equations:
O Fg+chViFg—e(Eq+px By) VyFo

. 1
—e-(Eo+j x Bo) -V, Fj = ~[Q(Fg. Fo) + Q(Fo. F})]
2k—1
— N Q(FR, FR) + > 7 O(F, FR) + O(Fj, F)] +e’<e_(E; +hx B;) -V, F
i=1
2k—1
+ Y ele [(Ei+ b x Bi) - VpFi+ (Eg+ b x By) - VpFi| +eka,
i=l1
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9 Ex —cVy X By = 47re,/ pFrdp,
R3
9By +cVy x Ef =0,

Vi Ef = —4me_ /R3 Frdp,

V- By =0, (1.11)
where
A= Y SHTEQE R Y d e (Bt px BV F.
i+j>2k+1 i+j>2k
2<i,j<2k—1 1<i,j<2k—1

From the first equation in (1.10), we can obtain that Fy should be a local Maxwellian
M = Fy:

_ noy u" pp
Foltx,p) = s S s e o | (1.12)

where K;(y)(j =0, 1,2, ...) are the modified second order Bessel functions:

2Hj 1 /Azoo P 2172 ;
Ki(y) = ——— e\ —yHIT12adx, (j = 0),
AY4 e vi i, Y J

and y is a dimensionless variable defined as

I’l’lC2

= 1.13
14 ks To (1.13)

kp is Boltzmann’s constant. Here no(¢, x), u** (¢, x) and Ty (¢, x) are the number density,
four-velocity and temperature. As proved in Proposition 3.3 of [33], it holds that

o
I“M] = cf3 %Mdp = nou”,
R (1.14)

“ph + P
reo = [ Eomap = 5 4 pyget,
R} P ¢

where eq(z, x) is the total energy and Py(¢, x) is the pressure satisfying

mnc® kg
Py = = —pT,
y m
nomec?

€0

1
= K — K .
Kz(V)[ 3(¥) , 2(V):|

Noting the relationship p® = \/m2c2 + | p|? and
—f pO(EO +hx Bo) . V,Mdp
R3

R nou - Eo
= EO . pMdp = )
R3 c
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we project the second equation in (1.10) onto the five collision invariants, 1, p, pO, for
the relativistic Boltzmann operator Q and use (1.14) to have

191 (nou®) + Vi - (nou) = 0,
L3:1(e0 + Po)ulul + V- [(e0 + Po)u @ u]

1.15
+¢2V, Py + ce_no[u®Eg +u x Bol =0, ( )
19:[(eo + Po)(®)? — c*ul* Po] + Vi - [(eo + Po)u’u] + ce_nou - Eg = 0.
Then, under the conditions
e+ Py = noh(ng), and Pé(n()) = noh’(ng) > 0, (1.16)

which were indicated in [20], we can further use the equations of £ power in (1.10) to
obtain equations of ng, # and Eg, Bp:

3 (nou®) + V. - (nou) = 0,
£3h[(eo + Po)u®ul + Ve - [(eo + Po)u ® u]
+C2VXP0 + ce_no[uoEo +u x Byl =0,
% Eo — cVy x By = 4mwe_ "0, (1.17)
0;Bo+cVy x Eg =0,
Vi -Ey=4me_(n — %nouo),
V, - By =0.

In fact, we use (1.15); to have

0

nou eo+ Py e+ Py
8,( u)+nou~Vx< u)
no no
+?V Py +ce_no[u’Eg +u x Byl =0, (1.18)
0

n eo + P eo + P

or 8,( 0 Ouo)—c8,P0+no~Vx~< 0 Ou)+ce_n0u-E0=0.

c no no

We further employ u%(1.18)2 — u-(1.18); to obtain

+ P + P
uo[n()B,(eO 0) —atpo]m.[novx(eo 0) —vxpo] —0.  (1.19)
no no

(1.19) automatically holds under the conditions (1.16). Namely, the third equation in
(1.15), the energy equation, can be expressed by the first and second equations in (1.15),
and (1.17) holds true.

Here and below, we assume that [no(¢, x), u(t, x), Eo(z, x), Bo(t, x)] is a global
smooth solution to the relativistic Euler—-Maxwell 1-fluid system (1.17) constructed in
[20] with no(#, x) — n, u(t, x), Eo(t, x) and By(¢, x) sufficiently small and satisfying

sup l[no(r) — i, u(t), Eo(0), Bo)]ll oo + sup [(1+0)

t€[0,00] 1€[0,00]

x (sup || D (no(t) —n)lloo + sup [[DYu(t), DL Eo(t), DﬁBo(t)]lloo)] < o,
[p|<3 lo|<4

(1.20)
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where No = 10*, By = 101/100 and & is a small positive constant.

For M given in (1.12), where (ng, u, Tp)(t, x) is part of a solution to the relativis-
tic Euler—Maxwell 1-fluid system (1.17) constructed in [20], we define the linearized
collision operator Lf and nonlinear collision operator I'(f1, f2) :

1
Lf = —ﬁ[Q<Nf, M) + O(M, VM f)] = v(M) f — Km(f),
1
T(f1, f) = TMQNE&ﬂM

where the collision frequency v = v(¢, x, p) is defined as
p = o (1, VM) :/ dq/ dw%]]%(p,q,a))«/ﬁ(q),
R3 s P9
and Ky (f) takes the following form:
s
k) = [ dg [ do—5 5B, g oM@V + VMG £ )

s
- / dq / do——B(p, ¢, ©)VM(@)VM(p) f(q)
g Js2 pYq
= Ka2(f) — Ki(f)- (1.21)
Then from Lemma 3.1 in [37] and Lemma 6 in [25], we can similarly obtain
v(t,x,p)~1, and Do, x, p)| < PO Ipl > 0.
Note that the null space of the linearized operator L is given by

N = span{\/ﬁ, pivM(1 =i <3), PO‘/M} :

Let P be the orthogonal projection from L%, onto V. Given f (¢, x, p), one can express
P f as a linear combination of the basis in NV:

Pf ={as(t,x) +bst,x) - p+cst,x)p’ VM.
Then we have [16]
(Lf, f) = SolHL =P} £,
for some constant §y > 0. Define f* as
F& = MJf®. (1.22)
We further introduce a global Maxwellian

nyMym

Iy = —2M
M= e K Gan P T

b

and define

_“JMhS

F& = (1 B Iyht =
e =+1ph PV Iu i

(1.23)
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with w(|p)) = (1 + |p|)’S for some B > 8. Here nyy, Tyy = mcz/(kByM) satisfy the
conditions in (1.16) and

Ty < sup To(t, x) < 2Ty. (1.24)

1
te[0,e”2],xeR3

Remark 1.1. Since the presence of physical constants do not cause essential mathemat-
ical difficulties, we will normalize all constants in the relativistic Vlasov—Maxwell—
Boltzmann system (1.1), (1.2) and in all related quantities to be one.

1.3. Notations. Throughout the paper, C denotes a generic positive constant which may
change line by line. The notation A < B implies that there exists a positive constant C
such that A < CB holds uniformly over the range of parameters. The notation A ~ B
means = A < B < CA for some constant C > 1. We use standard notations to denote
the SoboleV spaces wk: 2(]Rfc) (or Wk- Z(Ri X R?,)) and Wk: OO(R;) (or Wk- OO(R?C X R;))
with corresponding norms || - || gy« and || - |[yy«., respectively. We also use the standard
notations || - || and | - ||« to denote the L2 norm and L norm in both (x, p) € R? x R3
and x € R3, respectively. The standard L%(R? x R3) inner product is denoted as (-, -)
for simplicity. D, and D), are used as any space and momentum derivative, respectively.

1.4. Main results. We now state our main results.

Theorem 1.1. Let Fy = M as in (1.12) and let [no(0, x), u(0, x), Eq(0, x), By(0, x)]
satisfies the same assumptions in Theorem 2.2 of [20] and [no(t, x), u(t, x), Eo(t, x),
By(t, x)] be a corresponding global solution. Then for the remainder terms Fy, E% and
B; in (1.8), there exists an gy > 0 such that for 0 < ¢ < g,

VP FS

—

o L R L)

+  sup 1 <52||[E 1), BR(I)]||W'°°) sup | [Hj—%(ﬂ”

0<t<e 2 0<t<e 2

w (I )

HILES (1), By()] ||+f(H¢_<r>H + NER®, Byl )]

” (1+|phPFg

F

(1+|pDPFg
v JIm

ve ILER(0), BR<0>]||W100+\

<8

~

ol » o

Wl,oo

+I[ER(0), Br(O)]]

+[ER(0), BR<0>]||H1) (1.25)
(|

Remark 1.2. We only require k > 3 for the expansion in (1.8). This requirement is the
same as the case of the Hilbert expansion for the Boltzmann equation [23,24,33] and
more relaxed than that for the Vlasov—Poisson—-Boltzmann system [22]. Moreover, our
uniform estimates lead to the relativistic Euler—Maxwell limit (1.4).
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Our result guarantees that the Hilbert expansion for the relativistic Vlasov—-Maxwell—
Boltzmann system is valid for any time if ¢ is chosen sufficiently small. Similar result
was also obtained in [22] for the Hilbert expansion of the Vlasov—Poisson—Boltzmann
system. Due to shock formations in the pure compressible Euler flow, as illustrated in
[5,32], corresponding Hilbert expansion, acoustic limit for the Boltzmann equation or
relativistic Boltzmann equation [4,23,24,33] is only valid local in time. Different from
the pure compressible Euler fluids where shock waves may develop even for smooth
irrotational initial data with small amplitude, the electromagnetic interaction in the two-
fluid models [17,20,21] could create stronger dispersive effects, enhance linear decay
rates, and prevent formation of shock waves with small amplitude.

Our method is based on an L2 — L framework originated in [19]. In Sect. 2, we
first establish the basic L? estimate for remainders (f¢, E %, B;}). In order to close the
energy estimate (2.3) in Proposition 2.1, we need L* estimate of 4° along the curved
characteristic given by

dX(t;t,x, A
AX@WHEXP) _ pris v p),
dt
dP(t;t,x, p) e A e
d— =—E°(r, X(7;t,x,p)) — P(z; t,x, p) x B° (7, X(7;1, x, p)),
T

(1.26)

with X (¢; ¢, x, p) = x, P(¢t; t,x, p) = p.
In Sect. 3, we study the characteristics and L*° estimate of h° under the crucial
bootstrap assumptions:

211,€ 3
sup e7[|h° (1) lloo < €8,

tel[0,T]
5 1
sup &3 (1V2h* () loo + V" ()lloc) < &,
t€l0,T]
sup % [E5(1), Byl < 1, (1.27)
t€l0,T]

for given T € [0, 5_%]. We can repeat the L°° estimate of 4 in Sect. 5.1 of [22] and
obtain Proposition 3.1. Combing Propositions 2.1 and 3.1, we close the LZ — L energy
estimates. The rest of the paper is devoted to the proof of (1.27).

In Sect. 4, we estimate the W1 norm of Efe, Bfa in term of the W1 norm of
f¢, via Glassey—Strauss Representation (see Theorem 3 and Theorem 4 in [14]). In
the previous work [22], the electric field Ef was calculated via elliptic estimate of the
Poisson system:

It is important to note that the relativistic nature of bounded velocity p and the strong
weight (1 + | Dk play key roles. We remark that the W !-°° estimate (4.1) in Proposition
4.1 fails for the classical Vlasov—-Maxwell-Boltzmann system with unbounded velocity.
Our method relies crucially on the Glassey—Strauss representation, which fails for the
non-relativistic case. Once the relativistic two-fluid model is derived, it is then possible
to study the classical (non-relativistic) limit as the speed of light goes to co. It is possible
to extend our result to the 2D case, with a similar Glassey—Strauss formulation in 2D
[13].
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In Sect. 5, we establish the W1 estimate for /€. In [22], such an estimate relies on
a second integration by parts

1 t s 1 t 1 s
the(t,x,v)'v...+—2f / exp{ —f/ v(‘L’)d‘L’—*/ u(t)dr]
&= Jo Jo & Js € Js

d /
y f It (V5). )t (V (51, ") Dh (s1. X (51, )| 2o yels s + ..
R3 xR3 dy

1 t S—KE 1 t 1 s
~...——2/ / exp{—ff v(r)dr—f/ v(r)dr}
& 0 JO & Js & Js

d /
X / IV, 0 (V (), 0O (51, X510, 0D (0 Dy dsyds ..
B y
(1.28)

where /) ,, is the kernel corresponding to Ky 4, in [22], [y is a smooth approximation of
Ia1.w With compact support, y = X (s1),and B = {|[y—X(s)| < C(s—s1)N, [v"| <3N}.
Thanks to the elliptic regularity of the Poisson system, the electric field E¢ = —V,¢° is
bounded almost in W2 > with the auxiliary W!° bound for the distribution function,

and ||Dx(|f1—l;f|)|| ;2 can also be bounded by Cy/ (eh). Unfortunately, in the presence
of the magnetic field, the Maxwell system is hyperbolic, and such a gain of regularity
and bound of || D (| ‘2—’; DIl ;2 are impossible. Instead, we estimate the first expression in
B
(1.28) by the H'! norm of £ and W1 norm of (E¢, B?).
We turn to an auxiliary H! estimate in Sect. 6. Even though such an H' estimate in

Proposition 6.3 leads to a loss of 8’%, it is still sufficient for the W1 estimate of 4° in
the crucial bootstrap assumptions (1.27). Noting the fact

IVp fENS IVRP eI+ IV (I — P,

we estimate the norm ||V, {I — P} /|| instead of a direct estimation of ||V, /|| to avoid
estimates, such as the estimate related to the transport term

((Dpp) -V f©, Vp [) S UIDp fEIIDx (1.29)

which may lead to exponential growth of the H! norm of remainders. In fact, we pro-
ceed energy estimate after employing momentum differentiation D), to the equation of
{I — P} f¢ via micro projection onto the equation of f¢. Thanks to the dissipation of
éV,,(Lf‘?), instead of (1.29), we can obtain

(Dpp) - Vi fE, VI =P} f€) < glle{I — P} eI+ Equffn2

for some small positive constant k > 0. Then (x/&)||D,{I — P} f® | can be absorbed
by the dissipation term and the factor ¢ of (¢/k)|| Dy f* 1> can kill the increase of time
fort € [0, 2].

