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Abstract

Relativistic magnetized jets, such as those from AGN, GRBs, and XRBs, are susceptible to current- and pressure-
driven MHD instabilities that can lead to particle acceleration and nonthermal radiation. Here, we investigate the
development of these instabilities through 3D kinetic simulations of cylindrically symmetric equilibria involving
toroidal magnetic fields with electron–positron pair plasma. Generalizing recent treatments by Alves et al. and
Davelaar et al., we consider a range of initial structures in which the force due to toroidal magnetic field is balanced
by a combination of forces due to axial magnetic field and gas pressure. We argue that the particle energy limit
identified by Alves et al. is due to the finite duration of the fast magnetic dissipation phase. We find a rather minor
role of electric fields parallel to the local magnetic fields in particle acceleration. In all investigated cases, a kink
mode arises in the central core region with a growth timescale consistent with the predictions of linearized MHD
models. In the case of a gas-pressure-balanced (Z-pinch) profile, we identify a weak local pinch mode well outside
the jet core. We argue that pressure-driven modes are important for relativistic jets, in regions where sufficient gas
pressure is produced by other dissipation mechanisms.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Jets (870)

1. Introduction

Magnetic fields are thought to play a decisive role in many
of the most energetic astrophysical phenomena. Compact accret-
ing objects tend to accumulate (or generate locally) magnetic
fields and sort them out from the matter (e.g., Narayan et al.
2003). This can produce extreme environments in which the
magnetic energy density locally dominates the rest-mass density
of matter. Such relativistic magnetizations can be converted to
high Lorentz factors, driving relativistic outflows in the form
of collimated jets (e.g., Begelman et al. 1984; Li et al. 1992;
Begelman & Li 1994; Beskin & Nokhrina 2006; Komissarov
et al. 2007; Tchekhovskoy et al. 2009). Luminous nonthermal
emission with photon energies extending into the gamma-ray
band is a key observational signature of such environments (e.g.,
Tavani et al. 2011; Abdo et al. 2011; Madejski & Sikora 2016);
it is evidence of efficient nonthermal acceleration of particles
to ultrarelativistic energies. A likely mechanism for particle
acceleration in such environments is relativistic magnetic
reconnection (e.g., Michel 1971; Romanova & Lovelace 1992;
Lyubarskii 1996; Drenkhahn & Spruit 2002; Kirk 2004;
Uzdensky et al. 2011; Sironi et al. 2015; Werner et al. 2016,
2018; Werner & Uzdensky 2021), developing from large gradients
or reversals in the magnetic field. Dissipation of magnetic energy
depends crucially on the magnetic topology and the stability of
the plasma configuration.

Axially symmetric magnetic field configurations may
involve ordered poloidal and toroidal components. As they

expand over several orders of magnitude in distance, the
poloidal component decays faster than the toroidal component.
Even if the configurations are initially dominated by the poloidal
component, the toroidal component can in principle become
dominant at some point. Toroidal magnetic fields are well-
known to be unstable to either current-driven or pressure-driven
pinch (sausage) and kink modes (e.g., Kruskal & Schwarzs-
child 1954; Kadomtsev 1966; Freidberg 1982). These instabil-
ities have been proposed to be the trigger of magnetic
dissipation in relativistic jets of active galactic nuclei (AGNs)
and gamma-ray bursts (GRBs), and in pulsar wind nebulae
(Begelman 1998; Drenkhahn & Spruit 2002; Giannios &
Spruit 2006).
Most analytic studies of the stability of relativistic magnetized

jets have been performed in cylindrical geometry (e.g., Istomin
& Pariev 1994; Begelman 1998; Lyubarskii 1999; Appl et al.
2000; Tomimatsu et al. 2001; Nalewajko & Begelman 2012;
Bodo et al. 2013; Das & Begelman 2019; Bodo et al. 2019).6

This allows one to introduce a cylindrical coordinate system
(r, f, z), in which all equilibrium parameters depend solely on
r. Various assumptions have been adopted on the radial profile
of the toroidal magnetic field Bf(r), the presence of the axial
(poloidal) magnetic field Bz(r), and crucially on the radial force
balance, which may involve contributions from the magnetic
field, gas pressure, centrifugal force, and radial shear of the
axial velocity.
One line of research has been to adopt the force-free (FF)

approximation, in which contributions from the gas pressure or
inertia are neglected, and the (j× B)/c force density due to
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6 However, the effects of jet collimation can be important (e.g., Narayan et al.
2009).
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Bf(r) is balanced by that due to Bz(r) (the screw-pinch
configuration). In the FF limit, it has typically been found that
the pinch mode (with azimuthal wavenumber m= 0) is stable,
and that the dominant unstable mode is the global (or external,
with axial wavelength λz comparable to the jet radius Rj) m= 1
kink mode (e.g., Istomin & Pariev 1994; Lyubarskii 1999;
Appl et al. 2000; Bodo et al. 2013).

Another line of research has been to balance the force due to
Bf(r) with gas pressure gradients, even without any axial
magnetic fields (Bz= 0). In this Z-pinch configuration, the most
unstable modes are internal (with short axial wavelengths
λz= Rj). They can also be local (localized at large radii as
compared with the wavelength λz= r), and can be either pinch
or kink modes (as the growth rate depends weakly onm)
(Begelman 1998; Nalewajko & Begelman 2012; Das &
Begelman 2019).

The stability and nonlinear evolution of relativistic jets
have been investigated numerically using 3D relativistic MHD
(RMHD) simulations. The simplest approach has been to
consider a static, cylindrically symmetric column representing
the innermost jet region in its comoving frame. Such simulations
have been performed in both the FF limit (Mizuno et al. 2009;
Bromberg et al. 2019; Mukherjee et al. 2021; Bodo et al. 2022)
and the Z-pinch limit (Mizuno et al. 2011a). These two
regimes have been compared in the work of O’Neill et al.
(2012), which emphasized a dramatically more disruptive out-
come of instability in the Z-pinch case, a result well known
in fusion plasma physics (e.g., Freidberg 1982). Further studies
in the FF regime considered the effects of radial shear of the axial
velocity (Mizuno et al. 2011b, 2014) or rotation about
the symmetry axis (Mizuno et al. 2012; Singh et al. 2016).

Global 3D MHD and RMHD simulations resulting
in the development of current-driven instabilities have been
performed for nonrelativistic and relativistic jets in AGNs
(Nakamura & Meier 2004; Moll et al. 2008; McKinney &
Blandford 2009; Mignone et al. 2010; Tchekhovskoy &
Bromberg 2016), gamma-ray bursts (Bromberg & Tchekhovskoy
2016), and pulsar wind nebulae (Mignone et al. 2013; Porth
et al. 2014). These simulations demonstrated consistently that
the dominant modes are either pinch or kink.

MHD simulations are able to provide limited information
about nonthermal particle acceleration, e.g., in the test particle
approximation (e.g., Puzzoni et al. 2021). However, in order to
fully account for kinetic effects, the particle-in-cell (PIC)
algorithm is the method of choice. Recently, the results
of the first 3D kinetic collisionless PIC simulations of static
cylindrical columns with relativistically strong toroidal magn-
etic fields in pair plasmas have been reported. In the work of
Alves et al. (2018), a radial profile of toroidal magnetic field
with an exponentially decaying outer tail was balanced entirely
by gas pressure (the Z-pinch or the screw-pinch with uniform
axial field Bz), which resulted in internal unstable modes.7 On
the other hand, in the work of Davelaar et al. (2020), toroidal
magnetic field with a power-law tail (approximately Bf∝ r−1)
was balanced by a nonuniform axial field Bz in the FF screw-
pinch configuration with subrelativistically warm plasma,
which resulted in external unstable modes.

Alves et al. (2018, 2019) demonstrated nonthermal particle
acceleration associated with pressure-driven modes. They

obtained power-law energy distributions g gµ -dN d p 8

with the index p∼ 2–3. These distributions extended to the
maximum energy of g g( – ) 1.6 1.9max lim, where

g º
∣ ∣ ( )q B R

mc
1lim

0 0
2

is the energy limit9 (corresponding to the Hillas criterion;
Hillas 1984), referred to as the confinement energy (see
Appendix A). This limit has been tentatively confirmed by
Davelaar et al. (2020), who also found power-law particle
energy distributions with p∼ 3–5 and maximum energy of
g g 6max lim .

Both Alves et al. (2018, 2019) and Davelaar et al. (2020)
investigated the nature of electric fields accelerating particles
in unstable cylindrical jets, using the electric field component
E∥= (E ·B)B/B2 parallel to the local magnetic field B as
a proxy for the nonideal electric field component Enonid=
E−B× βb, where βb= vb/c is the bulk velocity vb in units
of c. In the gas-pressure-balanced configurations investigated
by Alves et al. (2018, 2019), perpendicular electric fields
E⊥= E− E∥ dominate particle acceleration. On the other
hand, in the Bz(r)-supported FF configurations investigated by
Davelaar et al. (2020), it has been argued that both perpend-
icular and parallel fields contribute to particle acceleration,
the latter due to finite-guide-field reconnection.
In this work, we introduce a new radial profile of toroidal

magnetic field that approximates a power law, µf
a f( )B r r B ,

with the toroidal field index αBf� 0. The force due to Bf(r)
is balanced initially by combinations of forces due to axial
magnetic field and gas pressure, using a single pressure mixing
parameter fmix to transition between the FF screw-pinch con-
figuration with no gas pressure gradients ( fmix= 0) and the Z-
pinch configuration with Bz= 0 ( fmix= 1). We perform a series
of 3D kinetic PIC simulations of relativistic collisionless pair
plasmas using this setup on a regular Cartesian grid with
periodic boundaries. We investigate the effects of the key
parameters fmix and αBf on the development of instabilities and
the resulting particle acceleration.
Section 2 describes the initial configuration used in our simu-

lations. The presentation of our results begins from introducing
basic details on our reference simulation in Section 3. Section 4
presents the results at the fluid level focused on the instability
modes. In Section 4.1, we compare the strengths and linear
growth timescales of the fundamental azimuthal modes
in the distributions of the axial electric field component Ez. In
Section 4.2, we compare the effective axial wavelengths of the
Ez distributions. Section 5 presents the results at the kinetic
level, with a focus on the particle acceleration. In Section 5.1,
we investigate the maximum energies achieved by particles
in our simulations. In Section 5.2, we investigate the role
of parallel electric fields in particle acceleration. Section 6
contains a discussion of our results, and Section 7 provides our
conclusions.

