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ABSTRACT: Large-eddy simulations (LES) are employed to investigate the role of time-varying currents on the form
drag and vortex dynamics of submerged 3D topography in a stratified rotating environment. The current is of the form
Uc 1 Utsin(2pftt), where Uc is the mean, Ut is the tidal component, and ft is its frequency. A conical obstacle is considered
in the regime of low Froude number. When tides are absent, eddies are shed at the natural shedding frequency fs,c. The rel-
ative frequency f * � fs,c=ft is varied in a parametric study, which reveals states of high time-averaged form drag coefficient.
There is a twofold amplification of the form drag coefficient relative to the no-tide (Ut = 0) case when f * lies between 0.5
and 1. The spatial organization of the near-wake vortices in the high drag states is different from a Kármán vortex street.
For instance, the vortex shedding from the obstacle is symmetric when f * � 5=12 and strongly asymmetric when f * � 5=6.
The increase in form drag with increasing f * stems from bottom intensification of the pressure in the obstacle lee which we
link to changes in flow separation and near-wake vortices.
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1. Introduction

Rough bottom topography in the abyssal ocean contrib-
utes significantly to enhancement of drag and turbulent dis-
sipation. When abyssal flow encounters rough topography,
energy is lost in two ways: 1) skin friction resulting from
tangential stress at the boundary and 2) via pressure/form
drag resulting from normal stress. Recent studies of Zhang
and Nikurashin (2020) and Klymak (2018) highlight the
crucial role played by multiscale topography in extracting
momentum (through topographic form stress) from the
background flow and maintaining a dynamic balance in the
abyssal ocean. Form drag is often the primary mechanism
of energy extraction from the barotropic tide, especially at
steeper topographies (McCabe et al. 2006; Horwitz et al.
2021).

In situ measurements show that the loss of momentum
associated with form drag is enhanced by obstacles including
coastal headlands (Edwards et al. 2004; Magaldi et al. 2008;
Warner et al. 2012; Warner and MacCready 2014) and conti-
nental shelf banks (Nash and Moum 2001; Wijesekera et al.
2014). However, observational studies of form drag estimates
from the abyssal ocean are limited. Lack of information on
the magnitude and spatial distribution of form drag presents a
challenge for form drag parameterizations in global climate
models (GCMs). Numerical studies can play an important

role in bridging this gap. Warner and MacCready (2009)
performed numerical simulations with the hydrostatic
ROMS model of a nonrotating tidal flow past a Gaussian
headland to examine different components of form drag.
They showed that while the normalized separation drag
(the average drag coefficient) increased with an increase in
the aspect ratio of the headland, it does not depend on the
tidal excursion or the headland size. While these results
may explain the momentum loss at regions where the tidal
constituents dominate (e.g., Clément et al. 2017), the
behavior in regions where a strong mean flow occurs in
conjunction with tidal oscillations remains to be explored.
In the present work, we examine form drag in tidally modu-
lated flow past an underwater obstacle. Turbulence resolv-
ing simulations enable us to study the time varying flow
past obstacles without compromising on the accuracy of
their representation. The characterization of flow separa-
tion and pressure distribution on the obstacle allows us to
link underlying physical mechanisms to changes in the
observed form drag.

Form drag on an obstacle is dependent on the ambient
stratification. When a steady current encounters a 3D ridge,
the flow transitions to a state of high drag when the Froude
number reduces below 1 (e.g., Epifanio and Durran 2001;
Vosper et al. 1999). In situ tidal measurements of form drag
are challenging and there are few such observations, e.g.,
Voet et al. (2020), who infer pressure from density measure-
ments using the hydrostatic approximation. Additionally, tide
induced unsteadiness may lead to changes in flow separation
and distribution of lee vorticity. For example, tidal currents cre-
ate transient lee eddies (or lee vortices) in wakes behind head-
lands (Pawlak et al. 2003; Callendar et al. 2011; MacKinnon
et al. 2019) and submerged topography (Girton et al. 2019).
Complexity in the impinging flow, variable stratification and
irregular bathymetry at these sites present a challenge in eluci-
dating the role of lee eddies. To examine the role of tides in
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flow separation and form drag, we perform turbulence-resolving
simulations of an oceanic wake past a conical hill generated by
a tidally modulated flow. The background flow may be
expressed as Ub = Uc 1 Utsin(Vtt), where Uc and Ut are the
mean and tidal components and Vt = 2pft is the tidal frequency
(in rad s21).

Stratification, rotation, and tidal forcing are key elements
of geophysical wakes. When a tidally modulated flow encoun-
ters an underwater obstacle, the wake structure is governed
predominantly by the obstacle Froude number (Frc), the tidal
excursion number (Ext), the Rossby number (Roc), and veloc-
ity ratio (R):

Frc � Uc

Nh
; Ext � Ut

VtD
; Roc � Uc

fD
; R � Ut

Uc
,

where N is the background buoyancy frequency, f is the iner-
tial frequency, h is the height of the obstacle, and D is the
obstacle base diameter. In unstratified environments, a hill
with a 3D geometry does not shed vortices similar to the verti-
cally coherent lee eddies which are observed in the ocean.
Instead a standing horseshoe vortex and periodic hairpin vor-
tices are observed downstream at low Reynolds number
(ReD) (see Acarlar and Smith 1987), which become indistinct
at higher Reynolds number (Garcia-Villalba et al. 2009). A
low Frc (Frc ,, 1) flow is constrained to move around rather
than over the obstacle, owing to the large potential energy
barrier. This leads to roll-up of the lateral shear layer into lee
vortices (Hunt and Snyder 1980).

Topographic wakes are also affected by planetary rota-
tion. A relatively large planetary rotation rate (small Roc)
induces asymmetry in the strength of cyclonic and anticy-
clonic eddies shed from the topography (Dietrich et al.
1996). Dong et al. (2006) attributed the loss in symmetry to
centrifugal instabilities in the wake. Perfect et al. (2018) and
Srinivasan et al. (2018) showed that the change in vertical
structure of wake vortices is governed by the Burger num-
ber Bu, defined as (Roc/Frc)

2. Their idealized simulations
show decoupling of vortices along their vertical extent
owing to loss of geostrophic balance, when Bu. 12. Recently,
Jagannathan et al. (2021) and Srinivasan et al. (2021) investi-
gated the generation mechanisms and spatial organization of
lee vorticity in topographic wakes. Other outcomes of flow–
topography interactions such as generation of lee waves,
upstream blocking, and hydraulic jumps have also received
attention in literature (e.g., Epifanio and Rotunno 2005;
Wright et al. 2014; Jagannathan et al. 2019; Perfect et al.
2020).

