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Abstract

Boundary effects play an important role in the study of hydrodynamic limits in
the Boltzmann theory. Based on a systematic study of the viscous layer equations
and the L2 to L∞ framework, we establish the validity of the Hilbert expansion for
the Boltzmann equation with specular reflection boundary conditions, which leads
to derivations of compressible Euler equations and acoustic equations in half-space.
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1. Introduction and Main Results

1.1. Introduction

In the founding work of Maxwell [38] and Boltzmann [6], it was shown that the
Boltzmann equation is closely related to the fluid dynamical systems for both com-
pressible and incompressible flows. Great effort has been devoted to the study of
the hydrodynamic limit from the Boltzmann equation to the fluid systems. In 1912,
Hilbert proposed a systematic formal asymptotic expansion for Boltzmann equa-
tion with respect to Knudsen number Kn � 1. A bit later Enskog and Chapman
independently proposed a somewhat different formal expansion, in 1916 and 1917,
respectively. Either the Hilbert or the Chapman–Enskog expansions yield the com-
pressible and incompressible fluid equations, for example the compressible Euler
and Navier–Stokes systems, the incompressible Euler and Navier–Stokes (Fourier)
systems, and the acoustic system, etc., It is a challenging problem to rigorously
justify these formal approximation. In fact, the purpose of Hilbert’s sixth problem
[26] is to establish the laws of motion of continua from more microscopic physical
models, such as Boltzmann theory, from a rigorous mathematical standpoint.

Based on the truncated Hilbert expansion, Caflisch [7] rigorously established
the hydrodynamic limit from the Boltzmann equation to the compressible Euler
equations when solution is smooth; see also [18,36,39,45], and [22,23] via a re-
cent L2-L∞ framework. As it is well known, solutions of the compressible Euler
equations in general develop singularities, such as shock wave. Generally speaking,
there are three basic wave patterns for compressible Euler equations: shock wave,
the rarefaction wave, and contact discontinuity. The hydrodynamic limit of Boltz-
mann to suchwave patterns have been proved [27,29–31,48,49] in one dimensional
case. For multi-dimensional case, the only result is [46] for planar rarefaction wave.

The acoustic equations are the linearization of the compressible Euler equations
about a spatially homogeneous fluid state. Being essentially the wave equations,
they form the simplest PDE system in fluid dynamics. Bardos et al. [4] established
the convergence from the DiPerna–Lions [11] solutions of Boltzmann equation to
the solution of acoustic system over a periodic spatial domain with restriction on
the size of fluctuation. Recently, the restriction was relaxed in [32,34], and finally
removed in [23] via a L2-L∞ framework.

There have been extensive research efforts to derive the incompressible Navier–
Stokes system; see [2,3,5,8,11,13–16,19,25,33,35,37,40,47] and the references
cited therein.

All of the above-mentioned works on the compressible Euler limit and the
acoustic limitwere carried out in either spatially periodic domainor thewhole space.
However, in many important physical applications, boundaries occur naturally, and
boundary effects are crucial in the hydrodynamic limit of dilute gases governed
by the Boltzmann equation. Hence it is important to study the hydrodynamic limit
from the Boltzmann equation to the compressible Euler equations in the presence
of physical boundaries. The purpose of this paper is to justify the compressible
Euler limit and the acoustic limit of Boltzmann equation with specular reflection
boundary conditions by the Hilbert expansion method. The main difficulty, due to
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the presence of physical boundaries, is the possible appearance of both viscous
and Knudsen boundary layers, and the interaction between these layers is very
complicate.

More precisely, we consider the scaled Boltzmann equation

Ft + v · ∇x F = 1

Kn
Q(F, F), (1.1)

where F(t, x, v) � 0 is the density distribution function for the gas particles with
position x ∈ R

3+ = {x ∈ R
3 : x3 > 0} and velocity v ∈ R

3 at time t > 0,
and Kn > 0 is Knudsen number which is proportional to the mean free path. The
Boltzmann collision term Q(F1, F2) on the right is defined in terms of the following
bilinear form

Q(F1, F2) ≡
∫

R3

∫
S2

B(v − u, θ)F1(u
′)F2(v′) dωdu

−
∫

R3

∫
S2

B(v − u, θ)F1(u)F2(v) dωdu

:= Q+(F1, F2) − Q−(F1, F2), (1.2)

where the relationship between the post-collision velocity (v′, u′) of two particles
with the pre-collision velocity (v, u) is given by

u′ = u + [(v − u) · ω]ω, v′ = v − [(v − u) · ω]ω
for ω ∈ S

2, which can be determined by conservation laws of momentum and
energy

u′ + v′ = u + v, |u′|2 + |v′|2 = |u|2 + |v|2.
The Boltzmann collision kernel B = B(v − u, θ) in (1.2) depends only on |v − u|
and θ with cos θ = (v − u) · ω/|v − u|. Throughout this paper, we consider the
hard sphere model, i.e.,

B(v − u, θ) = |(v − u) · ω|.
We denote �n = (0, 0,−1) to be the outward normal of R3+. We denote the

phase boundary in the space R3+ ×R
3 as γ := ∂R3+ ×R

3 and split it into outgoing
boundary γ+, incoming boundary γ−, and grazing boundary γ0 as follows:

γ+ = {(x, v) : x ∈ ∂R3+, v · �n = −v3 > 0},
γ− = {(x, v) : x ∈ ∂R3+, v · �n = −v3 < 0},
γ0 = {(x, v) : x ∈ ∂R3+, v · �n = −v3 = 0}.

In the present paper we consider the Boltzmann equation with specular reflection
boundary conditions, i.e.,

F(t, x, v)|γ− = F(t, x, Rxv), (1.3)

where

Rxv = v − 2{v · �n}�n = (v1, v2,−v3)
	. (1.4)



234 Yan Guo, Feimin Huang & Yong Wang

1.2. Asymptotic Expansion

Since the thickness of viscous boundary layer is
√
Kn , for simplicity, we use

the new parameter ε = √
Kn , and denote the Boltzmann solution to be Fε, then

the Boltzmann equation (1.1) is rewritten as

∂t F
ε + v · ∇x F

ε = 1

ε2
Q(Fε, Fε). (1.5)

1.2.1. Interior Expansion We define the interior expansion

Fε(t, x, v) ∼
∞∑
k=0

εk Fk(t, x, v). (1.6)

Substituting (1.6) into (1.5) and comparing the order of ε, one obtains

1

ε2
: 0 = Q(F0, F0),

1

ε
: 0 = Q(F0, F1) + Q(F1, F0),

ε0 : {∂t + v · ∇x }F0 = Q(F0, F2) + Q(F2, F0) + Q(F1, F1),

ε : {∂t + v · ∇x }F1 = Q(F0, F3) + Q(F3, F0) + Q(F1, F2) + Q(F2, F1),

...

εk : {∂t + v · ∇x }Fk = Q(F0, Fk+2) + Q(Fk+2, F0) +
∑

i+ j=k+2
i, j�1

Q(Fi , Fj ).

(1.7)

It follows from (1.7)1 and the celebrated H-theorem that F0 should be a local
Maxwellian

μ(t, x, v) := F0(t, x, v) ≡ ρ(t, x)

[2πT (t, x)]3/2 exp

{
−|v − u(t, x)|2

2T (t, x)

}
,

where ρ(t, x), u(t, x) = (u1, u2, u3)(t, x), and T (t, x) are defined by∫
R3

F0dv = ρ,

∫
R3

vF0dv = ρu,

∫
R3

|v|2F0dv = ρ|u|2 + 3ρT,

which represent the macroscopic density, velocity and temperature, respectively.

Projecting the equation (1.7)3 onto 1, v, |v|2
2 , which are five collision invariants

for the Boltzmann collision operator Q(·, ·), one obtains that (ρ, u, T ) satisfies the
compressible Euler system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρu) + div(ρu ⊗ u) + ∇ p = 0,

∂t

[
ρ

(
3T

2
+ |u|2

2

)]
+ div

[
ρu

(
3T

2
+ |u|2

2

)]
+ div(pu) = 0,

(1.8)
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where x ∈ R
3+, t > 0 and p = ρT is the pressure function. For the compressible

Euler equations (1.8), we impose the slip boundary condition

u · �n|x3=0 = u3|x3=0 = 0. (1.9)

and the initial data

(ρ, u, T )(0, x) = (1 + δϕ0, δ�0, 1 + δϑ0)(x), (1.10)

with ‖(ϕ0,�0, ϑ0)‖Hs0 � 1, where δ > 0 is a parameter and s0 � 3 is some
given positive number. Choose δ1 > 0 so that for any δ ∈ (0, δ1], the positivity of
1 + δϕ0 and 1 + δϑ0 is guaranteed. Then for each δ ∈ (0, δ1], there is a family of
classical solutions (ρδ, uδ, T δ) ∈ C([0, τ δ]; Hs0(R3+)) ∩ C1([0, τ δ]; Hs0−1(R3+))

of the compressible Euler equations (1.8)–(1.10) such that ρδ > 0 and T δ > 0; see
Lemma 2.1 for details.

Generally, the solution of interior expansion Fi , i = 1, 2, . . . does not satisfy the
specular reflection boundary conditions. To overcome the difficulty coming from
the boundary condition, the boundary layer expansions is needed (see [43,44]).

For later use, we define the linearized collision operator L by

Lg = − 1√
μ

{
Q(μ,

√
μg) + Q(

√
μg, μ)

}
.

The null space N of L is generated by

χ0(v) ≡ 1√
ρ

√
μ,

χi (v) ≡ vi − ui√
ρT

√
μ, i = 1, 2, 3,

χ4(v) ≡ 1√
6ρ

{ |v − u|2
T

− 3

}√
μ.

Clearly, we have
∫

R3
χi · χ jdv = δi j for 0 � i, j � 4. We also define the collision

frequency ν:

ν(t, x, v) ≡ ν(μ) :=
∫

R3

∫
S2

B(v − u, θ)μ(u)dωdu. (1.11)

Furthermore it holds that

1

C
(1 + |v|) � ν(t, x, v) � C(1 + |v|),

where C > 0 is some given positive constant. Let Pg be the L2
v projection with

respect to [χ0, . . . , χ4]. It is well-known that there exists a positive number c0 > 0
such that for any function g

〈Lg, g〉 � c0‖{I − P}g‖2ν,
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where the weighted L2-norm ‖ · ‖ν is defined as

‖g‖2ν :=
∫

R3
x×R3

v

g2(x, v)ν(v) dxdv.

For each k � 1, we define the macroscopic and microscopic part of
Fk√
μ

as

Fk√
μ

= P
(

Fk√
μ

)
+ {I − P}

(
Fk√
μ

)

≡
⎧⎨
⎩

ρk√
ρ

χ0 +
3∑
j=1

√
ρ

T
uk, j · χ j +

√
ρ

6

θk

T
χ4

⎫⎬
⎭ + {I − P}

(
Fk√
μ

)

≡
{

ρk

ρ
+ uk · v − u

T
+ θk

6T

( |v − u|2
T

− 3

)}√
μ + {I − P}

(
Fk√
μ

)
.

(1.12)

1.2.2. Viscous Boundary Layer Expansion We define the scaled normal coor-
dinate:

y := x3
ε

. (1.13)

For notational simplicity, we denote

x� = (x1, x2), ∇� = (∂x1, ∂x2) and v� = (v1, v2). (1.14)

Noting (1.9), we know that the local Maxwellian μ satisfies the specular re-
flection boundary conditions. However, in general, F1 may not satisfy the specular
reflection boundary conditions, therefore we need to construct viscous boundary
layer to compensate the boundary conditions starting from the first order of ε.

Motivated by [44, Section 3.4.1], we define the viscous boundary layer expan-
sion as

F̄ε(t, x�, y) ∼
∞∑
k=1

εk F̄k(t, x�, y, v).
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Plugging Fε + F̄ε into the Boltzmann equation (1.5) and comparing the order of
ε, then using (1.7), in the neighborhood of physical boundary, we have

1

ε
: 0 = Q(μ0, F̄1) + Q(F̄1, μ0),

ε0 : v3
∂ F̄1
∂y

= [Q(μ0, F̄2) + Q(F̄2, μ0)] + y[Q(∂3μ0, F̄1) + Q(F̄1, ∂3μ0)]
+ Q(F0

1 , F̄1) + Q(F̄1, F
0
1 ) + Q(F̄1, F̄1),

...

εk : {∂t + v� · ∇�}F̄k + v3
∂ F̄k+1

∂y
= Q(μ0, F̄k+2) + Q(F̄k+2, μ0)

+
∑

l+ j=k+2
1�l�b, j�1

yl

l!
[
Q(∂ l3μ0, F̄j ) + Q(F̄j , ∂

l
3μ0)

]

+
∑

i+ j=k+2
i, j�1

[
Q(F0

i , F̄j ) + Q(F̄j , F
0
i ) + Q(F̄i , F̄j )

]

+
∑

i+ j+l=k+2
1�l�b, i, j�1

yl

l!
[
Q(∂ l3F

0
i , F̄j ) + Q(F̄j , ∂

l
3F

0
i )

]
, for k � 1,

(1.15)

where we have used the Taylor expansions of μ and Fi at x3 = 0, i.e.,

μ(t, x1, x2, x3, v) = μ0 +
b∑

l=1

1

l!∂
l
3μ0 · xl3 + xb+1

3

(b + 1)!∂
b+1
3 μ̃, (1.16)

and for i � 1,

Fi (t, x1, x2, x3, v) = F0
i +

b∑
l=1

1

l!∂
l
3F

0
i · xl3 + xb+1

3

(b + 1)!∂
b+1
3 Fi . (1.17)

Here we have used the simplified notations

∂ l3μ0 : = (∂ l3μ)(t, x1, x2, 0, v), ∂b+1
3 μ̃ := (∂b+1

3 μ)(t, x1, x2, ξ0, v),

∂ l3F
0
i : = (∂ l3Fi )(t, x1, x2, 0, v), ∂b+1

3 Fi := (∂b+1
3 Fi )(t, x1, x2, ξi , v)

(1.18)

for some ξi ∈ (0, x3) with i � 0. The number b ∈ N+ will be chosen later.
The main reason to use (1.16) is to make the coefficients of linearized operator

of (1.15) be independent of y. The reason for (1.17) is to make the coefficients of
viscous boundary layer system be independent of ε; see (1.27)–(1.28) for details.
Noting the polynomial growth coefficients yl in (1.15), it is imperative to prove
that they decay with enough polynomial rate as y → +∞ provided the initial data
decay sufficiently fast. For later use, we define F̄0 = 0.
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For the macro-micro decomposition of viscous and Knudsen boundary layers,
we define the corresponding linearized collision operator, macroscopic projection,
and null space as

L0 = L(t, x�, 0, v), P0 = P(t, x�, 0, v), N0 = N (t, x�, 0, v).

It is noted that L0,P0 and N0 are independent of normal variable. We define

f̄k := F̄k√
μ0

. (1.19)

Then it holds that

f̄k = P0 f̄k + {I − P0} f̄k
=

{
ρ̄k

ρ0 + ūk · v − u0

T 0 + θ̄k

6T 0

( |v − u0|2
T 0 − 3

)}√
μ0 + {I − P0} f̄k,

where andwhereafterwealwaysuse thenotation (ρ0, u0, T 0) := (ρ, u, T )(t, x�, 0).
Throughout the present paper, we always assume the far field condition

f̄k(t, x�, y, v) → 0, as y → +∞. (1.20)

In fact, it follows from (1.15)1 that f̄1 ∈ N0, i.e.,

f̄1 ≡ P0 f̄1 =
{

ρ̄1

ρ0 + ū1 · v − u0

T 0 + θ̄1

6T 0

( |v − u0|2
T 0 − 3

)}√
μ0. (1.21)

We denote

p̄k = ρ0θ̄k + 3T 0ρ̄k

3
. (1.22)

Multiplying (1.15)2 by
√

μ0, v3
√

μ0 and integrating overR3 with respect to v, one
obtains

∂y ū1,3 = 0, ∂y p̄1 = 0, (1.23)

where p̄1 is defined in (1.22) with k = 1. Noting from (1.20) and (1.23), we have

ū1,3(t, x�, y) ≡ 0 and p̄1(t, x�, y) ≡ 0, ∀ (t, x�, y) ∈ [0, τ ] × R
2 × R+.

(1.24)

Note that from (1.22), (1.24)2 is similar to the Boussinesq relation in the diffusive
limit of Boltzmann equation.

For later use, we define the Burnett functions Ai j and Bi

Ai j :=
{

(vi − ui )(v j − u j )

T
− δi j

|v − u|2
3T

}√
μ,

Bi := vi − ui

2
√
T

( |v − u|2
T

− 5

)√
μ.

(1.25)
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and denote

A0
i, j := Ai, j (t, x�, 0, v) and B0

i := Bi (t, x�, 0, v).

We define the viscosity and thermal conductivity coefficients μ(T 0), κ(T 0) of
viscous boundary layer

μ(T 0) := T 0〈A0
31, L−1

0 A0
31〉 ≡ T 0〈A0

i j , L−1
0 A0

i j 〉, ∀i �= j,

κ(T 0) := 2

3
T 0〈B0

3, L−1
0 B0

3〉 ≡ 2

3
T 0〈B0

i , L−1
0 B0

i 〉,
i, j = 1, 2, 3.

(1.26)

By Lemma 4.4 in [3], it holds that 〈T 0A0
33,L

−1
0 A0

33〉 = 4
3μ(T 0). We denote

f 01 : = f1(t, x�, 0, v) ≡
{

ρ0
1

ρ0 + u01 · v − u0

T 0 + θ01

6T 0

( |v − u0|2
T 0 − 3

)}
√

μ0,

where (ρ0
1 , u

0
1, θ

0
1 ) := (ρ1, u1, θ1)(t, x�, 0).

f̄k will be constructed inductively as follows:

Lemma 1.1. Let f̄k (k � 1) be the solution of (1.15). For k � 1, (ūk,�, θ̄k) satisfies

ρ0∂t ūk,i + ρ0(u0
�

· ∇�)ūk,i + ρ0(∂3u
0
3 · y + u01,3)∂y ūk,i

+ ρ0ūk,� · ∇�u
0
i − ∂i p

0

3T 0 θ̄k − μ(T 0)∂yy ūk,i

= f̄k−1 =: −ρ0∂y[(∂3u0i · y + u01,i + ū1,i )ūk,3] −
[
∂i − ∂i p

0

p0

]
p̄k

+ W̄k−1,i − T 0∂y〈 J̄k−1, A0
3i 〉, i = 1, 2, (1.27)

ρ0∂t θ̄k + ρ0(u0
�

· ∇�)θ̄k + ρ0(∂3u
0
3 · y + u01,3)∂y θ̄k + 2

3
ρ0divu0θ̄k − 3

5
κ(T 0)∂yy θ̄k

= ḡk−1 =: −ρ0∂y[(3∂3T 0 · y + θ01 + θ̄1)ūk,3] + 3

5
H̄k−1 − 6

5
(T 0)

3
2 ∂y〈 J̄k−1, B0

3〉

+ 3

5

{
2∂t + 2u0

�
· ∇� + 10

3
divu0

}
p̄k , (1.28)

wheredivu0 := (divu)(t, x�, 0).Onceone solves ūk,�, then (I − P0) f̄k+1, ūk+1,3, p̄k+1
can be determined by the following equations:

(I − P0) f̄k+1 =L−1
0

{
− (I − P0)(v3∂yP0 f̄k)

+ y√
μ0

[
Q(∂3μ0,

√
μ0P0 f̄k) + Q(

√
μ0P0 f̄k , ∂3μ0)

]

+ 1√
μ0

[
Q(F0

1 ,
√

μ0P0 f̄k) + Q(
√

μ0P0 f̄k , F
0
1 )

]

+ 1√
μ0

[
Q(

√
μ0 f̄1,

√
μ0P0 f̄k) + Q(

√
μ0P0 f̄k ,

√
μ0 f̄1)

]}
+ J̄k−1,

(1.29)
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∂y ūk+1,3 = − 1

ρ0

{
∂t ρ̄k + div�(ρ

0ūk,� + ρ̄ku
0
�
)
}
, (1.30)

∂y p̄k+1 = − ρ0∂t ūk,3 − ρ0(u0
�

· ∇�)ūk,3 + ρ0∂3u
0
3 ūk,3

− 4

3
ρ0∂y[(∂3u03 · y + u01,3)ūk,3] + 4

3
μ(T 0)∂yy ūk,3

+ 2

3
ρ0

2∑
l=1

∂y([∂3u0l · y + u01,l + ū1,l ]ūk,l )

− T 0∂y〈 J̄k−1, A0
33〉 + W̄k−1,3, (1.31)

and

W̄k−1,i = −
2∑
j=1

∂ j

∫
R3

T 0{I − P0} f̄k · A0
i, j dv, for i = 1, 2, 3, (1.32)

H̄k−1 = −
2∑
j=1

∂ j

{
2(T 0)

3
2

∫
R3

{I − P0} f̄k · B0
j dv

+
2∑

l=1

2T 0u0l

∫
R3

{I − P0} f̄k · A0
l, j dv

}
− 2u0

�
· W̄k−1,�. (1.33)

and

J̄k−1 =L−1
0

{
− (I − P0)

( (∂t + v� · ∇�)F̄k−1√
μ0

)
− (I − P0)[v3∂y(I − P0) f̄k]

+
∑

j+l=k+1
2�l�b, j�1

yl

l!
1√
μ0

[
Q(∂ l3μ0,

√
μ0 f̄ j ) + Q(

√
μ0 f̄ j , ∂

l
3μ0)

]

+
∑

i+ j=k+1
i�2, j�1

1√
μ0

[
Q(F0

i ,
√

μ0 f̄ j ) + Q(
√

μ0 f̄ j , F
0
i )

]

+
∑

i+ j=k+1
i, j�2

Q(
√

μ0 f̄i ,
√

μ0 f̄ j )√
μ0

+
∑

i+ j+l=k+1
1�l�b, i, j�1

yl

l!
1√
μ0

[
Q(∂ l3F

0
i ,

√
μ0 f̄ j ) + Q(

√
μ0 f̄ j , ∂

l
3F

0
i )

]

+ y√
μ0

[
Q(∂3μ0,

√
μ0(I − P0) f̄k) + Q(

√
μ0(I − P0) f̄k, ∂3μ0)

]

+ 1√
μ0

[
Q(F0

1 ,
√

μ0(I − P0) f̄k) + Q(
√

μ0(I − P0) f̄k, F
0
1 )

]

+ 1√
μ0

[
Q(

√
μ0 f̄1,

√
μ0(I − P0) f̄k) + Q(

√
μ0(I − P0) f̄k,

√
μ0 f̄1)

]}
,

(1.34)
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We point out that W̄k−1, H̄k−1 and J̄k−1 depend on f̄ j , 1 � j � k − 1.

Remark 1.2. Since we have not found a direct reference which gives Lemma 1.1,
so we present details of calculation in the “Appendix A” for completeness though
it is somehow routine.

Remark 1.3. We remark that the Taylor expansion of μ in the derivation of the
viscous boundary layer equations is crucial for the control of large velocity v in
our L2-L∞ framework. On the other hand, such an expansion creates a factor of y,
which leads to only algebraic decay in y in general. This is in stark contrast to the
other standard boundary layer theories which typically have exponential decay in
the normal direction.

Remark 1.4. For k = 1, noting J̄0 = W̄0 = H̄0 = 0 and (1.24), then the system
(1.27)–(1.28) for [ū1,�, θ̄1] becomes

ρ0∂t ū1,i + ρ0(u0
�
· ∇�)ū1,i + ρ0(∂3u

0
3 · y + u01,3)∂y ū1,i

+ ρ0ū1,� · ∇�u
0
i − ∂i p0

3T 0 θ̄1 − μ(T 0)∂yy ū1,i = 0, i = 1, 2, (1.35)

ρ0∂t θ̄1 + ρ0(u0
�
· ∇�)θ̄1 + ρ0(∂3u

0
3 · y + u01,3)∂y θ̄1

+ 2

3
ρ0divu0θ̄1 − 3

5
κ(T 0)∂yy θ̄1 = 0, (1.36)

which is indeed a linear system for (ū1,�, θ̄1). As indicated later in Remark 1.9, the
ε-order viscous boundary layer F̄1 will appear if one of ∂3u01(t, x�, 0), ∂3u

0
2(t, x�, 0)

and ∂3T 0(t, x�, 0) is nonzero. That means whether themain viscous boundary layer
F̄1 appears depends only on the boundary properties of compressible Euler solution,
and has no relation with the interior expansion F1.