In Sect. 7, we finally verify (1.27) and close the energy estimates via a continuity
argument for 0 <t < ¢, The proof of our main result Theorem 1.1 is given.

Appendix 3 is devoted to construction of coefficients F, (¢, x, p), E, (t, x), B, (¢, x),
(1 < n < 2k — 1) in the Hilbert expansion (1.8) and estimation of their regularities
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(see Theorem 8.1). Due to the complex nature of the relativistic Boltzmann equation,
the construction and estimates are delicate.

We remark that the time decay rate (1 + 1)~Po(By > 1) of the solutions [20] ng(z, x),
u(t, x), Eo(t, x) and By(t, x) in (1.20) is important. As in (2.7), (6.4) and (6.5), thanks
to the time decay of || Vin0llco, | Vit |los || Vi Eollco and || Vx Bo |l oo, We Obtain estimates
such as (1 +¢) 20| £2||?, which is bound by Grénwall’s inequality.

We briefly review works related to the relativistic Vlasov—-Maxwell-Boltzmann sys-
tem. For the two species relativistic Vlasov—-Maxwell-Boltzmann system with ¢ = 1,
global smooth solutions near a Maxwellian was constructed [25] in a periodic box
with new momentum regularity estimates. This result was extended to the whole space
in [30] and [29] for short range interaction. There are more studies about the non-
relativistic Vlasov—Maxwell-Boltzmann system. In [18], global classical solutions near
a Maxwellian were constructed in a periodic box. Since then, many works have been
done in global existence and asymptotic stability of solutions, and hydrodynamic limits,
such as [1,2,7-9,26-28,35].

2. L? Estimate for f¢

In this section, we derive the L? energy estimates for the remainder f¢ = 5—% .
To perform the L? energy estimate, we first use (1.22) to rewrite (1.11) as
0 vM
u u
UfEHp Ve +—— py/M - ES — (b x By)
i fT APV f 27, R~ Sp \Px Bk
Lf®

—(E0+ﬁxB0)-V,,fg+
&
£

= —jM[al +p-Vy— (E0+ﬁ X Bo) ~Vp]m+8k_lr(f8, iad)

2k—1
+ 3 TN (EL £+ D5 B +s"(E§ +hx B;) SV, ff

i=1

1
—ek—(uoﬁ—u) . (Ef?+ﬁ X B%)fs

2T
2k—1
+ Zel[<E,~+ﬁxBi).v,,ff+<E§+ﬁxB;).V,,F,»]
i=1
2%—1
i ~ 1 0A & k x
- 8[<Ei+pr,~>~—(up—u)f]+8A, @2.1)
= 2Ty
and
9 E%x — V¢ x By :/ pPVM fédp,
R3
3 BS +V, x E5 =0,
V, - Ef = —/ Fidp, V.-B% =0, (2.2)
R3
A= A
where A = Nt
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Proposition 2.1. For the remainders (€, Eg, By), it holds that

d,(H 210 pe I+ g . Bon?)
* (8028”4 — Ce 2 oo ) X = P2
S [0 kel + ey | (16717 + 1B, BRIP)
+[e% 1o + 0] 1571 .

where L1 and I, have the following form:

2k—1 2k—1

L=} ¢"'a H)i_l[l Yy ¢7la +t)i_1],

i=1 i=1

I2(t) — Z 8i+j72k71(1 +t)i+j72.

142k <i+j <4k—2

Proof. We take the L? inner product with 2l0° f¢ on both sides of (2.1) to have

2dtH\/ﬁf Of +{p- i )+ 2 ra-mg |

_—<m[8,+p Vo= (Eo+ 5 x Bo) - V]«/_,ZZ(;Of>

wll@es w) Gl o)

#lu (5 BR)VML )+ e s, 50, 20 7)

2k—1

£ IR £+ TG FaL S )

—_

(w0h =) (x o < 8)r i)

1

|
R .

’ <[(E' thx B") VoSt (Efe +p x Bfa) : VpFi]’ 27(;0f€>

+
?EM

1

. 8([(E+pXB) Tlo(oﬁ—u)fs],ZToof) ( %ﬁ)_ (2.4)

1

—

On the other hand, from (2.2), we have

ld 2 & 2\ _[»a & &
3 (1RO + 1B @) = (5 - ™M, 7). 2.5)
Noting (1.24), we combine (2.4) and (2.5) to have

M H\/Tf (t)” +ILES (1), BR<r)]||) z_:TM||{I—P}fS||2
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< —(jsﬁ[a,ﬂa.vx—(E0+ﬁxBo)-v,,]~/M,%fs>
w3l (ep-w) C)] 7]
( (ﬁ % BR)\/_ f€>+8k 1<F(f€ fs 27(;0f€>
2k—1

£ Y E IR, £+ TG FoL 2R )

i=1

€
— &k (uoﬁ —u) . (Efe +p x Bfe)fs, f—0>
u
2k—1 2T,
£ 8’<[(Ei +hx B,-) SV, + (E;ﬂa x B;) : v,,F,-], Oof >
i=1
2k—

_ Zl ei<[(E,- +hx B,-) : Tio(uoﬁ _ u)fg], zuloof&)Hk(A, %ﬁ), (2.6)
=1

Now we estimate the terms in the right hand of (2.6). For brevity, we only treat the first,
fourth and fifth terms since the remained terms can be estimated in the same way as

Proposition 3.1 in [22]. Note that \/LM[B, +p-Ve—(Eo+p x By) - Vp]v/Mis a linear
polynomial of p, (1 + |pD|fé] < (1 + |p|)_7|h£| from (1.24), and

11

(oo gstrior™an) "2 ()"

where « is a sufficiently small positive constant. Then the first term can be estimated as
follows:

R

< (IVanolloo + Vxttlloo + V3 Eollo + I Va Bolloo) I fE11
+ ([ Vanoll + [ Vau]l + |V Eoll + [V Boll)
X I+ 1pDIT =P} fe ) o2 T = P £
S A+ 212+ 1{T = PYFE|
XA+ IpHI=PLA L e+ 1, o)l = PL)

5(1+t)_ﬁ°IIf8||2+SII{I—P}fSII2+8%|Ih8||oo||f8|I- 2.7
By Theorem 2 in [25], we can estimate the fourth term as
8"‘1<F(fs,fs) 2T00f>
. . ey )
<t lllhslloollfsllll{l—P}fsll
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S TR oo IHT = PYAE I + X 1R oo I FE11°

For the fifth term, we use Theorem 2 in [25] and (8.17) in Theorem 8.1 to obtain

kZ v, 7+ 0 FL 2L )

]
~

-1

= Y e i e R - By )
i=1
k_ .

S 2 ST R NI P

i

N
—_

I
_

2k—1

< i pyreg2 i-1 -1\ pep2
S TP+ ) e ) IR

i=1

3. Characteristics and L°° estimates

In this section, we first establish the characteristic estimates under the a priori assump-
tions (1.27). Then the L estimate of h° will be presented.

3.1. Characteristics estimates. Inthis subsection, we will provide several characteristics
estimates for the relativistic Vlasov—-Maxwell-Boltzmann system. To this aim, we need
a uniform W1 > estimate for the electro-magnetic field [E® (¢, x), B®(z, x)].

We first note that, under the a priori assumptions (1.27),

sup [I[[E®(2), B* ()]l w1.0
tel0,T]
2k—1

< Y ENE@, By + e IER @), BROlyie S 1, (3.1)
i=0

for T € [0, ]andk>3
With the unlform estimate (3.1), we can study the characteristics defined in (1.26).

Lemma3.1. Let T € [0, ¢ 2] and assumptions in (1.27) hold. Then there exists a small
constant T € [0, T] such that fort €0, T],

|t — 7]

IDpX@)I S 5, (3.2)
2 .
d*DpX(zit.x.p) _ 1 (3.3)
dr? ~ (P9

It -t <

- det(ax(t)>‘ <2 P (3.4)
2(pY)> ap (% ' '
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Proof. We first prove (3.2). For i, j = 1, 2, 3, we differentiate (1.26) w.r.t. p; to have

dop, Xj(t:t,x,p) <(P0)Zapi P; — Pj(P -3, P)

dt (PY)3 )(T;Z‘,X,P), 3.5)

and

ddp Pi(t;t,x, p)
dt
= —[VxEj <0p, X1(z, X (T35 8, x, p))

_ [ﬁ(‘[; 1.3, p) % [V B - 0, X1(r, X (T3 1, x, p))] _
J

(P%)293,,P — P(P-9,P)
-[(

POy )(r; tx, p) x B(t, X(1; t,x,p))] (3.6)

J

Note that d,, P;(t; t, x, p) = 8;;. We integrate (3.6) over [z, ] and use (3.1) to get

SUPLcr0,7 19p; P (D)oo
||a,,in<r)||oosaij+C|r—r|( sup [, X (1)og + — <AOTL )
re[0,7] inf_cjo.77 1P7 (D)oo

Then, for sufficiently small T, it holds that

5
19y, Pj () lloo < Zfsij +Clt — 1] sup [0y, X(T)|loo- (3.7)
7€[0,T]

Noting that 9, X ; (t; ¢, x, p) = 0, and for some 7 between 7 and 7,
dP
PY@) = p’+ (=)~ (F 1, x, p) = p*+ Clr — 1], (3.8)
T

we integrate (3.5) over [#, t] and use (3.8) to obtain

2|t — 1| <|t—r|

10p; X j (T)lloo < - < , (3.9)
PRI =t o 7 1PO(D) e~ PO
for T small enough. Inserting (3.9) into (3.7) yields
10p; Pj (D)oo <2, (3.10)

for sufficiently small T. Moreover, from (1.26), one has

d?0,X;(t) (1de P; dP P)
dr2 PA\podr (P03 dr

:ap,-[_Ef‘[ﬁXBsh LSS

+
PO (pO)S
B {—VXEj 05, X — [P x (VeB® -3y, X)]; — [8,, P x B];
— 0

, OpPiP B+ Piop P E° + PiP - (ViE 8y X)
(P%)?
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Ej+[P < Bl L 3BPoENP-3,
(P0)3 Pi (P95

P
)}(r). G.11)

2 .
Then we use (3.8), (3.9) and (3.10) to bound 2% py S (14l —7)). (3.3) follows

i dt?
for small 7.
Finally, we prove (3.4). Expand d,, X ;(7) at ¢ to have

doy Xj(t;t,x, p) c—n+ (t —1)2d?3,,X;(7)
dt T=t 2 dt?
(P")28ij — pip; . (t —1)? { —V,Ef -9, X
(P%)3 2 PO
[P x (VxB® -, X)]; +[3,, P x B°;
_ -
L Op PP E*+ Pjoy P E 4 PiP - (VoE* - 9),X)
(p0)3
Ej+[PxB;  3P;P-E°(P- a,,ip)}(_)
(PO)3 Di (PO)S

0p, Xj(t) =0p, X (1) +

=(t—1)

(3.12)

Then, we have
X —1d?3,X;(%
det (XN 7 o |det _r®p. T piXj(@)
ap " P 2 dt?

3 _
3 1 T—t 3,‘j+p,‘pj d23pin(l')
| r5m

(p%)3 2 (P9* dr?

=|t—t
i,j=1

+O(1)|r —t]? H dzadjg(t) ”

4 ouwre - op| LHEOP |

d

Here I is the 3 x 3 identity matrix. By (3.8) and (3.11), we can estimate ‘det <3X(T)>‘
as

3 5 _
1 T—t 8ij+pipjd ap»Xj(T)
[T — 1P L+ O — 1P - : L (3.13)
P 2 ,.,Z:] POF  dr?
Inserting the expression of d,, X ;(7) in (3.12) into (3.13), after a long computation, we
can further estimate ‘det (BX (T))‘ as

-3
0)5

‘[1+0(1)|r e B0
2p0

[P E°
; (3.14)
V.- E°+ Z BB E§+I3-(VxxB€)](f)’.

Then we combine (3.14) and (3.8), and choose T sufficiently small to obtain (3.4). O
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3.2. L*° estimate of h®. With the characteristic estimates in Lemma 3.1, we can repeat
the L° estimate of 4 in subsection 5.1 [22] to obtain the following proposition.

Proposition 3.1. For given T € [0, 8_%], assume the crucial bootstrap assumptions
(1.27). Then, for sufficiently small g, we have

3 3 2k+3
sup (2 [11° (1)lloc) Se1h*Olloo+ sup [ £ 1)l +677.