The regime of weak rotation and strong stratification (or
equivalently, large Bu) applies to wakes behind abyssal hills.
For example, consider the abyssal hills in the Brazil Basin
(Ledwell et al. 2000; Nikurashin and Legg 2011). The bottom
topographic roughness is O 1( ) km in the horizontal. For
an obstacle with D = 1.5 km, buoyancy period of 1 h and
Uc = Ut = 10 cm s21, the tidal excursion number is Ext ≈ 0.5
for the M2 tide and the average value of Frc lies close to 0.2.
The value of Rossby number is Roc ≈ 3, at 158S latitude. The
resolution of GCMs is insufficient to resolve these hills. Thus,

parameterization of the wake dynamics at these length scales
is critical.

Owing to numerical constraints, idealized simulations often
ignore tidal forcing. Yet, in situ observations affirm that tides
can significantly influence flow separation at islands, continen-
tal slopes, and submerged topography. Observations by Black
and Gay (1987) showed the formation of “phase” eddies in
the continental shelf of Great Barrier Reef. Denniss et al.
(1995) and Chang et al. (2019) reported lee eddies shed past
islands at the dominant tidal frequency. This phase-locking
phenomenon is observed even when the tidal velocity ampli-
tude is not large relative to the mean flow.

Recently Puthan et al. (2021) found tidal synchronization in
a study of flow past a conical hill where the frequency of the
far-wake lee vortices locked to a subharmonic (depending on
the value of f * � fs,c=ft) of the tidal frequency. The relative
frequency (f*) is linearly related to Ext as f * � 2pStcExt=R,
where Stc is the vortex shedding Strouhal number in a steady
background flow. This relation simplifies to f * � 1:66Ext for
the hill wake (Stc = 0.265) when R = 1. However, the near
wake characteristics such as flow separation at the hill and the
attendant form stress were not studied by Puthan et al. (2021)
and have not received adequate attention in other previous
studies. Moreover, the effect of tidal modulations on flow sep-
aration is often ignored in literature (e.g., Puthan et al. 2020).

In this work, we address the questions pertaining to momen-
tum loss of tidally modulated abyssal currents during flow–to-
pography interactions at the obstacle and the associated wake-
vorticity distribution. The motivation for this work is twofold.
We explore possible states of large form drag owing to changes
in pressure distribution in the lee and determine the qualitative
changes to the vorticity distribution in the near wake in each
state. The numerical formulation is detailed in section 2.
Section 3 introduces the parameter space and lists the cases
performed in the study. A brief introduction to form stress
and an overview of previous literature related to form drag
is provided in section 4. Section 5 elucidates the changes in
form drag on varying f * and section 6 elucidates the under-
lying changes to flow separation. The paper concludes with
discussion and conclusions in section 7.

2. Computational model

The computational domain is 9.5 km in the streamwise (x)
direction, 3.8 km in the spanwise (y), and 2 km in the vertical
(z) direction. The conical obstacle of height h and base diame-
ter D is placed at the origin. For convenience, the horizontal
and vertical distances are normalized by D and h such that
x* � x=D, y* � y=D, and z* � z=h. The problem setup is
illustrated in Fig. 1. A barotropic unidirectional current
Ub = Uc 1 Utsin(2pftt) encounters a conical obstacle in a uni-
formly stratified environment.

The 3D nonhydrostatic flow is modeled by the Navier–
Stokes equations under the Boussinesq approximation. The
equations for conservation of mass, momentum and density
on an f plane are given below in tensor notation:

­um
­xm

� 0 , (1)
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­um
­t

1
­ unum( )
­xn

2 f �mn3 un 2 Ubdn1( )

� 2
1
r0

­p
­xm

2
gr′

r0
dm3 1

­tmn

­xn
, (2)

­r

­t
1

­ unr( )
­xn

� ­Ln

­xn
· (3)

where, um = (u1, u2, u3) = (u, y, w) denotes the velocity compo-
nents and r is the density field. Here, r′ represents deviation
of density from its background value and p is the deviation
from the mean pressure imposed by geostrophic and hydro-
static balance. The pressure deviation pmay be represented as

p � pd 1 x 2 x0( ) ­p‘
­x

, (4)

where ­p‘/­x = 2r0dUb/dt = 2r0UtVt cos(Vtt) is the pressure
gradient driving the barotropic current Ub and pd is the
dynamic pressure. The stress tensor tmn and density flux vec-
tor Ln are computed using the approach of Puthan et al.
(2020). The grid parameters, time-advancement scheme and
boundary conditions are adopted from Puthan et al. (2021).

3. Simulation parameters

A regime of weak rotation and strong stratification is con-
sidered in the study. Inertial effects on the wake are weak in
the lee of abyssal hills and headlands at length scales of
O 1( ) km at low latitudes (Rudnick et al. 2019; Liu and Chang
2018). These flows may be classified under the high Rossby
number regime (Roc . 1). The inertial frequency is set to its
value at 158N such that Roc = 5.5. Much of the topography in
the abyssal ocean is subject to flow conditions with Frc ,, 1,

e.g., Nikurashin and Ferrari (2010). To this end, we consider a
topographic Froude number Frc of 0.15 where the flow is pre-
dominantly around the obstacle, creating coherent vortices as
observed in geophysical wakes (Perfect et al. 2018).

Tidal modulations are added to the mean flow. We consider
tidal velocities of amplitude equal to the mean current, so
that R = Ut/Uc = 1. The relative frequency f * � fs,c=ft is varied
from 0.1 to 1 in a parametric study with nine cases to examine
the variations in vortex dynamics and form drag. Since
f * � 2pStcExt=R � 1:66Ext, this parameter space governs
flows with Ext varying from 0.06 to 0.6 (assuming Stc = 0.265),
values of relevance in the ocean (Signell and Geyer 1991;
Edwards et al. 2004; Musgrave et al. 2016). Therefore, f * is
proportional to the ratio of the tidal excursion distance Ut/ft
to the obstacle diameter D. At a constant tidal frequency ft,
e.g., the M2 tide, larger values of the nondimensional parame-
ter f * are associated with obstacles of smaller length scales. It
is more convenient to change f * by changing the tidal fre-
quency ft in the numerical setup. Therefore, in this parametric
study, we modify ft to explore the influence of varying f *.

Different regimes of tidal synchronization were observed
by Puthan et al. (2021), wherein the lee vortices in the far
wake were found at frequencies fs,c, ft/4, or ft/2. These regimes
are listed in Table 1. Regime 1 consists of a single case
(f * � ‘) with no tidal modulations in the background flow
(i.e., R = 0). In regimes 2–4, R equals 1 and multiple cases are
explored within each regime at discrete f * values. As listed in
the second column of Table 1, one case is chosen to illustrate
each regime: f *�2=15,5=12; and 5=6 cases, for regimes 2, 3,
and 4, respectively. Each regime has a distinctive near-wake
vortex shedding pattern (listed in the fifth column of Table 1).
The differences in the vortex shedding at the hill play a crucial
role in changing the topographic pressure distribution, moti-
vating our study of the role of f * on the separation of vortices
at the obstacle and its influence on form drag.