Remark 1.5. We point out that the zero-order boundary layer does not appear in
the case of specular reflection boundary conditions. On the other hand, for the case
of diffuse reflection boundary conditions, the zero-order boundary layer (Prandtl
type boundary layer) must appear, which is a nonlinear and nonlocal system, see
(3.197)–(3.202) in [44, Section 3.4.2] for its equations and boundary conditions.
Such Prandtl type boundary layer makes the hydrodynamic limit of Boltzmann
equation much harder than the specular reflection boundary case, and the problem
will be considered in the future.

1.2.3. Knudsen Boundary Layer Expansion To construct the solution that sat-
isfies the boundary condition at higher orders, we have to introduce the Knudsen
boundary layer. Firstly, we define the new scaled normal coordinate as:

η := x3
ε2

. (1.37)

The Knudsen boundary layer expansion is defined as

F̂ε(t, x�, η) ∼
∞∑
k=1

εk F̂k(t, x�, η, v).
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Plugging Fε + F̄ε + F̂ε into (1.5) and comparing the order of ε, then using (1.7),
(1.15), one obtains

1

ε
: v3

∂ F̂1
∂η

− [
Q(μ0, F̂1) + Q(F̂1, μ0)

] = 0,

ε0 : v3
∂ F̂2
∂η

− [
Q(μ0, F̂2) + Q(F̂2, μ0)

]

= Q(F0
1 + F̄0

1 , F̂1) + Q(F̂1, F
0
1 + F̄0

1 ) + Q(F̂1, F̂1),

...

εk : v3
∂ F̂k+2

∂η
− [

Q(μ0, F̂k+2) + Q(F̂k+2, μ0)
]

= −{∂t + v� · ∇�}F̂k +
∑

j+2l=k+2
1�l�b, j�1

ηl

l!
[
Q(∂ l3μ0, F̂j ) + Q(F̂j , ∂

l
3μ0)

]

+
∑

i+ j=k+2
i, j�1

[
Q(F0

i + F̄0
i , F̂j ) + Q(F̂j , F

0
i + F̄0

i ) + Q(F̂i , F̂j )
]

+
∑

i+ j+2l=k+2
i, j�1,1�l�b

ηl

l!
[
Q(∂ l3F

0
i , F̂j ) + Q(F̂j , ∂

l
3F

0
i )

]

+
∑

i+ j+l=k+2
i, j�1,1�l�b

ηl

l!
[
Q(∂ ly F̄

0
i , F̂j ) + Q(F̂j , ∂

l
y F̄

0
i )

]
, for k � 1,

(1.38)

where we have used (1.16)–(1.17) and the Taylor expansion of F̄i

F̄i (t, x1, x2, y, v) = F̄0
i +

b∑
l=1

1

l!∂
l
y F̄

0
i · yl + yb+1

(b + 1)!∂
b+1
3 F̄i ,

with

∂ l3 F̄
0
i : = (∂ l3 F̄i )(t, x1, x2, 0, v),

∂b+1
3 F̄i : = (∂b+1

3 F̄i )(t, x1, x2, ξ̄i , v),
for 0 � l � b (1.39)

for some ξ̄i ∈ [0, y].
It is noted that theKnudsenboundary layer (1.38) is in fact a steadyproblemwith

(t, x�) as parameters, and the well-posedness has already been obtained in [17,28]
under some conditions on the source term and boundary condition. However, we
shall use the existence results in [28] since the continuity and uniform estimate in
L∞

η,v is needed in the present paper.
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1.3. Hilbert Expansion

Motivated by (3.184) and (3.189) in [44, Section 3.4.1], we consider the Boltz-
mann solution with the following Hilbert expansion with multiscales

Fε = μ(t, x, v) +
N∑
i=1

εi Fi (t, x, v) +
N∑
i=1

εi F̄i (t, x�,
x3
ε

, v)

+
N∑
i=1

εi F̂i (t, x�,
x3
ε2

, v) + ε5Fε
R, (1.40)

which, together with (1.7), (1.15) and (1.38), yields that the equation for reminder
Fε
R as

∂t F
ε
R + v · ∇x F

ε
R − 1

ε2
{Q(μ, Fε

R) + Q(Fε
R, μ)}

= ε3Q(Fε
R, Fε

R) +
N∑
i=1

εi−2{Q(Fi + F̄i + F̂i , F
ε
R) + Q(Fε

R, Fi + F̄i + F̂i )}

+ Rε + R̄ε + R̂ε, (1.41)

where

Rε = − εN−6{∂t + v · ∇x }(FN−1 + εFN )

+ εN−6
∑

i+ j�N+1
1�i, j�N

εi+ j−N−1Q(Fi , Fj ), (1.42)

R̄ε = − εN−6{∂t + v� · ∇�}(F̄N−1 + ε F̄N ) − εN−6v3∂y F̄N

+ εN−6
∑

j+l�N+1
1� j�N , 1�l�b

εl+ j−N−1 · y
l

l!
[
Q(∂ l3μ0, F̄j ) + Q(F̄j , ∂

l
3μ0)

]

+ εN−6
∑

i+ j�N+1
1�i, j�N

εi+ j−N−1[Q(F0
i , F̄j ) + Q(F̄j , F

0
i ) + Q(F̄i , F̄j )

]

+ εN−6
∑

i+ j+l�N+1
1�i, j�N , 1�l�b

εi+ j+l−N−1 · y
l

l!
[
Q(∂ l3F

0
i , F̄j ) + Q(F̄j , ∂

l
3F

0
i )

]

+ εb−5 yb+1

(b + 1)!
N∑
j=1

ε j−1[Q(∂b+1
3 μ̃, F̄j ) + Q(F̄j , ∂

b+1
3 μ̃)]

+ εb−4 yb+1

(b + 1)!
N∑

i, j=1

εi+ j−2[Q(∂b+1
3 Fi , F̄j ) + Q(F̄j , ∂

b+1
3 Fi )

]
, (1.43)
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and

R̂ε = − εN−6{∂t + v� · ∇�}(F̂N−1 + ε F̂N )

+ εN−6
∑

j+2l�N+1
1� j�N ,1�l�b

ε j+2l−N−1 · ηl

l!
[
Q(∂l3μ0, F̂ j ) + Q(F̂ j , ∂

l
3μ0)

]

+ εN−6
∑

i+ j�N+1
1�i, j�N

εi+ j−N−1[Q(F0
i + F̄0

i , F̂ j ) + Q(F̂ j , F
0
i + F̄0

i ) + Q(F̂i , F̂ j )
]

+ εN−6
∑

i+ j+2l�N+1
1�i, j�N ,1�l�b

εi+ j+2l−N−1 · ηl

l!
[
Q(∂l3F

0
i , F̂ j ) + Q(F̂ j , ∂

l
3F

0
i )

]

+ εN−6
∑

i+ j+l�N+1
1�i, j�N ,1�l�b

εi+ j+l−N−1 · ηl

l!
[
Q(∂ly F̄

0
i , F̂ j ) + Q(F̂ j , ∂

l
y F̄

0
i )

]

+ ε2b−4 ηb+1

(b + 1)!
N∑
j=1

ε j−1[Q(∂b+1
3 μ̃, F̂ j ) + Q(F̂ j , ∂

b+1
3 μ̃)

]

+ ε2b−3 ηb+1

(b + 1)!
N∑

i, j=1

εi+ j−2[Q(∂b+1
3 Fi , F̂ j ) + Q(F̂ j , ∂

b+1
3 Fi )

]

+ εb−4 ηb+1

(b + 1)!
N∑

i, j=1

εi+ j−2[Q(∂b+1
3 F̄i , F̂ j ) + Q(F̂ j , ∂

b+1
3 F̄i )

]
, (1.44)

where ∂ l3μ0, ∂
b+1
3 μ̃, ∂ l3F

0
i , ∂b+1

3 Fi and ∂ ly F̄
0
i , ∂b+1

y F̄i are defined in (1.18), (1.39).
The main aim of the present paper is to establish the validity of the Hilbert

expansion for the Boltzmann equation around the local Maxwellian μ determined
by the compressible Euler equations (1.8), so it is natural to rewrite the remainder
as

Fε
R = √

μ f ε
R . (1.45)

To use the L2-L∞ framework [22], we introduce a global Maxwellian

μM := 1

(2πTM )3/2
exp

{
− |v|2
2TM

}
,

where TM > 0 satisfies the condition

TM < min
x∈R

3+
T (t, x) � max

x∈R
3+
T (t, x) < 2TM . (1.46)

By the assumption (1.46), one can easily deduce that there exists positive constant
C > 0 such that for some 1

2 < α < 1 , the following holds:

1

C
μM � μ(t, x, v) � Cμα

M . (1.47)
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We further define

Fε
R = {1 + |v|2}− κ

2
√

μMhε
R ≡ 1

wκ(v)

√
μMhε

R, (1.48)

with the velocity weight function

wκ(v) := {1 + |v|2} κ
2 , for κ � 0.

Theorem 1.6. Let τ > 0 be the life-span of smooth solution of compressible Euler
equations (1.8). Let κ � 7, N � 6 and b � 5. We assume the initial data

Fε(0, x, v) = μ(0, x, v) +
N∑
i=1

εi
{
Fi (0, x, v) + F̄i (0, x�,

x3
ε

, v) + F̂i (0, x�,
x3
ε2

, v)

}

+ ε5Fε
R(0, x, v) � 0,

and Fi (0), F̄i (0), i = 1, . . . , N satisfy the regularity and compatibility conditions
described in Proposition 5.1 (see Remark 5.2 for details on the compatibility con-
ditions), and

∥∥∥
( Fε

R√
μ

)
(0)

∥∥∥
L2
x,v

+ ε3
∥∥∥(wκ

Fε
R√

μM
)(0)

∥∥∥
L∞
x,v

< ∞.

Then there exists a small positive constants ε0 > 0 such that IBVP of Boltzmann
equation (1.5), (1.3) has a unique solution for ε ∈ (0, ε0] over the time interval
t ∈ [0, τ ] in the following form of expansion:

Fε(t, x, v) = μ(t, x, v) +
N∑
i=1

εi
{
Fi (t, x, v) + F̄i

(
t, x�,

x3
ε

, v
)

+ F̂i

(
t, x�,

x3
ε2

, v

)}

+ ε5Fε
R(t, x, v) � 0 (1.49)

with

sup
t∈[0,τ ]

{∥∥∥ F
ε
R(t)√
μ

∥∥∥
L2
x,v

+ ε3
∥∥∥wκ(v)

Fε
R(t)√
μM

∥∥∥
L∞
x,v

}
� C(τ ) < ∞. (1.50)

Here the functions Fi (t, x, v), F̄i (t, x�, y, v) and F̂i (t, x�, η, v) are respectively the
interior expansion, viscous and Knudsen boundary layers constructed in Proposi-
tion 5.1.

Remark 1.7. From (1.49)–(1.50) and the uniform estimates in Proposition 5.1, it
is direct to check that

sup
t∈[0,τ ]

{∥∥∥
( Fε − μ√

μ

)
(t)

∥∥∥
L2(R3+×R3)

+
∥∥∥wκ

( Fε − μ√
μM

)
(t)

∥∥∥
L∞(R3+×R3)

}
� Cε → 0.

Hence we have established the hydrodynamic limit from the Boltzmann equation
to the compressible Euler system for the half-space problem.
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Remark 1.8. For the initial data Fi (0, x, v), F̄i (0, x�, y, v) and F̂i (0, x�, η, v), we
only need to impose data on the macroscopic part of Fi (0, x, v), and the part of
the macroscopic part of viscous boundary layer F̄i (0, x�, y, v), and no conditions
are needed on F̂i (0, x�, η, v), see Proposition 5.1 for more details. Also, from
Proposition 5.1, we know that F̄i decay algebraically with respect to y, and F̂i
decay exponentially with respect to η; and the decay estimates are crucial for us to
close the estimate for R̄ε, R̂ε.

Remark 1.9. For the first order of viscous boundary layer F̄1, its boundary condi-
tion is closely related to the boundary value of compressible Euler solution, i.e.,
(see (5.9) for details){

∂y ū1,i (t, x�, y)|y=0 = −∂3u
0
i (t, x�, 0), i = 1, 2,

∂y θ̄ (t, x�, y)|y=0 = −3∂3T
0(t, x�, 0).

(1.51)

It is also noted that F̄1 does not interplay with F1, see (1.24), (1.35)–(1.36) and
(2.26). Hence, if one of ∂3u01(t, x�, 0), ∂3u

0
2(t, x�, 0) and ∂3T 0(t, x�, 0) is nonzero,

then the viscous boundary layer F̄1 must be nonzero. Thatmeans the ε-order viscous
boundary layer F̄1 must be included in the Hilbert expansion. On the other hand,
the first order of Knudsen boundary layer F̂1 does not appear, i.e., F̂1 ≡ 0 (see
(5.11) for details), and this is reasonable since the Knudsen boundary layer is used
to mend the boundary condition at higher orders. Therefore the interplay of interior
expansion, viscous and Knudsen boundary layers start from ε2-order.

Remark 1.10. For non-flat domains, as pointed out in [47], one needs to modify
the equation of expansion for boundary layers due to the non-trivial geometry.

1.4. Acoustic Limit

The acoustic system is the linearization of compressible Euler equations around
a uniform fluid state, for instance, (1, 0, 1). After a suitable choice of units, the fluid
fluctuations (ϕ,�, ϑ) = (ϕ,�1,�2,�3, ϑ) satisfies⎧⎪⎨

⎪⎩
∂tϕ + div� = 0,

∂t� + ∇(ϕ + ϑ) = 0,
3
2∂tϑ + div� = 0,

(t, x) ∈ R+ × R
3+. (1.52)

We impose (1.52) with the following initial and boundary data:

(ϕ,�, ϑ)(0, x) = (ϕ0,�0, ϑ0)(x) ∈ Hs0(R3+), and �3(t, x)|x3=0 = 0.
(1.53)

Clearly, the IBVP (1.52)–(1.53) is a linear hyperbolic system with constant coeffi-
cients and characteristic boundary, and there exists a unique global smooth solution
(ϕ,�, ϑ)(t) ∈ Hs0(R3+). In fact, we can still use Lemma 3.1 with the Euler solu-
tion (ρ, u, T ) = (1, 0, 1) in (3.1) and slightly different coefficients to obtain the
global existence of smooth solution to IBVP (1.52)–(1.53). Moreover it holds that

sup
s∈[0,t]

‖(ϕ,�, ϑ)(s)‖Hs0 (R3+) � C
(
t, ‖(ϕ0,�0, ϑ0)‖Hs0 (R3+)

)
, ∀ t > 0.
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On the other hand, the acoustic system (1.52) can also be formally derived from
the Boltzmann equation (1.5) by letting

Fε = μ̃M + δGε, (1.54)

where μ̃M is the global Maxwellian determined by the uniform state (1, 0, 1), i.e.,

μ̃M = 1

(2π)
3
2

exp

(
−|v|2

2

)
.

The fluctuation amplitude δ is a function of ε satisfying

δ → 0 as ε → 0.

For instance we can take

δ = ε� for � > 0.

With the above scalings, Gε formally converges to

G :=
{
ϕ + v · � + |v|2 − 3

2
ϑ

}
μ̃M , as ε → 0, (1.55)

where (ϕ,�, ϑ) is the solution of acoustic system (1.52), see [2,4] for detailed
formal derivation.

One of the purpose of present paper is to establish the acoustic limit for initial
boundary value problem of Boltzmann equation over half-space R3+. We use δ to
denote the fluctuation amplitude and assume that

ε

δ
→ 0 as ε → 0.

Theorem 1.11. Let τ > 0 be any given time. Leting μδ(0, x, v) be the local
Maxwellian with initial datum 1 + δϕ0, δ�0 and 1 + δϑ0,

μδ(0, x, v) = 1 + δϕ0(x)

[2π(1 + δϑ0(x))] 32
exp

{
−|v − δ�0(x)|2
2(1 + δϑ0(x))

}
,

where (ϕ0,�0, ϑ0) is the initial data given in (1.53). We assume that the conditions
in Theorem 1.6 hold, and rewrite the corresponding Hilbert expansion established
in Theorem 1.6 as

Fε(t, x, v) = μδ(t, x, v) +
N∑
i=1

εi
{
Fi (t, x, v) + F̄i

(
t, x�,

x3
ε

, v
)

+ F̂i

(
t, x�,

x3
ε2

, v

)}

+ ε5Fε
R(t, x, v) � 0.

Then there exist ε0 > 0 and δ0 > 0 such that for each ε ∈ (0, ε0] and δ ∈ (0, δ0],
there exists a constant C > 0 so that

sup
0�t�τ

{
‖Gε(t) − G(t)‖L∞(R3+×R3) + ‖Gε(t) − G(t)‖L2(R3+×R3)

}
� C{δ + ε

δ
},

where
ε

δ
→ 0 as ε → 0, andGε andG are defined in (1.54) and (1.55) respectively.

The constant C > 0 here depends only on τ and initial data ‖(ϕ0,�0, ϑ0)‖Hs0 (R3+).
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We now briefly comment on the analysis of the present paper. For the Hilbert
expansion of Boltzmann equation over the half-space x ∈ R

3+ with specular re-
flection boundary conditions, in general, the viscous and Knudsen boundary layers
will appear. To solve the interior expansion, viscous and Knudsen boundary layers,
we need to determine the boundary conditions so that each of them is well-posed.
We notice that the Knudsen boundary layer (1.38) is indeed a steady problem with
(t, x�) ∈ [0, τ ] × R

2 as parameters. From [28], we know that Knudsen boundary
layer is well-posed in weighted L∞

η,v-space under the conditions (2.11)–(2.12), see
Lemma 2.5 for details. In particular the weight with respect to normal variable
η can grow exponentially, which is important for us to close the remainder esti-
mate. In general, the source term on the right hand side of (1.38) does not satisfy
(2.11). We use the idea of [1] to introduce a correct function f̂i,1 to overcome this
difficulty, see Lemma 2.9 for details. To determine the boundary conditions for
Fi , F̄i , F̂i , i = 1, . . . , N , we require that each Fi + F̄i + F̂i satisfies the specular
reflection boundary conditions, so that together with (2.12), we can finally obtain
the boundary conditions for interior expansion and viscous boundary layer, see
Section 2.3 for details. Here we point out that Fi , F̄i and F̂i may not satisfy the
specular reflection boundary conditions alone.

For the existence of interior expansion, we have to consider a linear hyperbolic
system with characteristic boundary, see Lemma 2.2. We are able to construct
local in time solution with desired energy estimate in the presence of boundary
conditions in Lemma 3.1. For the existence of viscous boundary layer, we note
that it is involved to a linear hyperbolic system with partial viscosity (only in the
normal direction) and linear growth coefficients, which is not a standard linear
parabolic system, see Lemma 1.1. By using the energy estimate and several cut-
off approximate arguments, we establish its well-posedness in a weighted Sobolev
space with algebraically growth weight of y, see Lemma 4.1 for details.

With above preparations, thenwe can establish thewell-posedness of Fi , F̄i and
F̂i , i = 1, . . . , N and obtain the uniform estimate, see Proposition 5.1. Now with
the help of uniform estimates in Proposition 5.1, we can use the L2-L∞ framework
[20,23] to obtain the uniform estimate for remainder term Fε

R , and hence obtain
the solution of Boltzmann equation in the form of (1.49).

The paper is organized as follows: in Section 2, we reformulate the interior ex-
pansion and Knudsen boundary layers. Also we derive the corresponding boundary
conditions so that the formulations of interior expansion, the viscous and Knudsen
boundary layers are all well-posed. Section 3 is devoted to an existence theory for a
linear hyperbolic system with characteristic boundary, which are used to construct
interior expansion Fi . In Section 4, to construct the existence of viscous boundary
layer F̄i , we establish an existence theory of IBVP for a linear parabolic systemwith
degenerate viscosity and linear growth coefficients in a weighted Sobolev space. In
Section 5, we construct solutions of interior expansion, the viscous and Knudsen
boundary layers. Theorems 1.6 and 1.11 are proved in Sections 6 and 7, respec-
tively. In “Appendix A” we give the proof of Lemma 1.1; we present a short proof
of Lemma 2.5 in “Appendix B”; and we show some anisotropic trace estimates in
“Appendix C”.
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Notations. Throughout this paper, C denotes a generic positive constant and vary
from line to line, and C(a),C(b), . . . denote the generic positive constants de-
pending on a, b, . . ., respectively, which also may vary from line to line. We use
〈·, ·〉 to denote the standard L2 inner product in R

3
v . ‖ · ‖L2 denotes the standard

L2(R3+ × R
3
v)-norm, and ‖ · ‖L∞ denotes the L∞(R3+ × R

3
v)-norm.

2. Reformulations of Expansions and Boundary Conditions

2.1. Reformulation of Interior Expansion

Firstly we introduce the existence result on the compressible Euler equations.

Lemma 2.1. Let s0 � 3 be some positive integer. Consider the IBVP of compress-
ible Euler equations (1.8)–(1.10). Choose δ1 > 0 so that for any δ ∈ (0, δ1], the
positivity of ρ0 and T0 is guaranteed. Then for δ ∈ (0, δ1], there is a family of
classical solutions (ρδ, uδ, T δ) ∈ C([0, τ δ]; Hs0(R3+)) ∩C1([0, τ δ]; Hs0−1(R3+))

of IBVP (1.8)–(1.10) such that ρδ > 0 and T δ > 0, and the following estimate
holds:

‖(ρδ − 1, uδ, T δ − 1)‖C([0,τ δ];Hs0 (R3+))∩C1([0,τ δ];Hs0−1(R3+)) � C0. (2.1)

The life-span τ δ have the following lower bound

τ δ � C1

δ
. (2.2)

The constant C0,C1 are independent of δ, depending only on the Hs0 -norm of
(ϕ0,�0, ϑ0).

We refer [42] for the local existence of the IBVP of compressible Euler equation
(1.8)–(1.10); see also [10] and the references cited therein. We point out that the
local existence result in [42] is for smooth bounded domain withC∞ boundary, but
the method can also be applied to our half-space problem. On the other hand, we
can also obtain (2.1)–(2.2) by using similar arguments as to those in Lemma 3.1,
below.

Throughout this paper, we will drop the superscript of (ρδ, uδ, T δ) when no
confusion arises. To derive the estimates of interior expansion, i.e., F1(t, x, v), . . .,
FN (t, x, v), we firstly present a useful lemma which will be used to estimate the
bound of linear terms.

Lemma 2.2. [21] Let (ρ, u, T )(t) be some smooth solution of compressible Euler
equations (1.8). For each given nonnegative integer k, assume Fk’s are found. Then
the microscopic part of Fk+1 is determined through the follow equation for Fk in
(1.7):

{I − P}
(
Fk+1√

μ

)
= L−1

⎛
⎜⎝−

{∂t + v · ∇x }Fk−1 − ∑
i+ j=k+1
i, j�1

Q(Fi , Fj )

√
μ

⎞
⎟⎠ ,(2.3)
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for k � 0, where we define F−1 = 0 for the consistency of notation. For the
macroscopic part, ρk+1, uk+1, θk+1 satisfy the following:

∂tρk+1 + divx (ρuk+1 + ρk+1u) = 0,

ρ
{
∂t uk+1 + uk+1 · ∇xu + u · ∇xuk+1

}
− ρk+1

ρ
∇x (ρT ) + ∇x

(
ρθk+1 + 3Tρk+1

3

)
= fk ,

ρ
{
∂tθk+1 + 2

3
(θk+1divxu + 3T divxuk+1) + u · ∇xθk+1 + 3uk+1 · ∇x T

}
= gk ,

(2.4)

with

fk,i = −
3∑
j=1

∂x j

(
T

∫
R3

Ai, j
Fk+1√

μ
dv

)
,

gk = −
3∑

i=1

∂xi

⎛
⎝2T

3
2

∫
R3

Bi
Fk+1√

μ
dv +

3∑
j=1

2u j T
∫

R3
Ai, j

Fk+1√
μ

dv

⎞
⎠ − 2u · fk ,

(2.5)

where the Ai j and Bi are the Burnett functions defined (1.25), and we have used
the subscript k for the source terms fk and gk in order to emphasize that the right
hand side depends only on Fi ’s for 0 � i � k.