7 A related work by Alves et al. (2019) investigated the same magnetic
configuration in nonrelativistic electron-ion plasmas, in some cases including
the effect of Coulomb collisions.

8 Here, g b= - =-( )  mc1 2 1 2 2 is the Lorentz factor of a particle with
mass m, energy  , and dimensionless velocity β = v/c, with c being the speed
of light.
9 Here, q is the particle electric charge, and B0 is roughly the peak value
of Bf(r) attained at the characteristic radius R0.
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2. Initial Configuration

We performed a set of 3D kinetic PIC simulations
in electron–positron pair plasma, using a modified version
of the public numerical code Zeltron (Cerutti et al. 2013).

In our standard collisionless implementation of the PIC
method, the electric and magnetic fields E, B are represented on
a staggered Cartesian Yee grid, and the gas is represented by
individual macroparticles, from which a current density field j
is calculated and deposited on the Yee grid using the charge-
conserving scheme of Esirkepov (2001). The E, B fields are
advanced in time by solving directly the Ampère–Maxwell and
Maxwell–Faraday equations:

p¶
¶
= ´ - ( )E

B j
t

c 4 , 2

¶
¶
= - ´ ( )B

E
t

c , 3

using a simple leapfrog algorithm (assuring the satisfaction of
∇ ·B= 0 with numerical accuracy). The particle positions and
momenta are advanced in time in a leapfrog scheme, using the
Vay pusher algorithm for advancing the momenta under the
local Lorentz force (Vay 2008). Our implementation is
nominally of second-order accuracy, although the main source
of inaccuracy is the limited number of macroparticles per
grid cell.

Our simulations were performed in a cubic domain
of physical size L (−L/2� x, y� L/2; 0� z� L). Introducing
a cylindrical coordinate system (0� r� Rout; 0� f< 2π)
centered along the x= y= 0 axis, one can fit in this domain
an axially and translationally symmetric equilibrium with
the outer radius Rout= L/2. The equilibrium is based on
the radial profile of toroidal magnetic field Bf(r) in the form
of a power law with inner and outer cutoffs (see the upper left
panel of Figure 1):

a a= -f

a

f f

f

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )B r B
r

R
C r C R r, , , 40

0
B B out

B

a =
+

f

a

a

-

-

f

f
( ) ( )

( )
C r

r R

r R
,

1
,B

0
1

0
1

B

B

with a toroidal field index αBf� 0 and a core radius
R0= Rout/10= L/20. These profiles peak at radii Rpeak/R0;
0.84, 1, 1.55, and 5, for αBf=−1.5, −1, −0.5, and 0,
respectively. In order to achieve the most consistent scaling of
our results with αBf, we introduce a characteristic radius RBf

that is equal to Rpeak for αBf=−1.5, −1, and −0.5, and equal
to Rpeak/2 for αBf= 0.

The initial equilibrium is provided by the axial electric
current jz(r)= (c/4πr)d(rBf)/dr, as well as by a combination
of the axial magnetic field Bz(r) and the radial gas pressure
Prr(r):

p p
+ + =f f( )

( )
B

r

d rB

dr

dB

dr

dP

dr4

1

8
0. 5z rr

2

We introduce a constant pressure mixing parameter fmix ä
[0: 1], which is the fraction of the toroidal magnetic stress that
is balanced by the gas pressure (with the remainder balanced

by the axial magnetic pressure):

p
= - f f( )

( )dP

dr
f

B

r

d rB

dr4
, 6rr

mix

= - - f f( )
( )

( )
dB

dr
f

B

r

d rB

dr
1

2
. 7z

2

mix

The case fmix= 0 means that Bf is balanced entirely by Bz (with
uniform gas pressure; the FF screw-pinch), and the case
fmix= 1 means that Bf is balanced entirely by the gas pressure
(Bz= 0; the Z-pinch). For αBf=−1 and fmix< 1 (Bz≠ 0),
the magnetic pitch profile = f( ) ( ) ( ) r rB r B rz is almost

constant at = - R f10 0 mix for r< R0, then slightly dec-
reasing with r, and then strongly increasing with r for
r> 4.5 R0. In the FF limit fmix= 0, we have = R0 0, and
since p= >L 20 20 , the Kruskal–Shafranov stability
criterion is not satisfied, hence this configuration is predicted
to be unstable (e.g., Bromberg et al. 2019).
For fmix< 1, we also introduce a toroidal component

of electric current density:

p
= -f

f f( ) ( )
( )

( )j r f
c

r

B

B

d rB

dr
1

4
. 8

z
mix

The initial profile of gas pressure Prr(r) determines the initial
profile of gas density n(r)= Prr(r)/Θ0mec

2 for a uniform initial
relativistic temperature Θ0= kBT0/mec

2, where me is
the electron mass, kB is the Boltzmann constant, and T0 is
the initial temperature in kelvins. In our simulations, we have
adopted an ultrarelativistic temperature with Θ0= 104.
In this work, we neglect the effects of radiative cooling, leaving
this important topic for a future study.
In the case of nonuniform gas pressure ( fmix> 0), the gas

density profile is normalized by adding a constant value to
obtain the desired density contrast x º n nn max min—the ratio
of maximum (central) nmax to minimum nmin density values. Two
values have been adopted for the density contrast: a moderate
value of ξn= 10 and a high value of ξn= 100. The density
contrast is particularly important for determining the radial
profile of the hot magnetization based on the total magnetic
field σhot(r)= B2(r)/4πw(r), where w(r); 4Θ0n(r)mec

2 is the
relativistic enthalpy density. A higher density contrast results in
a lower gas density and higher magnetization outside the central
core region (see Figure 1).
The case fmix= 0 requires a uniform gas pressure, and hence

a uniform gas density, which corresponds to a density contrast
of ξn= 1. In this case, the gas density is normalized to a value
such that the drift velocity profile βd(r)= j(r)/cen(r) satisfies
the condition that b =( )max 0.5d .10 For all other cases, we
make sure that βd(r)� 0.5.
The minimum value of gas pressure is given by =Pmin

Q n m c0 min e
2. In the cases that involve axial magnetic field

( fmix< 1), we also add a small constant to Bz(r), such that it
satisfies the relation = -( ) ( )B Bmin 10 maxz z

2 3 2 .
The key parameters of the initial configuration are thus fmix,

αBf, and ξn. Their values for our main simulations are listed in

10 Note that the axial current density peaks at r = 0 at the level
of pj cB R2max 0 0, which implies a lower limit on the particle density

b pn j ce B eRmax max d 0 0, which in turn implies an upper limit
on the magnetization of s r-( ) ( ) ( ) ( )r B B n n R 160

2
max

1
0 0 , which depends

primarily on the scale separation between ρ0 and R0.
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Table 1. The initial radial profiles of Bf(r), Bz(r), jf(r), jz(r),
n(r)∝ P(r), and σhot(r) are compared in Figure 1.

Our simulations were performed on a numerical grid size
of N= 1152, with a numerical resolution dx= dy= dz=
L/N= ρ0/1.28, where ρ0=Θ0mec

2/eB0 is the nominal particle
gyroradius, with e being the positron charge and R0/ρ0= 45.
The number of particles of both species per grid cell is 16.
The actual set of macroparticles in each cell is drawn from
Lorentz-boosted Maxwell–Jüttner distributions, the appropriate
moments of which are consistent with n(r), βd(r), andΘ0. The
simulation time step was set as =dt x c0.99d 3 , according

to the Courant–Friedrichs–Lewy (CFL) condition. Digital filter-
ing was applied at every time step to the current and charge
densities deposited on the Yee grid. Periodic boundary condi-
tions were adopted at all faces of the Cartesian domain.
The edge regions that would correspond to r> Rout were
initialized with Bf= 0, j= 0 and uniform Bz, n, P.
Our simulations have a typical duration of∼5 L/c. In

some cases, we interrupt them at an earlier time, once
the perturbations produced by the instability reach the x, y
domain boundaries. This is formally defined by considering
whether the root mean square of the axial electric field comp-
onent rms(Ez), calculated within an outer cylindrical shell
9< r/R0< 10 (see Section 4.1), exceeds the level of 2×
10−3B0. Once that happens during an episode of rapid growth,
the simulation is interrupted at the end of that episode.

3. Results: Introducing the Reference Case

We begin the presentation of our results by introducing some
basic details on the reference case, which we choose to be
the simulation f1_α-1_ξ10 with toroidal field index αBf=−1
balanced entirely by gas pressure ( fmix= 1), which is the case
closest to the configurations investigated by Alves et al. (2018).
Figure 2 presents selected snapshots from the reference

simulation. We show 2D (x,z) slices along the y= 0 plane
(containing the symmetry axis r= 0 of the initial configuration)
for the out-of-plane magnetic field component By (dominated
by the toroidal component Bf) and for the axial electric field
component Ez, as well as (x,y) slices along the z= 0 plane for

Figure 1. Upper row of panels: initial configurations compared for the series of simulations with gas pressure balance ( fmix = 1) and different toroidal field indices
αBf (indicated by line colors defined in the legend). From left to right: radial profiles of the initial toroidal magnetic field Bf(r) in units of B0; radial profiles
of the axial current density jz(r) normalized to cen ;max radial profiles of the gas density n(r) normalized to nmax (proportional to the gas pressure ( )P r Pmax); and radial
profiles of the initial hot magnetization σhot(r). For comparison with the configuration of our simulations, in the upper left panel we also show the “constant pitch”
profile simulated by Mizuno et al. (2009), Bromberg et al. (2019), and Davelaar et al. (2020) (dotted black line); the exponentially decaying profile of Alves et al.
(2018, 2019) (dashed black line); and the “sinusoidal” profile of O’Neill et al. (2012) (dashed–dotted black line). Lower row of panels: initial configurations compared
for the series of simulations with the same toroidal field index αBf = −1 and different pressure-mixing parameters fmix (indicated by line colors defined in the legend).
From left to right: radial profiles of the initial axial magnetic field Bz(r)/B0 (and the common profile of Bf(r)/B0 with the black dotted line); radial profiles
of the toroidal current density f ( )j r cenmax (and the common profile of ( )j r cenz max with the black dotted line); radial profiles of the gas density

=( ) ( )n r n P r P ;max max and radial profiles of the initial hot magnetization σhot(r) based on the total magnetic field. In both series, the solid color lines correspond
to the moderate density ratio of ξn = 10, and the dashed color lines correspond to the high density ratio of ξn = 100.