FIG. 1. The numerical model setup is shown for the following model problem: a tidally modu-
lated current encounters a conical obstacle in a stratified environment. The vortex shedding pat-
tern in three horizontal planes for case f * � 2=15 is represented using isosurfaces of vertical vor-
ticity corresponding to vz/f =610.

P U THAN E T A L . 1035JUNE 2022

Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 06/06/22 06:17 PM UTC



4. Form drag in oscillatory flows

Flow–bathymetry interactions result in pressure differences
across abyssal obstacles, which manifests as form drag. Recent
measurements at Palau estimated large form drag acting on
the tidal and mean components of the flow at very low Froude
numbers (Voet et al. 2020). The drag force due to form drag
is computed as

FD � 2

�
pd1jnjdA · (5)

Using Eq. (4), Eq. (5) may be expanded as

FD � 2

�
pdd1jnjdA 1 r0V2

dUb

dt
· (6)

The first term on the right-hand side of Eq. (6) includes
contributions from two sources: (i) the separation drag associ-
ated with flow separation at the obstacle (FS

D) and (ii) the
added mass (FA

D) (Lamb 1930; Keulegan and Carpenter
1958). The drag associated with added mass is approximated
in literature (e.g., Morison et al. 1950) using the relation

FA
D � Car0

dUb

dt
V2 , (7)

where Ca is the added mass coefficient. The second term on the
right-hand side of Eq. (6) represents the Froude–Krylov force
(FFK

D ) associated with the oscillating pressure gradient p‘ (Yu
et al. 2018). The sum of the added mass force (FA

D) and the
Froude–Krylov force (FFK

D ) is referred to as inertial drag (FI
D):

FI
D � FFK

D 1 FA
D � r0

dUb

dt
V21 Car0

dUb

dt
V2 : (8)

Therefore, the total drag force in Eq. (6) can now be writ-
ten as (e.g., Warner and MacCready 2009)

FD � FS
D 1 FA

D 1 FFK
D � FS

D 1 FI
D: (9)

Warner and MacCready (2009) concluded that the net con-
tribution of inertial drag vanishes when averaged over a tidal
cycle. Therefore, its contribution is estimated using Eq. (8),
and removed from FD [computed using Eq. (6)] to compute
the separation drag. The separation drag is assumed to be in
phase with Ub while the inertial drag variability has a phase
difference of p/2 with respect to Ub (Morison et al. 1950).

A similar drag force decomposition was proposed by Light-
hill (1986), wherein the inviscid inertial drag is estimated from
potential flow theory. However, the force decomposition of
Lighthill (1986) has limitations. Sarpkaya (2001) argued that

the force decomposition of Lighthill (1986) excludes the
effects of viscosity on the added mass. His results also demon-
strate that the added mass coefficient Ca is time dependent.
He asserted that the subtraction of the ideal inertial force
(calculated from potential flow approximation) from the total
form drag, leaves behind a force that consists of both the sep-
aration drag and an “acceleration-dependent” inertial force.
However, the contribution from inertial drag is negligible in
the time-averaged value of FD, when the average is computed
over a large time duration (spanning multiple tidal cycles) in a
statistically stationary flow (Sarpkaya 2001). Thus the approx-
imations of Warner and MacCready (2009) can serve as a the-
oretical basis to aid the interpretation of the present results
by providing an adequate estimate of the separation drag. In
other words, the time-mean of the form drag is representative
of the separation drag FS

D. The root-mean-square (RMS)
form drag gives the magnitude of the fluctuating part of form
drag. The phase-averaged form drag shows the variability of
FD relative to the tidal phase. These diagnostic tools, which
will be utilized in section 5, are also useful for comparing the
energy loss associated with form drag across the regimes.

Observations of Edwards et al. (2004), Warner et al. (2012),
and Voet et al. (2020) show that obstacles in the ocean extract
energy from the mean and tidal components of the background
flow. The rate of work done by form drag (WD) is estimated as
FDUb. Its time average, 〈FDUb〉, is representative of the average
kinetic energy of the flow lost to form drag over a tidal cycle
including local dissipation and internal wave energy flux
(Egbert and Ray 2000). The rate of energy loss associated with
the mean form drag is computed as 〈FD〉〈Ub〉 = 〈FD〉Uc. This
includes energy loss due to flow separation and eddies. Since
FD and Ub are often time varying, the mean tidal energy loss
〈FDUb〉 is not the same as the energy loss rate driven by the
time-averaged form drag 〈FD〉Uc.

In the next section, we examine the time-averaged mean,
phase averaged, and RMS values of FD defined below:

Mean drag : FD〈 〉 �

�nT

0
FDdt

nT
,

Phase averaged drag : FD〈 〉f �

∑n
k�0

FD VtTk 1 f( )
n

,

RMS drag : FD〈 〉rms �

������������������������������nT

0
FD 2 FD〈 〉( )2dt

nT

√√√√
·

TABLE 1. Different cases in this study: the relative frequency f * � fs,c=ft is varied among nine cases. Four regimes with different
patterns of wake vortices are observed and are discussed with representative cases shown in the table. The values of ReD, Frc, and
Roc are fixed at 20000, 0.15, and 5.5, respectively.

Regime Case Category Far wake shedding frequency (fs) Near wake vortex shedding pattern

1 f * � ‘ No tides fs,c Kármán vortex street
2 f * � 2=15 f * , 1=4 fs,c Vortex pulses 1 Kármán vortex street
3 f * � 5=12 1=4 # f * , 1=2 ft/4 Symmetric twin dipoles
4 f * � 5=6 1=2 # f *# 1 ft/2 Strong asymmetric shedding
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Here, T is the tidal period, f = Vtt is the tidal phase and n is
the number of tidal cycles. The value of n is larger than 6 for
all cases. These diagnostic parameters are then employed to
explain the variability of 〈FDUb〉 and 〈FD〉Uc across the cases.

5. Pressure anomalies in the wake

In a low Frc environment, the encounter of a steady current
with a 3D obstacle forces a significant volume of fluid to navi-
gate laterally. This laterally driven flow separates, and wake
eddies are formed in the lee. The form stress increases as a
result. To examine the origin of form stress, a thorough char-
acterization of the dynamic pressure pd is crucial. The form
drag is computed as the sum of the surface integral of pd and
the Froude–Krylov force, as shown in Eq. (6). Note that the
surface integral of pd is inclusive of the added-mass compo-
nent of inertial drag. In section 5a, the dynamic pressure field
is examined in the wake and on the obstacle. Changes in
eddy shedding and form stress are illustrated and quantified
over the flow regimes listed in Table 1. Estimates of FD and
their values relative to f * � ‘ (no-tide) case, are provided in
section 5b. The rate of work done by FD and its relative
magnitude with respect to frictional drag are discussed in
sections 5c and 5d, respectively.

a. Mean pressure distribution

Figures 2a, 2c, 2e, and 2g show qualitative differences in the
vortex shedding patterns among the cases f * � ‘, 2/15, 5/12,
and 5/6. On the right (Figs. 2b,d,f,h) the contours of mean
dynamic pressure field are plotted. For f * � ‘, shear layers
elongate and separate from each side, rolling up into two
attached vortices of opposite sign in the lee. With time, the
attached eddies start to oscillate and eventually break off
alternately to form the vortex street in Fig. 2a. The eddy
which remains attached briefly, possesses a low pressure core
which decays radially outward from the vortex center (not
shown). The near-wake vertical vorticity values are as large as
20f, which is in agreement with observations of high Roc
wakes (Chang et al. 2019; MacKinnon et al. 2019).