Remark 2.3. To solve (1.7), it is equivalent to solve the linear hyperbolic system
(2.4). Since it is an initial boundary value problem,we still need to impose a suitable
boundary condition to (2.4). In fact, to ensure each Fk+ F̄k+ F̂k satisfies the specular
reflection boundary conditions and Knudsen layer are solvable, we can not impose
boundary data of (2.4) arbitrarily. It is a very technical process to determine the
boundary condition and we will show the details in Section 2.3 below.

Remark 2.4. The original version of Lemma 2.2 in [21] is for the Hilbert expan-
sion of Vlasov-Poisson-Boltzmann equations, and one can obtain Lemma 2.2 by
dropping the electric field. Lemma 2.2 is slightly different from the original version
in [21] because we also consider the orders of ε2k−1, but the proof is very similar,
so we omit the details for simplicity of presentation. Noting Ai, j and Bi are mi-
croscopic functions, the source term fk and gk depend only on the microscopic part
(I − P)(

Fk+1√
μ

) and hence depend only on Fi ’s for 0 � i � k.

2.2. Reformulation of Knudsen Boundary Layer

Define f̂k := F̂k√
μ0

, then we can rewrite (1.38) as

v3
∂ f̂k
∂η

+ L0 f̂k = Ŝk, k � 1, (2.6)

where Ŝk := Ŝk,1 + Ŝk,2(k � 1) with

Ŝk,1 = −P0

{
{∂t + v� · ∇�}F̂k−2√

μ0

}
, (2.7)
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Ŝk,2 =
∑

i+ j=k
i, j�1

1√
μ0

[
Q(F0

i + F̄0
i ,

√
μ0 f̂ j ) + Q(

√
μ0 f̂ j , F

0
i + F̄0

i )

+ Q(
√

μ0 f̂i ,
√

μ0 f̂ j )
]

+
∑

j+2l=k
1�l�b, j�1

ηl

l!
1√
μ0

[
Q(∂ l3μ0,

√
μ0 f̂ j ) + Q(

√
μ0 f̂ j , ∂

l
3μ0)

]

+
∑

i+ j+2l=k
i, j�1,1�l�b

ηl

l!
1√
μ0

[
Q(∂ l3F

0
i ,

√
μ0 f̂ j ) + Q(

√
μ0 f̂ j , ∂

l
3F

0
i )

]

+
∑

i+ j+l=k
i, j�1,1�l�b

ηl

l!
1√
μ0

[
Q(∂ ly F̄

0
i ,

√
μ0 f̂ j ) + Q(

√
μ0 f̂ j , ∂

l
y F̄

0
i )

]

− (I − P0)

{
{∂t + v� · ∇�}F̂k−2√

μ0

}
. (2.8)

Here we have used the notation F̂−1 = F̂0 = 0 for simplicity of presentation. It is
easy to notice that Ŝk,1 ∈ N0, Ŝk,2 ∈ N⊥

0 and

Ŝ1 = Ŝ1,1 = Ŝ1,2 = Ŝ2,1 = 0. (2.9)

For later use, we introduce a result on the existence of solution to the Knudsen
boundary layer problem with a perturbed specular reflection boundary conditions.
Consider the following half-space linear problem

⎧⎪⎪⎨
⎪⎪⎩

v3∂η f + L0 f = S(t, x�, η, v),

f (t, x�, 0, v�, v3)|v3>0 = f (t, x�, 0, v�,−v3) + fb(t, x�, v�,−v3),

lim
η→∞ f (t, x�, η, v) = 0,

(2.10)

where η ∈ R+ and (t, x�) ∈ [0, τ ] × R
2. In fact, we think (t, x�) ∈ [0, τ ] × R

2 to
be parameters in (2.10). The function fb(t, x�, v) is defined only for v3 < 0, and
we always assume that it is extended to be 0 for v3 > 0.

Lemma 2.5. [28] Let 0 � a < 1
2 and κ � 3. For each (t, x�) ∈ [0, τ ] × R

2, we
assume that

S ∈ N⊥
0 and ‖wκμ−a

0 fb(t, x�, 0, ·)‖L∞
v

+ ‖ν−1wκμ−a
0 eζ0ηS(t, x�, ·, ·)‖L∞

η,v
< ∞,

(2.11)
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for some positive constant ζ0 > 0, and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
R3

v3 fb(t, x�, v)
√

μ0 dv ≡ 0,∫
R3

(v1 − u01)v3 fb(t, x�, v)
√

μ0 dv ≡ 0,∫
R3

(v2 − u02)v3 fb(t, x�, v)
√

μ0 dv ≡ 0,∫
R3

|v − u0|2v3 fb(t, x�, v)
√

μ0 dv ≡ 0.

(2.12)

Then the boundary value problem (2.10)–(2.12) has a unique solution f satisfying

‖wκμ−a
0 eζη f (t, x�, ·, ·)‖L∞

η,v
+ ‖wκμ−a

0 f (t, x�, 0, ·)‖L∞
v

� C

ζ0 − ζ

(
‖wκμ−a

0 fb(t, x�, 0, ·)‖L∞
v

+ ‖ν−1wκμ−a
0 eζ0ηS(t, x�, ·, ·)‖L∞

η,v

)
,

(2.13)

for all (t, x�) ∈ [0, τ ] × R
2, where C > 0 is a positive constant independent

of (t, x�), and ζ is any positive constant such that 0 < ζ < ζ0. Moreover, if S
is continuous in (t, x�, η, v) ∈ [0, τ ] × R

2 × R+ × R
3 and fb is continuous in

(t, x�, v�,−v3) ∈ [0, τ ] ×R
2 ×R

2 ×R+, then the solution f is continuous away
from the grazing set [0, τ ] × γ0.

Remark 2.6. A sketch proof of Lemma 2.5 is presented in “Appendix B”, see [28,
Section 3] for details.

Remark 2.7. As indicated in [24], in general, it is hard to obtain the normal deriva-
tives estimates for the boundary value problem (2.10). Fortunately, it is easy to
obtain the tangential and time derivatives estimates for the solution of (2.10), i.e.,
∑

i+ j�r

‖wκμ−a
0 eζη∂ it ∇ j

�
f (t, x�, ·, ·)‖L∞

η,v
+ ‖wκμ−a

0 ∂ it ∇ j
�
f (t, x�, 0, ·)‖L∞

v

� C

ζ0 − ζ

∑
i+ j�r

{
‖wκμ−a

0 ∂ it ∇ j
�
fb(t, x�, ·)‖L∞

v
+ ‖ν−1wκμ−a

0 eζ0η∂ it ∇ j
�
S‖L∞

η,v

}
,

(2.14)

provided the right hand side of (2.14) is bounded. And such an estimate (2.14) is
enough for us to establish the Hilbert expansion. To prove the estimate (2.14), we
study the equation of ∂ it ∇ j

�
(
√

μ0 f ). It is direct to check that the new source term and
boundary perturbation term satisfy the solvability conditions in Lemma 2.5, hence
one can obtain the estimate for ∂ it ∇ j

�
(
√

μ0 f ) by applying Lemma 2.5, therefore
(2.14) follows immediately.

Moreover, taking L∞
x�

∩ L2
x�
over (2.14), one obtains

∑
i+ j�r

sup
t∈[0,τ ]

{
‖wκμ−a

0 eζη∂ it ∇ j
�
f (t)‖L∞

x�,η,v∩L2
x�
L∞

η,v
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+ ‖wκμ−a
0 ∂ it ∇ j

�
f (t, ·, 0, ·)‖L∞

x�,v∩L2
x�
L∞

v

}

� C

ζ0 − ζ
sup

t∈[0,τ ]

{ ∑
i+ j�r

{
‖wκμ−a

0 ∂ it ∇ j
�
fb(t)‖L∞

x�,v∩L2
x�
L∞

v

+
∑

i+ j�r

‖ν−1wκμ−a
0 eζ0η∂ it ∇ j

�
S(t)‖L∞

x�,η,v∩L2
x�
L∞

η,v

}
. (2.15)

Remark 2.8. Golse, Perthame and Sulem [17] have proved an existence result for

(2.10) in the space
∫

R+×R3
(1+|v|)e2ζη f 2 dvdη+

∫
R3

‖eζη f ‖2L∞
η
dv. In the present

paper, since the continuity and weighted L∞
η,v estimate are needed, so the second

and third authors of present paper proved the well-posedness of (2.10) in the new
functional space, see [28].

Since the source term S ∈ N⊥
0 in Lemma2.5 is demanded, but Ŝk /∈ N⊥

0 (k � 3)
in general, i.e., Ŝk,1 �= 0. Hence, to solve (2.6), we need to cancel the term Ŝk,1.
We assume that

Ŝk,1 =
{
âk + b̂k · (v − u0) + ĉk |v − u0|2

}√
μ0, (2.16)

where (âk, b̂k, ĉk) = (âk, b̂k, ĉk)(t, x�, η). By similar arguments as to those in
[1], we have the next lemma. The details of proof are omitted for simplicity of
presentation.

Lemma 2.9. For (âk, b̂k, ĉk) defined in (2.16), we assume that

lim
η→∞ eζη|(âk, b̂k, ĉk)(t, x�, η)| = 0

for some positive constant ζ > 0. Then there exists a function

f̂k,1 =
{
Âkv3 + B̂k,1v3(v1 − u01) + B̂k,2v3(v2 − u02)

+ B̂k,3 + Ĉkv3|v − u0|2
}√

μ0, (2.17)

such that

v3∂η f̂k,1 − Ŝk,1 ∈ N⊥
0 ,

where

Âk(t, x�, η) = −
∫ ∞

η

( 2

T 0 âk + 3ĉk
)
(t, x�, s)ds,

B̂k,i (t, x�, η) = −
∫ ∞

η

1

T 0 b̂k,i (t, x�, s)ds, i = 1, 2,

B̂k,3(t, x�, η) = −
∫ ∞

η

b̂k,3(t, x�, s)ds,

Ĉk(t, x�, η) = 1

5(T 0)2

∫ ∞

η

âk(t, x�, s)ds.

(2.18)
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Moreover it holds that

|v3∂η f̂k,1 − Ŝk,1| � C |(âk, b̂k, ĉk)(t, x�, η)|(1 + |v|)4√μ0,

and

| f̂k,1(t, x�, η, v)| � C(1 + |v|)3√μ0

∫ ∞

η

|(âk, b̂k, ĉk)| → 0 as η → ∞.

Remark 2.10. It is very important to note that Ŝk,1 depends only on f̂k−2, which
is already a known function when we consider the existence of f̂k . Thus f̂k,1 (or
equivalent ( Âk, B̂k, Ĉk)) is determined by f̂k−2. On the other hand, since Ŝ1,1 =
Ŝ2,1 = 0, one has that

f̂1,1 = f̂2,1 ≡ 0, (2.19)

which yields that ( Â1, B̂1, Ĉ1) ≡ (0, 0, 0) and ( Â2, B̂2, Ĉ2) ≡ (0, 0, 0).

Now we consider f̂k,2 satisfying

v3
∂ f̂k,2
∂η

+ L0 f̂k,2 = Ŝk,2 − L0 f̂k,1 −
(
v3∂η f̂k,1 − Ŝk,1

)
∈ N⊥

0 , (2.20)

which can be solved by Lemma 2.5. Then it is easy to check that

f̂k := f̂k,1 + f̂k,2, (2.21)

is a solution of (2.6).

2.3. Boundary Conditions

Toconstruct the solutions for interior expansion, viscous andKnudsen boundary
layers, the remain problem is to determine suitable boundary conditions for well-
posedness. Asmentioned in Remark 2.3, we require that each Fk + F̄k + F̂k satisfies
the specular reflection boundary conditions, i.e.,

( fk + f̄k + f̂k)(t, x�, 0, v�, v3) = ( fk + f̄k + f̂k)(t, x�, 0, v�,−v3),

which, together with (2.21), yields

f̂k,2(t, x�, 0, v�, v3)|v3>0

= f̂k,2(t, x�, 0, v�,−v3) + [ fk + f̄k + f̂k,1](t, x�, 0, v�,−v3)

− [ fk + f̄k + f̂k,1](t, x�, 0, v�, v3). (2.22)

For notational simplicity, we denote

ĝk(t, x�, v�, v3) =

⎧⎪⎨
⎪⎩
0, v3 > 0,

[ fk + f̄k + f̂k,1](t, x�, 0, v�, v3)

−[ fk + f̄k + f̂k,1](t, x�, 0, v�,−v3), v3 < 0.
(2.23)
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On the other hand, we impose the far field boundary condition

lim
η→∞ f̂k,2(t, x�, η, v) = 0. (2.24)

Noting from Lemma 2.5, to solve (2.20), (2.22)–(2.23) and (2.24), we need ĝk to
satisfy (2.12), i.e.,

∫
R3

v3ĝk
√

μ0 dv =
∫

R3
(v1 − u01)v3ĝk

√
μ0 dv =

∫
R3

(v2 − u02)v3ĝk
√

μ0 dv

=
∫

R3
v3|v − u0|2 ĝk√μ0 dv = 0,

which is equivalent to
∫

R3
v3

√
μ0P0[ fk + f̄k](t, x�, 0, v) dv = −ρ0T 0( Âk + 5T 0Ĉk)(t, x�, 0),

∫
R3

v3(vi − u0i )
√

μ0(I − P0)[ fk + f̄k](t, x�, 0, v) dv

= −ρ0(T 0)2 B̂k,i (t, x�, 0), i = 1, 2,∫
R3

v3(|v − u0|2 − 5T 0)
√

μ0(I − P0)[ fk + f̄k](t, x�, 0, v) dv

= −10ρ0(T 0)3Ĉk(t, x�, 0),
(2.25)

where we have used (2.17).
For the case k = 1, from (1.21), (1.24) and (2.19), it is easy to know that (2.25)1

is equivalent to

u1,3(t, x�, 0) = 0. (2.26)

Since f1(t, x�, 0, v), f̄1(t, x�, 0, v) ∈ N0, (2.25)2,3 holds naturally for k = 1.
Now we consider (2.25) for the case k � 2. From (2.25)1, a direct calculation

shows that

uk,3(t, x�, 0) = −ūk,3(t, x�, 0) − T 0( Âk + 5T 0Ĉk)(t, x�, 0)

= −
∫ ∞

0

1

ρ0

{
∂t ρ̄k−1 + div�(ρ

0ūk−1,� + ρ̄k−1u
0
�
)
}
(t, x�, y)dy

− T 0( Âk + 5T 0Ĉk)(t, x�, 0), (2.27)

where we have used (1.30). Clearly, the right hand side terms of (2.27) can be
determined by fi , f̄i (i � k − 1) and f̂ j ( j � k − 2).

Now we consider the rest terms of (2.25). By similar arguments as in (A.9)–
(A.16), and utilizing (1.24) and (2.26), one can obtain, for i = 1, 2,

∫
R3

v3(v1 − u01)
√

μ0(I − P0) f̄k(t, x�, 0, v) dv
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= −
[
μ(T 0)∂y ūk−1,i − ρ0(u1,i + ū1,i )ūk−1,3 − 〈T 0A0

3i , J̄k−2〉
]
(t, x�, 0),

(2.28)∫
R3

v3(|v − u0|2 − 5T 0)
√

μ0(I − P0) f̄k(t, x�, 0, v) dv

= −
[
κ(T 0)∂y θ̄k−1 − 5

3
ρ0(θ1 + θ̄1)ūk−1,3 − 〈2(T 0)

3
2B0

3, J̄k−2〉
]
(t, x�, 0).

(2.29)

Using (2.28) and (2.29), we can rewrite (2.25)2,3 as

∂y ūk−1,i (t, x�, 0) = 1

μ(T 0)

{
[ρ0(u1,i + ū1,i )ūk−1,3] + 〈T 0A0

3i , J̄k−2〉

+ 〈T 0A0
3i , (I − P0) fk〉 + ρ0(T 0)2 B̂k,i

}
(t, x�, 0), i = 1, 2,

(2.30)

∂y θ̄k−1(t, x�, 0) = 1

κ(T 0)

{5
3
ρ0[(θ1 + θ̄1)ūk−1,3] + 〈2(T 0)

3
2B0

3, J̄k−2〉

+ 〈2(T 0)
3
2B0

3, (I − P0) fk〉 + 10ρ0(T 0)3Ĉk

}
(t, x�, 0).

(2.31)

Remark 2.11. It is easy to check that the terms onRHSof (2.30)–(2.31) depends on
fi (i � k−1), f̄ j ( j � k−2) and f̂l (l � k−2). Once we solve (ūk−1, θ̄k−1) with
the boundary condition (2.30)–(2.31), then f̂k will be solvable by using Lemma 2.5.

3. Existence of Solution for a Linear Hyperbolic System

To study existence of interior expansion, we first need to consider the following
linear problem for (ρ̃, ũ, θ̃ )(t, x):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t ρ̃ + divx (ρũ + ρ̃u) = 0,

ρ{∂t ũ + ũ · ∇xu + u · ∇x ũ} − ∇x p

ρ
ρ̃ + ∇x

(
ρθ̃ + 3T ρ̃

3

)
= f,

ρ{∂t θ̃ + 2

3
(θ̃divxu + 3T divx ũ) + u · ∇x θ̃ + 3ũ · ∇x T } = g,

(3.1)

with (t, x) ∈ (0, τ ) × R
3+. We impose (3.1) with a given boundary condition

ũ3(t, x�, 0) = d(t, x�), ∀(t, x) ∈ (0, τ ) × R
2, (3.2)

and the initial condition

(ρ̃, ũ, θ̃ )(0, x) = (ρ̃0, ũ0, θ̃0)(x). (3.3)

For later use, we define

∂α
t,� = ∂

α0
t ∂α1

x1 ∂α2
x2 ,
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where α is a vector index which is different from the one defined in (1.47). Defining
the nations ‖ · ‖Hk (R3+) and ‖ · ‖Hk (R2),

‖ f (t)‖2Hk(R3+)
=

∑
|α|+i�k

‖∂α
t,�∂

i
3 f (t)‖2L2(R3+)

,

‖g(t)‖2Hk(R2)
=

∑
|α|�k

‖∂α
t,�g(t)‖2L2(R2)

.
(3.4)

Lemma 3.1. Let (ρ, u, T ) be the smooth solution of compressible Euler system
obtained in Lemma 2.1, and τ > 0 be its lifespan. We assume that

‖(ρ̃0, ũ0, θ̃0)‖2Hk (R3+)
+ sup

t∈(0,τ )

[
‖(f, g)(t)‖2Hk+1(R3+)

+ ‖d(t)‖2Hk+2

]
< ∞, (3.5)

with k � 3, and the compatibility condition for initial data (3.3) is satisfied (Here
the compatibility condition means that the initial data (3.3) satisfies the boundary
condition (3.2), and the time-derivatives of initial data (ρ̃0, ũ0, θ̃0) are defined
through system (3.1) inductively). Then there exists a unique smooth solution to
(3.1)–(3.3) for t ∈ [0, τ ], which satisfies

sup
t∈[0,τ ]

‖(ρ̃, ũ, θ̃ )(t)‖2Hk (R3+)
� C(τ, Ek+2)

{
‖(ρ̃0, ũ0, θ̃0)‖2Hk (R3+)

+ sup
t∈[0,τ ]

[
‖(f, g)(t)‖2Hk+1(R3+)

+ ‖d(t)‖2Hk+2(R2)

]}
,

(3.6)

where Ek := supt∈[0,τ ] ‖(ρ − 1, u, T − 1)(t)‖Hk .

Proof. We define

p̃ := ρθ̃ + 3T ρ̃

3
.

To deal with the boundary terms, it is more convenient to use the variables ( p̃, ũ, θ̃ ).
Then (3.1) is equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t p̃ + u · ∇x p̃ + 5

3
p divx ũ + 5

3
divxu p̃ + ∇x p · ũ = 1

3
g,

ρ∂t ũ + ρu · ∇x ũ + ∇x p̃ − ∇x p

p
p̃ + ρũ · ∇xu − ∇x p

3T
θ̃ = f,

ρ∂t θ̃ + ρu · ∇x θ̃ + 2p divx ũ + 3ρũ · ∇x T + 2

3
ρdivxu θ̃ = g.

(3.7)

Let χ be a smooth monotonic cut-off function such that

χ(s) =
{
1, s ∈ [0, 1],
0, s ∈ [2,∞).

(3.8)
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Then we define

ud(t, x) := (
0, 0, d(t, x�)χ(x3)

)	 and w̃ := ũ − ud . (3.9)

Now we can rewrite (3.7) to be
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t p̃ + u · ∇x p̃ + 5

3
p divx w̃ + 5

3
divxu p̃ + ∇x p · w̃

= G0 := 1

3
g − 5

3
p divud − ∇x p · ud ,

ρ∂t w̃ + ρu · ∇x w̃ + ∇x p̃ − ∇x p

p
p̃ + ρw̃ · ∇xu − ∇x p

3T
θ̃

= G1 := f − ρ∂t ud − ρu · ∇xud − ρud · ∇xu,

ρ∂t θ̃ + ρu · ∇x θ̃ + 2p divx w̃ + 3ρw̃ · ∇x T + 2

3
ρdivxu θ̃

= G2 := g − 2p divxud − 3ρud · ∇x T .

(3.10)

From (3.2), the boundary condition now becomes

w̃3(t, x�, 0) ≡ 0. (3.11)

We can write the linear system (3.10) as a symmetric hyperbolic equations

A0∂tU +
3∑

i=1

Ai∂iU + A4U = G, (3.12)

where

U =
⎛
⎝ p̃

w̃

θ̃

⎞
⎠ , A0 =

⎛
⎜⎜⎜⎜⎝

9
5 0 0 0 −ρ

0 ρp 0 0 0
0 0 ρp 0 0
0 0 0 ρp 0

−ρ 0 0 0 5
6

⎞
⎟⎟⎟⎟⎠ , A1 =

⎛
⎜⎜⎜⎜⎝

9
5u1 p 0 0 −ρu1
p ρpu1 0 0 0
0 0 ρpu1 0 0
0 0 0 ρpu1 0

−ρu1 0 0 0 5
6ρ2u1

⎞
⎟⎟⎟⎟⎠ ,

and

A2 =

⎛
⎜⎜⎜⎜⎝

9
5u2 0 p 0 −ρu2
0 ρpu1 0 0 0
p 0 ρpu2 0 0
0 0 0 ρpu2 0

−ρu2 0 0 0 5
6ρ2u2

⎞
⎟⎟⎟⎟⎠ , A3 =

⎛
⎜⎜⎜⎜⎝

9
5u3 0 0 p −ρu3
0 ρpu3 0 0 0
0 0 ρpu3 0 0
p 0 0 ρpu3 0

−ρu3 0 0 0 5
6ρ2u3

⎞
⎟⎟⎟⎟⎠ .

(3.13)

The matrix A4 and column vector G can be easily write down, and we do not give
the details here. It is easy to check that A0 is positive.