0<t<T 0<t<T

4. W° estimates for (E%, BR)

In this section, we use the well-known Glassey—Strauss Representation in [ 14] to perform
W12 estimates for (E%,, By).

Proposition 4.1. For t € [0, T, remainders (E, By) satisfy
I[EZ (1), Bx()]lly1.
1 1 1
S-+n sup (IF Ol Ol

0<t<T

+(1+1) sup (JJA°@)Iwroo +1)
tel0,T]

+ (402 sup [(&7 A Ol +T1 0+ 1) (1 Ollow + 1]
1€[0.7]

+ sup 1Ol + (1407 sup (10Ol +e11(0) + 1)
tel0,T tel0,T]
X sup [s"*l(nfs(r)n%,l +IER®). Bx]lI71)

tel0,T]
1
+CHTO) (1Ol + IER®), BR@lll) + 8“120)]

A
Yo

+(1+ sup [Skllhg(f)Hoo"‘SIl(t)])“/l_H P [(i

1€[0,T] ref0.7) L\ €2

+ IER®, B+ 72 (10121 + ER®, ByO1I) ]
+@0et sup 15Ol +e (17O + IR0, BR011%,)

te[0,T]
1 2
+ [; + IO N+ IER @), BRI + skIz(t)] . 4.1

Proof. Proposition 4.1 is a combination of Propositions 4.2 and 4.3. O

4.1. L* estimate for (E%, By). Define an operator S by
S=0+p- V.

The remainder of the electro-magnetic field (Ef, By) can be explicitly expressed in
terms of F and SF}, as follows:
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Lemma 4.1 [14]. Fori = 1, 2, 3, one has

ATER (t,x) = ER'(0,x) + E'p (1, x) + ER'(t, x),
4n By (1, x) = By (0.x) + By'p (1. ) + Byg's(t. x), “2)

where E 10, x) and By (0, x) are initial data ofE;l and BR , and

; dpdy (w; + pi)(1 —|p%)
ES' (1, =—// Fs(t — |y — x|, v, p),
Rt x) y—x2  (+p )2 & =1y —xl.y,p)
Ix—yl<t
j dpdy (w; + p;)
E%' (1, SFeY(t — |y — x|, v, p),
R, x) = // x| 147 o ——SFp)t — |y —xl,y, p)
[x—y|=<t

X dpdy (@ x p)i(1 —|p|*)
Byl (1,x) = // T (1+lﬁ-w)2 Fr(t—1ly—x|,y,p),

[x—y|<t
- dpdy (o x p);
Bg’l (lsx) /f (SFE)(f—|y—x|,y,P),
k.S ly—x[l+p-w X
[x—yl<t
with w = 2=
[x—y[*

From the kinetic equation of F in (1.11), we can obtain the upper bound of the
electro-magnetic field.

Proposition 4.2. For t € [0, T, the remainders E$, and B} can be estimated as
ILEZ (1), BR(D)]lloo

S+ sup [IERO), BRO)loo + 14 (0)lloc]
t€l0,7T]

Cre sup [0 (IF20I + IER®). BRI,

1€[0,T]

LTI+ IER D), BROID + D0 (43)

Proof. Since the estimate of B, can be done in a same way, we only deal with E%. We
first estimate E%;';. in (4.2). Note that

L—1p* = (1+1pN(1 = pD) < 2(1 — |,
(I+p o)™ = =[ph™" = A +]pD™.

for any m > 0. Then we have

dp<(1+t) sup [|7° (1) [ oo-

ES 1< (40 sup ||h5<t>||oo/ (1+1p)-
|) 1€[0,T]

1€[0,T]

For Efé,is’ we obtain from the definition of operator S and (1.11) that



Hilbert Expansion of the R-VMB System 361

Egs(t, x)
dpdy (w,+p,)[ .
(Eg +px Bg)-V Fo](t—ly—xl,y,p)
/f ly—x|1+p R RITP
[x—y|=t
dpdy (wl+pl)[ .
(Eo+ p x Bo) - VpFg|t =y = x|y, p)
f[ ly—x| 1+p PER
\x yI=t
dpdy (w; + pi)
- f/ ———[Q(F, Fo) + Q(Fo, Fp)l(t — |y — x|, y, p)
ly—xl1+p-w
Ix yI<t
dpdy (i + pi)
kl & 5
F&, F&)(t — |y — x|, v,
// b2 1+ o 7 QWFk. Fp)t =y —x[.y. p)
[x—y|=<t
2k71
dpdy (w +p)
// |y—x| “ Z[Q(F,,FR)+Q(FR,F)](; ly =xl,y, p)
[x—yl<t
dpdy (wl+pz)< .
ES+ BE)-Vth— —xl,y,
/:/ |y—x|1+p RTDP X Dbp pFR( ly —xl,y, p)
[x—yl<t
dpdy 2k (w + pi)
PO (R v p B-)-VF*’]t— —xly,
/./ |y—x| 1+p w[(’ px Bi) - VpFg|t—ly—xly. p)
[x—y|=<t
a’pdy 2k (w; + pi)
g TP (pe g p BS)-VF]:— — x|,
// ly — x| 1+13~a)[< R¥P X Br)-Vpki|(t=ly=xl.y.p)
[x—y|<t
dpdy (w; + )
// dpdy (@i pi) At = |y — x|, y, p). (4.4)
ly—x|1+p o
[x—y|<t

For the first term in the right hand side of (4.4), by integration by parts w.r.t. p, it can
be controlled by

Vi Sup](II[ER(t) BR(I)]IIII(1+IPI)F0IIL1) SVL+t sup [[ER(1), BrO]I.

te[0,T t€[0,T]

Integrating by parts w.r.t. p, we bound the second term in the right hand side of (4.4) by
Vil(L+1pDv Mz sup (ILEo(@). BoO]llscll £7 @) S VT+1 sup [ £
1€[0,T] 1€[0,T]
Noting from (1.7) that,

1 1 1 1
(L+[phHM(pH))*(M(g")N* = (1 +[pH(M(p))* M(g)* < 1,
we use (8.17) in Theorem 8.1 to control the third term in the right hand side of (4.4) by

1 dpdy 1 1 ensl IO
[ S ooyt @t eoemt S
€ ly — x| Mz

lx—yl=t
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+Q( T MO |61y =2y p)

: / =1y =l
—_— _— _x’
£ y — PG

lx—yl<t

1+t

A

N

sup £ ()]l

tel0,T]

Similarly, the fourth term and fifth term in the right hand side of (4.4) can be estimated

g1 /f P (4 DM M@ 0 M MO Iy =5l 3. p)
[x—y|=<t
d
Set! / L e =1y = xl I
N ly — x| b
X—y|=

<V s (Ilf"(f>||p||f8(f)||”>
t€l0,

ST swp (I OIR+ IV 0IR).

tel0,T]

and

) dpd
Y il // |y_L(l+|p|)(M<p>)%<M<q)>%[Q<f8M4 —>

S e awn! / |d_yx|||f€<z—|y—x|,y)||L;,
i=l lx—y|<t Y
2k—1
SVT+e sup (Zel L+ ol),

tel0,T]

respectively. Similar to above estimates, the sixth, seventh, eighth and ninth terms can
be controlled by

CENIA+IpDVMIlL Vi sup (|| ER(®), Byl 109

2k—1

+C Z g1+ |p|)\/_||L2\/; SUP](II[E i (1), Bi]llooll fE O]
i=1
2k—1

+C Y eV sup (I +IPDFN IER (), BrOIl) +Ce* sup To()
i—1 t€[0,T] te[0,T]
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ST+t sup [ (IER@. By + IV f 01

1e[0,T]
2k—1

o 3 e AT (L Ol + IR, BRI +6° D) .

i=1

We collect the estimates above to get (4.3). O

4.2. WL estimates for (ES,, B%). The gradient of the remainder of the electro-magnetic
field (E%, By) can be explicitly expressed in the following:

Lemma 4.2 [14]. Fori, j = 1, 2, 3, one has

: ~ dpd )
ax,E;’(t,x):ax,E;’(o,xHf/ |yliy|3“ w. PYFE(t — |y — x|, v, p)
lx—yl=<t
+O(1)+//| w, P)(SFR)(t — |y —x|,y, p) (4.5)
[x—y|=<t
// S drd y 0, PYSZFL( — |y — x1, ¥, p),
[x—y|<t

where ij E;’l(O, x) is a derivative of the initial datum. Moreover, the kernels a, b, ¢
above are smooth except at points where 1 + p - w = 0, and satisfy

0 . P < L+ p-) . f dwa(w, p) =0,
|lw|=1
(ii) lb(w, P)I S A+ p-w)™>,
(iii) lc(w, I S (1 +p-w) 2 (4.6)

The gradient of the magnetic field oy, ;l admits a similar representation as (4.2), but

with slightly different kernels ap, bB and cp for which the properties (4.5) and (4.6)
remain valid.

Using again the definition of the operator S and the equation satisfied by Fp in (1.11),
we have the following gradient bound estimate.

Proposition 4.3. Fort € [0, T, the gradient of remainders E%, and By, can be estimated
as

[V Efg(t) Vi B (1)]1lloo

1
<0t s (IFOIlFO1)

0<t<T
+(1+1) sup (JJA°@)|lwroo +1)
tel0,T]

+ (402 sup [(87IA Ol + 1O+ 1) (1 Ollow + )]
1€[0.7]
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sup [ F* Ol + (107 sup (5 Ollow +eT1(0)+1)
t€[0,T] te[0,T]

k—1 €t2|+ ESI,BEI 2]
xtes[gpﬂ[s WOl + IER @), Bg@)]ll51)

+CHT) (17Ol + IEER O, B0+ 0]

1
+(1+ sup (1 (o + TN ONVT+ sup [ (5 + D)o

t€[0,T] tel0,T
+ IER®), Bl +¢ 72 (10121 + IER®, ByolI) |
+@0et sup (175 Ol + e (17O + ILER®, By011%,)

t€l0,T]
1 2
+ [g +ZIOIALfEN + IER (1), BRI + Eklz(t)] . 4.7

Proof. We estimate the three integrals in the right hand side of (4.7) one by one. Noting

that
dpdy .
// 3a(wsp)F§(t_|y_x|7y3p)
ly — x|

[x— >|<t

dpda)dr o e
; ——a(w, p)Fp(t,x+ (1 — 7)o, p),
S? -

we use (i) in (4.6) and (1.23) to have

/f o |3“(“’ PYFs(t — 1y —x1,y, p)
[x—yl<t
d da)dr
// / apaedr w, p) [FR(t.x + (1 — Dw, p) — Fi(z, x, p)]
]R"ﬁ SZ r—T
<t sup ||vxh€(r>||oof dp(1+1pD*(1+1p) PV Iu
t€l0,7T] R3
S(L+1) sup [ Veh (0)]lso-
1€[0,T]

For the second integral in the right hand side of (4.7), one has

dpdy A e
[ b, sERE 1y =2l p)
ly — x|

lx—y|<t
// dpdy b ﬁ)[(E; +hx B;) -V, Fo+ (Eo+[3 x Bo) -V, F
[x— y|<t|
- é[Q(F}Z, Fo) + O(Fo, Fp)1 + "1 Q(F§, F)
2k—1

+ 3 ETNOE, Fi) + Qg Fol+ & (Ef+ b x By ) -V, Fy
i=1
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2k—1
+ 3 & ((Ei+ px B VypFi+ (B + p x B - V,F)

+8kA](t—|y—x|,y,p). (4.8)

We only estimate the term %[Q(Fe, Fo) + Q(Fp, FI%)] in (4.8) since other terms can be
estimated directly. For this term, by Holder’s inequality, we have

dpdy
[[ b, 20w R + QG Fle = by =+l p)

lx—yl=t
1 dy i’
N / sIFE@ =1y —xl,»I;, sup IIhg(f)lloo
€ |y _x| P O<t<T
lx—yl=<t
1 Ly3d e L e %
S ot3TECON sup (D%
€ 0<t<T
1 1 1 1
S=(+0% sup (@O @)12).
2 0<t<T

Then we use (4.3) to further estimate (4.8) as

dpd )
// P b, HSF —ly —x1,y, p)
|y — x|

[x— y|<t

(1+t)4 sup (||h° (t)lloollf 1)

0<t<T

+ ) sup [F7RE O + 1+ TUONIA Olloe + E 11 Ollow + 1)
tel0,T]

X ILER (), By O]lloo +eTi (1 (O)llow + I ER (0, Bi(0)]llo0) + £ 120
<awnt s (IOILIFO1F)
0=<t<T

+ @402 sup (R Olloo+ Ti0 + 1) (14150 l1c) |
te[0,T]

#0403 sup (FIn Wlloe+ e +1) sup [T+ UL 01,
1€[0,T] 1€[0,T]

1
+IER (1), BRO]II; w)+ +Il(t))(llf€(f)||+|I[Efg(t),Bfe(t)]ll)]-

Now we estimate the third integral in the right hand side of (4.7). It holds that

// 5 c(w PISPFR)(t — |y — x|, v, p)

lx—yl=t

= [ == @ DO p VO Bl px B VoFo |~ 1y = xl.v. p)