When f * � 2=15, the lateral elongated shear layers are
absent (Fig. 2c). Instead, at this instant, the anticyclonic
(negative vz) vortex remains attached to the obstacle as
the cyclonic (positive vz) vortex moves into the wake (see
VortXY_JPO_fstar_2_15.mov in the online supplemental
material). The anticyclonic vortex grows in size from repeated
small pulses of vorticity (green box) created every tidal cycle.
These pulses form on the lateral sides of the obstacle at the
location of flow separation. The attached vortex is shed at a
slower frequency of fs,c (Puthan et al. 2021). Since ft ≈ 7.5fs,c,
the eddy remains attached while its circulation increases as the
small pulses coalesce over 7.5 tidal cycles. Beyond x* � 1, the
staggered arrangement of vortices resembles a Kármán vortex
street. The magnitude of mean dynamic pressure 〈pd〉 is
similar between the f * � ‘and 2=15 cases (Figs. 2b,d). A key
difference with respect to the f * � ‘ case is the presence
of low pressure regions on the lateral sides of the obstacle in
f * � 2=15 (Fig. 2d), created by these vortex pulses.

The organization of vertical vorticity (vz) and mean pres-
sure (〈pd〉) for f * � 5=12and 5=6 are strikingly different from
a Kármán vortex street generated by a steady current. At
f * � 5=12, a symmetric arrangement of vortices is present in
the near wake, attached to the obstacle (Fig. 2e). However,
this configuration is not stable and gives way to a distorted
antisymmetric pattern of vortex fragments farther down-
stream. The timing of symmetric twin vortices is phase locked
to the barotropic flow, elucidated further in section 5b.

Figure 2g provides a snapshot of the wake when f * � 5=6.
The cyclonic vortex remains attached to the obstacle lee at
this instant and grows in size during the tidal acceleration
phase. Contours of mean pressure reveal regions of large
pressure drop in the lee for the f * � 5=12 and f * � 5=6 cases
(Figs. 2f,h). For f * � 5=12, two laterally offset low pressure
zones lie symmetrically with respect to y* � 0 while for
f * � 5=6, the low pressure region extends to cover the entire
rear of the obstacle (x* . 0). To discern the pressure anoma-
lies along the vertical extent of the obstacle, the distribution
of mean pressure field 〈pd〉 on the hill is plotted in Fig. 3.

Figures 3a, 3d, 3g and 3b, 3e, 3h show the pressure distribu-
tion on the upstream and downstream faces of the obstacle,
respectively. Each row in Fig. 3 corresponds to a different
case. The panels of Figs. 3c, 3f, and 3i contrast the difference
between the upstream and downstream pressure values
(D〈pd〉) integrated along y* among the three cases. The distri-
bution of pressure on the upstream face is similar in all three
tidally modulated cases. However, the differences in flow sep-
aration change the pressure distribution on the downstream
face. The eddy shed from the obstacle has a larger horizontal
length scale at the boundary as f * increases. This forced eddy
is characterized by the presence of a low pressure core.

In all cases, D〈pd〉 is bottom intensified. In their steady-cur-
rent simulations, MacCready and Pawlak (2001) noted “a ten-
dency for drag on the lower half of the ridge to be greater
than that on the upper half.” In the present tidally modulated
cases, the bottom intensification progressively increases from
f * � 2=15to 5=6. For example, consider the laterally inte-
grated mean pressure at height z* � 0:2 (Figs. 3c,f,i). Its value
increases from 0.6 at f * � 2=15 to 1 at f * � 5=12. For the f * �
5=6 case (Figs. 3h,i), the near-bottom integrated D〈pd〉 is up to
5 times larger than its value at z* � 0:5. A similar bottom-
intensified pressure difference is also observed for f * � 5=12,
though for this case it is confined to the lateral sides of the
abyssal hill (Figs. 3e,f). Even for f * � 2=15 (Figs. 3b,c), a two-
fold increase in pressure drop is observed near the bottom rel-
ative to the upper half of the obstacle.

The eddy shedding (Fig. 2) and pressure anomalies (Fig. 3)
in the f * � 2=15, 5=12; and 5=6 cases are characteristic of the
regimes 2, 3, and 4 that they represent. An examination of the
pressure variability within a tidal cycle is the next step toward
revealing the underlying mechanisms governing enhancement
of drag at the obstacle base.

Figure 4 shows snapshots of instantaneous normalized pres-
sure pd=r0U

2
c in the horizontal plane z* � 0:02 (close to the

bottom boundary) for f * � 2=15, 5=12; and 5=6 cases. Four
time instants T1, T2, T3, and T4 are chosen at tidal phases
Vtt = 0, p/2, p, and 3p/2, respectively, for the snapshots.
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The variation of the phase-averaged form drag 〈FD〉f and the
barotropic currentUb are plotted in the header.

Consider the case f * � 5=6 (from regime 4). At t = T1, the
accelerating fluid impinges on the obstacle, creating high pres-
sure upstream and a low pressure zone downstream (Fig. 4i).

Owing to the asymmetry in flow separation, the low pressure
region is dominant between y* � 20:5and 0. As the baro-
tropic velocity increases, the region of low pressure enlarges
downstream in Fig. 4j, associated with the lee eddy formation
illustrated in Fig. 2g. The simultaneous increase in upstream

FIG. 2. Instantaneous contours of normalized vertical vorticity (vz/f) and time-averaged pressure ( pd〈 〉=r0U2
c ) in the

horizontal plane z* � 0:25: (a),(b) f * � ‘; (c),(d) f * � 2=15; (e),(f) f * � 5=12; and (g),(h) f * � 5=6. In the tidally modu-
lated cases, the contours of vorticity are plotted at the maximum velocity phase (Vtt = p/2).
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pressure heightens the pressure anomaly between the fore
and lee. As the barotropic flow decelerates between T2 and
T3, the upstream pressure recedes concomitantly while the
low pressure in the lee is sustained at t = T3 (Fig. 4k). The lee
eddy remains attached at this instant preserving the low pres-
sure zone. The low pressure region continues to exist at the
downstream face between y* � 0and 0:5 at T4 (Fig. 4l). With
the formation of persistent anticyclonic and cyclonic vortices
on opposite sides during successive tidal cycles, the low
pressure in the lee is maintained, albeit subject to lateral
oscillations (see Pressure_JPO_fstar_5_6.mov in the online
supplemental material). The outcome is an elevated mean
drag.