Since the matrix A3 is singular on the boundary, hence the IBVP (3.10)–(3.11)
is a linear hyperbolic system with characteristic boundary. We refer [9,41] for the
local existence of smooth solutions. To close our lemma, one needs only to establish
the a priori energy estimates.
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It follows from Newtonian–Leibnitz formula that

‖U (t)‖2Hk−1 � ‖U0‖2Hk−1 + 2
∫ t

0
‖∂tU (s)‖Hk−1‖U (s)‖Hk−1ds

� ‖U0‖2Hk−1 +
∫ t

0
‖U (s)‖2Hk ds. (3.14)

Hencewe need only to close the highest order derivatives estimates. Let |α|+i = k,
and applying ∂α

t,�∂
i
3 to (3.12), we obtain

A0∂t∂
α
t,�∂

i
3U +

3∑
j=1

A j∂i∂
α
t,�∂

i
3U

= ∂α
t,�∂

i
3G − ∂α

t,�∂
i
3(A4U ) − [∂α

t,�∂
i
3, A0]∂tU −

3∑
j=1

[∂α
t,�∂

i
3, A j ]∂ jU, (3.15)

where and whereafter the notation [·, ·] denote the commutator operator, i.e.,

[∂α, f ]g = ∂α( f g) − f ∂αg =
∑

β+γ=α,|β|�1

Cβ,γ ∂β f · ∂γ g.

Multiplying (3.15) by ∂α
t,�∂

i
3U

	 and integrating the resultant equation over [0, t]×
R
3+, we obtain

‖∂α
t,�∂

i
3U (t)‖2L2 � C‖∂α

t,�∂
i
3U (0)‖2L2 + C(Ek+1)

∫ t

0
‖(U,G)(s)‖2Hk ds

+ C

∣∣∣∣
∫ t

0

∫
R2

(∂α
t,�∂

i
3U

	A3∂
α
t,�∂

i
3U )(s, x�, 0) dx�ds

∣∣∣∣ . (3.16)

For the boundary term on RHS of (3.16), noting (3.13) and u3(t, x�, 0) ≡ 0, it
holds that

∫ t

0

∫
R2

(∂α
t,�∂

i
3U

	A3∂
α
t,�∂

i
3U )(s, x�, 0) dx�ds

= 2
∫ t

0

∫
R2

(p ∂α
t,�∂

i
3 p̃ · ∂α

t,�∂
i
3w̃3)(s, x�, 0) dx�ds. (3.17)

To close the above estimates, we use an induction argument on the number of
normal derivatives ∂ i3. For i = 0, it follows from (3.11) that

∂α
t,�w̃3(t, x�, 0) ≡ 0, (3.18)

which, together with (3.16) and (3.17), yields that

∑
|α|=k

‖∂α
t,�U (t)‖2L2 � C‖U (0)‖2Hk + C(Ek+1)

∫ t

0
‖(U,G)(s)‖2Hkds.
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Assume that we have already obtained

∑
|α|+i=k,i�l−1

‖∂α
t,�∂

i
3U (t)‖2L2 � C(Ek+1)

∫ t

0
‖U (s)‖2Hk + ‖G(s)‖2Hk+1ds

+ C‖(U,G)(0)‖2Hk . (3.19)

Next, we shall consider the case for ‖∂α
t,�∂

l
3U (t)‖2

L2 with |α|+ l = k. Noting (3.16)
and (3.17), we need only to control the boundary term

∫ t

0

∫
R2

(p ∂α
t,�∂

l
3 p̃ · ∂α

t,�∂
l
3w̃3)(s, x�, 0) dx�ds. (3.20)

It follows from (3.10) that

∂3 p̃ = −ρ(∂t + u · ∇x )w̃3 + ∂3 p

p
p̃ − ρw̃ · ∇xu3 + ∂3 p

3T
θ̃ + G1,3, (3.21)

p∂3w̃3 = −3

5
(∂t + u · ∇x ) p̃ − p

2∑
i=1

∂i w̃i − divxu p̃ − 3

5
∇x p · w̃ + 3

5
G0.

(3.22)

By utilizing (1.8) and (1.9), we have

∂3 p(t, x�, 0) ≡ 0 and u3(t, x�, 0) ≡ 0. (3.23)

Substituting (3.23) into (3.21) and using (3.18), one obtains

∂3 p̃(t, x�, 0) = G1,3(t, x�, 0) (3.24)

Applying ∂ l−1
3 to (3.21) and (3.22), and using (3.23), then we have

∂ l3 p̃(t, x�, 0) ∼= (∂t + u · ∇x )∂
l−1
3 w̃3 + ∂ l−1

3 w̃3 + ∂t∂
l−2
3 w̃3

+
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 w̃3

+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) + ∂ l−1

3 G1,3, (3.25)

∂ l3w̃3(t, x�, 0) ∼= (∂t + u · ∇x )∂
l−1
3 p̃ +

2∑
i=1

{∂i∂ l−1
3 w̃i + ∂ l−1

3 w̃i } + ∂ l−1
3 p̃

+
2∑

i=1

∂i∂
l−2
3 ( p̃, w̃) +

∑
|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃) + ∂ l−1

3 G0. (3.26)

where and whereafter we use “∼=” to ignore the exact coefficients which depends
only on the Euler solution. Substituting (3.25) into (3.26), one can obtain

∂ l3w̃3(t, x�, 0) ∼= (∂t + u · ∇x )∂t,�∂
l−2
3 w̃3 +

2∑
i=1

{∂i∂ l−1
3 w̃i + ∂ l−1

3 w̃i }
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+ ∂t∂
l−2
3 w̃3 + ∂2t ∂ l−3

3 w̃3 +
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃)

+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) + ∂ l−1G. (3.27)

If l is even, using (3.18) and (3.27), step by step, one can get

∂ l3w̃3(t, x�, 0) ∼=
2∑

i=1

l
2−1∑
j=0

{∂i∂2 jt,�∂
l−1−2 j
3 w̃i + ∂

2 j
t,�∂

l−1−2 j
3 w̃i } + ∂ l−1

t p̃

+
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃)

+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G. (3.28)

Similarly, if l is odd, step by step, we have

∂ l3w̃3(t, x�, 0) ∼= (∂t + u · ∇x )∂
l−2
t,� ∂3w̃3 +

2∑
i=1

l−3
2∑

j=0

{
∂i∂

2 j
t,�∂

l−1−2 j
3 w̃i

+ ∂
2 j
t,�∂

l−1−2 j
3 w̃i

}
+ ∂ l−1

t p̃ +
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃)

+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G. (3.29)

Substituting (3.22) into (3.29), one obtains, for l being odd, that

∂ l3w̃3(t, x�, 0) ∼= (∂t + u · ∇x )∂
l−1
t,� p̃ +

2∑
i=1

l−1
2∑

j=0

{
∂i∂

2 j
t,�∂

l−1−2 j
3 w̃i

+ ∂
2 j
t,�∂

l−1−2 j
3 w̃i

}
+ ∂ l−1

t p̃ +
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃)

+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G. (3.30)

To estimate ∂ l3 p̃, we have to be careful. Let l be even. Substituting (3.28) and
(3.30) into (3.25), we can get

∂ l3 p̃(t, x�, 0)
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∼= (∂t + u · ∇x )∂
l−1
t,� p̃ + (∂t + u · ∇x )

2∑
i=1

l
2−1∑
j=0

{
∂i∂

2 j
t,�∂

l−2−2 j
3 w̃i

+ ∂
2 j
t,�∂

l−2−2 j
3 w̃i

}
+ ∂ l−1

t p̃ +
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃)

+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G

∼= (∂t + u · ∇x )∂
l−1
t,� p̃ +

2∑
i=1

l
2−1∑
j=0

∂2i ∂
2 j
t,�∂

l−2−2 j
3 p̃ + ∂ l−1

t p̃

+
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

∑
|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G,

(3.31)

where we have used the facts that

(∂t + u · ∇x )w̃i ∼= ∂i p̃ + O(1)( p̃, w̃, θ̃ ) + G1,i , (3.32)

which can be derived from (3.10).
Iterating (3.31) again, step by step, we have, for l being even, that

∂ l3 p̃(t, x�, 0) ∼= (∂t + u · ∇x )∂
l−1
t,� p̃ + ∂ l−1

t p̃ +
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ )

+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G,

For l being odd, substituting (3.28) and (3.30) into (3.25), and using (3.32), we
get

∂ l3 p̃(t, x�, 0)

∼= (∂t + u · ∇x )

2∑
i=1

l−3
2∑

j=0

{∂i∂2 jt,�∂
l−2−2 j
3 w̃i + ∂

2 j
t,�∂

l−2−2 j
3 w̃i } + ∂ l−1

t p̃

+
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

∑
|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G

∼=
2∑

i=1

l−3
2∑

j=0

∂2i ∂
2 j
t,�∂

l−2−2 j
3 p̃ + ∂ l−1

t p̃ +
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ )
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+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G. (3.33)

Then, iterating (3.33) again, step by step, one obtains, for l being odd, that

∂ l3 p̃(t, x�, 0) ∼= ∂ l−1
t,� ∂3 p̃ + ∂ l−1

t p̃ +
2∑

i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ )

+
∑

|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂ j G

∼= ∂ l−1
t p̃ +

2∑
i=1

∑
|β|+ j�l−2

∂i∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

∑
|β|+ j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ )

+
l−1∑
j=0

∂ j G, (3.34)

where we have used (3.24) in the last step.
Now we estimate the boundary term (3.20) when l is even. Using integration

by parts, (3.25), (3.28) and Lemma C.1, it holds that

∫ t

0

∫
R2

(p∂α
t,�∂

l
3 p̃ · ∂α

t,�∂
l
3w̃3)(s, x�, 0) dx�ds

∼=
∫ t

0

∫
R2

{ 2∑
i=1

l
2−1∑
j=0

{∂i ∂α+2 j
t,� ∂

l−1−2 j
3 w̃i + ∂

α+2 j
t,� ∂

l−1−2 j
3 w̃i } + ∂α

t,�∂
l−1
t p̃

+
2∑

i=1

∑
|β|+ j�l−2

∂i ∂
α+β
t,� ∂

j
3 ( p̃, w̃) +

∑
|β|+ j�l−2

∂
α+β
t,� ∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂α
t,�∂

j G
}

×
{
(∂t + u · ∇x )∂

α
t,�∂

l−1
3 w̃3 + ∂α

t,�∂
l−1
3 w̃3 + ∂t∂

α
t,�∂

l−2
3 w̃3

+
2∑

i=1

∑
|β|+ j�l−2

∂i ∂
α+β
t,� ∂

j
3 w̃3 +

∑
|β|+ j�l−2

∂
α+β
t,� ∂

j
3 ( p̃, w̃, θ̃ ) + ∂α

t,�∂
l−1
3 G

}
dx�ds

∼=
∫ t

0

∫
R2

∂α
t,�∂

l−1
3 w̃3 × (∂t + u · ∇x )

{ 2∑
i=1

l
2−1∑
j=0

[∂i ∂α+2 j
t,� ∂

l−1−2 j
3 w̃i

+ ∂
α+2 j
t,� ∂

l−1−2 j
3 w̃i ] + ∂α

t,�∂
l−1
t p̃ +

2∑
i=1

∑
|β|+ j�l−2

∂i ∂
α+β
t,� ∂

j
3 ( p̃, w̃)

+
∑

|β|+ j�l−2

∂
α+β
t,� ∂

j
3 ( p̃, w̃, θ̃ ) +

l−1∑
j=0

∂α
t,�∂

j G0

}
dx�ds
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+
∫

R2
∂α
t,�∂

l−1
3 w̃3 ×

{ 2∑
i=1

l
2−1∑
j=0

{∂i ∂α+2 j
t,� ∂

l−1−2 j
3 w̃i + ∂

α+2 j
t,� ∂

l−1−2 j
3 w̃i }

+ ∂α
t,�∂

l−1
t p̃ +

2∑
i=1

∑
|β|+ j�l−2

∂i ∂
α+β
t,� ∂

j
3 ( p̃, w̃) +

∑
|β|+ j�l−2

∂
α+β
t,� ∂

j
3 ( p̃, w̃, θ̃ )

+
l−1∑
j=0

∂α
t,�∂

j G
}
dx�

∣∣∣t
0

+ C(Ek+1)

∫ t

0
‖(U,G)(s)‖2Hkds. (3.35)

From (3.14), (3.19) and Lemma C.1, the second term on RHS of (3.35) can be
bounded by

λ
∑

|α|=k−l

‖∂α
t,�∂

l
3U (t)‖2L2 + Cλ

∑
|α|+i=k,i�l−1

‖∂α
t,�∂

i
3U (t)‖2L2

+ ‖U (t)‖2Hk−1 + ‖(U,G)(0)‖2Hk + ‖G(t)‖2Hk

� λ
∑

|α|=k−l

‖∂α
t,�∂

l
3U (t)‖2L2 + C(Ek+1)‖(U,G)(0)‖2Hk

+ C(Ek+1)

∫ t

0
‖U (s)‖2Hk + ‖G(s)‖2Hk+1ds. (3.36)

Integrating by parts with respect to x1 or x2 for the highest order terms, using (3.32)
and Lemma C.1, we bound the first term on RHS of (3.35) by

2∑
i=1

∫ t

0

∫
R2

∂i∂
α
t,�∂

l−1
3 w̃3 ×

l
2−1∑
j=0

{∂i∂α+2 j
t,� ∂

l−1−2 j
3 p̃ + ∂

α+2 j
t,� ∂

l−1−2 j
3 p̃}

+
∫ t

0

∫
R2

∂α
t,�∂

l−1
3 w̃3 · ∂α

t,�∂
l
t p̃ dx�ds + C(Ek+1)

∫ t

0
‖U‖2Hk + ‖G‖2Hk+1ds

∼=
2∑

i=1

∫ t

0

∫
R2

∂i∂
α
t,�∂

l−1
3 w̃3 ×

l
2−1∑
j=0

∂i∂
α+2 j
t,� ∂

l−2−2 j
t p̃ dx�ds

+
∫ t

0

∫
R2

∂α
t,�∂

l−1
3 w̃3 · ∂α

t,�∂
l
t p̃ dx�ds + C(Ek+1)

∫ t

0
‖U‖2Hk + ‖G‖2Hk+1ds

∼=
∫ t

0

∫
R2

∂α
t,�∂

l−1
3 w̃3 · ∂α

t,�∂
l
t p̃ dx�ds + C(Ek+1)

∫ t

0
‖U‖2Hk + ‖G‖2Hk+1ds,

(3.37)

where we have used (3.34) for ∂
l−1−2 j
3 p̃.

If ∂α
t,� = ∂

α0
t ∂

α1
x1 ∂

α2
x2 with α1 + α2 � 1, then by using Lemma C.1, the first term

on RHS of (3.37) is controlled by

∫ t

0

∫
R2

∂α
t,�∂

l−1
3 w̃3 · ∂α

t,�∂
l
t p̃ dx�ds �

∫ t

0
‖U (s)‖2Hkds.
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For the remaining case ∂α
t,� p̃ = ∂k−l

t p̃, it follows from (3.30) and Lemma C.1 that

∫ t

0

∫
R2

∂k−l
t ∂l−1

3 w̃3 · ∂kt p̃ dx�ds

∼= C
∫ t

0
‖U (s)‖2Hkds +

∫ t

0

∫
R2

[
∂k−1
t p̃ +

2∑
i=1

∑
j�l−2

∂i ∂
k−2− j
t,� ∂

j
3 ( p̃, w̃)

+
∑

|β|�k− j−2, j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

k−2∑
j=0

∂ j G
]

· ∂kt p̃ dx�ds

∼=
∫ t

0
‖(U,G)(s)‖2Hkds +

∫
R2

|∂k−1
t p̃|2 dx�

∣∣∣t
0

+
∫

R2

[ 2∑
i=1

∑
j�l−2

∂i ∂
k−2− j
t,� ∂

j
3 ( p̃, w̃)

+
∑

|β|�k− j−2, j�l−2

∂
β
t,�∂

j
3 ( p̃, w̃, θ̃ ) +

k−2∑
j=0

∂ j G
]

· ∂k−1
t p̃ dx�

∣∣∣t
0

� C(Ek+1)
{ ∑

|α|+ j=k, j�l−1

‖∂α
t,�∂

j
3U (t)‖2L2 + ‖(U,G)(0)‖2Hk

+ ‖G(t)‖2Hk +
∫ t

0
‖(U,G)(s)‖2Hkds

}
. (3.38)

Substituting (3.36)–(3.38) into (3.35), for l being even, we obtain
∫ t

0

∫
R2

(p ∂α
t,�∂

l
3 p̃ · ∂α

t,�∂
l
3w̃3)(s, x�, 0) dx�ds

� C(Ek+1)
{
‖(U,G)(0)‖2Hk +

∫ t

0
‖U (s)‖2Hk + ‖G(s)‖2Hk+1ds

}

+ λ
∑

|α|=k−l

‖∂α
t,�∂

l
3U (t)‖2L2 . (3.39)

For the case l being odd, by using (3.30) and (3.34), one can also prove (3.39).
The proof is slightly easier than that for the even case, and we omit the details here
for simplicity of presentation.

Combining (3.16), (3.17) and (3.39), and taking λ small, we get

∑
|α|=k−l

‖∂α
t,�∂

l
3U (t)‖2L2 � C(Ek+1)

∫ t

0
‖U (s)‖2Hk + ‖G(s)‖2Hk+1ds

+ C(Ek+1)‖(U,G)(0)‖2Hk .

This completes the induction argument. Therefore we can obtain

‖U (t)‖2Hk � C(Ek+1)
{
‖(U,G)(0)‖2Hk +

∫ t

0
‖U (s)‖2Hk + ‖G(s)‖2Hk+1ds

}
.
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which, together with Gronwall’s inequality, yields that

‖U (t)‖2Hk � C(Ek+1)

(
‖(U,G)(0)‖Hk +

∫ t

0
‖G(s)‖2Hk+1ds

)
. (3.40)

Hence we conclude (3.6) by using (3.9), (3.10) and (3.40). ��

4. Existence of Solution for a Linear Parabolic System

To construct the solution of viscous boundary layer, we consider the following
linear parabolic system of (u, θ) = (u1, u2, θ)

ρ0∂t ui + ρ0(u0
�
· ∇�)ui + ρ0∂3u

0
3 · y∂yui

+ ρ0u · ∇�u
0
i − ∂i p0

3T 0 θ = μ(T 0)∂yyui + fi , i = 1, 2,

ρ0∂tθ + ρ0(u0
�
· ∇�)θ + ρ0∂3u

0
3 · y∂yθ + 2

3
ρ0divu0θ = 3

5
κ(T 0)∂yyθ + g,

(4.1)

where (t, x�, y) ∈ [0, τ ] × R
2 × R+, and (ρ0, u0, T 0, ∂3u

0
3, divu

0, ∂1 p0, ∂2 p0)
are the corresponding values of Euler solution on the boundary x3 = 0, which
is independent of y ∈ R+. We impose the non-homogenous Neumann boundary
conditions for (4.1), i.e.,{

∂yui (t, x�, y)|y=0 = bi (t, x�), ∂yθ(t, x�, y)|y=0 = a(t, x�),

limy→∞(u, θ)(t, x�, y) = 0.
(4.2)

We also impose the initial data

u(t, x�, y)|t=0 = u0(x�, y), θ(t, x�, 0)|t=0 = θ0(x�, y). (4.3)

The initial data (u0, θ0) should satisfies the corresponding compatibility condition.
Let l � 0, we define the notations

‖ f ‖2
L2
l

=
∫∫

(1 + y)l | f (x�, y)|2 dx�dy, (4.4)

and

x̄ := (x�, y), and ∇x̄ := (∇�, ∂y) ≡ (∂x1 , ∂x2 , ∂y). (4.5)

Lemma 4.1. Let l � 0, k � 3, and the compatibility condition for the initial data
(4.3) is satisfied (Here the compatibility condition means that the initial data (4.3)
satisfies the boundary condition (4.2), and the time-derivatives of initial (u0, θ0)
are defined through system (4.1) inductively). Assume that

sup
t∈[0,τ ]

{ ∑
β+2γ�k+2

‖∇β
�
∂

γ
t (a, b)(t)‖2L2(R2)

+
k∑
j=0

∑
β+2γ= j

‖∇β
x̄ ∂

γ
t (f, g)(t)‖2

L2
l j

}
< ∞.
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with l j := l + 2(k − j), 0 � j � k. Then there exists a unique smooth solution
(u, θ) of (4.1)–(4.3) over t ∈ [0, τ ], which satisfies

k∑
j=0

∑
β+2γ= j

sup
t∈[0,τ ]

{
‖∂γ

t ∇β
x̄ (u, θ)(t)‖2

L2
l j

+
∫ t

0
‖∂γ

t ∇β
x̄ ∂y(u, θ)‖2

L2
l j

ds

}

� C(τ, Ek+3)

{ k∑
j=0

∑
β+2γ= j

‖∂γ
t ∇β

x̄ (u, θ)(0)‖2
L2
l j

+ sup
t∈[0,τ ]

[ ∑
β+2γ�k+2

‖∇β
�
∂
γ
t (a, b)(t)‖2L2(R2)

+
k∑
j=0

∑
β+2γ= j

‖∇β
x̄ ∂

γ
t (f, g)(t)‖2

L2
l j

]}
,

(4.6)

where the notation Ek+3 is defined in Lemma 3.1.

Proof. We define the following background functions

ub := yb(t, x�)χ(y) and θa := ya(t, x�)χ(y), (4.7)

where χ is the smooth monotonic cut-off function defined in (3.8). Clearly, both
ub and θa are smooth with compact support in y.

We define

� = u − ub and � = θ − θa, (4.8)

then (4.1) is reduced to
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t�i + (u0
�
· ∇�)�i + ∂3u

0
3 · y∂y�i + � · ∇�u

0
i − ∂i p0

3p0
�

= μ̃∂yy�i + f̃i , i = 1, 2,

∂t� + (u0σ · ∇�)� + ∂3u
0
3 · y∂y� + 2

3
divu0 � = κ̃∂yy� + g̃,

(4.9)

where μ̃ := 1

ρ0μ(T 0), κ̃ := 3

5ρ0 κ(T 0), and

f̃i := 1

ρ0 fi − ∂t ub,i − (u0
�
· ∇�)ub,i − ∂3u

0
3 · y∂yub,i − ub · ∇�u

0
i

+ ∂i p0

3p0
θa + μ̃∂yyub,i ,

g̃ := 1

ρ0 g − ∂tθa − (u0
�
· ∇�)θa − ∂3u

0
3 · y∂yθa − 2

3
divu0 θa + κ̃∂yyθa .

(4.10)

The boundary conditions (4.2) becomes
{

∂y�i (t, x�, y)|y=0 = 0, ∂y�(t, x�, y)|y=0 = 0, i = 1, 2,

limy→∞(�,�)(t, x�, y) = 0.
(4.11)
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Noting the coefficient ∂3u
0
3 · y in (4.9) is singular as y → ∞ and there are no

horizontal viscous terms ��� and ���, we can not directly apply the standard
linear parabolic theory. To prove the existence of smooth solution to (4.9)–(4.11),
we divide the proof into several steps.
Step 1. Approximate problem. We consider the following approximate problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t�i + (u0
�
· ∇�)�i + ∂3u

0
3 · yχσ (y)∂y�i

+� · ∇�u
0
i − ∂i p0

3p0
� = μ̃ ∂yy�i + ξ���i + f̃σi , i = 1, 2,

∂t� + (u0
�
· ∇�)� + ∂3u

0
3 · y∂y� + 2

3
divu0� = κ̃ ∂yy� + ξ��� + g̃σ ,

(4.12)

where (t, x�, y) ∈ [0, τ ] × R
2 × [0, 3/σ ], χσ (y) = χ(σ y) with 0 < ξ, σ � 1,

and f̃σi := χσ (y)f̃i , g̃σ := χσ (y)g̃. Here χ(·) is defined in (3.8). We impose the
following boundary conditions for (4.12):

{
∂y�i (t, x�, y)

∣∣
y=0 = 0, ∂y�(t, x�, y)

∣∣
y=0 = 0,

�(t, x�, y)
∣∣
y= 3

σ
= 0, �(t, x�, y)

∣∣
y= 3

σ
= 0.