[x—y|=t
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e ff €@ D@+ p V0 Box px By V| =1y = xl. v, p)
[x—yl|<t
1 dpdy . . . .
g /f 5 €@ D@+ - VOLQ(Fy. Fo) + Q(Fo. Fil(t = Iy = 1. . p)
[x—y|=t
+ek~! f/ > c(w DY@+ P VO OQ(Fg, FR)t — |y —xl. . p)
[x—y|=t
dpdy 2k—1 . A A . )
+/f ly — x| Y& e, )@+ - VOIQ(F, F) + Q(Fg, F)l(t — |y — xl, y, p)
lx—yl=t i=1
// B c<w D@+ p Vo[ (Ex+ 5 x BR) - VpFg|t =1y =1, v p)
[x—y|<t
dpdy 2k—1 . . R ) .
* // Iy — x| ZgC(a)’p)(at"'p'vx)[(Ei‘*'PXBi)‘VPFR](I_D’_XLY’P)
lx—y|<t i=1
dpdy 2k—1 i ) A o )
//| X e, o+ p Vo[ (Er b x BR) - pFi]a — 1y =y p)
[x—y|<t i=1
// L0, 0+ 5 VAC 1y =] 3. ). (4.9)
[x—y|=<t

For the first term in the right hand side of (4.9), we use the Maxwell system in (1.11)
and (1.17) to have

[[| S @i V[ b x B VR~ 1y =2l
[x—y|=<t

=[] @ D@ B VOER T b x Bl ol — 1y = xl.v. p)
Ix—yl=t

v [[ o @ DB+ B x By @ox p VoV, Fola — 1y = xl v p)
[x—yl<t

dy e € €

| /| |yfﬂ(|VXER|+|VXBR|+/R3 dpVMIf¥1) (= 1y = I, )

x—y|<t

xsup[ (1+1p2IV, Foldp

t S%p ILER @), BxO]] sup/ (1+1pD*@ + p - Vo)V, Foldp
t€[0,1]

SV1+t sup (ILER@), Bl + 15 @]) -

tel0,1]
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Similar to the estimation of E ;’is, the second term in the right hand side of (4.9) can be
estimated as

dpdy ~ A ~ €
@ YOt b VO (Bok px By VpFi]a — 1y = xl . p)

3]
lx—yl=t
d d N A A €
~ [[ e @5 Voo hx B9, Fg] =1y =5l
|x—yl=t
- [ 2 @ D[ Borpx By G+ p VOV FR i 1y = xl. v p)
Ix—yl=t
dpd
<= [[ P F, (e )G+ o+ b x B~ 1y = xl.v.p)
ly — x|
|x—y|<t
dpd . . . R
~ [ 5 VR, [c@. B Eo 5 x B0~ 1y = xl 3. p)
Ly — x|
lx—yl=t
= o (U4 IPD20V FRIEol +1BoD)e = [y = x| . p)
Ix—yl=t
SV sup (17Ol + e (177 O + IER @), BRo1I3)
tel0,T]

1
+ -+ DO+ ILER D). BRI+ D) .

For the third term in the right hand side of (4.9), we only need to estimate the integral
of Q(F%, Fp) since the other integral can be estimated in the same way. Rewrite this
integral in the following form:

1 dpdy . . .
e /_/ ly —x|c(w’ PO+ p - V)IQ(Fg, Fo)lt — |y — x|, y, p)

lx—yl=t
1 dpd ) . ) .
= [ 2w [0 8 + 5 0 Ve FD |~ Iy = 2ty p)
e JJ =
Ix y|<t
dpd A
o1 [[ e Q@ Py P+ 5 QO Fr F) (e =1y =l 3. )
Ix yi=t
=Hi +H>. (4.10)

Here we denote ;| and H> as the two integrals in the right hand side of (4.10). As the
estimation for the third term in the right hand side of (4.4), H; can be controlled by

Vst (1)]l. For Ha, we have

dpd
— o [] e pp 0 R = 0 Ve R = by = 5l 3. p)

Ix yl=t
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// 5 . P)OI(ESG +p x BY) - VpFo. Fol(t — |y — x|, v, p)
\x y|<t
// B . P)QI(Eo+ p x Bo) -V Fi, Fol(t — |y — xI, y. p)
\x yI<t
1 dpd o
~ PEY (. PYOIQ(Fy, Fo) + O(Fo, F). Fol(t — |y — x1, v, p)
|y — x|
[x—y|<t
g2 // > c(w P)QLO(Fg. Ff). Fol(t — |y — x|.y. p)
[x—y|<t
dpdy 2k—1 =
/f 3 el POLOUE Fip+ QU . Rt 1y =13 )
lx—yl=t
ok—1 P y
f/ 5 . P)OI(ESG + p x BY) - VpFg. Fol(t — |y — x|, y. p)
[x—y|<t
dpdy 2k—1 .
// y —x] - Ze c(w, p)OI(E;i + p x Bi) - VpFg, Fol(t — |y — x|, y, p)
lx—yl=t
dpdy Zk_l R, e . A pe
< ] 2w DU+ B X By ol =1y =51,
[x—y|=<t
dpd .
et f[ ﬁC(p)Q(A,Fo)(I—Iy—XI,y,p)- “.11)
lx—yl<t

Similar to the estimation of the third term in the right hand side of (4.4), the first, second

‘/}? sup; o, 7111/ * (@)
g1 + ILE% (), BR(1)]I), and the upper bound of the fourth term is
V1+t 1+t
75— Ssup ||Q(f€M4 —)(l)|| S sup || fE(@) Il
€% 1el0,T] \Y & e 1efo.7)

For the fifth term in the right hand side of (4.11), its upper bound is
$2VT+1 sup QU ME, FEMDOI S 2V T+1 sup £ @I
1€[0,T] 1€[0.7]
Similarly, the sixth and tenth terms in the right hand side of (4.11) can be controlled by

2k—1

\/1+t28i_2 sup L+ O +V1T+1e5" sup ().
po 1€[0.7] 1€[0,7]

For the seventh, eighth and ninth terms in the right hand side of (4.11), after integration
by parts for the momentum variable, we obtain their upper bounds as follows:

VI sup (1501 + IER@). BRI,

1€[0,T]
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21
+\/1+t28i_ sup (1+t)’ Nl
i—1 tel0, T
%-1 ‘
+V1+t Z el sup (1+0)TNIES®), BL]I
i—1 tel0,T]
S+t S‘épﬂ [ k71(||f€(f)||%.11 +[[ER (1), B;Q(t)]“%-]l)
IE

+ T ON + ITER (@), Bi(t)]ll)]-

Collecting the above estimates in (4.11), we further combine (4.11) and the estimate for
‘H1 to obtain a upper bound of the third term in the right hand side of (4.9):

1
Vit [—2 sup IIF° (0l + sup [ﬁ(nf Ol +11E 0, B®1D)]
&% tel0,T] t€(0,

2SOl +IER @), Bl +6 7 20 |.

By slight modification, the fourth term in the right hand side of (4.9) can also be con-
trolled by

1
VI+i| = sup 5@l + sup [ﬁ(nfe(r)uﬂuE 1), Bzl
&7 1el0,T] tel0,T

+ 2 Ol +IER ), Bl +6 7 () | sup (&1 (1) oo)
tel0,

And the fifth term’s upper bound is
1
Vi s 1o+ s [P @+ iR, Bron]
€7 1€[0,T] 1€[0,T]
+ 2O g1 + IER @), BROllg) + ' T2 | sup (7101,
t€l0,T]

Slightly modifying the estimation of the first term and second term in the right hand side
of (4.9), we bound the sixth term by

Vi+1 S[gPT](II[Efe(t),Bﬁ}(t)]llyl+|If8(t)||) S[UP](SkIIhS(t)Iloo)
tel0,

I+1 sup [Ilf Ol g1+ (IOl + IER @), BRO1l1)

tel0,7T]

1
+12 +Il(t)](||f8(t)||+II[EE(I),Bfg(t)]ll)+8k12(t)] sup. (8 IER @), B ()]l

t€l0,

< +niek sup [(1 +[1h° () lloo) [ (ILER (). B;a)]n,,l +IFEON3)
t€(0,T]

1
+1F Ol + IER@. B Ol + (< +Ti0)) (L7 Ol + IER (0). Br®)1I)

+ s’%(r)]] +(1+0e" sup [sk‘l (ILES (1), B30 + 1£5O113,1)
t€[0,T]



370 Y. Guo, Q. Xiao

IOl + (5 +TO) O+ IER O, Byl + L]

Correspondingly, the upper bound of the seventh, eighth, and ninth terms in the right
hand side of (4.9) is

Vit sup [eZ1(D] sup (IER®D), BRIl +101)

1€[0,T] t€0,T]

[+1 sup [¢Z;(1)] sup][llf Ol + 7 (1FE O30+ ER@). Be®]I31)

te[0,t] tel0,T

LTI + B0, BRI + B0 | + VT 1k sup o
+e[0,T]

L+1 up [e:fl O (IEZ @), B30 + 1LFEON3) + 1£5 Ol
te

+[I[ER @), BrO]ll g1 +( + T Ol + IER @), BR(t)]II)+€k12(t)]+8k12(t)]~

O

5. W1>° Estimates for h¢
In this section, we present the W !> estimates for A°.

Proposition 5.1. For given T € [0, 8_%], assume the crucial bootstrap assumptions
(1.27). Then, for sufficiently small e, we have

3 3 2k+3
sup (315 )llwie ) Se3NRE Ol + sup 15Ol +275 .

0<t<T 0<t<T

Proof. With the basic_estimates along the curved characteristics in Lemma 3.1 and
the nice estimates of k; and k; in Corollary 8.1, the proof can be done in a similar
way as the L* bound estimate in Sect. 5.1 of [22]. However, different from the wloo
estimates in [22], we don’t apply integration by parts to avoid estimating the norms
IVx,p £€(@)] during treating the most difficult term Ky o, (h°), and we directly use the
norms ||V , f°(¢)] instead. Take the L°° estimate of D, h® for example. In Sect. 5.2 of
[22], D, h® was written as

D hé(t, x,v)
] t s ] t
:...—-/ f exp[——/ v(z)dr}(KM,wahs)(s,X(s),V(s))ds+...
& Jo Jo & Js

1 t S—KE 1 t 1 s
=...+—2/ / exp[——/ v(t)dr——/ v(r)dr}
e~ Jo Jo e Js € Js

x / IN(V (), V)N (V(s1), V") Dehe (51, X (s1), v")dv'dv"dsids + . ..
B

1 t S—KE 1 1 d 1 s d
—2/0/0 exp[—;/sv(t)r—g/ﬂv(r) ‘L’}

d /
X / IN(V (), V)IN(V(s1), V") Dyh®(s1, X (51), v”)ld—vldydv”d51ds oo,
B y
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(5.1
where B = {]v/| < 2N, |v"| < 3N}. Noting that the volume of B satisfies |B| < N°
and | | < g3, the upper bound of the last expression in (5.1) is

Cn
S ID I

It should also be pointed out that in our case, we don’t need extra weighted L™
estimate for h°. In fact, for estimates related to K (h®), no extra weight arises due to

Corollary 8.1. For a typical term %D Q(“/LT”hE F;), extra weight for 4° is not

necessary because Jys is a global Maxwellian and «/XTI can also be controlled by a

Maxwellian. While for %D b Q(@hs, F;), it can be estimated similarly as Lemma
2 and Lemma 5 in [25] without extra weight for ¢ arises either. 0O

6. Auxiliary H! Estimates for f¢

In this part, we continue to perform the L? energy estimates for the first order derivatives
of the remainders (f®, E%, B%). We first deal with the space derivative estimate.

Proposition 6.1. For the remainders (f°, E%, BY), it holds that

%(H@vxf%) I+ 009 o). VB on1?)

SoTm _
+ (T2 = CE IR oo ) IVLT — PP
2¢

S [+ P Zie) + 1 g + T ] (16713 + 1ER, BRI ) OV

1
F(SA+070 0 (e P ) )2
£
7
+ e 1 (L+ 07 PYRE ool FE I + X T (O IV £2)1.

Proof. We take D, to (2.1) and (2.2), and proceed similar derivation as (2.6) to have

2Ty 5
2d, H\/7 Dy f* <f>H +I[Dx ER (1), Dy BR(mn) ~(DyL{1 - P}f*, D, f°)
:I 2T0 D, f )

f [a,+,3.v (E0+pro) V]N,?Dxf8>

Dx[<E0+ﬁ x Bo> SV, fE
Dy
vM 0

|
|
.