For case f * � 5=12, the pressure drop downstream of the
obstacle is symmetric owing to the nature of the vortex shed-
ding for this case. The low pressure region begins to form
immediately after the lateral separation of the eddies at t = T1

on both sides of the obstacle lee (Fig. 4f). While the baro-
tropic current remains above its mean value Uc between t =
T1 and T3, the vortices continue to grow larger on either side
of the hill (elaborated further in section 6 and Fig. 8). The
pressure drop across the hill increases concurrently in Figs. 4f
and 4g. At the zero velocity phase (t = T4), the recirculating
fluid at low pressure accelerates upstream relative to the

barotropic flow. A region of positive dynamic pressure
(Fig. 4h) is identified at this instant near x* � 0:5 and y* � 0,
while the pressure upstream at the obstacle center plane
(x* � 20:5 and y* � 0) drops below zero momentarily. The
eddy-induced low pressure zone remains attached at x*,
y* � 0:5, 60:5( ). This configuration is reset to Fig. 4e as the
background flow gains momentum in the next cycle.

The instantaneous dynamic pressure pd has contributions
from two sources: the added mass and flow separation [see
Eq. (6)]. When the tidal frequency is larger, the added mass
component increases owing to its dependence on the tidal
acceleration magnitude UtVt. This is likely to occur when f * �
2=15 as corroborated by normalized pd in Figs. 4a–d. At T1,
the tidal acceleration reaches its maximum value and the
dynamic pressure pd=r0U

2
c drops below 22.5 over a large

region in the obstacle lee (Fig. 4a). Similarly, at the phase of
maximum tidal deceleration (t = T3), pd=r0U

2
c exceeds 2.5

over a large region upstream of the obstacle (Fig. 4c). At
instances of zero acceleration (t = T2 and T4), the dynamic
pressure is purely associated with flow separation. At T2,
the low pressure region in the lee (Fig. 4b) is generated due
to the attached eddy in Fig. 2c, while the high pd upstream is
generated by the impinging current. On the contrary, at T4,
the pressure anomalies in the obstacle center plane are

FIG. 3. Distribution of mean pressure ( pd〈 〉=r0U2
c ) on the upstream and downstream faces of the topography: (a),(b) f * � 2=15; (d),(e)

f * � 5=12; and (g),(h) f * � 5=6. The difference between upstream and downstream normalized pressure ( pd〈 〉=r0U2
c ) is integrated along y*

and plotted in the last column for each case: (c) f * � 2=15, (f) f * � 5=12, and (i) f * � 5=6.
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marginal (Fig. 4d). At the lateral sides of the obstacle, a
weak pressure drop is observed, attributed to the vortex
pulses discussed earlier. The tidal period is smaller than the
natural eddy shedding time scale by a factor of 7.5 for this
case. This constrains the size of the attached eddy to a small

vortex pulse, which has a correspondingly weak effect on
the pressure drop.

The temporal variability of pd directly affects the variation
in form drag as illustrated by the phase-averaged form drag
〈FD〉f in the header of Fig. 4. The form drag exhibits large

FIG. 4. (top) Variation of normalized phase-averaged drag force (〈FD〉f) with tidal phase Vtt, plotted for f * � 2=15, 5=12, and 5=6 cases.
The barotropic velocity Ub is represented by the dotted line in the top panel. (bottom) The instantaneous contours of dynamic pressure pd
are shown at four phases T1, T2, T3, and T4 (marked in the top panel) for cases (a)–(d) f * � 2=15, (e)–(h) f * � 5=12, and (i)–(l) f * � 5=6 at
z* � 0:02. The projection of obstacle area in the streamwise direction is denoted as Acs.
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modulation in the f * � 2=15 case. Also, the phase difference
between 〈FD〉f and Ub exceeds p/4. Recall that the inertial
drag has a phase difference of p/2 with Ub. Therefore, it is
possible that instantaneous inertial drag contributions are
important in this case. To confirm this, we follow the proce-
dure of Warner and MacCready (2009) to estimate the ratio
of inertial drag to separation drag for our obstacle geometry.
We assume that the magnitude of FS

D is equal to the bluff-
body drag estimate of r0AcsU2

c=2 and that Ca = 1 in Eq. (7)
[for explanation, see Warner and MacCready (2009, p. 2979)].
For the conical obstacle, and taking R = Ut/Uc = 1,

FI
D

∣∣ ∣∣
FS
D

∣∣ ∣∣ � 2p
3Ext

≈ 3:5
f *

, (10)

where the second equality follows from f * � 1:66Ext from
section 1. As f * increases, the inertial component of form
drag decreases. Separation drag becomes more prominent rel-
ative to inertial drag. This makes sense because at larger
f * � fs,c=ft, the tidal acceleration is weaker which causes the
magnitude of inertial drag to decrease. Thus the phase dif-
ference between 〈FD〉f and Ub is smaller than p/2 at
f * � 5=12and 5=6.

b. States of high drag

From the preceding text, it is clear that the pressure anoma-
lies on the obstacle change significantly owing to tidal oscilla-
tions. Here we demonstrate that tidal oscillations lead to high
levels of instantaneous and mean drag. The ratio of inertial
drag to separation drag is inversely related to f * as shown in
Eq. (10). It varies from a value of approximately 4 at f * � 5=6
to 25 at f * � 2=15. Clearly the contribution of inertial drag
exceeds the separation drag within the tidal cycle, especially
for low f * cases. Figure 4 showed that normalized 〈FD〉f at
f * � 2=15 reached values of up to 16 during the tidal cycle just
after t = T1 and dropped rapidly below 210 near T3. On the
other hand, 〈FD〉f has a smaller variance over the tidal cycle
in the cases with f * � 5=12and 5=6. In these two cases, large-
eddy cores in the lee generate zones of low pressure with high

magnitude which remain at the obstacle periphery throughout
the tidal cycle (Figs. 4e–l). The longer residence time of the
attached low pressure zone enhances the separation drag FS

D.
The deviation of 〈FD〉f from its cycle-averaged mean value is
also much smaller. The values of 〈FD〉f lie between 25 and
8 for this case.