Table 1
List of Performed Simulations with the Key Parameters of the Initial

Configurations

Label fmix αBf ξn

f0_α-1_ξ1 0 −1 1
f025_α-1_ξ10 0.25 −1 10
f05_α-1_ξ10 0.5 −1 10
f05_α-1_ξ100 0.5 −1 100
f075_α-1_ξ10 0.75 −1 10
f1_α-15_ξ10 1 −1.5 10
f1_α-1_ξ10 (ref) 1 −1 10
f1_α-1_ξ100 1 −1 100
f1_α-05_ξ10 1 −0.5 10
f1_α-05_ξ100 1 −0.5 100
f1_α0_ξ10 1 0 10
f1_α0_ξ100 1 0 100
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Ez, at five uniformly spaced moments in time. The sequence
illustrates the development of unstable modes beginning
in the central core region and growing outward. These are
characterized by a short wavelength along z (λz; 2.7 R0, which
means ;7.5 full wavelengths per L; see Section 4.2) and
varying levels of asymmetry in the (x,y) plane, suggesting the
dominance of the m= 1 kink mode.11 They break
into a nonlinear phase by t; 1.6 L/c. The axial electric field
appears to be the strongest and largely positive around
t; 1.3 L/c.

The left panels of Figure 3 present the radial profiles
of the mean toroidal magnetic field á ñf ( )B r (averaged over z
and f) and the mean axial electric field á ñ( )E rz for the same five
moments in time. At t; L/c, the toroidal magnetic field profile
is still very similar to the initial one, while a net positive axial
electric field builds up along the axis. For 1.0< ct/L< 1.6, we
observe rapid decay of the toroidal magnetic field within
r< 3R0. Note from Figure 2 that, by ct/L; 1.6, a turbulent
structure of both By and Ez develops exactly within these radii
(|x|< 0.15L). Therefore, we consider this decay of Bf as
an irreversible magnetic dissipation. We will refer to this period
of time as the fast magnetic dissipation phase; its beginning
and ending are indicated with thick lines. At the end of the fast
magnetic dissipation phase (t; 1.6 L/c), á ñf ( )B r peaks at
the level of;0.28 B0 at a radius of r; 2.7R0. Using these
numbers, we can estimate the post-dissipation energy limit as

g( )( ) e B R0.28 2.7 0.760 0 lim, a rather minor decrease from

the initial value. The net axial electric field shoots up
to;0.07B0 in the middle of the fast magnetic dissipation phase
and decays to;0.02B0 by t; 1.6 L/c. For t> 1.6 L/c, dissipa-
tion of toroidal magnetic field is significantly slower and
á ñ( )E rz does not exceed ;0.01 B0.

Figure 4 compares the particle momentum u= γβ (u; γ for
γ? 1) distributions dN du compensated by u2 for the same
five moments in time. The distribution at t; L/c is indis-
tinguishable from the initial Maxwell–Jüttner distribution. The
fast magnetic dissipation phase corresponds to a rapid buildup
of a high-energy component of the distribution. The high-
energy component evolves much more slowly for t> 1.6 L/c.
The most energetic particles approach the energy limit, which
in our simulations amounts to g = Q45lim 0. Based on such
momentum distributions, we define themaximum particle
energy gmax as corresponding to the umax value at which
u dN du2 equals 10−4 of the peak level determined at t= 0.

4. Results: Instability Modes

4.1. Pinch versus Kink Modes

Here, we compare the relative strengths of the two funda-
mental azimuthal instability modes—them= 0 pinch versus
them= 1 kink—in both the linear and nonlinear stages.
We have analyzed the 3D spatial distributions of the axial
electric field component Ez. Using the cylindrical coordinates
(r, f, z) centered at the initial symmetry axis, we define a series
of cylindrical shells n for n ä {1,K,9} delimited by Rn−1<
r< Rn, where Rn= (n+ 1)R0, so that R9= Rout. For the pinch
mode, we have also analyzed the central core region r< R0 (the

Figure 2. Maps of the magnetic field component By (top row of panels) and the electric field component Ez (middle row of panels) in the y = 0 plane, as well as the Ez

component in the z = 0 plane (bottom row of panels), all in units of B0 (positive values in red, negative in blue), at regular time intervals (from left to right) for
the reference simulation f1_α-1_ξ10.

11 A further analysis reveals that this mode is circularly polarized, i.e., the
phase f1 is a strong quasi-periodic function of z and a weak function of
simulation time.

5

The Astrophysical Journal, 931:137 (22pp), 2022 June 1 Ortuño-Macías et al.



0 shell). Within each shell, the values of Ez have been
averaged over r. Then, for every value of z, the function
fá ñ( )E z,z has been decomposed into a Fourier series

f få +( ) [ ( )]E z m zcosm m m with real amplitudes Em(z) and
phases fm(z). These amplitudes have been averaged over z and
will be presented as functions of simulation time.

Figure 5 presents the spacetime diagrams (r,t) of the
amplitudes of the pinch and kink modes for two simulations,
including all nine shells ¼{ } , ,1 9 , and for the pinch mode also
the core region 0. In the reference case f1_α-1_ξ10 (two left
panels in Figure 5), we find a strong pinch mode
(with E0∼ 0.1B0) highly localized in both radius and time.
In the core region, it is found for 1.0< ct/L< 1.5, which is
during the fast magnetic dissipation phase. It is also found
in the first shell 1 during a slightly later period of 1.3< ct/
L< 1.6. A slightly weaker kink mode is more extended in both
time and radius. In the first shell, it can be seen for 1.1< ct/
L< 1.8; in the next two shells (2< r/R0< 4) it is successively
delayed at a rate similar to that for the pinch mode. These
modes appear to originate in the central core region and
propagate radially outward. At lower amplitude levels
of ∼ 10−3B0, the pinch mode appears to propagate at a velocity
of∼ 0.4c, faster than the kink mode (∼ 0.2c).

In the case f1_α0_ξ100 (two right panels in Figure 5), both
the pinch and the kink modes achieve higher amplitudes
of ∼ 0.1B0, starting around t; 2 L/c and lasting at least until
t; 4.3 L/c, at which point the simulation has been interrupted
because the modes reached the outer boundary according
to the criterion described in Section 2. Both modes appear
to originate in the central core and propagate outward with
similar velocities ∼0.2 c. Looking at the amplitude levels
of∼(10−2.5

–10−2.0)B0 of the pinch mode, we see an excess
signal in the ,5 6 shells (5< r/R0< 7) at ct/L; 2.5–3. Such
a signal is not seen in the kink mode, and it also is not found (at
least that clearly) in our other simulations. We discuss
the origin of this radially localized pinch mode in Section 6.
We now focus on the first shell 1 (1< r/R0< 2). Figure 6

compares the time evolutions of them= 0, 1, and 2 modes
for two series of simulations: fmix= 1 (varying αBf and ξn)
and αBf=− 1 (varying fmix and ξn). In the fmix= 1 series
(upper panels in Figure 6), the amplitudes of them= 0 pinch
modes are comparable to the amplitudes of them= 1 kink
modes, and them= 2 modes are only slightly weaker. With
the simulation time t scaled by the characteristic radius RBf,
the evolutions of the modes are similar for different values
of αBf. At the same time, the mode evolution is not sensitive

Figure 3. Top left panel: radial profiles of the mean toroidal magnetic field á ñf ( )B r (averaged over z and f) for the five moments in time of the reference simulation
f1_α-1_ξ10 presented in Figure 2 (and for t = 0). Top right panel: radial profiles of á ñf ( )B r for the simulation f1_α-05_ξ100. Bottom panels: radial profiles
of the mean axial electric field á ñ( )E rz (averaged over z and f) normalized to B0 for the same moments in time of the same simulations as in the respective top panels.
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to the density contrast ξn, especially in the linear stage. In all
simulations, we find that the kink mode is the first to emerge
(roughly when á ñE1 exceeds the 10−3B0 level) followed
by the pinch mode and all the higher modes (m� 2).

In the αBf=− 1 series (lower panels in Figure 6), we
observe a systematic weakening of the pinch mode together
with a strengthening of the kink mode with decreasing value
of fmix (in agreement with the linear analysis of Bodo et al.
2013). The reason for this is that the axial magnetic flux resists
radial compression, and hence stabilizes them= 0 pinch mode
for fmix→ 0. For fmix< 1, the evolution of the pinch mode
does not even show regular linear stages of exponential growth,
while the kink mode shows linear stages extending over

two orders of magnitude iná ñE1 , reaching values up to 0.1B0

in the case fmix= 0.5 and ξn= 100. Higher modes (m� 2)
are once again systematically weaker and delayed.
We have measured the minimum growth timescales t =min
D D á ñf( ) ( )c t R Emin 1 ln mB for each mode m in every studied

case; their values are compared in Figure 7 (the corresponding
segments of theá ñ( )E tm functions are indicated in Figure 6).
One should note that the time resolution for this analysis
is limited toΔt; 2R0/c, hence any shorter timescales should
be considered as upper limits. Nevertheless, our results indicate
that the pinch modes are typically the fastest ones (t < 2min for
fmix= 1), and the kink modes are typically the slowest ones
(t > 2min ). In general, the value of tmin decreases with

Figure 4. Particle momentum distributions u dN du2 (equivalent to energy distributions since Θ0 ? 1), combined for both electrons and positrons and normalized to
peak at unity, for the five moments in time of the reference simulation f1_α-1_ξ10 presented in Figure 2. The vertical dashed line indicates the confinement energy
limit g = Q45lim 0.

Figure 5. Spacetime diagrams of the amplitudes Em (averaged over z) of the azimuthal modes m of the Ez(f, z) distributions compared for two simulations. The white
dotted lines indicate the speed levels of 0.2c and 0.4c. In the case f1_α0_ξ100, the simulation was interrupted at ct/L ; 4.27 when the perturbations reached
the boundary according to the definition described in Section 2.
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Figure 6. Amplitudes Em of the azimuthal modes m of the axial electric field Ez extracted from the 1 < r/R0 < 2 cylindrical shell, averaged over z and presented as
functions of the simulation time t scaled by the characteristic radius RBf. The upper row of panels compares the simulations with fmix = 1, different values of αBf
(indicated by the line color), and different values of ξn (10: solid lines, 100: dashed lines). The lower row of panels compares the simulations with αBf = −1, different
values of fmix (indicated by the line color), and different values of ξn (as before). The left panels show the m = 0 pinch mode, the middle panels show the m = 1 kink
mode, and the right panels show the m = 2 mode. The triangles indicate the line segments for which the growth timescale τ of the mode amplitude is minimized.