P

9+ V. —(Eg+pxBy)-V ]JM} %Dxfg>

stx[&[

+o{l(es ) () ]oer. s

(o[ o)+ o[

(o33 5oer]
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+(Du] (Eo+p x By -V, 17, %Dxf)
s, 9. 20 ?)
X ’ To0 T

Py e “pdrs, o+ L 20D, )
i=l1
o5 (srss e B
+gk<Dx[(E;+ﬁxB;>-vpf8] %D f>
Y (B xB) Vs
i=l
2

) eour

~
—_

2Ty
: &

i

g"(Dx[(E;; +hx B;;) v, F; Dxf5>

[
~

-1

N

I
—_

Api[(5r+h x 81) o (05 - ) 1] S5h0er]

DXA7 uo Dxf ’ (62)

L

+8k

—

For brevity, we only estimate the second term in the left hand side of (6.2), the second,
seventh, eighth terms in the right hand side of (6.2). The rest of terms can be estimated
similarly as these terms or the corresponding terms in Proposition 2.1.
We first estimate the second term in the left hand side of (6.2). Noting
— Dy L{I—-P}f%)
=D, / dg / do——B(p. 4. o)VM@I{I - P} * (p)vM(q))
R3 s? pPq
+{I=PL*(@)WM() — (1= P} (VM) — (1 - PLf* (@VM(p)])
= / dg / do—5—5B(p, g, @) DM@ (1= P)f* ())VM(g")
R3 sz Pq
+{I= PS5 (@)WM(p) — (1= P} (p)VM(g) — (1= P} f* (@)vVM(p))
- f dg / do——5B(p. g. )V M(@) ({1 = PLf* () DNM(g)]
R3 s pPq
+{I =P} (@ [D:VM(p)] = (1= P} f*(p)[D:vM(q)]
— (1= P}f* @ID:v/M(p)]) — LDAT = P} f)

by the expression of the operator L, and

= P}Dy f© = DT =P} f¥1| = [IPDy £° = DeP 21| S (IVanolloo + I Vxttlloo) P £,
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we have

1 o 219 ¢
(DL~ P, 0D, f)
230TM

C
1D AT — P} fe|)? — 5 UVanolleo + [[Vxttlloo) IP AN DT — P} £l

- = (||Vxn0||oo + [ Vxrtlloo) 1 fENUIDLAT = PYfEN + [T = P} £7])
350TM

| DX — P} €12 (1+t)‘2’5°llf8||2-

Here we used the integration by parts w.r.t. x when the operator D, hits the local
Maxwellian in the operator L. Note that Dg{«/%\*/l [0, + % -V —(Eo+p x By) - V,1vM}

is a cubic polynomial of p, (1 + |p|)3 f¢ < (1 +|p|)~>h?, and

([ sarma) < ()"

Then, similar to the estimation of (2.7), the second term in the right hand side of (6.2)
can be controlled by

A+ P FE13, + gu{l —P)D. fEIP + e T (14 1) PR oo £
Now we estimate the seventh term in the right hand side of (6.2). Note that
DT (f%, f°)
= 0.( [ da [ do— 5B q. VM@ (0@ - (D) @)
R3 S? pPq
=T(f% Do f) + T(Dy . f7)
+ f dg / do——B(p, ¢, ) DNM@L (P f£ @) = £ (P) [ @)].
R3 s? pq

Though M is a local Maxwellian, we can obtain from (1.24) that

1
VM + [D,VM| < T2, (6.3)

for &g sufficiently small in (1.20). In Theorem 2 of [25], energy estimates for derivatives
of the nonlinear operator I corresponding to a global Maxwellian were given. Then, we
can use (6.3), Theorem 2 in [25] to obtain

& porrt, £, 200, )

2T,
< IG5 Daf™) + DD 7 ). =5 L= PID, )
+ CeF 1 (IVenolloo + I Vatlloo) 1A ool FE NI Dy £21
S T2RE oo I VAL = PYFE N2 + X 11hE oo I Vi £112
+(L+0)7PDe FEI2 + A+ )P[0 oo P £E 112 (6.4)
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Similarly, by (8.17) in Theorem 8.1, the eighth term in the right hand side of (6.2) can
be estimated by

2k—1
g™ 1<F(F,,D 18+ T(Dy f5, B, {I—P}D f>
i=1
2k—1
Y E T IDDFL ) + TG DL ST~ YD)
i=1
2k—1 )
+CIVanolloo + 1Vxttlloo) D & N Fillgera L f° NI Dx 71l
i=1
2k—1
SEHE=PiD, e (Y a0 ) AR 9P
i=1
2k—1 ] ]
(0PN T A T I+ IV £ (6.5)

i=1
O

Next we deal with the momentum derivative estimate for f¢. Due to the Maxwellian
structure in the Macroscopic part, it is enough to perform momentum derivative estimate

for {I — P} f¢. Moreover, as illustrated in the Introduction part, this technique is also

necessary for us to make use of the strong dissipation term i and close our energy

estimates. Take microscopic projection onto (2.1) to have

a,{I—P}fs+,3.VX{I—P}f€+{I—P}[2—‘/TI\_:<u0ﬁ—u) : (E;;ﬂa x B;)]

L &
—<E0+ﬁxBo)-V,,{I—P}f8+Tf

2k—1

+ekIr( e, f)+Zg [C(F;, fO+D(f5 F)l+e <E§+ﬁxB§>

i=1
V(I —P}f* —ekzLTO(uOﬁ—u) : (E;ﬂs x B;){I—P}f‘"

2k—1

+ Z si[(Ei +p x Bi> . V,,{I—P}fg+{I—P}((E§a +p x Bp) - VpFi)]
i=1

—2ilai[(E +pr) 21T ( Oﬁ—u){I—P}fS]
i=1

+ eI - PYA +[[P, g p1If°, (6.6)

= (Pd, f* — 0, Pf*)
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where [[P, g g]] = Pt p — g, P denotes the commutator of two operators P and
TE, B given by

‘L’E,BZpA'Vx—(E()+ﬁXB())-VP

1
+—[8,+ﬁ-Vx—(E0+ﬁxB())-Vp]x/M

M
k
&
—s"(E;“a x B;).vp+—(u0ﬁ—u) : (E;+13 x B;)
2T,
2k—1

. R 1 R
— ; el(E,- +p X Bl'> [V — Z—To(uop—u>].

The momentum derivative V,{I — P} f* can be estimated as follows:

Proposition 6.2. For the remainders (f¢, E, By), it holds that

SNV =R O+ (32— CF 2 1o IV (1~ PP
S[aenTo et + o1+ e 10 e | (1710 + 1B BRI
F =PI+ 5 1 o7+ e B0V 71 6.7)
Proof. We apply D, to (6.6) and take the L? inner product with D {1 — P} f¢ on both

sides to have

1d
327 1Pr I—PHf I+ _<D[7Lf8aDp{I_P}f8>

+((Dpp) - Vx{I =P} f*, Dp{I =P} f*)

+<D,,{I — P}[(“Og’# : (E; +hx B;)], D, {1 - P}f8>

—(Dp[(Eo+ b x Bo) - VL= P}f*] D1 - PLs7)
- —<Dp[%(a, +p-V,— (Eo+p x Bo) - VP)JM], D, (1 —P}f8>
+<D,, (Po, f* — 9,Pf%), D,{I - P}f€> +s"*1<D,,r(f€, 7). D1 - P}fﬁ)

2k—1

+ 3 e DD (EL 1+ (L F)L Dy(L =P

i=1
rot{o 57 Do @ —w - (Ej+ b x B3) = P1s* ] Dyl - Py
+ 19"<D1,[(E§e +px Bj}) -Vp{I - P}fs]’ Dp{T - P}f8>

2k—1

+ 3 el (D[ (Ei+ b x B) - V1= P} f°]. D, 1— P} f)
i=1
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2k—1

+ > (D= P (Eq + 5 x BR) - Vo i |, Dy 1= Py /)
i=1
2k—1

Sl o) -} o)

+e(D {1 - P}A, D, {1 — P}f8> + <D,,{1 — P} ([P, 72,511 /%) . DI — P}f6>.
6.8)

For brevity, we only prove the second, fourth terms in the left hand side of (6.8) and the
first, second, third, fourth terms and the last term in the right hand side. We first estimate
the second term in the left hand side of (6.8). Similar to (6.3), one has

1
VM +|D,VM| < I (6.9)

Note that energy estimates for the momentum derivative of the collision frequency v
and operator K, which correspond to a global Maxwellian were proved in Propositions
7, 8 [25] via a splitting technique and different expressions of the relativistic collision
operator in the Glassey—Strauss frame and the center of mass frame. We combine (6.9)
and Propositions 7, 8 in [25] to estimate the third term in the left hand side of (6.8) as

1 780 C
S(DpLf*, Dp{L=P}f*) = == D, - P} fe)* — —Ir- P} /|12
For the fourth term in the left hand side, it can be estimated by

8o

1D, (L= Py 712+ Ce (I ERI® +11BR 1)

For the first term in the right hand side, we integrate by parts w.r.t. p when D, doesn’t
hit f¢ and bound it by

SHDp{I — P}l + TR looll £ -
Noting
IP3, f© — 3PN < (10imolloo + 10rulloc) IIP £41I,
we can bound the second term in the right hand side of (6.8) by
g—‘;nDp{I — P} eI+ Ce(L+0) 720 )2,
By Theorem 2 in [25] and (6.9), we can bound the third term in the right hand side by
2R oo IV (= PLIE P + Ce % ool £ 11

Similarly, we control the fourth term in the right hand side by

2k—1

o 2 i—1 2 2
1D, L= P) £ +Ca[281 (WFillez + 1D, Filger) | 1713
=
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2k—1

< DT~ P71 + Ce Y Vs,
Similar to the above estimates, the upper bound of the last term in the right hand side is

1
L IDH L= PYf I + [ell + TO) + 410 oo | (177130 + IERe BRI )
O

Finally, we multiply (2.3) in Proposition 2.1 by a sufficiently large constant C, combine
it and (6.1) in Proposition 6.1, (6.7) in Proposition 6.2, and use (1.27) to obtain

Proposition 6.3. Let 0 <t <T < e_%. Under the assumptions (1.27), one has

oo H\/Tof O +IER ). Byn?) H/»v rol

+ IVER(D), VBRI + 1V, (1= P) (1)1
S {170 w e+ Zi@) + e 18 e | (167130 + 1By BRI )
+ é(l e Vo ROl G L O Fa

7 11
+et A+ D)0+ TR ool 41 + T2 f¥ Nl 11 (6.10)

7. Proof of the Main Result

This section is devoted to the proof of Theorem 1.1.

1
Proof. ForO <t <T <e¢&~2,one has

nos Y (+nel (Y e T e1) S 1,

1<i<2k—1 1<i<2k—1

k < ok 1-2k i+j—2
k@) < e > e 7K1 +1)e) 1)
142k <i+j<4k—2

i+j=2
< Z gl=ke™2 <el.

142k <i+j<4k—2

D=

We combine the a priori Assumptions (1.27), (2.3) and Proposition 3.1 to have

dl H\/ZMTOO Iz (t)H +ILES (), BR(t>]||2) %H{I—P}fsu2

< (31 Olloo + e Ire@l+e™E)

0<r<e™
S (s +||<ER,BR>||) Sl
[+ L] (1512 + 1B, BRIP) + T2l £l
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Then, for T < 8_% , Gronwall’s inequality yields
IFEON+I[ER@), Bl +1

t
S (175 @1+ IER©), By +1]exp | fo Ca

[N}

3 2k+3
x (e21h Olloo + sup 17 (0)lI+675")

0<s<e 2
(1 +5) P+ 6T, (s) + skIz(t)]ds}
S {15 O+ I1ER ©), BrO)]] +1]
xexp{CU+Ve) +[eF+ 2 (30 O)loo+ sup (7@ +1)].
1

O<s<e 2

Here we used f(;(l +5)"Pods < 1 and (7.1). For ¢ sufficiently small and T < a_%, we
further obtain

L£7 01+ ILER®), BR®l] +1
< (17O + ILER ), BRO)1]+1]
x[1+ @3+ D) (211 Ol + sup 177 @1+1)].

0<s<T

Letting ¢ be small enough, we obtain that fort < T < 8_%, k>3,

sup 1(IIf‘E(t)II +I[ER @), BRI +1

0<t<e 2
SO+ ITER0), BR Ol + e21|h° (0) oo + 1.
From Proposition 3.1, we further obtain
sp (21 W lo) + sup (LF O+ ILER (). B0l + 1
0<t<e~ 3 0<t<e™ 2 (7.2)
S IO+ ITER0), BR (O]l +e3 [ (O]l + 1.
Now we combine (6.10) and (7.2) to have

O(H\/%fg(t)”z+II[Efg(t),Bfe(t)]HZ +H\/§fo‘s(t)H2

+[[[VxER (1), Vi Bj (t)]II + IV {I=P} () ]
< [[(1 +0) Pyl + () + ak||hf||W1,oo]
g2 & N2 1 k &
X (IIf 710 + I(ER, Bp)ll7 +;> +&" LN f g,

Noting

2T0 2
+1(E%, B2

£ + 1B BRI ~ | =
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2Ty e
+y Vs

we further apply Gronwall’s inequality in the above inequality to obtain thatfor T < ¢
and ¢ sufficiently small,

2
+[|(VeER, Vi BRI + [V, {1 = P} )1,

1
27

1
15Ol + IER @), BrOllg + WG

1
S (IIfS(O)IIHI + I[ER(0), BR(O)]ll g1 + ﬁ)

xexp{C(l+r¢§)+te’<*%(e%||h€(0)||wl.w+ sup ||f8(s)||H1)}
0<s<1/./¢

1
S (IIfS(O)IIHI +I[ER0), BR(O)]ll g1 + ﬁ)
3
x [T+ 2 (210 Ol + sup 175l ) | (73)
0<s<l/\/e
Taking ¢ sufficiently small in (7.3), we get for k > 3 that

1
£(¢ + |[E% (), B%(1)] +—
05z85113ﬁ(||f()||H1 I[ER @) R()”Hl) NG

] (;.Z)
~ \/— ’

From Proposition 5.1, we further obtain

sup (82||h8(t)||w1.oo) S &R O) e + VeSOl 1 + I[EZ(0), B0l 1) + 1.