Quantifying the mean and RMS values of FD is key in this
comparative analysis. The time averaged value, namely 〈FD〉,
offers a diagnosis of high-drag states by nearly eliminating the
contribution from inertial drag and providing an estimate of
the separation drag FS

D. Parameterization of separation drag
is important owing to its ability to extract momentum from
the flow. To this end, the normalized 〈FD〉 and 〈FD〉rms are
plotted in Fig. 5 as a function of f *. The normalized form drag
or the drag coefficient is FD〈 〉=(r0U2

cAcs=2), where Acs is the
projected obstacle area in the streamwise direction. The value
of form drag coefficient in the f * � ‘ case is 1.5. In the tidally
modulated cases, the mean form drag coefficient generally
increases with increasing f *. The larger size and longer resi-
dence time of the attached wake eddy contribute to the inten-
sification of the pressure drop and its sustenance near the foot
of the abyssal hill (Figs. 3h,i). As a result, a large increase in
〈FD〉 (relative to 〈FD‘〉) is observed in regimes 3 and 4. The
mean drag coefficient exceeds 3.5 in regime 4, and its average
value over the cases of regime 4 is 3, signifying a twofold
increase in form drag with respect to the steady case. In
regime 3, there is a 60% increase in average form drag rela-
tive to 〈FD‘〉. In comparison, only a marginal increase of 〈FD〉
is seen in regime 2. On the other hand, the RMS drag,
〈FD〉rms, is strongly influenced by inertial forces. The RMS
drag decays rapidly as f * increases, from a large value of 11 at
f * � 2=15 to 3.2 at f * � 1. This monotonic decay is attributed
to a reduction in the inertial drag associated with the tidal
acceleration.

c. Energy loss to form drag

Figure 6 shows the variation of the tidally averaged power
loss 〈FDUb〉 normalized by r0U

3
cAcs=2 as a function of f *. It is

noteworthy that normalized 〈FDUb〉 is close to 5 across the

FIG. 5. Variation of mean drag force (〈FD〉) and its root-mean-square value (〈FD〉rms) with f *. The gray dashed line
denotes the normalized mean drag in the f * � ‘ (no-tide) case (represented as 〈FD‘〉).
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tidally modulated cases and the deviations from this magni-
tude are minimal. This value is at least 3 times larger than the
value of 1.5 computed for f * � ‘ case. This threefold increase
is slightly larger than the factor of 2.5 increase expected from
including the tidal velocity in the normalization factor (using
U3

b

〈 〉
instead of U3

c ) for the tidally modulated (R = 1) cases.
The energy loss driven by the time-averaged form drag
〈FD〉〈Ub〉 = 〈FD〉Uc follows a similar variability depicted by
〈FD〉 in Fig. 5. This quantity is smaller than the mean tidal
energy loss 〈FDUb〉 and the difference stems from the energy
loss associated with the oscillatory part of form drag that is in
phase with the tidal modulation. This difference is larger
when f *#0:25. Therefore, interactions between the oscilla-
tory part of form drag and tidal component of the flow are
crucial in this regime and should be accounted for while calcu-
lating the total rate of kinetic energy loss.

d. Frictional drag versus form drag

To ascertain the magnitude of form drag relative to the drag
associated with the frictional bottom boundary layer (BBL), con-
sider regime 4. The mean form drag FD‘〈 〉 � 3r0U

2
cAcs=2.

Assuming a coefficient of bottom friction (Cf) of approximately
0.002 based on previous studies (e.g., McCabe et al. 2006), the
mean frictional drag (〈FBBL〉) is of the order Cfr0U

2
cAb=2,

where Ab is the projected area of the hill on the horizontal
plane. Therefore, the ratio of mean form drag to frictional
drag is

FD‘〈 〉
FBBL〈 〉 �

3Acs

CfAb
≈ 300: (11)

Therefore, it is important to account for the form drag of 3D
underwater obstacles when parameterizing bottom drag,
especially when tidal oscillations are present. The interplay
between form drag and spatiotemporal organization of the lee

eddies deserves attention. To this end, vortex dynamics are
explored in the next section.

6. Vortex dynamics

Investigations of cylinder wakes created by homogeneous
nonrotating flow, have often been used to add to our under-
standing of vortex dynamics in oceanic wakes (Chang et al.
2019). However, density stratification and planetary rotation
influence the wake significantly. For example, Lin and Pao
(1979) presented a detailed review of internal wave radiation
and the emergence of thin lee vortices when Frc , 1. With the
addition of rotation, Dong et al. (2006) showed manifestations
of barotropic, baroclinic and centrifugal instabilities in the
wake. The recent study of Puthan et al. (2021) showed that
vortices in the far wake occur at frequencies coinciding with
tidal subharmonics. Form drag is directly related to flow sepa-
ration and near wake vortices. We discuss these facets and
also the vertical organization of lee vortices in this section.

a. Vertical structure of lee vortices

Figures 7a and 7c show contours of vz on horizontal planes
at four different heights in the wake for f * � 5=12 (regime 3)
and 5/6 (regime 4). Velocity spectra at spatial probes chosen
at these vertical heights are shown in Figs. 7b and 7d. Let
z*div ≈ 12 Uc 1Ut( )=Nh � 0:7 be an approximate estimate of
the dividing vertical height, below which the fluid is driven lat-
erally around the obstacle (Sheppard 1956; Drazin 1961). The
four vertical heights in Fig. 7 are chosen such that z* , z*div.

For f * � 5=12 (Fig. 7a), laterally symmetric dipoles,
attached to the obstacle, form along its vertical extent. Far-
ther in the wake beyond x* � 2, discrete eddies remain scat-
tered and disorganized. At this stage, these eddies do not
exhibit the spatial configuration of a Kármán vortex street.

For the case of f * � 5=6 (Fig. 7c), the coherent vortices are
larger and their shedding is asymmetrical. A region of both

FIG. 6. Variation of rate of work done by drag (WD) normalized by r0U
3
cAcs=2, with f *. The black solid line repre-

sents normalized 〈FDUb〉 and the blue dashed line represents normalized 〈FD〉〈Ub〉 = 〈FD〉Uc. The difference between
these two quantities is represented by the dotted purple line. The gray dashed line denotes the rate of work done in
the f * � ‘ (no-tide) case.
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negative and positive vorticity remains attached to the topog-
raphy along its vertical extent. Beyond x* � 1, a large cyclonic
(positive) vortex is followed by a large anticyclonic (negative)
vortex at z* � 0:03and 0:22. These two vortices are found to
be aligned vertically up to a height of O Ut=N

( )
. Similar

aligned vortices were also observed in the f * � 5=12 case,
albeit smaller in diameter and more scattered. A possible
explanation may stem from the vortex separation being initi-
ated by the tidal forcing. To illustrate this, the spectra of span-
wise velocity (S*yy) are plotted at different vertical heights for
f * � 5=12 and f * � 5=6 cases in Figs. 7b and 7d. The frequency
of lateral oscillations from S*vv is used to ascertain the vortex
shedding frequency. Vortices are shed at the same instant
during the tidal cycle along the vertical extent of the obstacle
(not shown). In addition, in the far wake at z* , z*div, the vor-
tices are observed at a uniform frequency of ft/4 in f * � 5=12
case and ft/2 in f * � 5=6 case. The timing of the flow separa-
tion may help align the vortices along the z direction up to a
vertical length scale permitted by the background stratifica-
tion. At elevations above z*div, the transient lee waves inter-
fere strongly with the coherent structures in the wake (see
Puthan et al. 2020). Near-wake turbulence creates small-
scale patches of vorticity in both cases, up to two diameters

away from the obstacle. However, we emphasize that their
instantaneous presentation is qualitatively different from a
classical Kármán vortex street over the vertical extent of the
hill.