Figure 7. Minimum growth timescales tmin normalized to RBf/c evaluated for the amplitudes Em of the azimuthal modes of Ez presented in Figure 6. The symbol
colors correspond to the line colors used in Figure 6. Different symbol types indicate the mode number m. For each symbol type, the smaller symbols correspond
to ξn = 10, and the larger symbols correspond to ξn = 100 (except for the case fmix = 0, in which ξn = 1). The short magenta line in the right panel indicates
the analytical prediction for the |m| = 1 kink mode in the constant-pitch FF configuration (Appl et al. 2000). The black dashed lines mark the time-resolution limit for
this analysis.
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increasing fmix, and its dependence on αBf is captured by its
explicit scaling with RBf.

4.2. Effective Axial Wavelength

Figure 8 compares the (x,z) maps in the y= 0 plane
of the axial electric field component Ez for four selected
simulations at the moments when the root-mean-square values
of Ez evaluated at the central core radius r= R0 achieve their
peaks. In the case f025_α-1_ξ10, we observe a regular structure
with the regions of Ez> 0 (red) slightly more extended than
the regions ofEz< 0 (blue), aligned asymmetrically about
the central axis (indicating the dominance of the kink mode),
with three full wavelengths over Δz= L. In the case f075_α-
1_ξ10, the structure ofEz(x, z) appears to be very similar
to the previous case; however, some short-wavelength kink-like
fluctuations appear superposed. In the reference case f1_α-1_ξ10
(see Figure 2), we find a very different structure of Ez, in the form
of a somewhat irregular stack of;16 short-wavelength patches
of positive values, separated by narrow gaps of weak (but still
positive) values. This can be compared with the last presented
case f1_α0_ξ10, in which the Ez> 0 patches are much more
extended radially, because in this case the evolution of the
instability is longer by a factor; RBf/R0= 2.5.

Using the (r)-averaged profiles of fá ñ( )E z,z extracted from
the first cylindrical shell region 1, we calculated the discrete
Fourier transform f f p= å á ñ -( ) ( ) ( )E E z ikz L, exp 2k j z j j over
a regular grid 0� zj< L, averaged the Ek(f) amplitudes
over f, then calculated the effective axial wavenumber
á ñ = å å( ) ( )k kE Ez k k k k

2 2 , and finally obtained the corresp-
onding effective wavelength l p= á ñk2z z . Figure 9 compares
the values of λz for all our simulations. We find that λz is
decreasing systematically with increasing fmix. For fmix= 0,
we find that λz; 8.8R0; L/2.25, which reflects the dominance
of two full wavelengths in the Ez structure. For fmix∼ 0.25–0.5,
λz is consistent with L/3. For fmix= 0.75, the effective wave-
length is λz; 5.4R0; L/3.7, in agreement with a combination
of long (L/3) current-driven modes characteristic of the FF
screw-pinches and short pressure-driven modes characteristic
of the Z-pinches (see the second left panel of Figure 8).
For fmix= 1, all of our simulations produce consistent values
of λz; (2.7–3.9)R0; (L/7.5–L/5), increasing somewhat with
increasing αBf, but not scaling clearly with RBf. There is little
dependence of λz on the density ratio parameter ξn.

5. Results: Particle Acceleration

5.1. Fast Magnetic Dissipation Phase and Particle Energy
Limit

In this subsection, we show that the Z-pinch configurations
with steep toroidal field indices (αBf�−1) satisfy the glim
energy limit, while those with shallow indices (αBf>− 1)
exceed that limit. Energetic particles are well-confined within
the jet core in either case. For αBf�−1, efficient magnetic
dissipation proceeds over a limited period of time, transitioning
from a fast magnetic dissipation phase to a slow magnetic
dissipation phase before the perturbations reach the domain
boundaries. We will argue that particle energies are limited
by the finite time duration of the fast magnetic dissipation
phase.

5.1.1. The Reference Case fmix = 1 and αBf =− 1

Figure 10 compares in detail the time evolutions of the
toroidal magnetic flux (calculated as Y µ á ñf ∣ ∣ByB with
averaging over x and z along the y= 0 plane), the total
magnetic energy B, the mean axial electric field at r= R0,
and the maximum particle energy as a fraction of the energy
limit, g gmax lim. The first thing to notice is that the relative
decrease of toroidal magnetic flux (the thick green line) is very
similar to the relative decrease of total magnetic energy (the
thin green line), the main difference being an earlier onset

Figure 8. Maps of electric field component Ez in units of B0 (positive values in red, negative in blue) in the y = 0 plane, compared for several simulations at
the moments (indicated in the bottom left corners) of peak root-mean-square value of Ez evaluated at r = R0. The vertical dotted lines indicate r = RBf, which equals
R0 for αBf = −1 and 2.5R0 for αBf = 0.

Figure 9. Effective axial wavelength λz of the á ñ( )E zz fluctuations measured
within the cylindrical shell region 1 (1 < r/R0 < 2) at the moments of peak
rms(Ez). The smaller symbols correspond to ξn = 10, and the larger symbols
correspond to ξn = 100 (except for the case fmix = 0, in which ξn = 1).
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of the toroidal flux dissipation. The toroidal magnetic flux
clearly shows two phases of magnetic dissipation—a fast
magnetic dissipation phase for 1.0< ct/L< 1.6, followed
by a slow magnetic dissipation phase (this is consistent with
the results of Bodo et al. 2022).

Let us now discuss the evolution of the mean axial electric
field á ñ( )E Rz 0 . The fast magnetic dissipation phase involves
a temporary spike ofá ñ( )E Rz 0 , peaking at the level ofá ñ Ez peak

B0.043 0 for t∼ (1.3–1.4) L/c, simultaneous with the most rapid
increase of gmax.

12 To illustrate the connection between
the electric field strength at r= R0 and evolution of gmax,
consider a slightly different time period of 1.2< ct/L< 1.7,
during which á ñ( )E Rz 0 exceeds the level of á ñE0.2 z peak. During
that time period ofΔt; 0.5 L/c, gmax increases by gD max

gQ 18.8 0.420 lim.This energy gain corresponds to linear
acceleration by the average electric field of rá ñ = -( )E B Lacc 0 0

1

gD Q D á ñ( ) ( )  ct L E B0.042 zmax 0 peak 0. Hence, the elec-
tric field strength á ñEacc required to explain the acceleration of the
most energetic particles during that period is consistent with
á ñEz peak.

13 Our analysis of individually tracked particles confirms
that themost energetic ones are indeed accelerated within the core
region (r<R0), predominantly by the positive axial electric field

during the fast magnetic dissipation phase, as stated by Alves et al.
(2018).
The typical energy gain of an energetic particle can be

derived directly from the duration Δt of the fast magnetic
dissipation phase:

g
g
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where á ñEacc is the average electric field component along
the particle velocity vector. This means that a relatively short
duration Δt∼ L/2c, in combination with realistic electric field
strengths, is sufficient to explain one half of the “confinement”
limit (also known as the Hillas limit) on the particle
energy gain.
As a representative example, let us consider the acceleration

history of an individual energetic particle. The left panels of
Figure 11 show the history of an energetic positron (denoted as
“pos #107”) from the reference simulation. This positron is
energized from g0.2 lim to g0.6 lim during the fast magnetic
dissipation phase. The energy gain of g gD  0.4 lim over
the timescale ofΔt; 0.6 L/c requires an average electric field
ofá ñ E B 30acc 0 , which is consistent with the axial electric
field Ez experienced by the positron. In the top panels of
Figure 11, the dashed blue line shows that the acceleration
of this particle can be attributed almost exclusively to the action
of the axial electric field component Ez. Likewise, it can be
demonstrated that the action of the electric field component

Figure 10. Time evolutions of the toroidal magnetic field Bf and axial electric field Ez for the reference simulation f1_α-1_ξ10. The thick green line shows the toroidal
magnetic flux ΨBf normalized to its initial value; the thin green line shows the total magnetic energy B normalized to its initial value; the red line shows the maximum
particle energy gmax normalized to the Lorentz factor limit g ;lim the magenta line shows the mean axial electric field á ñEz (averaged over z and f) evaluated at r = R0

and normalized to its peak value of Ez,peak = 0.043B0; the five vertical thick dotted lines indicate the five moments in time presented in Figure 2–4.

12 The fastest e-folding growth timescale of á ñ( )E Rz 0 has been estimated as
τEz ; 0.046L/c ; 0.9R0/c over the period of 1.0 < ct/L < 1.1. Hence,
the duration of the fast magnetic dissipation phase corresponds to ; 13τEz.
13 One can note that, on one hand, the average axial electric field at R0 during
that time period should be roughly á ñ E0.6 z peak; on the other hand, the axial
field is somewhat stronger for r < R0.

10

The Astrophysical Journal, 931:137 (22pp), 2022 June 1 Ortuño-Macías et al.



parallel to the local magnetic field is negligible in this case.
During most of the fast magnetic dissipation phase and until
t; 2 L/c, this positron is located within the central core at
r< R0. In order to determine whether this positron is confined to
the central core by toroidal magnetic field, we calculate the
particle confinement indicator defined as x g g= -( ∣ ∣)uzconf lim
(see Appendix A). In the present case, we find that ξconf< 0.2
(other energetic particles in this simulation reached ξconf; 0.3),
which means that this particle is indeed confined (as are
the others). The acceleration rate slows down significantly
around the end of the fast magnetic dissipation phase at
t; 1.6 L/c. The sole reason for slower acceleration is that
the electric fields within the central core become weaker.

We have thus demonstrated in our reference case that
the evolution of the toroidal magnetic field includes the fast
magnetic dissipation phase, the short duration of which can
explain a significant part of the particle energy limit glim.