0<t<T

(7.5)

We combine (4.1), (7.2), (7.4) and (7.5) to obtain (1.25). Note that (1.25) implies the
assumptions in (1.27) and these assumptions can be verified by a continuity argument

. _1
foralltimet <7 <e¢72. O
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8. Appendix

Our Appendix is about three problems: the derivation of the kernel of operator Kyg in
(1.21), estimates of the kernels related to K| and K>, and the construction and regularity
estimates of the coefficients in the Hilbert expansion (1.8).
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8.1. Appendix 1: Derivation of the kernel ky. In this part, we derive the kernel k; of the
operator K». For K;, (i = 1,2) given in (1.21), their kernels are defined as

Ki(f) = /R daki(p. ) f(@).  i=12.

Following the derivation of k;(p, ¢) for a global Maxwellian case in the Appendix of
[37], we can obtain the following expression of k»(p, ¢) for our case:
3

Cis2
ka(p,q) = gp‘oqul(p,q)exp{—Uz(p,qn, (8.1)

where C is some positive constant, U (p, g¢) and U;(p, g) are smooth functions satis-
fying

Up(p.q) =1+ 0(1)|u|]%,
08
U _ PP+ +oMull (P +¢N)[1+00)|ul]
l(pa C]) - 2 3
Ux(p, q) 2[Ux(p, q)] 2[U>(p, q)]

The proof of (8.1) can be proceeded similarly as in the Appendix [37] except for the esti-
mation of additional terms w.r.t. the velocity u, which arises due to the local Maxwellian
M.

As in [37], we first write the operator K> as

1 d dq’ dp’
kaf) =g [ 8 [ 9% [ BV M@VM@) )+ M) £
P IR 47 JR3 4 R3 D

After the same exchanges of variables ¢, p’, ¢’ and changes of integration variables as
in [37], we obtain the following form of kernel k>

utp

‘)
2Tp

C dp -
ka(p,q) = —/ —o8U(g" = p")Pu)s eXp[
p°q° Jrs PO g
where the integration variable p,, = pLL + ql’i and § = g% +4 with

_ 1 -
g =g+ 50"+ ") P+ qu — P
Introduce a Lorentz transformation A which maps into the center-of-momentum system:
Al = AI;(PU +qv) = (\/Es 0’ 09 0)7 B" = _AIJ(PV - qv) = (07 07 Os g)
Here A is the following Lorentz transform derived in [34]:

P2+¢°  pita  patgr patgs

NN
A — (A/L) — AO A] A2 A3

= v) = 0 (pxg)1  (pxq)2  (pXq)3 ’
[pxql [pxql [pxq|

P’=¢" _pi—at _p—@2 _pi—a3
g g g g
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2|pxq|
where Al = and
0= o5

Al 2P+ ap ) +ai@® + pOp a0l
’ g+/slp x q|

Define i* = Alu’:

0 0y,,0
ﬁoonu”—(p +q°)u _(P+C])'M

RV NOE
a2l xale 20p(p0 +4°p"q) +a(a” + pPp"q0] - u
! g/s gV/slp x ql
X .
2 = A2 = (pxq)-u
lp X q|
23 A3y P ¢ (p—¢q)-u
= l)u = —_ .
g g

Then we have

dp o utp dp o utp
—£5((g" — p* { ”}z/ —=s(B* { “},
/R s 50 (g™ = p")pp)s exp T s 0 (B pu)sa exp T

where B¥p,, = p3g,

- 1 - 1 _
A=A =gt AN Ay = p) =80+ V(P = V),

i 5 =5 - (P’ +qu’ (p+q)~u)
. NG NG
<2lp x qlu®  2[p(p° +q°p"q.) +q(q° + p°p*q,)] - )
+ p1 +
gVs g/sIp x ql

_(pxq)u _((po—qo)uo (p—q)~u)

+ P2 + D3 — .
Ip x ql g 8

Switch to polar coordinates
dp = |13|2d|15| sin pdpd6, p = |p|(sin¢g cosh, sin¢sinb, cos ),

and use cos ¢ = 0 for ¢ = % to rewrite k2 (p, q) as

f2n /OO |p|dp§AeXp{ 1 [130(,(p()+q())”0+(p+q)’”)
gp°q° 0 2T Js NG
. <2|p x glu® . 2[p(p° +4°p*q) +q(q° + p°prq)] - u
gVs gv/slp x ql
pxa)-u |ﬁ|sin¢]}
lp xq|
C  [>™|pldp_ {150( (P° +¢q%u® (p+q)-u)}
expl—( — +

= ——§A €X
er’q® Jo  P° 2Tp NG Vs

)1l cos ¢

« Iy <\/g s|(p x @) - ul?> +4[1p x q?u® + (p(p° + q°ptq,) + q(q° + pOptq,)) - ul?
2Tog~/s1p % q|

381
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where Iy is the first kind modified Bessel function of index zero:

1 27
Io(y) = — / Y0 dgp.
2 0

By further changing variables of integration and applying some known integrals as in
the Appendix [37], we obtain (8.1) with the following exact form of Uz (p, ¢):

sl(p x q) - ul?
ATgsUs = |(p° +q" i’ — (p+q) - u)? — —————
Ip xq|
_Alp xqPu’+ (p(p° +4° ") +q(q° + pOptq) - ul?
glp x ql?
2.0 042 2 2
g (p"+q)" —4lp xq| sl(p x q) - ul
= 5 W) +(p+q) - ul’ — ——————
8 lp xq|
2u’[g2(p° +q°)(p +q) +4(p(p° + 4°p"q.) + q(q° + PO p"q))] - u
_ =
1 +4°p*a) +qq° + POt ) - ul 82)
g2p x ql?

Now we estimate the terms in the right hand side of the second equality in (8.2). For the
first term, we have
g’ (P’ +4%% —4lp x qI?
=2[2p°° +2+1pP* +1g)(P°q" — p-q — 1) — 4IpPlg)> + 4(p - ¢)°
=4[(pl* +1g1*) — (p°4° + Dp - q]
+2(pP* +1g)(P°q" = p-qg — D +4(p - )
=2(pP +1gM (" —p-g+1)—4p-q(p°¢" —p-q+1)
=slp —ql*.

(8.3)

It is straightforward to see that the upper bound of the second term is s|u|2. Noting

P’ +¢(p+ ) +4(p(p° +4°p" 9 +a(q° + P p"qu))
=2p[(p° +4"(P°%° — p-qa — 1) —2p°1q1* +24°p - 9)]
+29[(P° + 4" (p°¢° = p-qa — 1) = 24°Ip* +2p°p - )]

=2p(P" =P’ —p g+ 1D —=29(0° 4"’ —p g+ 1)

=s(p" =4 (p — 9,
the fourth term can be bounded by

2ululs|p — qI?
g '

For the corresponding fifth term, we rewrite its numerator as

1p(P° +¢°p"q.) +q(q” + p°prq)
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= 1pPL(p"%1g1* = 2p°¢°1qPp - q + (@) (p - )]
+1g1*1@"?p1* = 2% IpPPp - g+ (PO (p - 9)°]
+2p - q1p°¢°IpI*la”* — (pD?1g1* + @)1 - q + p°a° (p - 9)*]
=|pllql® {[(po)2|q|2 +(q"?plP+2p°%"p - q1 — 4p°°p - q}
+pPP@"? + 1P (r%)? = 20gP (") + PP @)))(p - 9)* +2p°4°(p - ¢)°
=1p1a*1p°% — a°p* — (- *1(P")1g1* + @) Ip* = 20°¢"(p - 9)]
=1p x q*1p°q — ¢°pI*.
Then it can be bounded by

ulPlp x q1*1p°q —q°pI> _ uP1p°q —q°pP
g2lp x qI? g2 '
On the other hand, we have
slp —ql* — 1p°q — ¢°pI?
=200°" = p-q+ D(ApP +1q* = 2p - q) — 191> (p")* = |pI*(q
=4(p-@)* —20(P"* + ("> + p°¢°1p - q
+2(1p* + 191 (%" + 1) = [P * + @°)*IpI*]
> 4|pl*lql* — @Ip1* +2lqI* +2p°3" + D] pllq|
+2(1pI* +1g1)p°" + |pI* + lg1> — 2l pIlq?
=2(pI* +1g1> = 1pllgh(p°q" — Ipllgh + (IpI* + 1q1* — 41plig))
> 3(lpl — lg)?

since p°¢” — |pllg| = 1. We combine the above estimates in (8.2) to get

2 +2p%°p - q

slp —ql?
ATEU3 (poq) = [1+ 0(1>|u|12”g—2".

8.2. Appendix 2: Estimates of kernels. We first prove some important estimates for
kernels k; and ky. As a corollary, estimates for corresponding kernels of K (h®) =

wpDVM - Tu pey o :
o K(wmh ) will also be established.

o
Lemma 8.1. For ky given in (8.1) andi = 1, 2, 3, it holds that
1 Vslp —q|
ka(p.g) S ——exp | - LT, (8:4)
P°lp —ql 8Tog
and
1
dgka(p,q) < —5-
R P
1
[ aasiv. < .
R P
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/dak( )<1
. qop;K2(p, q Npo'

It is straightforward to verify that k1 (p, q) also satisfies the same estimates.

Proof. We first prove (8.4). Note that, by Lemma 3.1 in [16], s = g2 + 4 < 4p¥q

and
lp—ql
— <g=<lp—ql
Vv P'q

We use the smallness assumption of |u| in (1.20) to have

Vslp —ql P’ +q°

Ux(p,q) = . U S 57—
4Tog 2[U2(p, )1?

Then we can further estimate the kernel k; as

3 2
52 g Vslp —ql
ka(p,.q) S (P’ +¢°%) x —— exp{—Y——
gr°q° slp —ql? 4Tog

}

_ P40 Slp—gl o VSIP =4l
P°°lp—qP g 4Tog
1+|p—ql+q° —

< (lpo ql+4q eX]‘D{_Ip ql}

Pq’|lp — 4l 6T
1 lp —4ql

< exp(— }.

P°lp —ql 8T

Now we prove (8.5). Noting that
IpI> <2lp—qPP +2ig1>. g <2Ip —ql* +2|pl.

we get from (8.4) that

1 lp —ql 1
dakatp. )5 [ da—g—exp| - ls—.
/RS gy POlp —ql 8To p°

For the second inequality in (8.5), again from (8.4), we obtain

/ dqdyka(p, q)
R3

slp —q| s|lp —q|
S’f quz(p’q)mexp{_u}
RR3 8 4Tog
slp —q|
5/ quz(p,q)exr){——f }
R3 8T()g
1
o

Now we prove the third inequality in (8.5). Note that

ﬁlp—ql)

I Uapo) = [+ Ol (57—

(8.5)

044
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=1+ 0(1)|u|]<|P —ql0p;s N Vs(pi — qi) _ Vsip —q|8pig)

4Tog/s  2Toglp — 4l 2Tog?
4
=[1+0(1)|ul][ Ip2 ql q° (&__O) Vs(pi — i) ]
2Tog*\/s ¢ q°/  2Toglp — 4|
3
< s2p—qf q° L Vslp—al 1

~ 3

g s%|p — q| min{po, go} 2Tog  |p —ql
3 .
s2|19—q|3m1n{po,qo}+|p—q|+ﬁ|p—ql 1

g3 |p — gl min{po, go} 2Tog  |p—ql

where we have used the following inequality:

A

pi 4 _ _|p—d
p®  ¢° = min{po. go}

Then we use (8.4) to obtain

/ dqdpka(p, q)
R3

3 3 .
s2|p — g’ min{po, go} + |p —q|  /sIp — 4l
S | .dq 3 : +
R3 g |[p — gl min{po, qo} 2Tog  |p —¢ql

3
1 /s2|p—qf? 1 -
5/ dq_()(MH)(H_z)exp{_M}
R3 8 P —ql 8Tog

p
1 1 Vslp =4l
§/R3dqﬁ<l+|p—q|2>e)(p{_ 16Tpg }

ka(p, q)

~

O

According to the definition of 4 in (1.23), the operator K corresponding to the equation

satisfied by h® is K (h°) = W(WK( e hg) Correspondingly, we can also define

K i, (i =1, 2) and kernels k as follows:

- - w(pv/JIm(q)vM(p) .

Ki(f)= | dgki(p, =/ d ki(p. , =1,2.
(1= [ dakitp. @) = [ agZ PRI ) po).

Namely, k; (p, ¢) = % % ng (p.q),i =1,2.Then k; (p, q) also satisfy the

same estimates in Lemma 8.1

Corollary 8.1. Fori = 1,2, 3, it holds that

{ coﬁlp—ql}
expy — — 1,

8.6
Tog (8.6)

P°lp —q|

for some small constant cq, and

_ 1
dqka(p,q) < —5.
R3 p
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1
/dqax,kz(p S 5
p
_ 1
dqdpka(p,q) < —5- (8.7)
R3 p
ki(p, q) also satisfies the same estimates.
Proof. In fact, we only need to note that
_ (1+[phf s
ka(p,q) <———% Ui(p,q)
(1+1gDP gpOq°
f|p q| , To—=Tw) @’ = q°)
—[1+o0( }
xexp{ = [1+ 0(Dlul onn
3
52 s|lp —ql|
< OU1<p,q)<1+|p—q|>ﬂexp{[(To—ZTM>+0<1)|u|]M}
grq 2T0Tmg
52 Vslp =4l
S Ui(p, q) ex {—Co—}
gp0q0 D P ToTug

by (1.24). Then, similar to the proof of Lemma 8.1, we can obtain (8.6) and (8.7). O

8.3. Appendix 3: Construction and estimates of coefficients. We will present the exis-
tence of coefficients F,, (1 < n < 2k — 1), and their momentum and time regularities

estimates. For i € [1,2k — 1], we decompose j—’l\L/I as the sum of macroscopic and
microscopic parts:

Seerl ()
— [an(t, %) + bu(t, x) - p + cn(t, ) pOIW/M + (I — p}(j"ﬁ).