(4.13)

Imposing the cut-off initial data

�(0, x�, y) = (u0 − ub)χσ (y), �(0, x�, y) = (θ0 − θa)χσ (y),

the compatibility condition of initial data at y = 3
σ
is also satisfied due to the

property of χ(s). For the approximate problem (4.12)–(4.13), now we can use
the standard linear parabolic theory to obtain the existence of smooth solution in
Sobolev space provided the initial data and (ρ0, u0, T 0) are suitably smooth. To
prove the lemma, we need only to obtain some uniform estimates of (�,�) with
respect to σ and ξ , then take the limit σ, ξ → 0+.
Step 2. Uniform energy estimates. We use an induction argument to prove the
uniform estimates. Firstly we consider the zero-order derivatives estimation. Mul-
tiplying (4.12)1 by (1+ y)l0�i and integrating the resultant equation over [0, t] ×
R
2 × [0, 3

σ
], we have

∫∫
1

2
(1 + y)l0 |�i (t, x�, y)|2 dx�dy + 1

2

∫ t

0

∫∫
∂3u

0
3y(1 + y)l0χσ (y)∂y(|�i |2)

�
∫ t

0

∫∫
μ̃ (1 + y)l0∂yy�i�i dx�dyds + ξ

∫ t

0

∫∫
(1 + y)l0��� · �i dx�dyds

+ C‖(ρ, u, T )‖W 1,∞
∫ t

0
‖(�,�)‖2

L2
l0

ds + C
∫ t

0
‖f̃i‖2L2

l0

ds + C‖�i (0)‖2L2
l0

.

(4.14)

Clearly, we have
{

χσ (y) ≡ 0, ∀ y � 2
σ
,

|y∂yχσ (y)| = |yσχ ′(σ y)| � C, ∀ y ∈ R+.
(4.15)
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For the second term on LHS of (4.14), integrating by part w.r.t. y and using (4.15),
we obtain∣∣∣∣
∫ t

0

∫∫
∂3u

0
3y(1 + y)l0χσ (y)∂y(|�i |2) dx�dyds

∣∣∣∣ � C‖u‖W 1,∞
∫ t

0
‖�i (s)‖2L2

l0

ds.

(4.16)

For the viscous terms, integrating by parts yields
∫∫

(1 + y)l0���i · �i dx�dy = −‖∇��i‖2L2
l0

,

and∫∫
μ̃ (1 + y)l0∂yy�i�i dx�dy

= −
∫∫

μ̃ (1 + y)l0 |∂y�i |2 dx�dy −
∫∫

l0μ̃ (1 + y)l0−1∂y�i�i dx�dy

+
∫

R2
μ̃ (1 + y)l0∂y�i�i dx�

∣∣∣y=
3
σ

y=0

� −1

2

∫∫
μ̃ (1 + y)l0 |∂y�i |2 dx�dy + C‖�i‖2L2

l0

, (4.17)

where we have used (4.13) in (4.17).
Substituting (4.16)–(4.17) into (4.14), we get that, for some positive constant

c0 > 0

‖�(t)‖2
L2
l0

+
∫ t

0
‖∂y�(s)‖2

L2
l0

+ ξ‖∇��(s)‖2
L2
l0

ds

� C
(
‖�(0)‖2

L2
l0

+
∫ t

0
‖f̃‖2

L2
l0

ds
)

+ C(‖(ρ, u, T )‖W 1,∞)

∫ t

0
‖(�,�)(s)‖2

L2
l0

ds.

(4.18)

Similarly, we can prove

‖�(t)‖2
L2
l0

+
∫ t

0
‖∂y�(s)‖2

L2
l0

+ ξ‖∇��(s)‖2
L2
l0

ds

� C
(
‖�(0)‖2

L2
l0

+
∫ t

0
‖g̃‖2

L2
l0

ds
)

+ C(‖(ρ, u, T )‖W 1,∞)

∫ t

0
‖�(s)‖2

L2
l0

ds,

which, together with (4.18), yields

‖(�,�)(t)‖2
L2
l0

+
∫ t

0
‖∂y(�,�)(s)‖2

L2
l0

+ ξ‖∇�(�,�)(s)‖2
L2
l0

ds

� C
(
‖(�,�)(0)‖2

L2
l0

+
∫ t

0
‖(f̃, g̃)(s)‖2

L2
l0

ds
)

+ C(‖(ρ, u, T )‖W 1,∞)

∫ t

0
‖(�,�)(s)‖2

L2
l0

ds. (4.19)



270 Yan Guo, Feimin Huang & Yong Wang

Now applying the Gronwall’s inequality to (4.19), we have

‖(�,�)(t)‖2
L2
l0

+
∫ t

0
‖∂y(�,�)(s)‖2

L2
l0

+ ξ‖∇�(�,�)(s)‖2
L2
l0

ds

� C(t, ‖(ρ, u, T )‖W 1,∞)
{
‖(�,�)(0)‖2

L2
l0

+
∫ t

0
‖(f̃, g̃)(s)‖2

L2
l0

ds
}
. (4.20)

We shall use induction arguments to close the uniform energy estimates. We
assume, for 0 � r � k − 1 (r � 1), that

r−1∑
j=0

∑
2α+|β|= j

{ ∫ t

0
‖∂α

t ∇β
x̄ ∂y(�,�)(t)‖2

L2
l j

+ ξ‖∇�∂
α
t ∇β

x̄ (�,�)‖2
L2
l j

ds

+ ‖∂α
t ∇β

x̄ (�,�)(t)‖2
L2
l j

}

� C(t, ‖(ρ, u, T )‖Wr,∞)

{ r−3∑
j=0

∑
β+2γ= j

‖∂γ
t ∇β

x̄ (f̃, g̃)(0)‖2
L2
l j

+
r−1∑
j=0

∑
2α+|β|= j

[
‖∂α

t ∇β
x̄ (�,�)(0)‖2

L2
l j

+
∫ t

0
‖∂α

t ∇β
x̄ (f̃, g̃)(s)‖2

L2
l j

ds
]}

.

(4.21)

Here we point out that one order of time derivative ∂t is equal to two orders of space
derivatives.

Now we consider the r -order derivative estimates. Let ∂β
�

= ∂
β1
x1 ∂

β2
x2 . Applying

∂α
t ∂

β
�
to (4.12)1, we have

∂t∂
α
t ∂

β
�
�i + u0

�
· ∇�∂

α
t ∂

β
�
�i + ∂3u

0
3 · yχσ (y)∂y∂

α
t ∂

β
�
�i

= ∂α
t ∂

β
�

(
μ̃∂2y�i

) + ξ��∂
α
t ∂

β
�
�i − [∂α

t ∂
β
�
, u0

�
· ∇�]�i

− yχσ (y)[∂α
t ∂

β
�
, ∂3u

0
3∂y]�i − ∂α

t ∂
β
�

{
� · ∇�u

0
i − ∂i p0

3p0
�
}

+ ∂α
t ∂

β
�
f̃σi .

(4.22)

Let 2α +|β| = r . Multiplying (4.22) by (1+ y)lr ∂α
t ∂

β
�
�i , and integrating over

[0, t] × R
2 × [0, 3

σ
], we have

1

2
‖∂α

t ∂
β
�
�i (t)‖2L2

lr
+ ξ

∫ t

0
‖∇�∂

α
t ∂

β
�
�i (s)‖2L2

lr
ds

� 1

2
‖∂α

t ∂
β
�
�i (0)‖2L2

lr
+

∫ t

0

∫∫
(1 + y)lr ∂α

t ∂
β
�
�i · ∂α

t ∂
β
�

(
μ̃∂2y�i

)
dx�dyds

+
∣∣∣
∫ t

0

∫∫
yχσ (y)(1 + y)lr [∂α

t ∂
β
�
, ∂3u

0
3∂y]�i · ∂α

t ∂
β
�
�i dx�dyds

∣∣∣
+ C(t, ‖(ρ, u, T )‖Wr+1,∞)

∑
2α̃+|β̃|�r

∫ t

0
‖∂α̃

t ∇ β̃
x̄ (�,�)(s)‖2

L2
lr
ds
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+ C
∑

2α̃+|β̃|�r

∫ t

0
‖∂α̃

t ∂
β̃
�
f̃i (s)‖2L2

lr
ds. (4.23)

Using (4.13), we have that

∂α
t ∂

β
�
�i

∣∣∣
y= 3

σ

= 0 and ∂α
t ∂

β
�
∂y�i

∣∣∣
y=0

= 0,

which, together with integrating by parts, yields that
∫ t

0

∫∫
(1 + y)lr ∂α

t ∂
β
�
�i · ∂α

t ∂
β
�

(
μ̃∂2y�i

)
dx�dyds

= −
∫ t

0

∫∫
(1 + y)lr ∂α

t ∂
β
�
∂y�i · ∂α

t ∂
β
�

(
μ̃∂y�i

)
dx�dyds

− lr

∫ t

0

∫∫
(1 + y)lr−1∂α

t ∂
β
�
�i · ∂α

t ∂
β
�

(
μ̃∂y�i

)
dx�dyds

� −1

2

∫ t

0

∫∫
μ̃ (1 + y)lr |∂α

t ∂
β
�
∂y�i |2 dx�dyds

+ C(t, ‖(ρ, u, T )‖Wr+1,∞)

r∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∇ β̃
x̄ �(s)‖2

L2
l j

ds. (4.24)

The third term on RHS of (4.23) is bounded by
∣∣∣
∫ t

0

∫∫
yχσ (y)(1 + y)lr [∂α

t ∂
β
�
, ∂3u

0
3∂y]�i · ∂α

t ∂
β
�
�i dx�dyds

∣∣∣
� C(t, ‖(ρ, u, T )‖Wr+1,∞)

∑
2α̃+|β̃|�r

∫ t

0
‖∂α̃

t ∇ β̃
x̄ �(s)‖2

L2
lr
ds

+
r−1∑
j=0

∫ t

0

∑
2α̃+|β̃|= j

‖∂y∂α̃
t ∇ β̃

x̄ �(s)‖2
L2
l j

ds, (4.25)

where we have used the fact lr + 2 = lr−1 � l j for 0 � j � r − 1.
Combining (4.23)–(4.25), and taking λ > 0 suitably small, we obtain

∑
2α+|β|=r

{
‖∂α

t ∂
β
�
�(t)‖2

L2
lr

+
∫ t

0
‖∂y∂α

t ∂
β
�
�(s)‖2

L2
lr

+ ξ‖∇�∂
α
t ∂

β
�
�(s)‖2

L2
lr
ds

}

� C

{ ∑
2α+|β|=r

‖∂α
t ∂

β
�
�(0)‖2

L2
lr

+
r∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∂
β̃
�
f̃(s)‖2

L2
l j

ds

}

+ C(t, ‖(ρ, u, T )‖Wr+1,∞)

r∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∇ β̃
x̄ (�,�)(s)‖2

L2
l j

ds

+ C
r−1∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂y∂α̃

t ∇ β̃
x̄ �(s)‖2

L2
l j

ds. (4.26)
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For the normal derivative estimate, applying ∂y to (4.22), we have

∂t∂
α
t ∂

β
�
∂y�i + u0

�
· ∇�∂

α
t ∂

β
�
∂y�i + ∂3u

0
3 · yχσ (y)∂α

t ∂
β
�
∂2y�i

= ∂α
t ∂

β
�

(
μ̃∂3y�i

) + ξ��∂
α
t ∂

β
�
∂y�i − yχσ (y)[∂α

t ∂
β
�
, ∂3u

0
3∂

2
y ]�i

− ∂3u
0
3 · ∂y

(
yχσ (y)

)
∂α
t ∂

β
�
∂y�i − [∂α

t ∂
β
�
, u0

�
· ∇�]∂y�i

− ∂y
(
yχσ (y)

)[∂α
t ∂

β
�
, ∂3u

0
3∂y]�i − ∂α

t ∂
β
�
∂y

{
� · ∇�u

0
i − ∂i p0

3p0
�
}

+ ∂α
t ∂

β
�
∂y f̃

σ
i . (4.27)

Multiplying (4.27) by (1+ y)lr ∂α
t ∂

β
�
∂y�i , and integrating over [0, t]×R

2×[0, 3
σ
],

we have

∑
2α+|β|=r−1

{
1

2
‖∂α

t ∂
β
�
∂y�(t)‖2

L2
lr

+
∫ t

0
ξ‖∇�∂

α
t ∂

β
�
∂y�(s)‖2

L2
lr
ds

}

�
∑

2α+|β|=r−1

∫ t

0

∫∫
(1 + y)lr ∂α

t ∂
β
�
∂y�i · ∂α

t ∂
β
�

(
μ̃∂3y�i

)
dx�dyds

+
{ ∑

2α+|β|=r−1

1

2
‖∂α

t ∂
β
�
∂y�(0)‖2

L2
lr

+ C
r−1∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∂
β̃
�
∂y f̃‖2L2

l j

ds

}

+ C(t, ‖(ρ, u, T )‖Wr,∞)

r∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∇ β̃
x̄ (�,�)(s)‖2

L2
l j

ds

+ C
r−1∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂y∂α̃

t ∇ β̃
x̄ �(s)‖2

L2
l j

ds. (4.28)

Using (4.13) and (4.22), we have
⎧⎪⎨
⎪⎩

∂α
t ∂

β
�
∂y�i

∣∣∣
y=0

= 0,

∂α
t ∂

β
�

(
μ̃∂2y�i

)∣∣∣
y= 3

σ

= −ξ��∂
α
t ∂

β
�
�i

∣∣∣
y= 3

σ

= 0,

which, together with integrating by parts, yields that

∫ t

0

∫∫
(1 + y)lr ∂α

t ∂
β
�
∂y�i · ∂α

t ∂
β
�

(
μ̃∂3y�i

)
dx�dyds

= −
∫ t

0

∫∫
(1 + y)lr ∂α

t ∂
β
�
∂2y�i · ∂α

t ∂
β
�

(
μ̃∂2y�i

)
dx�dyds

− lr

∫ t

0

∫∫
(1 + y)lr−1∂α

t ∂
β
�
∂y�i · ∂α

t ∂
β
�

(
μ̃∂2y�i

)
dx�dyds

� −1

2

∫ t

0

∫∫
μ̃ (1 + y)lr |∂α

t ∂
β
�
∂2y�i |2 dx�dyds
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+ C(t, ‖(ρ, u, T )‖Wr+1,∞)

r∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∇ β̃
x̄ �(s)‖2

L2
l j

ds. (4.29)

Combining (4.28)–(4.29), we obtain

∑
2α+|β|=r−1

{∫ t

0
‖∂2y∂α

t ∂
β
�
�(s)‖2

L2
lr

+ ξ‖∇�∂
α
t ∂

β
�
∂y�(s)‖2

L2
lr
ds

+ 1

2
‖∂α

t ∂
β
�
∂y�(t)‖2

L2
lr

}

� C

{ ∑
2α+|β|=r−1

1

2
‖∂α

t ∂
β
�
∂y�(0)‖2

L2
lr

+ C
r−1∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∂
β̃
�
∂y f̃‖2L2

l j

}

+ C(t, ‖(ρ, u, T )‖Wr,∞)

r∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∇ β̃
x̄ (�,�)(s)‖2

L2
l j

ds

+ C
r−1∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂y∂α̃

t ∇ β̃
x̄ �(s)‖2

L2
l j

ds. (4.30)

For the higher order normal derivatives estimate, we shall use the equation
directly. In fact, applying ∂α

t ∂
β
�
∂ny with n � 0 to (4.12)1, then we have

μ̃∂α
t ∂

β
�

∂n+2
y �i = ∂t∂

α
t ∂

β
�

∂ny�i − ξ��∂
α
t ∂

β
�

∂ny�i − [∂α
t ∂

β
�

, μ̃]∂n+2
y �i

+ ∂α
t ∂

β
�

{
∂3u

0
3 · yχσ (y)∂n+1

y �i

}
+ ∂α

t ∂
β
�

{
∂3u

0
3 [∂ny , yχσ (y)]∂y�i

}

+ ∂α
t ∂

β
�

{
u0

�
· ∇�∂

n
y�i + ∂ny� · ∇�u

0
i − ∂i p

0

3p0
∂ny�

}
− ∂α

t ∂
β
�

∂ny f̃
σ
i ,

which yields that

∑
2α+|β|=m

|∂α
t ∂

β
�

∂n+2
y �|

� C
∑

2α̃+|β̃|=m+2

|∂α̃
t ∂

β̃
�

∂ny�| + C(‖(ρ, u, T )‖Wr,∞ )
{ ∑
2α̃+|β̃|�m+n+1

|∂α̃
t ∇β̃

x̄ (�,�)|

+
∑

2α̃+|β̃|�m+n

y|∂y∂α̃
t ∇β̃

x̄ �|
}

+
∑

2α̃+|β̃|�m+n

|∂α̃
t ∇β̃

x̄ f̃|. (4.31)

For any fixed 0 � n � r − 2, by (4.31), a direct calculation shows that

∑
2α+|β|=r−n−2

{
‖∂n+2

y ∂α
t ∂

β
�

�(t)‖2
L2lr

+
∫ t

0
‖∂n+3

y ∂α
t ∂

β
�

�(s)‖2
L2lr

ds

}

� C
∑

2α̃+|β̃|=r−n

{
‖∂ny ∂α̃

t ∂
β̃
�

�(t)‖2
L2lr

+
∫ t

0
‖∂n+1

y ∂α̃
t ∂

β̃
�

�(s)‖2
L2lr

ds

}
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+ C(‖(ρ, u, T )‖Wr,∞ )

r−1∑
j=0

∑
2α̃+|β̃|= j

{
‖∂α̃

t ∇β̃
x̄ (�, �)(t)‖2

L2l j
+

∫ t

0
‖∂y∂α̃

t ∇β̃
x̄ �‖2

L2l j
ds

}

+ C
r−2∑
j=0

∑
2α̃+|β̃|= j

‖∂α̃
t ∇β̃

x̄ f̃(t)‖2L2l j
+ C

r−1∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∇β̃
x̄ f̃(s)‖2L2l j

ds. (4.32)

Noting (4.26) and (4.30), by using induction arguments on 0 � n � r −2 in (4.32),
we can obtain

∑
2α+|β|=r

{
‖∂α

t ∇β
x̄ �(t)‖2

L2
lr

+
∫ t

0
‖∂y∂α

t ∇β
x̄ �(s)‖2

L2
lr

+ ξ‖∇�∂
α
t ∇β

x̄ �(s)‖2
L2
lr
ds

}

� C(‖(ρ, u, T )‖Wr,∞)

r−1∑
j=0

∑
2α̃+|β̃|= j

{
‖∂α̃

t ∇β̃
x̄ (�, �)(t)‖2

L2
l j

+
∫ t

0
‖∂y∂α̃

t ∇β̃
x̄ �‖2

L2
l j

}

+ C(t, ‖(ρ, u, T )‖Wr+1,∞ )

r∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∇β̃
x̄ (�,�)(s)‖2

L2
l j

ds

+ C
r−2∑
j=0

∑
2α̃+|β̃|= j

‖∂α̃
t ∇β̃

x̄ f̃(t)‖2L2
l j

+ C
r∑
j=0

∑
2α̃+|β̃|= j

∫ t

0
‖∂α̃

t ∇β̃
x̄ f̃(s)‖2L2

l j

ds

+ C
∑

2α+|β|=r

‖∂α
t ∇β

x̄ �(0)‖2
L2
lr

� C(t, ‖(ρ, u, T )‖Wr+1,∞ )

{ r∑
j=0

∑
2α̃+|β̃|= j

[
‖∂α

t ∇β
x̄ �(0)‖2

L2
l j

+
∫ t

0
‖∂α̃

t ∇β̃
x̄ (f̃, g̃)‖2

L2
l j

]

+
∫ t

0

∑
2α+|β|=r

‖∂α
t ∇β

x̄ (�,�)‖2
L2
l j

ds + C
r−2∑
j=0

∑
2α̃+|β̃|= j

‖∂α̃
t ∇β̃

x̄ (f̃, g̃)(0)‖2
L2
l j

}
,

(4.33)

where we have used (4.21) in the second inequality.
As in (4.33), we can also get

∑
2α+|β|=r

{
‖∂α

t ∇β
x̄ �(t)‖2

L2
lr

+
∫ t

0
‖∂y∂α

t ∇β
x̄ �(s)‖2

L2
lr

+ ξ‖∇�∂
α
t ∇β

x̄ �‖2
L2
lr
ds

}

� C(t, ‖(ρ, u, T )‖Wr+1,∞ )

{ r∑
j=0

∑
2α̃+|β̃|= j

[
‖∂α

t ∇β
x̄ �(0)‖2

L2
l j

+
∫ t

0
‖∂α̃

t ∇β̃
x̄ (f̃, g̃)‖2

L2
l j

]

+
∫ t

0

∑
2α+|β|=r

‖∂α
t ∇β

x̄ �(s)‖2
L2
l j

ds + C
r−2∑
j=0

∑
2α̃+|β̃|= j

‖∂α̃
t ∇β̃

x̄ (f̃, g̃)(0)‖2
L2
l j

}
. (4.34)

Now, combining (4.33) and (4.34) and then using the Gronwall’s inequality, we
obtain

∑
2α+|β|=r

{∫ t

0
‖∂y∂α

t ∇β
x̄ (�, �)(s)‖2

L2lr
+ ξ‖∇�∂

α
t ∇β

x̄ (�, �)(s)‖2
L2lr

ds
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+ ‖∂α
t ∇β

x̄ (�, �)(t)‖2
L2lr

}

� C(t, ‖(ρ, u, T )‖Wr+1,∞ )

{ r∑
j=0

∑
2α̃+|β̃|= j

[
‖∂α

t ∇β
x̄ (�, �)(0)‖2

L2l j
+

∫ t

0
‖∂α̃

t ∇β̃
x̄ (f̃, g̃)‖2

L2l j

]

+ C
r−2∑
j=0

∑
2α̃+|β̃|= j

‖∂α̃
t ∇β̃

x̄ (f̃, g̃)(0)‖2
L2l j

}
.

Hence by the induction arguments, we have

k∑
j=0

∑
2α+|β|= j

{∫ t

0
‖∂y∂α

t ∇β
x̄ (�, �)(s)‖2

L2
l j

+ ξ‖∇�∂
α
t ∇β

x̄ (�,�)(s)‖2
L2
l j

ds

+ ‖∂α
t ∇β

x̄ (�, �)(t)‖2
L2
l j

}

� C(t, ‖(ρ, u, T )‖Wk+1,∞)

{ k∑
j=0

∑
2α̃+|β̃|= j

[
‖∂α

t ∇β
x̄ (�,�)(0)‖2

L2
l j

+
∫ t

0
‖∂α̃

t ∇β̃
x̄ (f̃, g̃)(s)‖2

L2
l j

ds
]

+ C
k−2∑
j=0

∑
2α̃+|β̃|= j

‖∂α̃
t ∇β̃

x̄ (f̃, g̃)(0)‖2
L2
l j

}
. (4.35)

Step 3. Taking limits σ, ξ → 0+. Based on the uniform estimates (4.35), we
can first take the limit σ → 0+, and then ξ → 0+. Then, by using (4.7)–(4.10) and
(4.35), Lemma 4.1 is proved, the details are omitted for simplicity of presentation.

��

Remark 4.2. In the proof of Lemma 4.1, we can improve the polynomial decay of
y to an exponential decay if ∂3u

0
3 < 0 with a positive contribution in (4.16).