5.1.2. The Effects of αBf >− 1 and fmix < 1

In our other simulations, we have explored the effects
of three parameters: the pressure mixing ratio fmix, the toroidal
field index αBf, and the density contrast ξn. Figure 12 presents
the time evolutions of the maximum particle energy gmax: the
left panel compares all fmix= 1 cases (for different αBf and ξn)
and the right panel compares all αBf=−1 cases (for different
fmix and ξn). The reference simulation f1_α-1_ξ10 is displayed
as the solid green line in each panel. The values of gmax, as well
as the simulation time t, have been scaled by the characteristic
radius RBf, which depends on αBf (see Section 2). One can see
that gmax begins to increase significantly from its initial value
after at least ct/L RBf/R0. For fmix= 1, it typically shows
a single phase of rapid growth to the energy limit glim at
rates corresponding to acceleration by electric fields Eacc∼
(0.05–0.08)B0. In cases where glim is exceeded, the further

increase of gmax slows down significantly (Eacc< 0.01B0

for αBf=−1.5, −1 and ξn= 10). The evolution of gmax is more
complex in the fmix< 1 cases; in some of them, the glim limit
is reached in two stages, with Eacc only up to ∼ 0.02B0.
The results for a high density contrast value of ξn= 100
suggest that the value of glim is also relevant to those cases.
Among the αBf>− 1 cases, the rescaled g f( )R Rmax B 0
reaches the glim limit for αBf=−0.5, as well as for αBf= 0
and ξn= 100, although we cannot say whether it would flatten
subsequently if these simulations could be continued. Particle
acceleration appears to be faster for higher values of fmix; this is
consistent with the correspondingly shorter instability growth
timescales tmin, as shown in Figure 7.
Figure 13 compares the particle momentum distributions

between the simulations for αBf=−1 (hence RBf= R0),
ξn= 10 (with one exception of ξn= 100), and different values
of the pressure mixing parameter fmix. This comparison is
presented at two simulation times, because these simulations
evolve at different rates. At ct/L; 2.5, when some fmix= 1
simulations are already in the slow acceleration phase while the
fmix= 0.25 case is just at the onset of fast acceleration, the
high-energy distribution tails appear fairly regular (gmax
increases with increasing fmix), even if they are very weak for
fmix� 0.5. At ct/L; 5, when most simulations are in their final
stages, the high-energy tails are clearly present for fmix� 0.25
(in the case fmix= 0, particle acceleration begins only after ct/
L= 5), although they are rather irregular, with bumps instead
of power laws. At ct/L; 5, the fractions of particles contained
in these high-energy tails are roughly ;1% and they carry ;2%
of the total particle energy. The case of high density contrast
ξn= 100 for fmix= 0.5 at ct/L; 2.5 shows significantly higher
fractions: ;5% of particles carrying ;14% of particle energy.
Figure 14 compares the time evolutions of the toroidal

magnetic flux ΨBf (normalized to its initial value) for all

Figure 11. Acceleration histories of single energetic tracked positrons in the reference simulation f1_α-1_ξ10 (left panels) and in the simulation f1_α-05_ξ100 (right
panels). In the top panels, the solid black lines show the particle Lorentz factor γ normalized to the energy limit g = ( )eB R mc ;lim 0 0

2 the dashed black lines show
the particle confinement indicator x g g= -( ∣ ∣)uzconf lim (Appendix A); and the dashed blue lines show what would be the particle Lorentz factor due to the work
done by the axial electric field component Ez. In the bottom panels, the solid magenta lines show the local axial electric field component Ez (the dashed magenta lines
show its moving average) and the solid red lines show the particle radial coordinate r in units of 10R0. The five vertical thick dotted lines in the left panels indicate the
five moments in time presented in Figures 2–4.
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simulations. In all cases, we observe an initial period of almost
constant ΨBf followed by the onset of the fast magnetic dis-
sipation phase, which in some cases is followed by a transition
to a slow magnetic dissipation phase. The simulation time has
been scaled by RBf, such that for fmix= 1 the fast magnetic
dissipation phases begin roughly at t; (L/R0)RBf/c;
20RBf/c. On the other hand, for αBf=− 1, these onsets are
delayed for the Bz-balanced cases of fmix< 1. The overall
relative decrease ofΨBf is in the range of∼(30–60)%.

Transitions from the fast magnetic dissipation phase to the slow
magnetic dissipation phase can be seen in most cases
of αBf�− 1 (although in some Bz-balanced cases the histories
ofΨBf(t) are more complicated). Such a transition is not seen
in the cases of αBf>− 1 (although there is a hint of that
in the case f1_α-05_ξ10). Comparing Figure 14 with
Figure 12, a connection between the evolutions of gmax and
ΨBf can be noticed. Simulations in which g gmax lim are
the same in which the fast magnetic dissipation phase is not

Figure 12. Time evolutions of the maximum particle energy gmax evaluated at the level of 10−4 of the u dN du2 particle distributions normalized to peak at unity at
t = 0. The results are compared for two series of simulations: the left panel shows simulations for fmix = 1 and different values of αBf, and the right panel shows
simulations for αBf = −1 and different values of fmix. Both gmax and the simulation time t are scaled by the characteristic radius RBf, which depends on αBf. The solid
lines indicate the cases of ξn = 10, and the dashed lines indicate the cases of ξn = 100. The horizontal dotted black lines indicate the confinement energy limit
g rQ º =R 45lim 0 0 0 . The vertical dotted magenta lines in the right panel indicate the times at which particle distributions are compared in Figure 13. The
simulations are interrupted at different times, before the perturbations reach the x, y boundaries.

Figure 13. Particle momentum distributions u dN du2 (combined for both electrons and positrons and normalized to peak at unity) compared at two moments in time
(left/right panel) between simulations for αBf = − 1, and different values of fmix. The solid lines indicate the cases of ξn = 10, and the dashed lines indicate the cases
of ξn = 100. The vertical black dashed lines indicate the confinement energy limit g = Q45lim 0.
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complete before the perturbations reach the boundaries and the
simulation is interrupted. The episodes of rapid increase of gmax
are simultaneous with a rapid decrease ofΨBf.

As an example, let us consider in more detail the case
fmix= 1, αBf=− 0.5, and ξn= 100 (RBf= 1.55R0; the dashed
orange lines in the left panels of Figures 12 and 14). In this
case, the fast magnetic dissipation phase begins at t; 1.4 L/c
and lasts until the end of the simulation at t; 3.4 L/c.
During that time, gmax increases linearly, reaching the
level of g gQ = 90 20 lim. The right panels of Figure 3 show
the time evolutions of the radial profiles ofá ñf ( )B r and á ñ( )E rz ,
extending until the simulation ends. The time separations
between successive lines are Δt; 0.3 L/c, the same as for
the reference simulation. Compared with the reference simula-
tion, efficient dissipation of toroidal magnetic field progresses
toward larger radii, essentially until it reaches the outer cutoff
region. This corresponds to much more extended radial profiles
of the net mean axial electric field á ñ >E 0z . The key difference
from the reference case is that the axial electric field does not
decay in the central core, settling at the value ofá ñ ~E B0.04z 0
for r< R0, which is four times higher than in the reference case.
This is also reflected in the fact that dissipation of toroidal
magnetic field in the central core proceeds to deeper levels. The
e-folding growth timescale ofá ñ( )E Rz 0 has been estimated as
τEz; 0.11L/c; 2.2R0/c over the period of 1.1< ct/L< 1.7,
about 2.4 times longer than in the reference case. This means
that, in this simulation, the fast magnetic dissipation phase lasts
for at least; 18τEz, which is longer in relation to τEz than
in the reference case.

Having a radially decreasing net axial electric field is key for
efficient dissipation of the average toroidal magnetic field,
which is governed by the Maxwell–Faraday equation:
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For example, the steepest radial gradients of the net axial
electric field in both presented cases are Dá ñ -E B0.04z 0

over Δr= R0, which corresponds to the peak magnetic
dissipation rate ofDá ñ - Df B B c t L0.80 . On the other
hand, in the final state of the simulation f1_α-05_ξ100, we
have Dá ñ -E B0.045z 0 over Δr= 9R0, which yields
Dá ñ - Df B B c t L0.10 . These dissipation rates are consis-
tent with the results presented in the top panels of Figure 3.
The right panels of Figure 11 show the acceleration history

of an energetic positron (denoted as “pos #469”) in the
simulation f1_α-05_ξ100. This particle accelerates almost
linearly from g g 0.3 lim at t= 1.4 L/c to g g 1.75 lim at
t= 3.4 L/c, which means an energy gain of g gD  1.45 lim over
the period ofΔt= 2 L/c. This acceleration is dominated
by action of the axial electric field, which is sustained at the level
of Ez; 0.04B0 throughout this time range. For most of the
acceleration period (until t; 2.4 L/c), the particle is located
within the central core (r< R0), and its confinement indicator is
ξconf< 0.2 even as it starts oscillating outside the core at later
times. This particle is well-confined by the toroidal magnetic
fields, and yet it is able to accelerate beyond glim. Other energetic
particles in this simulation reach ξconf; 0.6, and yet they do not
escape their confinement and keep accelerating.

5.2. Parallel versus Perpendicular Acceleration

We have addressed the problem of comparing the relative
importance of parallel and perpendicular electric fields in
particle acceleration by analyzing large samples of individually
tracked particles, denoted with index i, for which we recorded
as functions of simulation time their energy histories γi(t), as
well as the local magnetic and electric field vectors Bi(t), Ei(t).
Out of these samples, we have selected energetic particles
defined by two criteria: g Q[ ( )]tmax 15i 0 and g -[ ( )]tmax i
g Q[ ( )]tmin 10i 0. Let dγi(t)= (qi/mc)(βi ·Ei)(t) dt represent

the instantaneous energy change of the ith particle between
the times t and t+ dt, where qi=± e is the particle charge.
The corresponding contributions from perpendicular and
parallel electric fields are dγi,⊥(t)=(qi/mc)(βi ·Ei,⊥) (t)dt and
dγi,∥(t)= (qi/mc)(β ·Ei,∥)(t) dt, respectively. The total energy

Figure 14. Time evolutions of the toroidal magnetic field flux ΨBf, normalized to unity at t = 0, compared for two series of simulations, using simulation time t scaled
by the characteristic radius RBf. The line types are the same as in Figure 12.
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gain of the ith particle has been calculated as òg gD =
=

di t

t

i0

ipeak, ,
interrupting the integration at the moment tpeak,i at which
the particle energy γi(t) attains a global peak. The corresp-
onding energy gains due to the perpendicular and parallel
electric fields are òg gD =^ = ^di t

t

i, 0 ,
ipeak, and òg gD =

= di t

t

i, 0 ,
ipeak, ,

respectively.
Figure 15 compares the distributions of theΔγi,∥/Δγi ratio

for multiple simulations. In most cases, the distributions peak at
Δγi,∥; 0, which means that particle acceleration is dominated
by perpendicular electric fields. However, in the f05_α-1_ξ100
case, the distribution peaks atΔγi,∥; 0.2Δγi. Additional
analysis of this case reveals various and complex histories of
individual energetic particles that attain this level of parallel
acceleration, an example of which will be presented further in
this subsection. In the cases of fmix= 1 and αBf= 0,
the distributions ofΔγi,∥ peak at ; 0.1Δγi. Here, the reason
is the relatively long duration of the initial simulation phase
when random fluctuations of electric field contribute roughly
equally toΔγi,∥ andΔγi,⊥.