To obtain the linear system satisfied by the abstract functions a,, (¢, x), b, (t, x), ¢, (¢, x)
and E,(t, x), B, (t, x), we first derive the explicit expression of the third momentum
T*PY MY, (o, B,y €{0,1,2,3}):

o B Y
TBY [M] = / PP Map.
R P
We will first get the expression of T*PY [M] in the rest frame where (u°, u!, u2, u?) =
(1,0, 0, 0). For convenience, we denote T*Y[M] as T*F in the rest frame, pasp
in the rest frame, and —v as the velocity of general reference frame relative to the rest
frame. Then, the corresponding boost matrix A is

r ] rvy rvs3

2
Fur L+ =Dk G-DEZ  G-DE

lvf? lvf?

f G-DER L+G- Dy GoDER L

Foy F—D33 (F-DRE 1+ - 1)‘|2

[v]?
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0 u

where 7 = u", v; = u—(’) Noting
—_ dp dp
W AV _
pr=Ayp, ==
! p° PO
we have
aBy _xa xAB xRV 7dBY
7% [M] = A AG, AT, TP (8.8)

Then, we can obtain the expression of TPY [M] by the expression of 7% and (8.8).
Now we give the expression of T*f7 as follows:

Lemma 8.2. Let i, j, k € {1,2, 3}. For the third momentum T*PY which corresponds to
T%BY [M] in the rest frame, we have

7000 _ n0B3K3(y) +y Ka(y)]

vKa(y) ’ ©9

FOi _ Fii0 _ Fi0i _ "0K3(V)’ (8.10)
Yy Ka(y)

T =0,  if(a B.y) # (0,0,0), (0,i,4), (i,i,0), (i, 0, 0). (8.11)

Proof. 1tis straightforward to verify (8.11) by the symmetry of the variable of integration.
Now we prove (8.9). It holds that

Tooo:/ ( 0)2&6X {— po} dp.
w ak)

2_.2
As the proof of Proposition 3.3 in [33], we let y = y jo to get p° = %, Pl = %,
and d|p| = L —29_ Then we have
P =y e
- 1 noy _, 1 1 ydy
TOOOZ/ Ly e — s 2
y v Kay) vy Y Vy:—y?

__omo [Fra a3 o [0 oy
_V4K2(V)/y [T =yD)2+y y/y>—y-lye dy
_ nol3K3(y) + v Ka(y)]

yKa(y)

Similarly, (8.10) can be proved as follows:

~oii IpI*  noy _
T = C/Rs ————exp{—y po}dp

3 4nKs(y)
®© 1 noy _, 1 1 ydy
=/ 3—2()’2—3/2)—@ y_z(yz_yz)_ﬁ
y 3y Kx(y) v YVyi—vy
no o 2 2.3y
=0 | " —y9)iyeldy
3V4K2()/)/y
_ noK3(y)
yKa(y)
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Now we can use Lemma 8.2 and (8.8) to derive the explicit expression of 7%/ [M].

Lemma 8.3. Fori, j, k € {1, 2, 3}, we have

TO[M] = K0 CK0 + y Ka(y)@®)? + 3K3(y)u’ul*],
1M = = [ 5Ks ) + Y K20 WP + Ksplulus |
7o = ;20( ) 6K + v Kauuine; + 8, Ksnu®] . (8.12)
T M] = % ( 5 OK3(r) +y Ka()uiu ju
%(Ul‘ajk +ujdik + upbij).

Proof. We first prove T%°[M] in (8.12). By Lemma 8.2 and (8.8), we have

790M] = A9 1—\0 [\0 ToBY
_ Z ~<~2110[3K3()/) +y Ka(y)l N ;2|U|2n0K3(V))
yKa(y) yKa(y)

3 noK
+vaa X 2F2va—0 30

yKa(y)
K
= a0 B+ I + Ks ) + ’”Ty))uw
= 0( )[(3K3<y)+y1<z(y)>(u°>3+3K3(y>u°|u|21.

For T9%[M], we have

TO%M] = AYAGAL TFY
(2 no[3K3(y) +yKa(y)]
yKa(y)

—1 K
+erj(r| |2 vV ]+611>’:/OT3((;//)))

- [ (r—1 )]noKa(V)
+ E v, VoV +7 | —5-VjVy + §; —_—
Fre| P +7( i T YK

o=

K
4K + 1 K210 2+ "3 p 4 w0y

)/Kz( ) v Ka(y)
[SK0) +y K2 @+ Ka ()l ]

_ 0
yKa(y)
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Similarly, we obtain

7O M = [\21_\’;31_\/' ToBY
_Z~<~ n0[3K3(y)+yK2(y)]

yKa(y)
3 ~ ~
r—1 —1 noKsz(y)
+ ViV + 6 Vivk+0i )| ————
;£;< R T ) (T i #) yxa<y>)
3 -

v —1 r—1 noKs(y)
+;rva[ ( e vjva+8]a)+rvj( e vlva+8m)]—yK2(y)
= (4K 4y Ko + 8 K3 () + 27030 0,

yKa(y) y K (y)
1o 0 0
= 6K K i+ 8K ,
KaGy LOKs 0+ Y Ko uluia + 83 Ks '

and

TUkM] = Z\g[\g[\f, TPy

- (~2 no[3K3(y) +y Ka(y)]
= E rvi\r-v;vg
— Yy Ka(y)

3
+§:(
=1
3
+§%(

F—1 noK3(y)

+ka( e U]va+8ja)]—y1{2(y)

{[BK3(y) + vy Ko(y)Iujujug + ui(ujur +68;1) K3(y)}

noK3()/))

F—1
vv1+8-1)< Ukvl+5l)
w2 Y yK2(y)

. (F—=1
v,va+8ia)[rvj( e vkva+8ka)

N no

~ vKa(y)
noK3(y)
)/Kz( )
yK( )[6K3(V)+VK2(7/)]ulu,Mk
noK3(y)
yKa(y)

[uj(uing +8;x) + ug(ujuj +5;5)1

(uiSjk + uj(Sik + ukSij)-

O

With the preparation, now we construct the coefficients (F,, E,, B,), 1 <n <2k—1
in a conductive way, and estimate their regularities.
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Theorem 8.1. For any n € [0, 2k — 2], assume that (F;, E;, B;) have been constructed

forall 0 <i < n. Then the microscopic part {I — P}( J’ﬁ‘) can be written as:

W-P(T) =17~ = (ahur i VeFi= Y 0L F)

i+j=n+1
i,j>1
-y (E,- +hx Bi) : vaj)].
i+j=n
i,j=0

And an+1 (ta x)y bn+l (ta x)y Cn+l (ta x)) E}’l+1 (t’ x)’ Bn+1 (t7 x) Satis‘f:y the fOIZOWlng Sys_
tem:

00 (n0uCanen + (e + Py’ e - b + [eo(u®)? + Polul e )

+ Vi - (nouan+1 + (eo + Po)u(u - byy1) + Pobpy + (eo + Po)uoucn+1)

+Vx/ pf{l—P}(jﬂ) =0, (8.13)
O ((eo + P janen + S OK3 () +y Koy ) buvr)

+ K3 ()ubuir 1 + [(SK3(r) +y K2 @) + Ks()luPlu e )

no
yKa(y)

+ Vo - (6o + Poujudye + (6K3(y) + 7 Ka(y)ujul @t - bys1) + 1o

no
yKa(y)
noK3(y)

+ 0y, (P, +V [
x]( 0Gn+1) X VK> ()

(Mbn+l,j + Mjbl‘l+l)]

g _(noKa(V)
Y\ yKa(y)

+Eo (nouoan+1 + (eo + Po)ul (u - bys1) + [eo(u®)? + Polulz]cn+1>

[ bast) + 1]

+ [(nouan+1 + (eo + Po)u(tt - bys1) + Pobps1 + (e + Po)uoucn+1> X Bo]j

+n0u0En+1’j + (I’lou X Bn+1) )
J
+ 3 B (noular + (o + P - by) + Poby + [eo@®)? + Poluller)

k+l=n+1
k,[>1

+ Z [(noual + (eg + Po)u(u - by) + (eg + P())MOMC[) X Bk] )
J

k+l=n+1
k,[>1
+vx./]R PJPJ_{I—P}(F>dp+[/ prox/_{I—P}<j+_l) p]j

k,>1
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Sor j =1,2,3 withbyy1 = (bp41,1, bus1,2, bp1,3), Ene1 = (Ens1,15 En1,25 Ent1,3),

[GK3(») + y K2 () @) + K3(p) |ul?]

(Leo@ + PoluPlaner + s
X (- buar) + K—()[(3K3<y> + 7 K2 WO 43K ()l

+ V- (Geo + Pouuan + (6K3(7) + v Ka(yDuu(u - byar)

K()

m0K3(0) 0 [(5K3() +y K2 () ®)?

yKo(y)
+ K3(V)|M|2]ucn+1) +nout - Eyq1 +nou - Egaps

+(eo + Po)(u - bp1)(u - Eg) + PoEg - bpyi

n+1

K()

ot PG B + [ VA= P ) dp -

A
+ Z [nou - Era;+ (eg + Py)(u - by)(u - Ex) + PyEy - by
k+l=n+1
k=1
+(eo+ Po)u(u - Ep)c +/ HVM{I — P}( )dp Ek] 0,  (8.15)
i
0:Ent1 — Vi X By
= nouay+1 + (eo + Po)u(u - byi1)
1
+ (eg + Po)uoucn+1 + / pVM{I — P}( j+_)
0;Bpy1 +Vy x Eyyp =0,
Vi Epy1 = —(ﬂouoan+1 + (eo + Po)u’ (u - byy1)
+Leo@™)? + Polulens ),
V. - By = 0. (8.16)

Furthermore, assume dy+1(0, x), by11(0, x), €n41(0, x), Ens1(0, x), Byy1(0,x) € HY,
N > 0 be given initial data to the system consisted of equations (8.13), (8.14), (8.15)
and (8.16). Then the linear system is well-posed in C°([0, c0); HN). Moreover; it holds
that

|Font] S A+0"™', [V, Fa] S (1+0)"M,
IViFurl] S A+, [V2F] S 1 +0"™',
VeV Furl] S (1+10)"M'-,
|Ens1]+ | Busi | + Vo Enst| + Ve Epat| < (1+1)". (8.17)
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Proof. From the equation of F}, in (1.10), the microscopic part {I — P}( jﬁ) can be

written as

{I—P}( "*')=L‘1[—\/LM(8an+ﬁ-Van— Y O(F, F)

VM i+j=n+1
ij=>1
— Z (Ei +p X B,’) . Vij)].
i+j=n
i,j>0

We first prove the equation (8.13). Note that, from (1.14),

_/ Fuydp = / [an+1 + bpr1 - p + cnv1 polMdp
R3 R3

= nou’ans1 + (eo + Po)ul (u - byy1) + [eo(u®)?

2
+ Polu|"lcpe,

f3 DjFpe1dp = noujans + (eo + Po)uj(u - bys1) + Pobpst
R

F,
0, . " n+l
+ (eg + Po)u u]cn+1+/3p]vM{I—P}(f>dp, (8.18)

for j =1,2,3, and
/3 (En+l +ﬁ X Bn+l> . VpFOdp = /3 (E0+ﬁ X BO) : VpFn+ldp =0.
R R

Then, we integrate the equation of F; 41 in (1.10) w.r.t. p to get (8.13).
Now we prove (8.14). From (1.14) and Lemma 8.3, it holds that

/ pjFudp
]R3

= /3 Pj [an+1 + bns1 - p + cuv1polMdp
R

= (e0 + Po)u’u jtnsr + K”—()[(6K3<y> +y Ko (y)uu (1 - bysy)

[(5K3(y) +y Ka(¥) @) + K3() |u|*1u jensr,

+ K3()ulbpsr j1+

p;jp
/2 p/ n+1dp
R;

= /Rs plj—.é)[arﬁl +bpy - p+ Cn+1P0]MdP + f p]pf{l - P}(jll>

no
yKo(y)

(6K3(y) + v Ka(y ) jul(u - bysr) + u’cn ]

no
= + P ; +

(eo + Po)u juayy )
noK3(y)
yKo(y)

,n0K3(V) 0 pjp . n+l1
e U w by )+ [ AT -2 ap,

+ejPoan+1 + (bps1,j +ujbyyr)
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where e, (j = 1, 2, 3), are the unit base vectors in R3, and

- /]1; pj<En+1 +[3 S Bn+1> . VpFOdp

:f En+1,,/F0dp+/ (ﬁ X Bn+l) Fodp
R3 R3 J

0
=nou Ep1,j + (nou X Bn+1> B
J

- /M Pj<E0+ﬁ X Bo) - Vp Fupdp

= f3 Eo,an+1dP+/ (P X Bo) Fus1dp
R R3

= Eo.j (n0uaner + (eo + PO @ - bysr) + [eo@®)? + Polu*lesn

+ [(ﬂolmnﬂ + (eg + Po)u(u - byy1) + Pobysy + (eg + Po)uoucn+1) X Bo]