5. Construction on the Solutions of Expansions

We define the velocity weight functions

w̃κi (v) = wκi (v)μ−a, wκ̄i (v) = wκ̄i (v)μ−a
0 and wκ̂i (v) = wκ̂i (v)μ−a

0 (5.1)

for constants κi , κ̄i , κ̂i � 0, 1 � i � N and 0 � a < 1
2 . Note that the weight

function w̃κi depends on (t, x), while wκ̄i and wκ̂i depend on (t, x�). For later use,
we define

x̂ = (x�, η) ∈ R
3+, ∇x̂ := (∇�, ∂η),

and recall x̄ = (x�, y) ∈ R
3+ and∇x̄ = (∇�, ∂y) in (4.5), and the weighted L2

l -norm
in (4.4).
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Proposition 5.1. Let 0 � a < 1
2 in (5.1). Let s0, si , s̄i , ŝi ∈ N+, κi , κ̄i , κ̂i ∈ R+

for 1 � i � N; and define lij := l̄i + 2(s̄i − j) for 1 � i � N , 0 � j � s̄i . For
these parameters, we assume the restrictions (5.42)–(5.44) hold. Let the initial data
(ρi , ui , θi )(0) of IBVP (2.4), (2.26), (2.27), and initial data (ūi,�, θ̄i )(0) of IBVP
(1.27)–(1.28), (2.30)–(2.31) satisfy

N∑
i=0

{ ∑
γ+β�si

‖∂γ
t ∇β

x (ρi , ui , θi )(0)‖L2
x

+
s̄i∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūi,�, θ̄i )(0)‖2L2
lij

}
< ∞.

(5.2)

We also assume that the compatibility conditions for initial data (ρi , ui , θi )(0) and
(ūi,�, θ̄i )(0) are satisfied (see Remark 5.2 for details). Then there exist solutions
Fi = √

μ fi , F̄i = √
μ0 f̄i , F̂i = √

μ0 f̂i to (1.7), (1.15), (1.38) over the time
interval t ∈ [0, τ ], respectively. Moreover, we have the following uniform estimates

sup
t∈[0,τ ]

N∑
i=1

{ ∑
γ+β�si

‖w̃κi ∂
γ
t ∇β

x fi (t)‖L2
x L

∞
v

+
s̄i∑
j=0

∑
j=2γ+β

‖wκ̄i ∂
γ
t ∇β

x̄ f̄i (t)‖L2
lij
L∞

v

+
∑

γ+β�ŝi

‖eζi ·ηwκ̂i ∂
γ
t ∇β

�
f̂i (t)‖L∞

x̂,v∩L2
x�
L∞

η,v

}

� C

(
τ, ‖(ϕ0,�0, ϑ0)‖Hs0 +

N∑
i=0

∑
γ+β�si

‖∂γ
t ∇β

x (ρi , ui , θi )(0)‖L2
x

+
N∑
i=0

s̄i∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūi,�, θ̄i )(0)‖2L2
lij

)
, (5.3)

where the positive constants ζi > 0 (i = 1, . . . , N ) satisfying ζi+1 = 1
2ζi and

ζ1 = 1.

Remark 5.2. The compatibility conditions for (ρk, uk, θk)(0) with k = 1, . . . , N
mean that uk,3(0) satisfies the boundary conditions (2.26)–(2.27), and the time-
derivatives of (ρk, uk, θk)(0) are defined through system (2.4) inductively. The com-
patibility conditions for (ūk,�, θ̄k)(0)with k = 1, . . . , N mean that (ūk,�, θ̄k)(0) sat-
isfies theboundary conditions (2.30)–(2.31), and the time-derivatives of (ūk,�, θ̄k)(0)
are defined through equations (1.27)–(1.28) inductively.

Remark 5.3. Since the Knudsen boundary layer f̂i is indeed a stationary problem
with (t, x�) as parameters, hence there is no necessary to give initial data for f̂i .
Here the functions fi , f̄i are smooth, however ∂

γ
t ∇β

�
f̂i is only continuous away

from the grazing set [0, τ ] × γ0.

Proof. Since the proof is very complicate, we divide the proof into several steps.
Step 1. Construction of solutions f1, f̄1 and f̂1.

Step 1.1. Construction of solution f1. Noting f1 ∈ N , we need only to construct
the macroscopic part (ρ1, u1, θ1). Hence we consider (2.4) with k = 0 and the
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boundary condition (2.26). Then by using Lemma 3.1, we establish the existence
of smooth solution of (2.4) (with k = 0), (2.26) with the following estimate

sup
t∈[0,τ ]

∑
γ+β�s1

‖∂γ
t ∇β

x (ρ1, u1, θ1)(t)‖L2(R3+)

� C(τ, E2+s1)
∑

γ+β�s1

‖∂γ
t ∇β

x (ρ1, u1, θ1)(0)‖L2(R3+),

with s1 � 1 such that s0 � 2+ s1 > 0, and Ek is defined in Lemma 3.1. Therefore
we have proved the existence of smooth solution f1 over [0, τ ] with

sup
t∈[0,τ ]

‖w̃κ1 f1(t)‖L2
x L

∞
v

� C(τ, E2+s1)
∑

γ+β�s1

‖∂γ
t ∇β

x (ρ1, u1, θ1)(0)‖L2(R3+),

for any κ1 > 0.
Step 1.2. Construction of solution f̄1. Noting (1.22), (1.21) and (1.24), we need

only to calculate (ū1,�, θ̄1). Taking k = 2 in (2.30)–(2.31), then using (1.24) and
the facts that

J̄0 = 0, ( Â2, B̂2, Ĉ2) = (0, 0, 0),

we have⎧⎪⎨
⎪⎩

∂y ū1,i (t, x�, 0) = 1

μ(T 0)

〈
T 0A0

3i , (I − P0) f2
〉
(t, x�, 0), i = 1, 2,

∂y θ̄1(t, x�, 0) = 1

κ(T 0)

〈
2(T 0)

3
2B0

3, (I − P0) f2
〉
(t, x�, 0).

(5.4)

It follows from (2.3) that

{I − P} f2 = L−1
(

−{∂t + v · ∇x }μ√
μ

+ 1√
μ
Q(

√
μ f1,

√
μ f1)

)
.

From (A.13)

{I − P}
(

−{∂t + v · ∇x }μ√
μ

)
=

3∑
j,l=1

∂ julA jl +
3∑
j=1

∂ j T√
T
B j . (5.5)

Since f1 ∈ N , as in (A.11)–(A.12), it holds that

L−1
(

1√
μ
Q(

√
μ f1,

√
μ f1)

)

=
3∑

j,l=1

1

2T
u1,l u1, jAl j + θ1

3T
3
2

u1 · B + θ21

72T 2 {I − P}
{( |v − u|2

T
− 5

)2 √
μ

}
,

which, together with (5.5), yields that

{I − P} f2 = − L−1

⎧⎨
⎩

3∑
j,l=1

∂ julA jl +
3∑
j=1

∂ j T

T
B j

⎫⎬
⎭ +

3∑
j,l=1

1

2T
u1,l u1, jAl j
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+ θ1

3T
3
2

u1 · B + θ21

72T 2 {I − P}
{( |v − u|2

T
− 5

)2 √
μ

}
. (5.6)

Since L−1 preserves the decay property of v, it is direct to check that

|{I − P} f2(t, x, v)| � C(|∇(u, T )| + |(u1, θ1)|2)(t, x) (1 + |v|)4√μ.

Noting (2.26) and ∂1u3(t, x�, 0) = ∂2u3(t, x�, 0) = 0, and using (1.26), (5.6),
we compute
〈
T 0A0

3i , (I − P) f2
〉
(t, x�, 0) = −∂3u

0
i

〈
T 0A0

3i , L
−1
0 A0

3i

〉 = −μ(T 0) ∂3u
0
i , (5.7)

for i = 1, 2, and

〈2(T 0)
3
2B0

3, (I − P) f2〉(t, x�, 0) = −2T 0∂3T
0〈B0

3, L
−1
0 B0

3〉
= −3κ(T 0) ∂3T

0. (5.8)

Substituting (5.7) and (5.8) into (5.4), we get the exact expression of boundary
condition for viscous boundary layer (ū1,i , θ̄1), i.e.,

∂y ū1,i (t, x�, 0) = −∂3u
0
i , ∂y θ̄1(t, x�, 0) = −3∂3T

0. (5.9)

By using Lemma 4.1, we can obtain the existence of smooth solution of (1.35)–
(1.36) and (5.9) over [0, τ ] × R

3+ satisfying

s̄1∑
j=0

∑
β+2γ= j

{
‖∂γ

t ∇β
x̄ (ū1,�, θ̄1)(t)‖2L2

l1j

+
∫ τ

0
‖∂γ

t ∇β
x̄ ∂y(ū1,�, θ̄1)(t)‖2L2

l1j

dt

}

� C(τ, E3+s̄1)

{ s̄1∑
j=0

∑
β+2γ= j

‖∂γ
t ∇β

x̄ (ū1,�, θ̄1)(0)‖2L2
l1j

+ sup
t∈[0,τ ]

∑
β+2γ�s̄1+2

‖∂β
�
∂

γ
t (∂3u

0
1, ∂3u

0
2, ∂3T

0)(t)‖2L2(R2)

}

� C
(
τ, E4+s̄1 ,

s1∑
j=0

∑
β+2γ= j

‖∂γ
t ∇β

x̄ (ū1,�, θ̄1)(0)‖2L2
l1j

)
, (5.10)

where l1j = l̄1 + 2(s̄1 − j) with l̄1 � 1 and s0 � 4 + s̄1. Combining (5.10) with
(1.24), we get

s̄1∑
j=0

∑
β+2γ= j

‖wκ̄1∂
γ
t ∇β

x̄ f̄1(t)‖L2
l1j
L∞

v

� C
(
τ, E4+s̄1 ,

s̄1∑
j=0

∑
β+2γ= j

‖∂γ
t ∇β

x̄ (ū1,�, θ̄1)(0)‖2L2
l1j

)
,

for any κ̄1 > 0.
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Step 1.3. Construction of solution f̂1. From (2.19), we know f̂1,1 ≡ 0, we need
only to consider f̂1,2. Noting (2.22)(with k = 1), using (2.26) and (1.24)1, one has
the boundary condition for f̂1,2

f̂1,2(t, x�, 0, v�, v3)|v3>0 = f̂1,2(t, x�, 0, v�,−v3),

which, together with Lemma 2.5, yields the existence of f̂1,2 with f̂ ε
1,2 ≡ 0. There-

fore we have proved the existence of f̂1 with

f̂1 ≡ 0. (5.11)

Such an absence of the ε-th order Knudsen boundary layer is expected since the
Knudsen boundary layer is used to mend the boundary conditions at higher orders.

Step 2. Construction of solutions fk, f̄k and f̂k . We shall use an induction
argument. Suppose we have already proved the existence of fi , f̄i and f̂i for 1 �
i � k such that

Dk + D̄k + D̂k � C

(
τ, Es0 ,

k∑
i=0

s̄i∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūi,�, θ̄i )(0)‖2L2
lij

+
k∑

i=0

∑
γ+β�si

‖∂γ
t ∇β(ρi , ui , θi )(0)‖L2

x

)
, (5.12)

where

Dk := sup
t∈[0,τ ]

{ k∑
i=1

∑
γ+β�si

‖w̃κi ∂
γ
t ∇β

x fi (t)‖L2
x L

∞
v

}
< ∞,

D̄k := sup
t∈[0,τ ]

{ k∑
i=1

s̄i∑
j=0

∑
j=2γ+β

‖wκ̄i ∂
γ
t ∇β

x̄ f̄i (t)‖L2
lij
L∞

v

}
< ∞,

D̂k := sup
t∈[0,τ ]

{ k∑
i=1

∑
γ+β�ŝi

‖eζi ·ηwκ̂i ∂
γ
t ∇β

�
f̂i (t)‖L∞

x̂,v∩L2
x�
L∞

η,v

}
< ∞

for some si > s̄i > ŝi � si+1 > s̄i+1 > ŝi+1 � 1, κi � κ̄i � κ̂i � κi+1 �
κ̄i+1 � κ̂i+1 � 1 with 1 � i � k − 1, and lij = l̄i + 2(s̄i − j), l̄i � 1 with

1 � i � k and 0 � j � s̄i . In the following,we consider the existence of fk+1, f̄k+1

and f̂k+1.
Step 2.1. Construction of solution fk+1. Let r � 3. Since L−1 preserves the

decay property of v, by using (2.3) and Sobolev inequality, we have that
∑

γ+|β|�r

‖w̃κk+1∂
γ
t ∇β

x {I − P} fk+1(t)‖L2
x L

∞
v

� C
(
Er+1,

k∑
j=1

∑
γ+β�r+1

‖w̃κ j ∂
γ
t ∇β

x f j (t)‖L2
x L

∞
v

)
. (5.13)
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To obtain fk+1, we still need to obtain the estimate for macroscopic part. For
the source terms on RHS of (2.4), it follows from (2.5), (5.13) that

∑
γ+|β|�r+1

‖∂γ
t ∇β

x (fk, gk)(t)‖L2
x

� C
(
Er+3,

k∑
j=1

∑
γ+β�r+3

‖w̃κ j ∂
γ
t ∇β

x f j (t)‖L2
x L

∞
v

)
.

(5.14)

Before applying Lemma 3.1, we need to estimate the boundary condition. Not-
ing (2.27) (with k replaced by k + 1), we have that∑

γ+β�r+2

‖∂γ
t ∂

β
�
uk+1,3(t, ·, 0)‖L2

� C(Er+4)
{ ∑

γ+β�r+3

∫ ∞

0
‖∂γ

t ∂
β
�
(ρ̄k, ūk)(t, ·, y)‖L2(R2)dy

+
∑

γ+β�r+2

‖∂γ
t ∂

β
�
( Âk+1, Ĉk+1)(t, ·, 0)‖L2(R2)

}
. (5.15)

From lkj > 1, a direct calculation shows that

∑
γ+β�r+3

∫ ∞

0
‖∂γ

t ∂
β
�
(ρ̄k, ūk)(t, ·, y)‖L2(R2)dy

� C
2(r+3)∑
j=0

∑
β+2γ= j

‖∂γ
t ∂

β
�
f̄k(t)‖L2

lkj
L∞

v
. (5.16)

By using (2.18), (2.16) and (2.7), one obtains∑
γ+β�r+2

‖∂γ
t ∂

β
�
( Âk+1, B̂k+1, Ĉk+1)(t, ·, 0)‖L2(R2)

� C(Er+4)
∑

γ+β�r+2

∫ ∞

0
‖∂γ

t ∂
β
�
(âk+1, b̂k+1, ĉk+1)(t, ·, η)‖L2

x�
dη

� C(Er+4)
∑

γ+β�r+2

‖e 1
2 ζk−1·η∂γ

t ∂
β
�
(âk+1, b̂k+1, ĉk+1)(t)‖L2

x�
L∞

η

� C(Er+5)
∑

γ+β�r+3

‖e 1
2 ζk−1·η wκ̂k−1∂

γ
t ∂

β
�
f̂k−1(t)‖L2

x�
L∞

η,v
. (5.17)

Here we emphasize that although only time and tangential derivatives are avail-
able for the Knudsen boundary layer f̂i , but the trace ( Âk+1, B̂k+1, Ĉk+1)(t, ·, 0)
(equivalent to f̂k+1,1(t, x�, 0, v) ) is indeed well-defined from (2.18).

Substituting (5.16)–(5.17) into (5.15), we deduce

∑
γ+β�r+2

‖∂γ
t ∂

β
�
uk+1,3(t, ·, 0)‖L2 �C(Er+5)

{ 2(r+3)∑
j=0

∑
β+2γ= j

‖∂γ
t ∂

β
�
f̄k(t)‖L2

lkj
L∞

v
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+
∑

γ+β�r+3

‖e 1
2 ζk−1·ηwκ̂k−1∂

γ
t ∂

β
�
f̂k−1(t)‖L2

x
�

L∞
η,v

}
.

(5.18)

Therefore (3.5) is valid with time and tangential derivatives and we can apply
Lemma 3.1.

Now applying Lemma 3.1, using (5.14) and (5.18), we obtain

∑
γ+β�r

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(t)‖L2x

� C

(
τ, Er+5,

∑
γ+β�r

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2x ,

sup
t∈[0,τ ]

[ 2(r+3)∑
j=0

∑
β+2γ= j

‖∂γ
t ∂

β
�
f̄k (t)‖L2

lkj
L∞

v
+

∑
γ+β�r+3

‖e 1
2 ζk−1·ηwκ̂k−1

∂
γ
t ∂

β
�
f̂k−1(t)‖L2x� L∞

η,v

+
k∑
j=1

∑
γ+β�r+3

‖w̃κ j ∂
γ
t ∇β

x f j (t)‖L2x L∞
v

])
. (5.19)

Now, taking r = sk+1 yields

s0 � 5 + sk+1, sk � sk+1 + 3, ŝk−1 � sk+1 + 3 and s̄k � 2(sk+1 + 3).

Therefore, combining (5.19) with (5.13), we get

∑
γ+β�sk+1

‖w̃κk+1∂
γ
t ∇β

x fk+1(t)‖L2
x L

∞
v

� C
(
τ, Es0 , Dk + D̄k + D̂k−1,

∑
γ+β�sk+1

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2
x

)
.

(5.20)

Having constructed fi with 1 � i � k + 1, by using (2.3), we deduce

∑
γ+|β|�sk+1−1

‖w̃κk+2∂
γ
t ∇β

x {I − P} fk+2(t)‖L2
x L

∞
v

� C
(
Esk+1 ,

k+1∑
i=1

∑
γ+β�sk+1

‖w̃κi ∂
γ
t ∇β

x fi (t)‖L2
x L

∞
v

)

� C
(
τ, Es0 , Dk + D̄k + D̂k−1,

∑
γ+β�sk+1

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2
x

)
,

(5.21)

which will be used when consider the trace of (∂y ūk+1,�, ∂y θ̄k+1)(t, x�, 0) in the
following.
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Step 2.2. Construction of solution for f̄k+1. Since L−1
0 preserves the decay

property of v, then it follows from (1.29) that
∑

2γ+β= j

‖wκ̄k+1∂
γ
t ∇β

x̄ {I − P0} f̄k+1(t)‖L2
l L

∞
v

� C

(
E j+3,

∑
2γ+β� j+3

‖w̃κ1∂
γ
t ∇β

x f1(t)‖L2
x L

∞
v

+
∑

2γ+β� j

‖wκ̄1∂
γ
t ∇β

x̄ f̄1(t)‖L2
x̄ L

∞
v

+
∑

2γ+β� j+1

‖wκ̄k ∂
γ
t ∇β

x̄ f̄k(t)‖L2
2+l L

∞
v

)
+

∑
2γ+β= j

‖wκ̄k+1∂
γ
t ∇β

x̄ J̄k−1(t)‖L2
l L

∞
v

.

(5.22)

From (1.34), a direct calculation shows that
∑

2γ+β= j

‖wκ̄k+1∂
γ
t ∇β

x̄ J̄k−1(t)‖L2
l L

∞
v

� C
(
E j+b+2,

k−1∑
i=0

∑
2γ+β� j+2

‖wκ̄i ∂
γ
t ∇β

x̄ f̄i (t)‖L2
l+2bL

∞
v

+
k∑

i=0

∑
2γ+β� j+2+b

‖w̃κi ∂
γ
t ∇β

x fi (t)‖L2
x L

∞
v

)

+ C(E j+b+2)
∑

2γ+β� j+1

‖wκ̄k∂
γ
t ∇β

x̄ {I − P0} f̄k(t)‖L2
l+2L

∞
v

. (5.23)

Substituting (5.23) into (5.22), and noting lk+1
j � lij for 1 � i � k, we can obtain

the estimate for microscopic part {I − P0} f̄k+1

∑
2γ+β= j

‖w̃κ̄k+1∂
γ
t ∇β

x̄ {I − P0} f̄k+1(t)‖L2
l L

∞
v

� C
(
E j+b+2,

k∑
i=0

∑
2γ+β� j+b+2

‖w̃κi ∂
γ
t ∇β

x fi (t)‖L2
x L

∞
v

+
k∑

i=1

∑
2γ+β� j+2

‖wκ̄i ∂
γ
t ∇β

x̄ f̄i (t)‖L2
l+2bL

∞
v

)
. (5.24)

On the other hand, substituting (5.24) (with k replaced by k − 1) into (5.23),
one can obtain a better estimate for J̄k−1

∑
2γ+β= j

‖wκ̄k+1∂
γ
t ∇β

x̄ J̄k−1(t)‖L2
l L

∞
v

� C
(
E j+b+3,

k−1∑
i=0

∑
2γ+β� j+3

‖wκ̄i ∂
γ
t ∇β

x̄ f̄i (t)‖L2
l+2bL

∞
v
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+
k∑

i=0

∑
2γ+β� j+3+b

‖w̃κi ∂
γ
t ∇β

x fi (t)‖L2
x L

∞
v

)
. (5.25)

For W̄k−1, H̄k−1, it follows from (1.32)–(1.33) and (5.24) that

∑
2γ+β= j

‖∂γ
t ∇β

x̄ (W̄k−1, H̄k−1)(t)‖L2
l

� C(E j+3)
∑

2γ+β� j+1

‖∂γ
t ∇β

x̄ {I − P0} f̄k(t)‖L2
l L

∞
v

� C
(
E j+b+3,

k−1∑
i=0

∑
2γ+β� j+3+b

‖w̃κi ∂
γ
t ∇β

x fi (t)‖L2
x L

∞
v

+
k−1∑
i=1

∑
2γ+β� j+3

‖wκ̄i ∂
γ
t ∇β

x̄ f̄i (t)‖L2
l+2bL

∞
v

)
. (5.26)

For ūk+1,3(t, x�, y), it follows from (1.30) and (1.20) that

ūk+1,3(t, x�, y) = −
∫ ∞

y

1

ρ0

{
∂t ρ̄k + div�(ρ

0ūk,� + ρ̄ku
0
�
)
}
(t, x�, z) dz, (5.27)

which yields that

∑
2γ+β= j

‖∂γ
t ∇β

�
ūk+1,3(t)‖L2

l

� C(E j+3)

∫ ∞
0

(1 + y)ldy
∫ ∞
y

∑
2γ+β� j+2

‖∂γ
t ∇β

�
(ρ̄k , ūk)(t, ·, z)‖L2(R2) dz

� C(E j+3)

∫ ∞
0

(1 + y)l
( ∫ ∞

y
(1 + z)−2l−4 dz

) 1
2 dy

∑
2γ+β� j+2

‖∂γ
t ∇β

�
(ρ̄k , ūk)(t)‖L2

2l+4

� C(E j+3)
∑

2γ+β� j+2

‖∂γ
t ∇β

�
(ρ̄k , ūk)(t)‖L2

2l+4

� C(E j+3)
∑

2γ+β� j+2

‖∂γ
t ∇β

�
f̄k(t)‖L2

2l+4L
∞
v

, for l � 0. (5.28)

On the other hand, we assume that∇β
x̄ contains at least one ∂y , then it follows from

(1.30) that

∑
2γ+β= j

‖∂γ
t ∇β

x̄ ū
ε
k+1,3(t)‖L2

l
�

∑
2γ+β= j

‖∂γ
t ∇̄β−1∂y ū

ε
k+1,3(t)‖L2

l

� C(E j+3)
∑

2γ+β� j+1

‖∂γ
t ∇β

x̄ f̄ ε
k (t)‖L2

l L
∞
v

, for l � 0,
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which, together with (5.28), yields that for l � 0,
∑

2γ+β= j

‖∂γ
t ∇β

x̄ ūk+1,3(t)‖L2
l

� C(E j+3)
∑

2γ+β� j+2

‖∂γ
t ∇β

x̄ f̄k(t)‖L2
2l+4L

∞
v

.