Figure 16 compares the relative contributions of perpend-
icular electric fields to the energization of particles as a function
of simulation time for the cases of αBf=− 1 with different
values of fmix and ξn. These contributions have been summed
over the samples of energetic particles as g= å^ ^( ) ( )S t d ti i,

2

and g= å( ) ( ) S t d ti i,
2 (summing over energy squares greatly

reduces the noise), and the relative contribution has been
calculated as s⊥(t)= S⊥(t)/[S⊥(t)+ S∥(t)]. Initially, for t L/
c, before the fast magnetic dissipation phase, when particle
energy changes are limited to small random fluctuations, we
find s⊥∼ 0.5. With the onset of the fast magnetic dissipation
phase, the relative contribution of perpendicular acceleration
increases to s⊥∼ 0.95, followed by a slow irregular decrease
to the level of s⊥∼ 0.6–0.8. As far as we can say, these results
are not sensitive to the density ratio ξn, but they seem to depend
on the pressure mixing parameter fmix in the nonlinear phase.
For 4.0< ct/L< 4.5, when the s⊥(t) functions for fmix< 1

achieve broad local minima, the highest relative contribution
of perpendicular acceleration is s⊥; 0.8 for fmix= 0.25, and the
lowest is s⊥; 0.6 for fmix= 0.75.14 This dependence appears
to be driven by differences in S⊥ values (during that time, it is
higher by a factor of ;5 in the fmix= 0.25 case, compared
to the fmix= 0.75 case), rather than by differences in S∥ values
(higher by only ;50% for the same comparison).
We have searched the sample of energetic particles

in the simulation f05_α-1_ξ100 for an illustrative example
of significant contribution of parallel electric fields. Figure 17
shows the acceleration history of an energetic positron (denoted
as “pos #930” or with subscript “930”), which is characterized
by an initial energy of γ930,ini; 7.1Θ0, and by ct/L; 3.5 it
reaches a peak energy of γ930,peak; 25.9Θ0, hence gD 930

g gQ  18.8 0.42 2.60 lim 930,ini, of which ;25% is the contrib-
ution from parallel electric fields. Systematic acceleration
by parallel electric fields with ~·E B B0.005 0

2 is observed
mainly in the period of 2.5< ct/L< 2.95.15 During this time,
the total electric field strength at the position of this particle
is |E|∼ (0.1–0.2)B0∼ (0.3–0.5)|B|. As it happens, these are not
the strongest electric fields that this particle experiences.
At t; 2.4 L/c, the corresponding values are -· E B

B0.008 0
2 and |E|; 0.3B0; 0.58|B|. At that time, our particle

experiences rapid acceleration, but the contribution of parallel
electric fields up to that point is not important.
Figure 18 provides a detailed context for the parallel

acceleration of positron #930. This particle is located not far
from the central axis (r; 1.5R0), within a large patch
of positive E ·B. Additional analysis shows that this particle
interacts with the same patch for the entire period of parallel
acceleration while propagating along a helical trajectory (since
the dominant magnetic field components are still Bz and Bf).
In the (x,y) plane following the particle along the z coordinate,

Figure 15. Distributions of the relative contribution (Δγ)∥ of the electric field component E∥ parallel to the local magnetic field to the total energy gain Δγ for
complete samples of energetic particles. The line types are the same as in Figure 12.

14 The case f05_α-1_ξ10 also achieves s⊥ ; 0.6, but only for ct/L > 6.
15 This period of time coincides with the second phase of rapid increase
of the maximum particle energy gmax in this simulation, taking it beyond
the glim limit (see the dashed blue line in the right panel of Figure 12).
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Figure 16. Relative contribution of perpendicular electric fields to the squared energy gains of energetic particles (using the formula shown in the plot title)
as a function of simulation time for simulations with αBf = − 1 and different values of fmix (indicated by the line color) and ξn (indicated by the line type, same
as in Figure 12).

Figure 17. Acceleration history of the energetic positron #930 in the simulation f05_α-1_ξ100 that shows a significant contribution of parallel electric fields to its
acceleration, with Δγi,∥ ; 0.25Δγi. The black solid line shows the particle energy γi(t), and the red solid line shows the integrated contribution of parallel electric
fields γi(t = 0) + ∫dγi,∥, both normalized to glim. The magenta, gray, and blue solid lines show the local values of |E|, |E|/|B|, and (E · B) × 10, respectively. The
vertical dashed line indicates the moment presented in Figure 18.
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the patch is seen to rotate around the central axis, and the
particle motion appears to be synchronized with this rotation.
The origin of that E ·B> 0 patch is discussed in Section 6.1.

5.3. Relation to Current Density and Electric Field Structures

We have considered the possible relation between accelera-
tion of energetic particles and their location with respect to
structures of current density and electric field. In general, this is

a very complex problem, because it requires characterizing a
small sample of individual particles that succeed in achieving
high energies by interacting with dynamical 3D electric fields
and currents. We are attempting to illustrate this relation
with only a few snapshots out of many that we have produced
and examined.
Figure 19 presents single snapshots for two simulations

(f025_α-1_ξ10 and f1_α-1_ξ100, chosen because they probe
different values of fmix and produce relatively large samples

Figure 18. A snapshot from the simulation f05_α-1_ξ100 at the time t = 2.78 L/c, when the energetic positron #930 introduced in Figure 17 (marked with the black
circles, with the black arrows indicating the in-plane velocity direction) experiences systematic acceleration by electric field parallel to the local magnetic field. Each
panel shows an (x,z) map in the y = 0 plane, which also contains the energetic positron. The color maps (red is positive, blue is negative) show: (a) out-of-plane
magnetic field component By, (b) out-of-plane electric field component Ey, (c) E · B, and (d) charge density ρe. The magenta vector fields show the in-plane electric
field (Ex, Ez), and the green vector field (panel (c)) shows the in-plane magnetic field (Bx, Bz). Panel (a) also includes a streamplot of (Bx, Bz) with solid green lines. The
yellow contours indicate where Bz = 0.
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of energetic particles), each illustrated by an (x,z) map (in the y/
L; 0 plane) of total current density |j|, and by an (x,y) map
(averaged over a range of z/L) of axial electric field Ez with
overlaid contours of |j|. In all maps, we indicate the locations,
energies, and acceleration rates of individual particles that
are present in the probed volume regions and that are going
to become energetic (according to the definition given in
Section 5.2).

One question that we are attempting to address is whether
there are thin current layers that could be sites of magnetic
reconnection. We find in general that structures of current

density are not sharp on kinetic scales (∼ ρ0). A particularly
complex meandering (x,z) structure of |j| can be seen
in the f1_α-1_ξ100 simulation; it results from an initially
cylindrical current core being sheared while retaining its initial
thickness scale (∼R0).
Another question is whether the locations of energetic

particles are correlated with these current density structures.
We do not find any evidence for that. However, the (x,y) maps
suggest that energetic particles are preferentially located
in regions of Ez> 0 while avoiding regions of Ez< 0. We know
already from Figure 8 that there is no symmetry between

Figure 19. The upper panels show (x,z) maps of total current density |j| (arbitrary units; the color scale is the same as in Figure 5) in the y/L ; 0 plane for the
simulations f025_α-1_ξ10 (see the left panel of Figure 8) and f1_α-1_ξ100. The symbols indicate the positions of individual energetic particles: upward-pointing
triangle represent the positrons, downward-pointing triangles represent the electrons, the sizes indicate the current particle energy, and the colors indicate the current
particle energization rate (red means energy gain, blue means energy loss). The gray dotted lines indicate the range of z used for integrating the (x,y) maps shown
below. The lower panels show (x,y) maps of axial electric field Ez (red means Ez > 0, blue means Ez < 0) averaged over the indicated range of z/L. The gray dotted
lines indicate the range of y used for integrating the (x,z) maps shown above.
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regions of positive and negative Ez. The former (Ez> 0)
dominate and are better connected, which allows local particles
to spend more time in these acceleration zones. We thus find
that the locations of particles undergoing successful accelera-
tion are related more strongly to the structures of electric field,
rather than current density.

6. Discussion

The first motivation for this project has been to bridge
the diverse magnetic pinch configurations investigated recently
with 3D kinetic numerical simulations: the Z-pinch case (with
the toroidal magnetic fields balanced entirely by the gas pres-
sure) studied by Alves et al. (2018, 2019) and the FF screw-
pinch case (with the toroidal magnetic fields balanced entirely
by the axial magnetic field) studied by Davelaar et al. (2020).
To this end, we introduced the pressure mixing parameter fmix

such that fmix= 0 corresponds to the FF screw-pinch limit, and
fmix= 1 corresponds to the Z-pinch limit. This allowed us
to investigate the effect of fmix for exactly the same radial
profiles of toroidal magnetic field Bf(r). In the case fmix= 0,
we have found particle acceleration to be inefficient, with gmax
increasing by only ;10% (see Figure 12; note that this
simulation ran until t; 15 L/c without any further increase
of gmax). A key difference from the setup of Davelaar et al.
(2020) is that they initialized the plasma as relativistically cold
with Θ0= 10−2, and our plasma is initialized as relativistically
hot withΘ0= 104. In their simulations, particles reach Lorentz
factors γ∼ σ with magnetizations σ∼ 10–40. In our case
fmix= 0, we have peak magnetization of only σhot(r= 0);
2.8, much less than the initial Maxwell–Jüttner value
of g Q  20;max 0 we think that this is the reason for the
inefficient particle acceleration. Nevertheless, we achieve
higher initial magnetizations (see the right panels of Figure 1),
and hence efficient particle acceleration, in other cases. Already
for fmix= 0.25 (and higher), the most energetic particles
achieve the Hillas-type energy limit glim introduced by Alves
et al. (2018).