+/R}<ﬁx30) «/_{I—P}(\/"J’_l>

Then, we multiply the equation of Fy4; in (1.10) by p; and integrate the resulting
equation w.r.t. p to get (8.14).
Next, we show that (8.15) holds. By (1.14) and Lemma 8.3, one has

J

/ PoFn1dp
R3
= /3 polant1 +byy1 - p + cuv1 polMdp
R

= [eo(u®)? + Polu|*lans+1 + [GK3(7) + ¥ K2 () @) + K3() |ul*]

y K> ( )
[BK3(y) +y Ka(¥) ®)? + 3K3(0) [ul*1u’cr1,

W brar) + —
X (U - bpyq
" yKa(y)
and
- /3 p0<En+1 +ﬁ X Bn+1) : VpFOdp
R
= / Epi 'ﬁFOdP = nou - Ep41,
R3
- /3 P0<E0+ﬁ X Bo) - VpFudp
R\

= / Eo - ﬁFn+ldp
]R3
= nou - Eoapy1 + (eo + Po)(u - bpy1)(u - Eo) + PoEo - byyt

+ (e + Po)u®(u - Eg)ens +/ p\/_{I—P}< )dp~E0.

n+l

A

We integrate the equation of F}, in (1.10) with P over Rf, to obtain (8.15). Finally, it is
straightforward to obtain the Maxwell system (8.16) of E, 1, By4+1 from (8.18).
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Now we prove the well-posedness of the system (8.13), (8.14), (8.15) and (8.16). By
conditions (1.16) and the equation 9, (nouo) + Vi - (nou) = 0 in (1.17), we simplify
equations (8.13), (8.14), (8.15) as follows:

nou0; (ner +h(u - byar) + hipur) = 0 (Pocusr)

410+ Vi (@net + - bro) + i ) + Vi - (Pobya)

+vx-épf{1—P}<jﬂ) —0, (8.19)

[(6K3(y) +y Ko () (ut - bt +u’cpir)

0
nou- 0 (hu idp+l + ———
T Y K ()

K
+ Ksbont 1) = 0 (22 )

4 ngu - Vo (hujan + [6K3(7) + ¥ Ka(yDuj [ - brat) +ucpen]

1
Y Ka(y)
noK3()
# K3 1) + ey (Ponss) + V- [0

.<n0K3(y)

0
Ry [ ) T

+Eo (nouoan+1 + (eo + Po)u’ (u - bys1) + [eo(u®)? + P0|u|2]cn+l)
+ [(nouan+1 + (eo + Po)u(ut - bys1) + Pobps1 + (e + Po)uoucn+1> X Bo]j

+n0u0En+1,/ + (}’louo X Bn+1)
’ J

+ 3 Eug(noular+ (eo+ Poul - b + eo®)? + Poluller )

k+];ll=>ni+-1
+ Z [(noual + (eg + Po)u(u - by) + Pob; + (eg + Po)uoucl) X Bk] '

k+l=n+1 J

k,>1

pPjp 1 1
+vx-/R LiP J_{I—P}<j+ﬁ)dp+[/ b x Box/_{I—P}(jﬁ) p]j
F

+ BivM{I—P}(——)dp| =0, (8.20)

. / px B/l =PI ) ar),

and

noud; (huay + [(6K3 () + ¥ Ka ()t - bya)

yKa(y)

+

0,2 2
sz(y)[(3K3(y)+VK2(y))(” Y2 +3K3(y)|ul ]Cn+l>
K
— at(P()a,H_]) — at (1’10—3()/)

: bn+
Y Ka(r) )
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(6K3(y) +y Ka(y)u(u - bysr)

+nou -V (huoa 1+
! YK (y)

bvy-oves )[<3K3(y>+yl<z(y>)<u°>2+3K3(y>|u|2]cn+1)
noKs(y) 0 2noK3(7/)
VX bn+ VX Cn+
G 1)+ ¥ gy )

+nou - Epy1 +nou - Eoayy1 + (eo + Po)(u - bpy1) (- Ep)

+ PyEo - bys1 + (o + Po)u® (u - Eo)cns1

+/ px/_{I—P}< ””)dp.Eo

i

+ Z [n()u - Era;+ (eg+ Py)(u - by)(u - Ex) + PoEy - by
S

+ (eo + Po)u’(u - Ep)c +/ AV/MII — P}(\/_) dp - Ek] 0.

Equations (8.19), (8.20), (8.21) can be further written as:
nouo(atanﬂ + R - byer) + huoa,cn+1) — Podcnss
+nu® (0 () - Brar) + 01 (hu)eer ) = @ Po)e
+nou - (ann+1 +hVibyy1 -u+ hl/lovxC,H_l) + PyVy - by
+nou - (vx (hu) byal) + Yy (huo)c,,+1> +bper -V, Py

+V, - / p«/_{I—P}(\/rH'_]) =0,

nou® (hu e + [6K3() +y Ka ()it - iy + 1)
Y K2()

noksy) 1_8<nol<3()/)u_)c 1
yKay) T Ty Kay) T
m2(6K3(y) +y Ka(y)) )

wjit) - by
yKo(y)

K
(6K30) + v Koy ern +0, (2 o

+ K3() kb 51) =

+ nouo[at (huj)an+1 + Bt<

+8( VK

1
+ N hu; Vv +—
ot (e yK2()

+ K3(J/)ben+1,j]) + Podx;an+1 + Ox; Podn+1

wou - [ Ve (e Jansr + Ve Ki( S 6K () +y Ko )ujie) - by

V(K5 ) + Y Ka )Y
Y Ka(y)

395

(8.21)

(8.22)

(6K3(y) + Y Ka(y )t i [(Vibpst - u) + u°Vicn]
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( Ks3(y) ) " j] n0K3(y)uij byt

U Ka() Y KG)

noK3(y)
VT(V)[(M O D) + %0 O]

x (nOII({j((V)) )bn+l,j+ x(r)l/()gj((;))”J')'an

noKs(y) . noKs3(y) o
8"‘< yKa(y) u) - bust + yKa(y) " )C"”

+ Eo j (nouansr + (eo + Pou’ e - bs) +Leo@)? + PoluPlens )
+ [(nouan+1 + (eo + Po)u(u - byy1) + (e + Po)uoucn+1> X Bo]j
0 , 0
+nou Eyy1,j + (nou X Bn+1) )
j

+ Y Exj (nouoaz + (e + Po)u’ (u - by) + [eg(u®)* + Polulz]cz)

k+l=n+1
k,J>1

+ Z [(noual + (eg + Po)u(u - by) + (eg + Po)uoucl) X Bk] _

k+l=n+1 /
k=1

+VX-A p”’f{l-P}(ji) p
+[/ pro«/_{I—P}< "“) p]j

Tt
UM — —0. .
+k7§>,;1+1 / » x BivM{I P}( f) ] 0 (8.23)

and

nouO(huoatam + [6K3(y) + 7 Ka(y)ul(u - i)

yKa2(y)

[BK3() + 7 K2y ) @) + 3K3 () u*Torcne )

( )

+ nou [atam Janer + 0 ( Ki 5 OK )+ 7 Ko r)ila) by
a,(@[m@m + 7 K2 WO+ 3K3 ()l e

— Pyosans1 — };OII({TS((;:))(M - 0tbyy1)

— 3 Podns1 — a,(%@ bl

+ngu - (hu® Ve + (6K3(7) + v Ko (YD (Vabya - )

yKa(y)
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+

[BK3(7) + 7 K2y )W) + 3K3(1)[ul*1Vscen
yKa(y)

#nou - [ Vi (i Janer + V(- Kl 7 K0 + Y Ko )] - bu

1 042 2
V(5 gy (3K 00 + K2 4 3K3 0] e

N <n0K3(y) O)V by + <2noK3(y)u) Ve

Y K2(y) Yy Ka2(y)

noKsz(y) o 2noK3(y) .

(sz(y) ) bp+1 + Vy - (—sz(y) M)Cn+1 +nou - Epyy
+nou - Eoan+1 + (eo + Po)(u - bps1)(u - Eo) + PoEq - b1
+ (eo + Po)u’(u - Eg)cne1 +/ pVM{T — P}<F) dp - Eop

+ 2 [nou Exar+ (eo+ Po)u - by - E) + PoEx - by
k+l=n+1
k,>1

+(eo+P0)u0(u-Ek)c1+/ px/_{I—P}(\/_)

dp - Ek] —0.

397

(8.24)

Now we can write the equations (8.22), (8.3), (8.24) as a linear symmetric hyperbolic

system:

3
A03IU+ZAI'3,'U+B1U+B20 =S,
i=1

where U and U are

Ap+1 _
U=|bw |. © (g;)
n

Cn+1

For simplicity, denote

noK3(y)

(8.25)

hy=hi(t,x) = (6K3(y)+vKa(¥)), ho=hy(t,x) = ———.
1 1 v K> ( ) 3Wy)+yn2ly 2 2 v K2 (y)
5 x 5 Matrixes Ag, A;, (i =1, 2,3) in (8.25) are
nou’ nouhu’ leo(u®)* + Polul?]
Ay = nou’hu (hu @ u+hoDu®  (h1(®)? — ho)u

and

A;

leo®)? + Polul*1 (1 (u®)? — ho)u' (hy(u®)? — 3ho)u®

nou; nohu;u' + Poe} nohulu;
= | nohuju + Pye; hiuju @ u + ho(u; 1+ A;) (hyuju + hoe;)u®
nohu’u; (hiugu’ +hoeu® (b ®)? — ho)u;
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where (-)! denotes the transpose of a vector in R3, Tisthe3 x 3 identity matrix and 1&,»
is a 3 x 3 matrix with its components

(A)jk = Sijug +8iuj, 1< jk<3.

The components of matrixes B; and B;, and the remainder terms S can be written
explicitly as functions of F;, E;, B;, (0 < i < n) and their first order derivatives. For
the matrix Ao, its determinant is
uo uWOu'h h(u®)? — %
ng | 0 ullhsu @ u + hyl] °)?h3u
0 @2hsu' @®)3h3 — ulhy + ﬁ

hau @ u + hyl h3u
hguout u0h3 — ,%0”’4 + m

hyl h3u

0)6

= ng(u

5.,,06 t
= no(u )| u 1 0 1
o m] uhy = iyha+
hal hiu

5.,.,0\6
=npu )’ | or [=ll(; 1 0], _ 1 1
0 [ (ha = oxto ) + |3 = oha + b

1
)/2(140)3

_ ”3(”0)6’13{[;55 (h4 B m) +u0]h3 - u_l()h4 + )’%:Op}y

where 0 denotes the column vector (0, 0, 0)’, i3 and h4 are functions with the following
forms:

:_(KI(V))Z_EKI(V)_'_ 8 = Ki(y) +i
Kx(y) y Ka(y) y? yKa(y)  y?*
Noting
_<K1(V))2 _3Ki(y) T 1+ 3 -0
K> (y) v Ka(y) y?

by Proposition 6.3 in Appendix 3 [31], we can further obtain
1
Aol > nj(u”)°hy— (hs = ha)

K 2 3K 4
=n(5)(u0)5hi|:—< 1()’)) 2 1()’)+1+_2]
K> (y) Y Ka(y) 14
ng(uo)shi
y2
On the other hand, the system (8.16) can also be written as a linear symmetric
hyperbolic system of (Ej+1, By+1):

3
30U+ Ajg;U+BU =0, (8.26)
i=l1
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where B is a 6 x 5 matrix whose components are functions of nq, u. Denote O asa 3 x 3
matrix with all components be 0, and define matrixes:

000 00 0 00—1

Au=loo0 1], Ap=|00-1], Ay=[000 |,
0-10 01 0 10 0
001 010 0-10

An=| 000, Ay=|-100], Ap,=[100
~100 000 000

Then A; in (8.26) can be expressed as

i._(O A

A= <Ai2 v ) .

Combining (8.25) and (8.26), we can obtain the wellposedness of (a,,+1, bn+1, Cn+1, En+l,
Bpi1) € CY([0, 00); HY) withinitial data 41 (0, x), bp11(0, x), ¢a11(0, x), Ent1(0, x),

B,.1(0,x)e H N N>0 by the standard theorem of linear symmetric system [3] (Chap-
ter 4.2). Moreover, for n = 0, one has

3 2

10 A0lloo + > IVxAilloo + 3 [Billoo + 1Slloo S (14 1) 7F.
i=1 i=l1

Therefore, standard energy estimates on systems (8.25) and (8.26) yield

d
= (1@ ®. b1 cx )y + ILEL 0, BiOIIG)

S A+ @@, b10), 1)y + ILEV D, BIO1I )
+ (1@ (D), by @), 1)l g + ILEL @), Br]l )],
Namely,
@1 (1), by (@), 1)l g + IEL (), Bil v S 1 (8.27)

by Gronwall’s inequality. Let Lf1 = vfi + K(f1) = f» = wo(p)M, where wo(p) is
any polynomial of p. Note that, by (1.2), (1.21) and (8.1),

O e U (p. g expl—11 + 0D Y2 4]
R3 P9 2Tog

Hf(@)ldg,
and f| = % — @ Then, we can verify that | f1]| < M!-. Therefore, it holds that
Fi 1
{I—P}(—)§(1+ M-
i Ipl

It is straightforward to obtain (8.17) by the structure of F; and (8.27). Assuming (8.17)
holds for 1 < i < n, the case i = n + 1 for (8.17) holds again by the structure of the
equation for Fy.; in (1.10), the induction assumption and similar analysis as the case
i=1(n=0). 0O
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