(5.29)

By using (1.31) and the same arguments as (5.27)–(5.29), one can obtain the
estimate for p̄ε

k+1

∑
2γ+β= j

‖∂γ
t ∇β

x̄ p̄k+1,3(t)‖L2
l

� C(E j+3)
( ∑
2γ+β� j+2

‖∂γ
t ∇β

x̄ f̄k(t)‖L2
2l+6L

∞
v

+
∑

2γ+β� j+1

‖∂γ
t ∇β

x̄ J̄k−1(t)‖L2
2l+4L

∞
v

+
∑

2γ+β� j

‖∂γ
t ∇β

x̄ W̄k−1(t)‖L2
2l+4

)

� C
(
E j+4+b,

k∑
i=1

∑
2γ+β� j+4

‖wκ̄i ∂
γ
t ∇β

x̄ f̄i (t)‖L2
2l+4+2bL

∞
v

+
k∑

i=1

∑
2γ+β� j+4+b

‖w̃κi ∂
γ
t ∇β

x fi (t)‖L2
x L

∞
v

)
, (5.30)

where we have used (5.25)–(5.26) in the last inequality.
By similar arguments as to those of (5.28), we can have the following trace

estimate: ∑
2γ+β= j

‖∂γ
t ∇β

�
ūk+1,3(t, ·, 0)‖L2(R2)

� C(E j+3)

∫ ∞

0

∑
2γ+β� j+2

‖∂γ
t ∇β

�
(ρ̄k, ūk)(t, ·, z)‖L2(R2) dz

� C(E j+3)
∑

2γ+β� j+2

‖∂γ
t ∇β

�
(ρ̄k, ūk)(t)‖L2

l

� C(E j+3)
∑

2γ+β� j+2

‖∂γ
t ∇β

�
f̄k(t)‖L2

l L
∞
v

, for l > 1. (5.31)

Taking s0 � s̄k+1 + b + 6, sk > s̄k > ŝk > sk+1 � s̄k+1 + 7 + b, and lij � 2b for
i � k, j � s̄k , we deduce from (2.30)–(2.31) that

∑
2γ+β�s̄k+1+2

‖∂γ
t ∇β

�
(∂y ūk+1,�, ∂y θ̄k+1)(t, ·, 0)‖L2(R2)

� C

(
Es̄k+1+4,

∑
2γ+β�s̄k+1+4

[‖w̃κ1∂
γ
t ∇β

x f1(t)‖L2 + ‖wκ̄1∂
γ
t ∇β

x̄ f̄1(t)‖L2
]

+
∑

2γ+β�s̄k+1+2

[
‖∂γ

t ∇β
�
ūk+1,3(t, ·, 0)‖L2

x�
+ ‖∂γ

t ∇β
�
{I − P} fk+2(t, ·, 0, ·)‖L2

x�
L∞

v
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+ ‖∂γ
t ∇β

�
J̄k(t, ·, 0, ·)‖L2

x�
L∞

v
+ ‖∂γ

t ∇β
�
( Âk+2, B̂k+2, Ĉk+2)(t, ·, 0)‖L2

x�

])

� C
(
τ, Es0 , Dk + D̄k + D̂k,

∑
γ+β�sk+1

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2
x

)
< ∞,

(5.32)

where we have used (5.31),(5.20), (5.21), (5.25), (5.17) (with k − 1 replaced by k
in (5.25), (5.17)) and the trace theorem.

Similarly, for the source terms of (1.27)–(1.28), from (5.25)–(5.26) and (5.29)–
(5.30), a direct calculation shows that

s̄k+1∑
j=0

∑
β+2γ= j

‖(∂y∂γ
t ∇β

x̄ (f̄k, ḡk), ∂
γ
t ∇β

x̄ (f̄k, ḡk))(t)‖2L2
lk+1
j

� C(τ, Es0 , Dk + D̄k),

(5.33)

where we have taken

s0 � s̄k+1 + b + 6, sk+1 � s̄k+1 + 8 + b, lij � 2lk+1
j + 18 + 2b, for 1 � i � k,

(5.34)

with lk+1
j = l̄k+1 + 2(s̄k+1 − j) and l̄k+1 � 1.

Using Lemma 4.1 (the time and tangential derivatives estimate (5.32) for the
boundary condition are used enough when using Lemma 4.1) and (5.32)–(5.33),
and noting (5.34), one can obtain

s̄k+1∑
j=0

∑
j=2γ+β

(
‖∂γ

t ∇β
x̄ (ūk+1,�, θ̄k+1)(t)‖2L2

lk+1
j

+
∫ τ

0
‖∂γ

t ∇β
x̄ ∂y(ūk+1,�, θ̄k+1)‖2L2

lk+1
j

dt

)

� C

(
τ, Es0 , Dk + D̄k + D̂k ,

s̄k+1∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūk+1,�, θ̄k+1)(0)‖2L2
lk+1
j

+
∑

γ+β�sk+1

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2
x

)
. (5.35)

Finally, combining (5.24), (5.29), (5.30) and (5.35), and noting (5.34), we have

s̄k+1∑
j=0

∑
j=2γ+β

‖wκ̂k+1∂
γ
t ∇β

x̄ f̄k+1(t)‖2L2
lk+1
j

L∞
v

� C

(
τ, Es0 , Dk + D̄k + D̂k,

s̄k+1∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūk+1,�, θ̄k+1)(0)‖2L2
lk+1
j

+
∑

γ+β�sk+1

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2
x

)
< ∞. (5.36)
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Step 2.3. Construction of solution f̂k+1. Letting 0 � ζ � ζk−1, by using (2.18),
(2.16) and (2.7), we have

∑
γ+β�ŝk+1

|eζ ·η∂
γ
t ∂

β
�

( Âk+1, B̂k+1, Ĉk+1)(t, x�, η)|

� C(E2+ŝk+1
)

∑
γ+β�ŝk+1

eζ ·η
∫ ∞
η

e−ζk−1·z dz ‖eζk−1·z∂γ
t ∂

β
�

(âk+1, b̂k+1, ĉk+1)(t, x�, ·)‖L∞
z

� C(E2+ŝk+1
)

∑
γ+β�ŝk+1

e−(ζk−1−ζ )·η ‖eζk−1·z∂γ
t ∂

β
�

(âk+1, b̂k+1, ĉk+1)(t, x�, ·)‖L∞
z

� C(E3+ŝk+1
)

∑
γ+β�1+ŝk+1

‖eζk−1·η wκ̂k−1
∂
γ
t ∂

β
�
f̂k−1(t, x�, ·, ·)‖L∞

η,v
, (5.37)

and ∑
γ+β�ŝk+1

|eζ ·η∂γ
t ∂

β
�
∂η( Âk+1, B̂k+1, Ĉk+1)(t, x�, η)|

� C(E2+ŝk+1)
∑

γ+β�ŝk+1

‖eζ ·η∂γ
t ∂

β
�
(âk+1, b̂k+1, ĉk+1)(t, x�, ·)‖L∞

z

� C(E3+ŝk+1)
∑

γ+β�1+ŝk+1

‖eζk−1·η wκ̂k−1∂
γ
t ∂

β
�
f̂k−1(t, x�, ·, ·)‖L∞

η,v
. (5.38)

Then, combining (5.37), (5.38) with (2.17), we obtain the existence of f̂k+1,1(t)
with∑

i=0,1

∑
γ+β�ŝk+1

‖e 3
2 ζk+1·ηwκ̂k+1,1∂

γ
t ∂

β
�
∂ iη f̂k+1,1(t)‖L∞

x̂,v∩L2
x�
L∞

η,v

� C(E3+sk+1)
∑

γ+β�1+ŝk+1

‖eζk−1·η wκ̂k−1∂
γ
t ∂

β
�
f̂k−1(t)‖L∞

x̂,v∩L2
x�
L∞

η,v
, (5.39)

where we have used κ̂k+1,1 � κ̂k−1, 1 + ŝk+1 � ŝk−1, and ζ = 3
2ζk+1 such that

0 < 3
2ζk+1 � ζk−1. Moreover, from (2.18) and (2.17), we conclude that f̂k+1,1 is

a continuous function over (t, x�, η, v) ∈ [0, τ ] × R
2 × R+ × R

3.
Using (5.39), (2.17) and the trace theorem, one can obtain

∑
γ+β�ŝk+1

‖e 3
2 ζk+1·ηwκ̂k+1,1∂

γ
t ∂

β
�
f̂k+1,1(t, ·, 0, ·)‖L∞

x�,v∩L2
x�
L∞

v

� C(E3+sk+1)
∑

γ+β�1+ŝk+1

‖eζk−1·η wκ̂k−1∂
γ
t ∂

β
�
f̂k−1(t)‖L∞

x̂,v∩L2
x�
L∞

η,v
. (5.40)

We still need to construct f̂k+1,2. Firstly, it follows from (2.23), (5.20), (5.36),
the trace theorem and (5.40) that

∑
γ+β�ŝk+1

‖wκ̂k+1,1∂
γ
t ∇β

�
ĝk+1(t)‖L∞

x�,v∩L2
x�
L∞

v
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�
∑

γ+β�ŝk+1

‖wκ̂k+1,1∂
γ
t ∇β

�
( fk+1, f̄k+1, f̂k+1,1)(t, ·, 0, ·)‖L∞

x�,v∩L2
x�
L∞

v

� C

(
τ, Es0 , Dk + D̄k + D̂k,

s̄k+1∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūk+1,�, θ̄k+1)(0)‖2L2
lk+1
j

+
∑

γ+β�sk+1

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2
x

)
,

provided that 2 + ŝk+1 � s̄k+1.
On the other hand, using (2.8) and Sobolev inequality, a direct calculation shows

that
∑

γ+β�ŝk+1

‖e 3
4 ζk ·ηwκ̂k+1,1∂

γ
t ∂

β
�
Ŝk+1,2(t)‖L∞̄

x,v∩L2
x�
L∞

η,v

� C
(
Eb+2+ŝk+1 ,

k∑
i=1

∑
γ+β�ŝk+1+b

[‖w̃κi ∂
γ
t ∂

β
�
fi (t)‖L∞

x,v
+ ‖wκ̂i ∂

γ
t ∂

β
�
f̄i (t)‖L∞̄

x,v

]

+
k∑

i=1

∑
γ+β�1+ŝk+1

‖ηbe 3
4 ζk ·ηwκ̂i ∂

γ
t ∂

β
�
f̂i (t)‖L∞̄

x,v∩L2
x�
L∞

η,v

)

� C

(
τ, Es0 , Dk + D̄k + D̂k

)
,

provided that s0 � m + 2 + ŝk+1, ŝk � 2 + ŝk+1 and ŝk+1 + b + 2 � 1
2 s̄k . Clearly

for Ŝk+1,1,

∑
γ+β�ŝk+1

‖e 3
4 ζk ·ηwκ̂k+1,1∂

γ
t ∂

β
�
Ŝk+1,1(t)‖L∞̄

x,v∩L2
x�
L∞

η,v

� C(E2+ŝk+1)
∑

γ+β�ŝk+1

‖e 3
4 ζk ·η∂γ

t ∂
β
�
(âk+1, b̂k+1, ĉk+1)(t, x�, ·)‖L∞̄

x ∩L2
x�
L∞

η

� C(Es0 , D̂k−1). (5.41)

Let 0 < ζk+1 � 1
2ζk and 1 � κ̂k+1 � κ̂k+1,1 � κ̄k+1. Then, by us-

ing Lemma 2.5, (2.15), and (5.39)–(5.41), one establish the existence of solution
f̂k+1,2(t) over t ∈ [0, τ ] with

∑
β+γ�ŝk+1

{
‖wκ̂k+1e

ζk+1η∂
γ
t ∇β

�
f̂k+1,2(t)‖L∞

x�,η,v∩L2
x�
L∞

η,v

+ ‖wκ̂k+1∂
γ
t ∇β

�
f̂k+1,2(t, ·, 0, ·)‖L∞

x�,v∩L2
x�
L∞

v

}

� C

(
τ, Es0 , Dk + D̄k + D̂k,

s̄k+1∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūk+1,�, θ̄k+1)(0)‖2L2
lk+1
j
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+
∑

γ+β�sk+1

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2
x

)
,

which, together with (5.39) and (5.40), yields the existence of solution f̂k+1 satis-
fying

∑
β+γ�ŝk+1

{
‖wκ̂k+1e

ζk+1η∂
γ
t ∇β

�
f̂k+1(t)‖L∞

x�,η,v∩L2
x�
L∞

η,v

+ ‖wκ̂k+1∂
γ
t ∇β

�
f̂k+1(t, ·, 0, ·)‖L∞

x�,v∩L2
x�
L∞

v

}

� C

(
τ, Es0 , Dk + D̄k + D̂k,

s̄k+1∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūk+1,�, θ̄k+1)(0)‖2L2
lk+1
j

+
∑

γ+β�sk+1

‖∂γ
t ∇β

x (ρk+1, uk+1, θk+1)(0)‖L2
x

)
.

Step 3. Combining all above estimates and the induction assumption (5.12),
we have proved the existence of solutions fi , f̄i , f̂i , i = 1, . . . , N with

DN + D̄N + D̂N �C

(
τ, Es0 ,

N∑
i=0

s̄i∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūi,�, θ̄i )(0)‖2L2
lij

+
N∑
i=0

∑
γ+β�si

‖∂γ
t ∇β

x (ρi , ui , θi )(0)‖L2
x

)
,

where we have chosen si , s̄i , ŝi such that

s0 � s1 + b + 6, s1 = s̄1 = ŝ1 � 1;
s1 > si > s̄i > ŝi � si+1 > s̄i+1 > ŝi+1 � · · · � 1, for i = 2, . . . , N − 1;
si+1 � min{ŝi , 1

2
s̄i − 3}, s̄i+1 � si+1 − 8 − b, ŝi+1 � 1

2
s̄i+1 − 2 − b,

for i = 1, . . . , N − 1,
(5.42)

and taken lij = l̄ j + 2(s̄i − j) with 0 � j � s̄i so that

l Nj � 2b and lij � 2li+1
j + 18 + 2b, for 1 � i � N − 1. (5.43)

Here we can taken s1 = s̄1 = ŝ1 because f1, f̄1 and f̂1 depend only on the Euler
solution, and do not depend on each other. We also point out that fi , f̄i are smooth,
but f̂i is only continuous away from the grazing set {(x�, 0, v) | x� ∈ R

2, v� ∈
R
2, v3 �= 0}. For the velocity weight functions, we demand

κi � κ̄i � κ̂i � κi+1 � κ̄i+1 � κ̂i+1 � 1 (5.44)
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for 1 � i � N − 1, and we do not describe the precise relations between κi , κ̄i and
κ̂i because the functions Fi , F̄i and F̂i indeed decay exponentially with respect to
particle velocity v. This completes the proof. ��
Remark 5.4. To establish the interior expansion Fk , viscous boundary layer F̄k
and Knudsen boundary layer F̂k , one should deal with the boundary interaction
very carefully. In fact, due to the boundary effects, one can only obtain the uniform
estimates of time and tangential derivatives for the Knudsen boundary layer F̂k .
Fortunately, such time and tangential derivatives estimates of Knudsen layer are
enough to control the boundary interplay, see (5.15)–(5.17) and (5.32) for details.

6. Hilbert Expansion: Proof of Theorem 1.6

In this section, with the uniform estimates in Proposition 5.1, we shall use L2-
L∞ method to estimate the remainder term Fε

R in (1.40) over half-space. Firstly,
from the formulation of boundary condition in Section 2.3, it is easy to know that
Fε
R satisfies the specular reflection boundary conditions, i.e.,

Fε
R(t, x, v)|γ− = Fε

R(t, x�, 0, v�,−v3). (6.1)

6.1. L2-Energy Estimate

Recalling the definition of f ε
R in (1.45), we rewrite the equation terms of f ε

R as

∂t f
ε
R + v · ∇x f

ε
R + 1

ε2
L f ε

R

= −{∂t + v · ∇x }√μ√
μ

f ε
R + ε3

1√
μ
Q(

√
μ f ε

R,
√

μ f ε
R)

+
N∑
i=1

εi−2 1√
μ

{
Q(Fi + F̄i + F̂i ,

√
μ f ε

R) + Q(
√

μ f ε
R, Fi + F̄i + F̂i )

}

+ 1√
μ
Rε + 1√

μ
R̄ε + 1√

μ
R̂ε, (6.2)

where Rε, R̄ε, R̂ε are defined in (1.42), (1.43) and (1.44), respectively. From (6.1),
we know that f ε

R satisfies specular reflection boundary conditions

f ε
R(t, x1, x2, 0, v1, v2, v3)|v3>0 = f ε

R(t, x1, x2, 0, v1, v2,−v3). (6.3)

Lemma 6.1. Let 0 < 1
2α (1 − α) < a < 1

2 , κ � 7, N � 6 and b � 5. Let τ > 0
be the life span of compressible Euler solution obtained in Lemma 2.1, then there
exists a suitably small constant ε0 > 0 such that for all ε ∈ (0, ε0), it holds that

d

dt
‖ f ε

R(t)‖2L2 + c0
2ε2

‖{I − P} f ε
R(t)‖2ν

� C
{
1 + ε8‖hε

R(t)‖2L∞
}

· (‖ f ε
R(t)‖2L2 + 1), for t ∈ [0, τ ]. (6.4)
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Proof. Multiplying (6.2) by f ε
R and integrating over R3+ × R

3, one obtains that

1

2

d

dt
‖ f ε

R‖2L2 + c0
ε2

‖{I − P} f ε
R‖2ν − 1

2

∫
∂R

3+

∫
R3

v3| f ε
R(t, x1, x2, 0, v)|2 dx1dx2 dv

= −
∫

R
3+

∫
R3

{∂t + v · ∇x }√μ√
μ

| f ε
R |2 + ε3

∫
R
3+

∫
R3

1√
μ
Q(

√
μ f ε

R,
√

μ f ε
R) f ε

R

+
∫

R
3+

∫
R3

N∑
i=1

εi−2 1√
μ

{
Q(Fi + F̄i + F̂i ,

√
μ f ε

R) + Q(
√

μ f ε
R, Fi + F̄i + F̂i )

}
f ε
R

+
∫

R
3+

∫
R3

{
1√
μ
Rε + 1√

μ
R̄ε + 1√

μ
R̂ε

}
f ε
R . (6.5)

Using the boundary condition (6.3) yields

∫
∂R

3+

∫
R3

v3| f ε
R(t, x1, x2, 0, v)|2 dx1dx2 dv = 0.

For any λ > 0, as in [23], taking κ � 7, we obtain

∫
R
3+

∫
R3

{∂t + (v · ∇x )}√μ√
μ

| f ε
R |2 dv dx

� C
∫

R
3+

∫
R3

|(∇xρ,∇xu,∇x T )|(1 + |v|)3| f ε
R |2 dvdx

� C

{∫
R
3+

∫
|v|� λ

ε

+
∫

R
3+

∫
|v|� λ

ε

}
(. . .) dvdx

� C
λ

ε2
‖{I − P} f ε

R‖2ν + Cλ(1 + ε4‖hε
R‖L∞)‖ f ε

R‖L2 ,

and

ε3
∫

R
3+

∫
R3

1√
μ
Q(

√
μ f ε

R,
√

μ f ε
R) f ε

R dvdx

= ε3
∫

R
3+

∫
R3

1√
μ
Q(

√
μ f ε

R,
√

μ f ε
R){I − P} f ε

R dvdx

� ε3‖{I − P} f ε
R‖ν‖hε

R‖L∞‖ f ε
R‖L2

� λ

ε2
‖{I − P} f ε

R‖2ν + Cλε
8‖hε

R‖2L∞‖ f ε
R‖2L2 .

From (5.42),

sN > s̄N � 2b + 4 + ŝN , ŝN � 1,
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which, together with (5.43), (5.44), (5.3) and Sobolev imbedding theorem, yields
that, for 1 � i � N and t ∈ [0, τ ],
2b+2∑
k=0

{ ∥∥∥w̃κi (v)∇k
t,x fi (t)

∥∥∥
L2
x,v

+
∥∥∥w̃κi ∇k

t,x fi (t)
∥∥∥
L∞
x,v

}
� CR(τ ),

b+2∑
k=0

{∥∥∥wκ̄i (1 + y)b+9∇k
t,x̄ f̄i (t)

∥∥∥
L2
x̄,v

+
∥∥∥wκ̄i (1 + y)b+9∇k

t,x̄ f̄i (t)
∥∥∥
L∞̄
x,v

}
� CR(τ ),

∑
k=0,1

{∥∥∥∥wκ̄i e
1
2N

·η∇t,x�
f̂i (t)

∥∥∥∥
L2
x̂,v

+
∥∥∥∥wκ̄i e

1
2N

·η∇t,x�
f̂i (t)

∥∥∥∥
L∞
x̂,v

}
� CR(τ ),

(6.6)

where we have denoted

CR(τ ) :=C

(
τ, ‖(ϕ0,�0, ϑ0)‖Hs0 +

N∑
i=0

∑
γ+β�si

‖∂γ
t ∇β

x (ρi , ui , θi )(0)‖L2
x

+
N∑
i=0

s̄i∑
j=0

∑
j=2γ+β

‖∂γ
t ∇β

x̄ (ūi,�, θ̄i )(0)‖2L2
lij

)
.

Noting (1.47), we have, for 1 � i � N , that

∣∣∣∣wκ(v)

√
μ0√
μ

f̄i (t, x�, y, v)

∣∣∣∣ � C |wκ(v)μ−a
0 f̄i (t, x�, y, v)| · μ

1
2+a

0

μ
1
2

� C |wκ(v)μ−a
0 f̄i (t, x�, y, v)| · (μM )

(
1
2+a

)
α− 1

2 ,∣∣∣∣wκ(v)

√
μ0√
μ

f̂i (t, x�, η, v)

∣∣∣∣ � C |wκ(v)μ−a
0 f̂i (t, x�, y, v)| · (μM )

(
1
2+a

)
α− 1

2 .

(6.7)

Taking 0 < 1
2α (1 − α) < a < 1

2 , we have ( 12 + a)α − 1
2 > 0 which, together with

(5.1), (6.6) and (6.7), implies that the third term on RHS of (6.5) is bounded by

‖{I − P} f ε
R‖ν‖ f ε

R‖ν ·
N∑
i=1

εi−2
{
‖wκ fi‖L∞

x,v
+ ‖wκ

√
μ0√
μ

f̄i‖L∞
x,v

+ ‖wκ

√
μ0√
μ

f̂i‖L∞
x,v

}

� C
1

ε
‖{I − P} f ε

R‖ν‖ f ε
R‖ν � λ

ε2
‖{I − P} f ε

R‖2ν + Cλ‖ f ε
R‖2ν

� (λ + Cλε
2)

1

ε2
‖{I − P} f ε

R‖2ν + Cλ‖ f ε
R‖2L2 .
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From (1.42) and (6.6)1, a direct calculation shows that

(∫
R
3+

∫
R3

| 1√
μ
Rε|2 dvdx

) 1
2

� CεN−6. (6.8)

It follows from (1.43), (1.44) and (6.6) that

(∫
R
3+

∫
R3

| 1√
μ
R̄ε|2 dvdx

) 1
2

� C(εN−5.5 + εb−4.5),

(∫
R
3+

∫
R3

| 1√
μ
R̂ε|2 dvdx

) 1
2

� C(εN−5 + εb−3).

(6.9)

Combining (6.8)–(6.9) and Cauchy inequality, we conclude that
∣∣∣∣∣
∫

R
3+

∫
R3

{
1√
μ
Rε + 1√

μ
R̄ε + 1√

μ
R̂ε

}
f ε
R dvdx

∣∣∣∣∣ � C(εN−6 + εb−5)‖ f ε
R‖L2 .

Hence (6.4) follows from above estimates. This completes the proof of Lemma 6.1.
��

6.2. Weighted L∞-Estimate

Given (t, x, v), let [X (s), V (s)] be the backward bi-characteristics of the Boltz-
mann equation, which is determined by

⎧⎨
⎩
dX (s)

ds
= V (s),

dV (s)

ds
= 0,

[X (t), V (t)] = [x, v].
The solution is then given by

[X (s), V (s)] = [X (s; t, x, v), V (s; t, x, v)] = [x − (t − s)v, v].
For each (x, v) with x ∈ R

3
+ and v3 �= 0, we define its backward exit time

tb(x, v) � 0 to be the last moment at which the back-time straight line

[X (s; 0, x, v), V (s; 0, x, v)]
remains in R

3
+ :

tb(x, v) = sup{τ � 0 : x − τv ∈ R
3+}.