Our second motivation has been to include a flexible power-
law section in the radial profile of toroidal magnetic field Bf(r).
Both Alves et al. (2018, 2019) and Davelaar et al. (2020)
investigated steeply decaying Bf(r) profiles beyond the core
radius R0. In the case of Alves et al. (2018, 2019), it was an
exponential tail µ -f ( ) ( )B r R r Rexp0 0 , and in the case of
Davelaar et al. (2020), it was a family of profiles with
approximately ∝r−1 tails (see the left panel of Figure 1). In
the Z-pinch limit ( fmix= 1), the analytical predictions of
Begelman (1998) and Das & Begelman (2019) are that
power-law profiles µf

a f( )B r r B should be locally unstable for
αBf>− 1. Such shallow-decay (or even flat) profiles of Bf(r)
have not been studied before by means of kinetic simulations.16

Despite the modest numerical scale separation of our simula-
tions, we were able to confirm most of the previous results,
especially those of Alves et al. (2018) in the Z-pinch limit—
the structure of electric fields in the linear instability phase and
the existence of the particle energy limit glim. In the case
of shallow Bf(r) profiles (αBf>− 1), this limit needs to be
redefined to gf( )R RB 0 lim, introducing a new characteristic
radius RBf(αBf)> R0. In Section 2, we suggested preliminary

values of this radius: RBf; 1.55R0 for αBf=− 0.5, and
RBf; 2.5R0 for αBf= 0. However, our simulations for
αBf>− 1 had to be interrupted early, since the perturbations
reached the domain boundaries before the fast magnetic
dissipation phase and the associated particle acceleration were
complete. Simulating a complete fast magnetic dissipation
phase would require, e.g., shifting the outer cutoff to an
intermediate radius.
We argue that the particle energy limit glim should not be

interpreted as resulting directly from particle confinement
by toroidal magnetic fields, because we have not found any
example of an energetic particle (out of 6× 105 individually
tracked particles per simulation), the acceleration of which
would be interrupted by its escape from the inner radii. Efficient
particle acceleration coincides with the fast magnetic dissipa-
tion phase, which in the cases of αBf�−1 is of well-defined
duration, and is also confined to the inner region of r 2R0 (see
Figures 3 and 5). However, in the cases of αBf>−1, magnetic
dissipation can propagate to larger radii (r> 2R0) and induce
widespread and sustained electric fields.
In the most extreme Z-pinch case f1_α0_ξ100, which

provides the highest magnetization in the outer regions, we find
a weak signature of a local pinch mode at the intermediate radii
of (5–7)R0; Rout/2 (see Figure 5). This is the first numerical
confirmation that the Z-pinch modes identified analytically by
Begelman (1998) can be truly local in the sense that kzrc? 1
and σr= rc (for a mode centered at r= rc with radial dispersion
σr; this was predicted in the linear limit by Das & Begelman
2019). The fact that this mode has been identified in this
particular case at these particular radii is consistent with
the solutions of the local dispersion relation of Begelman
(1998) presented in Figure 20 and described in Appendix B.
That weak local mode is eventually dominated by a stronger
pinch mode propagating outward from the central core region.

6.1. Parallel versus Perpendicular Acceleration

Particle acceleration by parallel electric fields in strongly
magnetized jets with axial magnetic flux has been demonstrated
by Davelaar et al. (2020), who attribute these fields to magnetic
reconnection. They show examples of magnetic X-points
in the (x,z) plane along the outer fronts of perturbation, where
the axial magnetic field component is reversed on the
perturbation side (Bz< 0), interacting with Bz> 0 in the
unperturbed medium, as well as other magnetic irregularities
in the (x,y) plane.
Such X-points can be seen clearly in our simulation f05_α-

1_ξ100, where Figure 18(a) shows closed yellow contours in
the (x,z) plane, along which Bz= 0, meaning that Bz> 0 outside
(like in the entire domain in the initial configuration) and Bz< 0
inside. We also show using the matplotlib.pyplot.
streamplot tool (which by default does not illustrate
the field strength) that the inner (with respect to the central axis)
sections of those contours include a magnetic O-point in the (x,
z) plane, and the outer sections include a magnetic X-point,
as has been shown by Davelaar et al. (2020). These magnetic
X-points are potential sites of magnetic reconnection. Since
the By≡ Bf component is smooth across the X-points (a finite
guide field Bg), one would expect the reconnection-induced
nonideal out-of-plane electric field to have a component parallel
to the local magnetic field. However, Figure 18 shows that Ey

is very weak along the outer sections of the Bz= 0 contours,
and moreover, that E · B is also insignificant there, as compared

16 A “sinusoidal” profile of pµ -f ( ) [ ( )]B r r R1 cos 2 out that was investi-
gated with RMHD simulations by O’Neill et al. (2012) is included in the left
panel of Figure 1. It has a symmetry similar to that of our case αBf = 0, but
very different asymptotics at r < R0.
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with the inner regions. We have also checked the total nonideal
electric field Enonid and the current density j, finding that they
are all very weak at the magnetic X-points. We therefore
conclude that these magnetic X-points are not sites of active
magnetic reconnection. Note that the relative strength of the
reconnecting field component is |Bz|∼ 0.2|Bf| inside the Bz= 0
contours, which corresponds to a very strong guide field
of Bg∼ 5|Bz|, sufficient to suppress magnetic reconnection
and particle acceleration (e.g., Dahlin et al. 2016; Werner &
Uzdensky 2017, 2021).

Let us also discuss the origin of the positive E ·B region that
accelerates positron #930 in the nonlinear stage of simulation
f05_α-1_ξ100, presented in Figure 18 and described in
Section 4.2. Additional analysis reveals that nonzero E · B first
appears during the saturation of the linear instability stage
around t; 1.8 L/c, with positive E ·B aligned with
the deformed column of strong electric current, and with
negative E ·B outside that column. In this simulation, we also
observe a second generation of the linear central instability,
starting at t; 2.3 L/c, which is evidenced in the history
of the energetic positron #930 (Figure 17) as a major increase
of the total electric field following that moment. This second
instability also generates the inner structures of charge density
(within− 0.15< x/L< 0.15) that can be seen in the lower right
panel of Figure 18. We conjecture that the centrally located
patch of positive E ·B seen for 2.5< ct/L< 2.95 results from
the nonlinear saturation of the second-generation instability.
The energetic positron #930 experiences the most efficient
parallel acceleration because it happens to interact with that
patch for as long as possible.

6.2. Instability Growth Timescales

In the FF case fmix= 0, the measured minimum instability
timescales tmin reported in the right panel of Figure 7 can be
compared with the analytical predictions of Appl et al. (2000).
In the case of constant magnetic pitch = R0 0, the shortest
growth timescale is theoretically predicted for the |m|= 1
kink mode: cτ/R0; 7.52/βA; 8.78, where βA; 0.857 is the

Alfvén velocity at r= 0 in our fmix= 0 configuration. This is
very close to our measurement of cτ/R0; 8.45.17 However, we
also measure shorter timescales for them= 0 and m= 2 modes
in this case, which is inconsistent with the analytical predic-
tions, according to which the pinch mode should be stable and
them= 2 mode should have a longer growth timescale (and
a wavelength that would hardly fit in our domain). This
suggests that the measured m= 0 and m= 2 modes are not
linear, but instead they are secondary modes triggered
nonlinearly by the linear kink mode. This interpretation is
supported by the fact that the onsets of them= 0 and m= 2
modes are delayed with respect to the onset of the kink mode,
and this is actually evident in most other cases reported in
Figure 6.
In the Z-pinch cases of fmix= 1, the measured values of tmin

can be compared with the solutions of the local dispersion
relation of Begelman (1998), reported in Figure 20 and
described in Appendix B. Although the analytical solutions
can be very steep functions of r, a fairly close agreement is
found for them= 1 kink mode between the measured values
extracted from the 1< r/R0< 2 shell and the theoretical
solutions evaluated at r= R0. For them= 0 pinch mode,
the measured values are shorter than the theoretical solutions
even for αBf�− 1. This again suggests that only the kink
mode measured in our simulations is linear.

6.3. Astrophysical Implications

The potential for development of instabilities due to toroidal
magnetic field has been an important question in the theoretical
picture of magnetized astrophysical jets.
The toroidal component of ordered magnetic fields is an

essential ingredient of relativistic jets. As the jets are rooted
in rotating structures (e.g., spinning black holes), toroidal fields
are generated by azimuthal shearing of poloidal fields. These
provide the magnetic pressure that accelerates the jet, and they

Figure 20. Growth timescales τI of the local instability modes for the initial configurations of the fmix = 1 Z-pinch cases calculated according to the dispersion relation
of Begelman (1998). The left panel shows the results for the m = 0 pinch mode, and the right panel shows the results for the m = 1 kink mode. The line colors indicate
the value of αBf. The solid lines correspond to ξn = 10, and the dashed lines correspond to ξn = 100. Minimum growth timescales t fc Rmin B measured at the 1 < r/
R0 < 2 shell region of our simulations are indicated at r = R0 using the same symbols as in Figure 7 (the smaller symbols correspond to ξn = 10 and the larger ones
to ξn = 100).

17 The corresponding analytical wavelength is ; 8.43R0, very close to our
effective wavelength of λz ; 8.8R0 reported in Section 4.2.
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carry the outgoing Poynting flux (e.g., Davis & Tchekhovskoy
2020). Toroidal fields provide a tension force that, in principle,
would allow the jet to be collimated (pinched)18 and to maintain
a structure of radially decreasing (away from the jet axis) total
pressure and energy density (e.g., Begelman et al. 1984).
In the lateral jet expansion, toroidal fields decay more slowly
than poloidal fields, hence the pinching effect of toroidal fields
can be expected to increase with distance along the jet (e.g.,
Bogovalov & Tsinganos 1999).

The relative importance of current-driven and pressure-driven
modes in astrophysical jets depends crucially on the strength,
lateral distribution, and evolution along the jet of the poloidal
magnetic field. Davelaar et al. (2020) argued that FF configura-
tions with significant poloidal fields are naturally expected in
the relativistic jets emerging from the bulk-acceleration and
collimation zone, protected from external modes by the lack of
causal contact across the jet (Bromberg & Tchekhovskoy 2016;
Tchekhovskoy & Bromberg 2016). Causality would be regained
due to recollimation once the external pressure becomes impor-
tant, and that would make FF jets unstable, at first to the current-
driven modes.