b. Symmetric eddy dipoles

The symmetric twin dipoles shown previously in Fig. 2e are
created through a sequence of events presented in Fig. 8. A
locally adverse streamwise pressure gradient (shown in
Figs. 4e,f) develops on either lateral side of the obstacle.
While the barotropic flow remains positive, as in Fig. 8a, two
opposite-signed vortices form in the recirculation zone and
grow in size until the velocity approaches zero. As the tide-
associated pressure gradient changes sign at the zero velocity
phase, the high vorticity fluid accelerates upstream relative to
the background flow on both lateral sides. During this event,
additional vorticity of opposite sign is generated from shear
when this fluid is near the obstacle. For example, the attached
anticyclonic eddy in Fig. 8a accrues positive vorticity in
Fig. 8b during its deflection to the 1y direction. Thus, twin
dipoles form symmetrically on either lateral side of the obsta-
cle. During the subsequent acceleration phase, the dipoles
gain enough momentum to advect downstream (Fig. 8c).

FIG. 7. Eddy formation is depicted by the normalized vertical vorticity (vz/f) in four horizontal (x–y) planes: (a) f * �
5=12 and (c) f * � 5=6. (b),(d) Spectra of spanwise velocity S*yy � Syy=U2

c , plotted at four probes [black dots in (a) and
(c), respectively] chosen at different vertical heights located at x* � 4 and y* � 0. The green bar in (b) and (d) shows
the 95% confidence interval of the spectrum.
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At the same instant, a new vortex pair starts to grow near the
separation points, completing a full cycle of oscillation.

The formation of the symmetric vortices is phase locked to
the tidal cycle. Note that the positive vorticity generated by
the upstream flow (directed to the 1y direction) in the previ-
ous tidal cycle (located at x*, y* � 1:5, 0:5) in Fig. 8a, decays in
the present tidal cycle, as shown in Figs. 8b and 8c. The vorti-
ces also lose their lateral symmetry beyond x* � 1:5. Tidal
forcing aids in the symmetrical placement of vortices up to an
excursion distance of Ut/ft, or equivalently, x* � 1:57 for this
case. Beyond x* � 1:57, a staggered and distorted pattern of
vortices occurs (see Fig. 2e). Deviation of the wake vortex fre-
quency fs from the tidal frequency ft occurs in this region, as
elaborated in the next section.

c. Temporal variation of vorticity

Hovmöller diagrams of normalized vorticity in Fig. 9 dem-
onstrate clearly that transitions of the vortex frequency from
the near to the far wake vary among regimes 2–4. Space–
time (y–t) contours of vertical vorticity are plotted at two sta-
tions: S1 in the near wake and S2 in the far wake (see dashed
lines in Figs. 2c,e,g). In Fig. 9a, the signature of the tidal fre-
quency is observed in the vortex pulses spaced over one tidal
period (T) for f * � 2=15. These pulses are arranged in the
form of a slowly varying large-scale sinuous (antisymmetric)
mode. The sinuous mode evolves into a row of opposite-
signed vortices at S2 (Fig. 9b). The signature of the individual
vortex pulses disappears at S2 leaving large-scale coherent
vortices separated by the time period Ts. The vortex period
(Ts) in the far wake aligns with the natural shedding period of
the obstacle wake, Ts,c.

Case f * � 5=12 exhibits a laterally symmetric vortex pattern
at S1, depicted in Fig. 9c. These vortex structures repeat every
tidal cycle. The unstable symmetric mode transitions into an
antisymmetric downstream wake made up of coherent vorti-
ces in Fig. 9d. These vortices are separated by Ts = 4T, dem-
onstrating the tidal synchronization noted in Puthan et al.
(2021). Thus the wake vortex frequency is modified to ft/4. In
other words, during every tidal cycle the symmetric vortices

feed their vorticity into a larger vortex downstream, formed
every four tidal cycles.

In the f * � 5=6 case, the wake is strongly asymmetric in the
lateral direction at S1 (Fig. 9e). Large vortex lobes repeat
once every two cycles and extend laterally. The lateral extent
stretches farther at S2 relative to the previous two cases, as
seen in Fig. 9f. The wake width is as large as 4.5D (extending
from y* ≈22:5 to y* ≈ 2), compared to 3D and 2.2D for
f * � 5=12and 2=15. A temporally distorted wake is observed
at S2 in the f * � 5=6 case, wherein the larger patches of nega-
tive vorticity are observed near the center while smaller vorti-
ces of same sign are laterally offset by approximately 2D from
the center plane. The space–time plot reveals thin filaments of
positive vorticity in the temporal frame, in the far wake of
f * � 5=12and 5=6 cases. The far wake eddy frequency coin-
cides with ft/2 for f * � 5=6.

To explore the time evolution of eddy vorticity injected
into the wake, the absolute value of vz is volume averaged
over a domain encompassing the hill and extending to a dis-
tance of 8D into the wake. Figure 10a shows the temporal
evolution of normalized volume-averaged vorticity vz| |〈 〉V=f .
The dotted line shows the variation in the barotropic velocity.
For the f * � 2=15 case, vz| |〈 〉V varies in phase with Ub. The
pulses of vorticity which form during the maximum velocity
phase of every tidal cycle are likely responsible for the small
increases of vz| |〈 〉V from its mean value. At f * � 5=12, vz| |〈 〉V
increases at the low-velocity phase during every tidal cycle.
During the shedding of symmetric vortices, the low-velocity
phase is accompanied by additional vorticity from shear layer
roll-up at the obstacle (Fig. 8). The result is an increase of
vz| |〈 〉V near the zero-velocity phase. On the other hand, larger

variations from the mean occur in vz| |〈 〉V values when
f * � 5=6.

Time averages of vz| |〈 〉V=f are plotted over a range of f *

values in Fig. 10b. Net vorticity added by the tides is not sig-
nificant when f * lies below 0.2 (Fig. 10b). Above this thresh-
old, a gradual increase is noticed in vz| |〈 〉Vt until it reaches a
value of 4 at f * � 5=12 and does not increase appreciably
beyond that. This may be explained as follows. Over a tidal
cycle, high vorticity fluid in the obstacle vicinity is advected by

FIG. 8. Normalized vertical vorticity (vz/f) at three different phases of a tidally perturbed wake at f * � 5=12: (a) t/T = 18.52, (b)t/T = 18.85,
and (c) t/T = 19.19.
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a distance of UcT. This fluid migrates into the wake perma-
nently if UcT exceeds O D( ). In other words, the tidal flow
adds vorticity to the wake when UcT=D.O 1( ). Simplifying
using the relation f * � 1:66Ext (from section 1) this condition
is equivalent to f * . O 0:25( ). At larger f * � fs,c=ft, the vortices
have sufficient time to separate from the obstacle before the
deceleration of barotropic current.