It should be noted, however, that whether causality is lost
in a relativistic jet depends on the scaling of external pressure
Pext with distance z along the jet. Porth & Komissarov (2015)
showed that causality is lost only when Pext(z) is steeper
than z−2, and even in such cases the jet core can be pinched
by toroidal magnetic field, triggering an internal instability.

In order for the Z-pinches to operate in jets, sufficient gas
pressure needs to build up, presumably due to other heating
mechanisms, e.g., internal shocks (e.g., Spada et al. 2001;
Pjanka & Stone 2018), recollimation shocks (e.g., Bromberg &
Levinson 2009; Nalewajko & Sikora 2009), magnetic recon-
nection due to global field reversals (e.g., Lovelace et al. 1997;
Nalewajko et al. 2011; Giannios & Uzdensky 2019),
or nonlinear saturation of the current-driven modes, in effect
boosting their dissipation efficiency. Gas pressure can also
be reduced by radiative cooling, especially in the jets hosted
by powerful quasars and GRBs, or due to adiabatic expansion.
This suggests that Z-pinches can only operate in the vicinity
of gas pressure sources.

At any distance z along the jet, the strength of toroidal
magnetic field must peak at some radius RBf, which is
intermediate when compared with the jet radius: 0< RBf(z)<
Rj(z). Our study shows that the RBf(z) function is
of considerable interest, because it largely determines the
minimum growth timescale tmin of the instabilities (see
Figure 7). Let us then consider qualitatively the development
of an initially FF jet—as it expands, internal pinching
is expected to reduce the RBf/Rj ratio. In the FF jet core,
the instability growth timescale is roughly τ(z)∼ 9RBf(z)/c;
it would evolve much slower than the jet crossing timescale
Rj(z)/c. It is then quite likely that this first instability will be
able to evolve nonlinearly and to saturate. At this point,
a fraction of the inner toroidal field will be dissipated, tending
to increase RBf, most likely in a fashion similar to the results
shown in Figure 3 for two Z-pinch cases. Another effect
of the first instability is generation of gas pressure, effectively
increasing fmix, so that the jet core is no longer FF. If the gas
pressure is significant compared with the axial magnetic

pressure, it would reduce the instability growth timescale
noticeably (Figure 7 shows that, for fmix = 0.25, the growth
timescale of the kink mode is already reduced by ∼40%
compared with the FF limit fmix = 0). The overall outcome of
this scenario depends on the relative importance of: (1)
pinching of the jet core by outer toroidal fields, (2) dissipation
of the inner toroidal fields, and (3) production of gas pressure.
This problem should be addressed by future numerical
simulations of initially FF jets with a significantly larger
separation of scales L/R0.
We have also demonstrated numerically the presence

of a weak pinch mode localized at intermediate radii in the case
fmix= 1 and αBf= 0, as predicted by Begelman (1998) and Das
& Begelman (2019). Such local modes can operate in the outer
jet regions even when their cores are relatively stable.
In particular, flat Bf(r) profiles, decreasing with r more slowly
than r−1 (αBf>− 1), would be susceptible to these modes.
Such flat Bf(r) profiles may develop in relativistic jets at large
distances, as was found in global 3D RMHD simulations by
Bromberg & Tchekhovskoy (2016).19

7. Conclusions

We have presented the results of 3D kinetic numerical
simulations of cylindrical static jets with toroidal magnetic
fields in relativistic pair plasma. Our simulations were initiated
from configurations based on power-law profiles of

µf
a f( )B r r B , with the toroidal field index− 1.5� αBf� 0,

modified by inner and outer cutoffs. The toroidal field was
balanced by a combination of axial magnetic field Bz(r) and gas
pressure P(r), whose relative importance was parameterized
by the pressure mixing parameter 0� fmix� 1, such that
fmix= 0 corresponds to the force-free screw-pinch case with
uniform gas pressure, and fmix = 1 corresponds to the Z-pinch
case with Bz(r)= 0. The initial hot magnetizations were up to
σhot; 8 locally.
We found that all investigated cases were unstable, with

them= 1 kink mode being either dominant (for fmix< 1)
or comparable to the m= 0 pinch mode (for fmix= 1). The
minimum linear growth timescale tmin for the kink mode in Ez,
as well as the effective axial wavelength λz, were found
to decrease systematically with increasing fmix. In the case
fmix= 1 and αBf= 0, we have found a weak m= 0 pinch mode
localized at intermediate radial distances, consistent with
the local dispersion relation of Begelman (1998).
These instabilities are associated with dissipation of toroidal

magnetic flux ΨBf, which typically proceeds in two phases:
a fast magnetic dissipation phase followed by a slow one.
The fast magnetic dissipation phase drives efficient particle
acceleration. For shallow toroidal field profiles (αBf�− 0.5),
magnetic dissipation proceeds more slowly, and the fast magn-
etic dissipation phase is typically not complete before
the perturbations reach the outer boundaries.
Particle acceleration is dominated by electric fields perpend-

icular to the local magnetic fields. Acceleration by parallel
electric fields is possible in the central core region (r< R0)
in the presence of axial magnetic fields ( fmix< 1); however,
strong guide fields suppress the efficiency of magnetic recon-
nection in the outer regions. While current density |j| forms
complex volumetric structures, we have not identified

18 Although, in the acceleration stage of relativistic jets, collimation
by external pressure is more important in determining the final jet opening
angle (Tchekhovskoy et al. 2010; Komissarov et al. 2010).

19 However, it appears that instability is suppressed in that case by a strong
poloidal field (Das & Begelman 2019).
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kinetically sharp current layers. For steep toroidal field profiles
(αBf�− 1), the most energetic particles reach the confinement
energy limit g = eB R mclim 0 0

2. On the other hand, for shallow
toroidal field profiles (αBf�− 0.5), the most energetic parti-
cles approach a rescaled energy limit of gf( )R RB 0 lim, where
RBf is related to the peak radius of the initial Bf(r) function
(RBf= R0 for αBf=− 1).

We have thus confirmed most of the results of previous
kinetic simulations in the Z-pinch limit (Alves et al. 2018) and
in the FF screw-pinch limit (Davelaar et al. 2020). These
previous studies represent two special cases among many
possible internal jet configurations. In contrast, our work
is more general, as we have demonstrated how these previous
results can be bridged by investigating the cases of mixed
pressure balance. Thanks to the capabilities of the Zeltron
code (Cerutti et al. 2013), this investigation can be extended
to include the effect of radiative cooling due to synchrotron and
inverse Compton processes on particle acceleration (Nalewajko
et al. 2018; Werner et al. 2019; Zhdankin et al. 2020), and
to calculate the radiative output including multiwavelength
light curves and linear polarization (Yuan et al. 2016). This
could potentially identify a unique signature of these instabil-
ities in the vast observational data on blazars (e.g., Madejski &
Sikora 2016), a subclass of AGNs dominated by nonthermal
emission from relativistic jets.

These results are based on numerical simulations performed
at the supercomputer Prometheus located at the Academic
Computer Centre “Cyfronet” of the AGH University of Science
and Technology in Krakow, Poland (PLGrid grants pic19,
plgpic20,plgpic21,ehtsim); and at the computing
cluster Chuck located at the Nicolaus Copernicus Astronom-
ical Center of the Polish Academy of Sciences inWarsaw,
Poland. This work was supported by the Polish National
Science Centre grants 2015/18/E/ST9/00580 and 2021/41/
B/ST9/04306, and by the U.S. National Science Foundation
grants AST 1903335 and AST 1806084. B.M. acknowledges
support from DOE through the LDRD program at LANL
and from the NASA Astrophysics Theory Program.

Appendix A
Particle Confinement by Toroidal Magnetic Field

Consider a radial profile of toroidal magnetic field Bf(r)
in the form given by Equation (4), but without an outer cutoff.
In the absence of electric fields, a relativistic particle
of mass m, charge q=± e, constant Lorentz factor γ? 1,
dimensionless velocity β= v/c= [βr, βf, βz] (parameterized
as b q sinr , βf= 0, b q mº cosz ), and momentum
p= γβmc would propagate under the Lorentz force

b q q= ´ = -f( ) ( )[ ]p Bd dt q qB r cos , 0, sin . Noting that

b bg g b g b= = =( ) ( ) [pd dt mc d dt mc d dr mc cosr r
2 2 and

m q q= - ( )d dr d drsin , the particle trajectory can be
described by the equation

m g
g
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where g = ( )eB R mclim 0 0
2 . For αBf=− 1, this equation can

be solved analytically, yielding
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where μ0= μ(r= 0). In the specific case q=+ e (a positron),
the maximum radius rmax is given bym =( )r 1max . If we adopt
a confinement criterion <r rmax conf , this can be expressed as

g
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0

2

where uz,0; γμ0 is the axial four-velocity component at r= 0.
This criterion simplifies to g g- <uz,0 lim for rconf; 2.53R0,
which is a reasonable threshold. Note that glim is relevant as the
confinement energy limit only for particles with uz,0; 0, i.e.,
crossing the symmetry axis at the right angle. Particles
propagating along the axis can reach energies beyond glim
without escaping. For analysis of acceleration histories
of individual particles, we introduce the particle confinement
indicator defined as x g g= -( ∣ ∣)uzconf lim, so that a particle is
considered confined if ξconf< 1.

Appendix B
Linear Growth Timescales in the Z-pinch Cases

Instability growth timescales in the fmix= 1 Z-pinch cases can
be calculated analytically using the local dispersion relation
expressed by Eq. (3.32) of Begelman (1998) in the limit of Bz= 0
and l= k (negligible radial wavenumber). The dispersion relation
is solved for the initial equilibria used in our simulations as a
function of radius r. Figure 20 presents the resulting exponential
growth timescales τI= 1/ωI for them= 0 pinch and m= 1 kink
modes scaled by the characteristic radius RBf. Higher azimuthal
modes are found to be stable in all considered cases. All
configurations are unstable to the kink mode with the shortest
growth timescales (cτI/RBf ∼ 1.0–1.6) found within r < RBf.
For αBf > − 1, the unstable region extends toward intermediate
radii, up to r ; 2.5RBf for the case f1_α0_ξ100, but with
significantly longer growth timescales. The solutions are more
diverse for the pinch mode—the central core region is found to be
unstable only for αBf � − 1, and for αBf > − 1 a distinct
instability region is located at intermediate radii. In the case
f1_α0_ξ100, the pinch mode shows a growth timescale
of cτI/RBf; 3 at r= 2.5RBf, which is shorter than the local
growth timescale for the kink mode, but longer than that for
the kink mode at the central core.
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