7. Discussion and conclusions

LES were undertaken to examine the wake created by a
stratified tidally modulated flow (Ub) in the presence of weak
background rotation. The barotropic flow Ub has a mean com-
ponent Uc, and a tidal component Ut of equal strength. Since
the Froude number Frc is small, the near-bottom flow is
forced to separate laterally from the obstacle. As a result,
large coherent eddies such as those observed in the ocean
(e.g., Pawlak et al. 2003; MacKinnon et al. 2019), form in the
lee. We find that the flow exhibits four regimes, based on vor-
tex patterns, as summarized in Table 1. In the first regime
where tides are absent, lee vortices separate from the obstacle
at a constant frequency fs,c and form a Kármán vortex street
downstream. In the next three regimes, the arrangement of
vortices is altered by the tidal flow. Changes in flow

separation, accompanied by bottom-intensified pressure dif-
ferences on the obstacle, are responsible for states of high
drag in the tidally modulated cases, especially regime 4.

The effect of tidal oscillations is characterized by varying
the relative frequency parameter (f * � fs,c=ft) from 1/10
to 1. Three of the nine cases are chosen, namely, f * �
2=15, 5=12; and 5=6 from regimes 2, 3, and 4, respectively, to
illustrate the results. At f * � 2=15 (regime 2), vortex pulses
which occur every tidal cycle, feed vorticity into a larger
eddy in the recirculation zone. These larger eddies form a
Kármán vortex wake downstream. At f * � 5=12 (regime 3),
laterally symmetric eddy dipoles are shed in the near wake.
The lateral symmetry is controlled by the tidal flow up to a
streamwise distance of Ut/ft. Beyond this location, the vorti-
ces partially break down or merge to create a disorganized
wake downstream. This event is accompanied by a change
in the wake vortex frequency from ft to ft/4. At f * � 5=6
(regime 4), strong asymmetric shedding at a frequency of ft/2 is
observed in the entire wake. The wake is laterally wider in com-
parison to the other regimes.

The timing of the shed vortices is strongly influenced by the
barotropic tidal oscillation. When |vz| is volume averaged
over the wake, its temporal variation is affected by the tidal
oscillation. At f * � 2=15, the temporal evolution is in phase

FIG. 9. Time evolution of vertical vorticity (vz/f) is depicted by a y–t Hovmöller diagram, at stations S1 (at x*,
z* � 1, 0:25) and S2 (at x*, z* � 4, 0:25) for three cases: (a),(b) f * � 2=15; (c),(d) f * � 5=12; and (e),(f) f * � 5=6. Here,
T is the tidal period and Ts is the time period of far wake vortices. Note that the range of ftt decreases from the top to
the bottom row. The stations S1 and S2 are indicated by brown dashed lines in Fig. 2.
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with tides owing to the formation of vortex pulses. On the
other hand, at f * � 5=12, the temporal evolution is out of
phase with the tidal oscillation. Excess vorticity is added to
the wake from the lateral motion of recirculating fluid and the
attendant shear-layer roll-up during the low-velocity phase.

Changes in flow separation also lead to variations in pres-
sure along the streamwise direction of the obstacle. The dif-
ference between the mean pressure field fore and aft of the
hill (D〈pd〉) is bottom intensified in cases f * � 5=12and 5=6.
At f * � 5=12, the intensification is laterally offset from the
centerline due to the impinging of the recirculating fluid on
the obstacle centerline near the zero-velocity phase.

The normalized form drag, i.e., drag coefficient, obtained
by integrating the pressure field over the obstacle surface
area, varies among these cases. Form drag has two compo-
nents, namely, the inertial and the separation drag. The sepa-
ration drag is the dissipative part of form drag. The mean
drag (averaged over several cycles) which is associated with
the separation drag (Sarpkaya 2004; Warner and MacCready
2009), generally increases with increasing f *. The bottom
intensified values of D〈pd〉 (associated with large eddies) and
the longer eddy residence time in the lee contribute to
approximately a twofold increase of mean drag coefficient in
regime 4 relative to its value in the no-tide case. High drag
states are also present in regime 3, wherein approximately a

60% increase is observed in mean drag coefficient relative to
the no-tide case. Therefore, for a continuous distribution of
topographic scales in the abyssal ocean, obstacles with
1=4# f *#1 can preferentially remove momentum from the
background tidally modulated flow. The drag coefficient can
be expected to be dependent on the obstacle shape. There-
fore, the form drag amplification factor can also vary with the
shape and aspect ratio of the topography, owing to changes in
flow separation. The inertial drag force (associated with the
magnitude of tidal acceleration) is dominant in regime 2, caus-
ing large variance of form drag within the tidal cycle in the
f * � 2=15 case. Since the inertial component of drag decreases
with increasing f *, so does the RMS drag. The rapidly varying
pressure gradient associated with tidal forcing for f * � 2=15
restricts the size of the lee eddy to O Ut=ft

( )
and diminishes the

pressure anomalies during the zero-velocity phase of the tidal
cycle. This leads to lower mean form drag. The tidal energy
loss rate 〈FDUb〉 does not vary significantly on changing f *.
Although the work done by the mean form drag is higher in
regimes 3 and 4, the large RMS drag in regime 2 interacts
with the oscillatory component of the barotropic flow to ele-
vate the total energy loss rate.

Warner and MacCready (2009) investigated a coastal head-
land in a purely tidal flow and did not find a significant effect
of the excursion number (equivalently f *) on separation drag

FIG. 10. (a) Volume-averaged vertical vorticity vz| |〈 〉V �
�V

0
vz| |dV=V plotted as a function of

time for f * � 2=15, 5=12, and 5=6 cases. (b) Variation of time averaged 〈|vz|〉V shown as a func-

tion of f *.
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beyond Ext of 0.25. Deviations of the present findings (regard-
ing excursion number effects) from their results may be attrib-
uted to a difference in geometry (submerged conical obstacle)
or the presence of a mean current in this study. The drag coef-
ficient associated with mean form drag normalized using the
obstacle frontal area in regime 4 is 3. Converting this to a
value based on the obstacle plan area, the drag coefficient
takes a value of approximately 0.6, substantially larger than
the drag coefficient associated with the frictional bottom
boundary layer of O(1023) estimated in previous work (e.g.,
Dewey and Crawford 1988). Thus, form drag owing to wakes
of steep obstacles dominates frictional drag in tidally modu-
lated currents.
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