We therefore have x − tbv ∈ ∂R3+ and x3 − tbv3 = 0. We also define

xb(x, v) = x(tb) = x − tbv ∈ ∂R3+.

Note that v · �n(xb) = v · �n(xb(x, v)) < 0 always holds true.
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For half space problem the back-time trajectory is very simple, and the particle
hit the boundary at most one time. More precisely, for the case v3 < 0, the back-
time cycle is a straight line and does not hit the boundary; on the other hand, for

v3 > 0, the back-time cycle will hit the boundary for one time. Now let x ∈ R
3
+,

(x, v) /∈ γ0 ∪ γ− and (t0, x0, v0) = (t, x, v), the back-time cycle is defined as

{
Xcl(s; t, x, v) = 1[t1,t0)(s){x − v(t − s)} + 1(−∞,t1)(s){x − Rxbv(t − s)},
Vcl(s; t, x, v) = 1[t1,t0)(s)v + 1(−∞,t1)(s)Rxbv,

with

(t1, xb) = (t − tb(x, v), xb(x, v)).

The explicit formula is

tb(x, v) = x3
v3

, for v3 > 0 and tb(x, v) = ∞, for v3 < 0;

Vcl(s) =
{

(v1, v2, v3), if s ∈ [t1, t]
(v1, v2,−v3), if s ∈ (−∞, t1),

Xcl(s) = x − v(t − s), if s ∈ [t1, t],

Xcl(s) =

⎧⎪⎨
⎪⎩
x1 − v1(t − s),

x2 − v2(t − s),

−x3 + v3(t − s),

if s ∈ (−∞, t1).

(6.10)

As in [22,23], we denote

LMg = − 1√
μM

{
Q(μ,

√
μMg) + Q(

√
μMg, μ)

}
= ν(μ)g − Kg,

where the frequency ν(μ) has been defined in (1.11) and Kg = K2g − K1g with

K1g =
∫

R3

∫
S2

|(v − u) · ω|√μM (u)
μ(v)√
μM (v)

g(u) dudω,

K2g =
∫

R3

∫
S2

|(v − u) · ω|μ(u′)
√

μM (v′)√
μM (v)

g(v′) dudω

+
∫

R3

∫
S2

|(v − u) · ω|μ(v′)
√

μM (u′)√
μM (v)

g(u′) dudω.

Lemma 6.2. [23] It holds that Kg(v) =
∫

R3
l(v, v′)g(v′)dv′ where the kernel

l(v, v′) satisfies

|l(v, v′)| � C
exp {−c|v − v′|2}

|v − v′| . (6.11)



294 Yan Guo, Feimin Huang & Yong Wang

Letting Kwg ≡ wκK (
g

wκ

), we deduce from (1.41) and (1.48) that

∂t h
ε
R + v · ∇x h

ε
R + ν(μ)

ε2
hε
R − 1

ε2
Kwhε

R

=
N∑
i=1

εi−2 wκ(v)√
μM (v)

{
Q(Fi + F̄i + F̂i ,

√
μMhε

R
wκ

) + Q
(√

μMhε
R

wκ
, Fi + F̄i + F̂i

)}

+ ε3
wκ√
μM

Q
(√

μMhε
R

wκ
,

√
μMhε

R
wκ

)
+ wκ√

μM

[
Rε + R̄ε + R̂ε

]
. (6.12)

Lemma 6.3. For t ∈ [0, τ ], it holds that

sup
0�s�t

‖ε3hε
R(s)‖L∞ � C(t){‖ε3hε

R(0)‖L∞ + εN−1 + εb} + sup
0�s�t

‖ f ε
R(s)‖L2 .

Proof. For any (t, x, v), integrating (6.12) along the backward trajectory, one has
that

hε
R(t, x, v) = exp

{
− 1

ε2

∫ t

0
ν(ξ) dξ

}
hε
R(0, Xcl (0), Vcl (0))

+ 1

ε2

∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ) dξ

}
(Kwh

ε
R)(s, Xcl (s), Vcl (s))ds,

+ ε3
∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ) dξ

}(
wκ√
μM

Q

(
hε
R
√

μM

wκ

,
hε
R
√

μM

wκ

))
(s, Xcl (s), Vcl (s))ds

+
∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ)dξ

}
·
{

N∑
i=1

εi−2 wκ√
μM

Q

(
Fi + F̄i + F̂i ,

hε
R
√

μM

wκ

)

+
N∑
i=1

εi−2 wκ√
μM

Q

(
hε
R
√

μM

wκ

, Fi + F̄i + F̂i

)}
(s, Xcl (s), Vcl (s))ds

+
∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ) dξ

}(
wκ√
μM

[Rε + R̄ε + R̂ε]
)

(s, Xcl (s), Vcl (s))ds, (6.13)

where we have denoted

ν(ξ) = ν(μ)(ξ, Vcl(ξ), Xcl(ξ)).

It follows from (6.10) that |Vcl(s)| ≡ |v|. Then a direct calculation shows that

ν(μ) ∼ νM (v) :=
∫

R3

∫
S2

B(v − u, θ)μM (u)dωdu ∼= (1 + |v|),

and

∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ) dξ

}
ν(μ)ds �

∫ t

0
exp

{
−νM (v)(t − s)

Cε2

}
νM (v)ds � O(ε2).
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For the first term on RHS of (6.13), it is easy to know that
∣∣∣∣exp

{
− 1

ε2

∫ t

0
ν(ξ) dξ

}
hε
R(0, Xcl(0), Vcl(0))

∣∣∣∣ � C exp
(

− νM (v)t

Cε2

)
‖hε

R(0)‖L∞ .

We note that∣∣∣∣wκ(v)√
μM

Q

(
hε
R
√

μM

wκ

,
hε
R
√

μM

wκ

)
(s)

∣∣∣∣ � CνM (v)‖hε
R(s)‖2L∞ � Cν(s)‖hε

R(s)‖2L∞ ,

then the third term on RHS of (6.13) is bounded by

Cε3
∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ) dξ

}
ν(s)‖hε

R(s)‖2L∞ds � Cε5 sup
0�s�t

‖hε
R(s)‖2L∞ .

From (1.47), (5.1) and (6.6), a direct calculation shows that
∣∣∣∣∣∣
N∑
i=1

εi−2 wκ√
μM

{
Q

(
Fi + F̄i + F̂i ,

hε
R
√

μM

wκ

)
+ Q

(
hε
R
√

μM

wκ
, Fi + F̄i + F̂i

)}
(s)

∣∣∣∣∣∣

� CνM (v)‖hε
R(s)‖L∞ ·

N∑
i=1

εi−2
∥∥∥∥wκ

[ √
μ√

μM
fi (s) +

√
μ0√
μM

f̄i (s) +
√

μ0√
μM

f̂i (s)
]∥∥∥∥

L∞

� CνM (v)‖hε
R(s)‖L∞ ·

N∑
i=1

εi−2
[
‖w̃ki fi (s)‖L∞ + ‖wk̄i

f̄i (s)‖L∞ + ‖wκ̂i
f̂i (s)‖L∞

]

� CR(s)
νM (v)

ε
‖hε

R(s)‖L∞ ,

where we have used 1−α
2α < a < 1

2 . Then the fourth term on RHS of (6.13) is
bounded by

CR(t)
1

ε

∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ) dξ

}
νM (v)‖hε

R(s)‖L∞ds � CR(t)ε sup
0�s�t

‖hε
R(s)‖L∞ .

Similarly, it follows from (1.42)–(1.44), (1.47) and (6.6) that∣∣∣∣
(

wκ√
μM

[Rε + R̄ε + R̂ε]
)

(s)

∣∣∣∣ � CR(s)(εN−6 + εb−5),

which implies that the last term on RHS of (6.13) is bounded by CR(t)[εN−4 +
εb−3].

Let lw(v, v′) be the corresponding kernel associated with Kw. Recalling (6.11)
we have

|lw(v, v′)| � C
wκ(v′) exp {−c|v − v′|2}

wκ(v)|v − v′| � C
exp {− 3

4c|v − v′|2}
|v − v′| . (6.14)

Now we can bound the second term on RHS of (6.13) by

1

ε2

∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ) dξ

}∫
R3

|lw(Vcl(s), v
′)hε

R(s, Xcl(s), v
′)| dv′ds. (6.15)
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We denote V ′
cl(s1) = Vcl(s1; s, Xcl(s), v′) and X ′

cl(s1) = Xcl(s1; s, Xcl(s), v′).
Using (6.13) again to (6.15), then we can bound (6.15) by

1

ε4

∫ t

0
exp

{
− 1

ε2

∫ t

s
ν(ξ) dξ

}∫
R3

∫
R3

|lw(Vcl(s), v
′)lw(V ′

cl(s1), v
′′)|

×
∫ s

0
exp

{
− 1

ε2

∫ s

s1
ν(v′)(ξ)dξ

}
|hε

R(s1, X
′
cl(s1), v

′′)| dv′dv′′ds1ds

+ C‖hε
R(0)‖L∞ + CR(t)

{
ε sup
0�s�t

‖hε
R(s)‖L∞ + εN−4 + εb−3

}

+ C(t)ε5 sup
0�s�t

‖hε
R(s)‖2L∞ , (6.16)

where we have denoted ν(v′)(s) = ν(μ)(s, X ′
cl(s), V

′
cl(s)) for simplicity of pre-

sentation. And we also used the following fact
∫

R3
|lw(v, v′)|dv′ � C(1 + |v|)−1, (6.17)

which follows from (6.14).
We now concentrate on the first term in (6.16). As in [23], we divide things into

several cases.
Case 1 For |v| � N, by using (6.17), one deduces the following bound:

C

ε4
sup

0�s�t
‖hε

R(s)‖L∞
∫ t

0
exp

{
−νM (v)(t − s)

Cε2

}∫
R3

|lw(Vcl(s), v
′)|

×
∫ s

0
exp

{
−νM (v′)(s − s1)

Cε2

}∫
R3

|lw(V ′
cl(s1), v

′′)|dv′′ds1dv′ds

� C

N
sup

0�s�t
‖hε

R(s)‖L∞ .

Case 2 For either |v| � N, |v′| � 2N or |v′| � 2N, |v′′| � 3N, noting |Vcl(s)| =
|v| and |V ′

cl(s1)| = |v′| we get either |Vcl(s)− v′| � N or |V ′
cl(s1)− v′′| � N, then

either one of the following is valid for some small positive constant 0 < c1 � c
32

(where c > 0 is defined in Lemma 6.2):

|lw(Vcl(s), v
′)| � e−c1N2 |lw(Vcl(s), v

′) exp
(
c1|Vcl(s) − v′|2

)
|,

|lw(V ′
cl(s), v

′′)| � e−c1N2 |lw(V ′
cl(s1), v

′′) exp
(
c1|V ′

cl(s1) − v′|2
)
|,

which, together with (6.14), yields that
∫

R3
|lw(v, v′)ec1|v−v′|2 |dv′ � C

1 + |v| ,∫
R3

|lw(v′, v′′)ec1|v′−v′′|2 |dv′′ � C

1 + |v′| .
(6.18)



Hilbert Expansion of the Boltzmann Equation 297

Hence, for the case of |v − v′| � N or |v′ − v′′| � N, it follows from (6.18) that

∫ t

0

∫ s

0

{∫ ∫
|v|�N,|v′|�2N

+
∫ ∫

|v′|�2N,|v′′|�3N

}
(· · · )dv′′dv′ds1ds

� C

ε4
e−c1N2

sup
0�s�t

‖hε
R(s)‖L∞

∫ t

0

∫ s

0

∫
|lw(v, v′)| exp

{
−νM (v)(t − s)

Cε2

}

× exp

{
−νM (v′)(s − s1)

Cε2

}
dv′ds1ds

� Ce−c1N2
sup

0�s�t
‖hε

R(s)‖L∞ .

Case 3a |v| � N, |v′| � 2N, |v′′| � 3N. We note νM (v) � ν0 > 0 where ν0 is a
positive constant independent of v. Furthermore, we assume that s − s1 � λε2 for
some small λ > 0 determined later. Then the corresponding part of the first term
in (6.16) is bounded by

C

ε4

∫ t

0

∫ s

s−λε2
exp

{
−ν0(t − s)

ε2

}
exp

{
−ν0(s − s1)

ε2

}
‖hε

R(s1)‖L∞ds1ds

� C sup
0�s�t

{‖hε
R(s)‖L∞} · 1

ε4

∫ t

0
exp

{
−ν0(t − s)

ε2

}
ds ·

∫ s

s−λε2
ds1

� Cλ sup
0�s�t

{‖hε
R(s)‖L∞}.

Case 3b |v| � N, |v′| � 2N, |v′′| � 3N and s−s1 � λε2. This is the last remaining
case. We can bound the corresponding part of the first term in (6.16) by

C

ε4

∫ t

0

∫
D

∫ s−λε2

0
exp

{
−ν0(t − s)

Cε2

}
exp

{
−ν0(s − s1)

Cε2

}

× |lw(Vcl(s), v
′)lw(V ′

cl(s1), v
′′) · hε

R(s1, X
′
cl(s1), v

′′)|ds1dv′dv′′ds, (6.19)

where D = {|v′| � 2N, |v′′| � 3N}. It follows from (6.14) that
∫

R3
|lw(v, v′)|2dv′ � C,

which, together with Cauchy inequality, yields that (6.19) is bounded by

C

ε4

{∫ t

0

∫
D

∫ s−λε2

0
exp

{
−ν0(t − s1)

Cε2

}
|hε

R(s1, X
′
cl (s1), v

′′)|2dv′′dv′ds1ds
} 1

2

×
{∫ t

0

∫
D

∫ s−λε2

0
exp

{
−ν0(t − s1)

Cε2

}
|lw(Vcl (s), v

′)lw(V ′
cl (s1), v

′′)|2dv′′dv′ds1ds
} 1

2

� CN

ε2

{∫ t

0

∫
D

∫ s−λε2

0
exp

{
−ν0(t − s1)

Cε2

}
| f ε

R(s1, X
′
cl (s1), v

′′)|2dv′′dv′ds1ds
} 1

2
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= CN

ε2

{∫ t

0

∫
D

∫ s−λε2

max{t ′1,0}
exp

{
−ν0(t − s1)

ε2

}
| f ε

R(s1, X
′
cl (s1), v

′′)|2ds1dv′dv′′ds
} 1

2

+ CN

ε2

{∫ t

0

∫
D

∫ t ′1

0
I{t ′1>0} exp

{
−ν0(t − s1)

ε2

}
| f ε

R(s1, X
′
cl (s1), v

′′)|2ds1dv′dv′′ds
} 1

2

,

(6.20)

where t ′1 := s − tb(X ′
cl(s), v

′). To estimate (6.20), we integrate over v′, and make
a change of variable v′ �−→ z := X ′

cl(s1). From the explicit formula (6.10)3,4, we
have that

∂z

∂v′ = ∂X ′
cl(s1)

∂v′ =
⎛
⎝−(s − s1) 0 0

0 −(s − s1) 0
0 0 −(s − s1)

⎞
⎠ , (6.21)

if max{0, t ′1} � s1 � s − λε2, and

∂z

∂v′ = ∂X ′
cl(s1)

∂v′ =
⎛
⎝−(s − s1) 0 0

0 −(s − s1) 0
0 0 s − s1

⎞
⎠ , if 0 � s1 � t ′1. (6.22)

From (6.21) and (6.22), for both cases, it holds that∣∣∣∣det
(

∂z

∂v′

)
(s1)

∣∣∣∣ = (s − s1)
3 � (λε2)3 > 0, for s1 ∈ [0, s − λε2],

which yields that, for s1 ∈ [0, s − λε2],∫
|v′|�2N

| f ε
R(s1, X

′
cl(s1), v

′′)|2dv′ � C

λ3ε6

∫
R
3+

| f ε(s1, z, v
′′)|2 dz. (6.23)

Using (6.23), we can further bound the two terms in RHS of (6.20) by

CN,λ

ε3
sup

0�s�t
‖ f ε

R(s)‖L2 .

Collecting all the above terms and multiplying them with ε3, for any small
λ > 0 and large N > 0, one obtains that

sup
0�s�t

{‖ε3hε
R(s)‖L∞} � CR(t)

{
‖ε3hε

R(0)‖L∞ + εN−1 + εb
}

+ C(t)ε2 sup
0�s�t

‖ε3hε
R(s)‖2L∞ + C

{
λ + 1

N
+ CR(t)ε

}
sup

0�s�t
‖ε3hε

R(s)‖L∞

+ CN,λ sup
0�s�t

‖ f ε
R(s)‖L2 .

Noting t ∈ [0, τ ], first taking N � 1 large enough and λ > 0 small, and finally
choosing 0 < ε � ε0 with ε0 small enough, we deduce

sup
0�s�t

{‖ε3hε
R(s)‖L∞} � CR(t)

{
‖ε3hε

R(0)‖L∞ + εN−1 + εb
}

+ C sup
0�s�t

‖ f ε
R(s)‖L2 .

Therefore the proof of Lemma 6.3 is completed. ��
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6.3. Proof of Theorem 1.6

With Lemmas 6.1 and 6.3 in hand, the rest proof is the same as [23]. We
omit the details for simplicity of presentation. Therefore we complete the proof of
Theorem 1.6.

7. Acoustic Limit: Proof of Theorem 1.11

To prove Theorem 1.11, we first derive the estimate for two solutions to com-
pressible Euler equations (1.8)–(1.10) and acoustic systems (1.52)–(1.53). We de-
fine (ϕδ

d ,�
δ
d , ϑ

δ
d ) as

ϕδ
d := 1

δ2
(ρδ − 1 − δϕ), �δ

d := 1

δ2
(uδ − δ�), ϑδ

d := 1

δ2
(T δ − 1 − δϑ).

As in [23], a direct calculation shows that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ
δ
d + (uδ · ∇)ϕδ

d + ρδ div�δ
d + δ[∇ϕ · �δ

d + div�ϕδ
d ] = −div(ϕ�),

ρδ∂t�
δ
d + ρδ(uδ · ∇)�δ

d + ∇(
ρδϑδ

d + T δϕδ
d

)
−ϑδ

d∇ρδ − ϕδ
d∇T δ + δ[∂t�ϕδ

d + ρδ(�δ
d · ∇)� + ϑδ

d∇ϕ + ϕδ
d∇ϑ]

= −ϕ∂t� − ρδ(� · ∇)� − ∇(ϕϑ),

∂tϑ
δ
d + (uδ · ∇)ϑδ

d + 2
3T

δ div�δ
d + δ[∇ϑ · �δ

d + 2
3div�ϑδ

d ]
= −� · ∇ϑ − 2

3ϑ div�,

(7.1)

with (t, x) ∈ [0, τ ] × R
3+, and the initial and boundary conditions

(ϕδ
d ,�

δ
d , ϑ

δ
d )|t=0 = 0 and �δ

d,3(t, x�, 0) ≡ 0. (7.2)

Clearly, (7.1) is a linear hyperbolic system with characteristic boundary. Then we
apply Lemma 3.1 to (7.1)–(7.2) (the coefficients of (7.1) is slightly different, but
Lemma 3.1 is still applicable) to obtain

sup
t∈[0,τ ]

‖(ϕδ
d ,�

δ
d , ϑ

δ
d )(t)‖Hk(R3+) � C(τ, ‖(ϕ0,�0, ϑ0)‖Hs0 (R3+)) (7.3)

provided k � s0 − 2 where Hs(R3+) is defined in (3.4).
With (7.3) in hand, we can prove Theorem 1.11 by using the same arguments

as in section 3.2 of [23]. The details are omitted for simplicity of presentation.
Therefore this completes the proof of Theorem 1.11. ��
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Appendix A: Proof of Lemma 1.1

In “Appendix A”, we prove Lemma 1.1. For the macroscopic variables ρ̄k, ūk
and θ̄k of F̄k , a direct calculation shows that
∫

R3
F̄kdv = ρ̄k,

∫
R3

(vi − u0i )F̄kdv = ρ0ūk,i ,
∫

R3
vi F̄kdv = ρ0ūk,i + ρ̄ku

0
i ,∫

R3
|v|2 F̄kdv = ρ0θ̄k + 3T 0ρ̄k + 2ρ0u0 · ūk + ρ̄k |u0|2,

∫
R3

|v − u0|2 F̄kdv = ρ0θ̄k + 3T 0ρ̄k,

∫
R3

v2i F̄kdv = 2ρ0u0i ūk,i + ρ̄k |u0i |2 + ρ0θ̄k + 3T 0ρ̄k

3
+

∫
R3

T 0(I − P0) f̄k · A0
i idv,

∫
R3

viv j F̄kdv = ρ0u0i ūk, j + ρ0u0j ūk,i + ρ̄ku
0
i u

0
j +

∫
R3

T 0(I − P0) f̄k · A0
i jdv, i �= j,

∫
R3

vi |v|2 F̄kdv

= (5T 0 + |u0|2)ρ0ūk,i + 5

3
u0i (ρ

0θ̄k + 3T 0ρ̄k) + u0i (2ρ
0u0 · ūk + ρ̄k |u0|2)

+
2∑

l=1

∫
R3

2T 0u0l A0
il · (I − P0) f̄kdv +

∫
R3

2(T 0)
3
2B0

i · (I − P0) f̄kdv.

(A.1)

and ∫
R3

v3
√

μ0 · ∂yP0 f̄kdv = ρ0∂y ūk,3,
∫

R3
viv3

√
μ0 · ∂yP0 f̄kdv = ρ0u0i ∂y ūk,3, i = 1, 2,

∫
R3

v23
√

μ0 · ∂yP0 f̄kdv = ∂y

(
ρ0θ̄k + 3T 0ρ̄k

3

)
,

∫
R3

v3|v|2√μ0 · ∂yP0 f̄kdv = ρ0(5T 0 + |u0|2)∂y ūk,3,
∫

R3
v3(|v − u0|2 − 5T 0)

√
μ0 · ∂yP0 f̄k dv = 0.

(A.2)
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Multiplying (1.15)3 by 1, v, |v|2, integrating over R3 and using (A.1)–(A.2),
we obtain

∂t ρ̄k +
2∑
j=1

∂ j (ρ
0ūk, j + ρ̄ku

0
j ) + ρ0∂y ūk+1,3 = 0, (A.3)

∂t (ρ
0ūk,i + ρ̄ku

0
i ) +

2∑
j=1

∂ j

(
ρ0u0j ūk,i + ρ0u0i ūk, j + ρ̄ku

0
i u

0
j + δi j

ρ0θ̄k + 3T 0ρ̄k

3

)

+ ρ0u0i ∂y ūk+1,3 + δ3i ∂y

(
ρ0θ̄k+1 + 3T 0ρ̄k+1

3

)

+
∫

R3
viv3

√
μ0 · (I − P0)∂y f̄k+1dv = W̄k−1,i , (A.4)

and

∂t (ρ
0θ̄k + 3T 0ρ̄k + 2ρ0u0 · ūk + ρ̄k |u0|2)

+
2∑
j=0

∂ j {(5T 0 + |u0|2)ρ0ūk,i + 5

3
u0i (ρ

0θ̄k + 3T 0ρ̄k) + u0i (2ρ
0u0 · ūk + ρ̄k |u0|2)}

+ ρ0(5T 0 + |u0|2)∂y ūk+1,3 +
∫

R3
v3|v|2√μ0 · (I − P0)∂y f̄k+1dv

= −
2∑
j=1

∂ j

⎧⎨
⎩

2∑
l=1

2T 0u0l

∫
R3

A0
jl · (I − P0) f̄kdv + 2(T 0)

3
2

∫
R3

B0
j · (I − P0) f̄kdv

⎫⎬
⎭ .

(A.5)

Then (1.30) follow directly from (A.3).
Substituting (A.3) into (A.4) and by tedious calculations, one can obtain

ρ0∂t ūk,i + ρ0(u0
�
· ∇�)ūk,i − ρ0∂3u

0
3 ūk,i − ρ̄k

∂i p0

ρ0 + ρ0ūk,� · ∇�u
0
i

+ ∂y〈T 0A0
3i , (I − P0) f̄k+1〉 = W̄k−1,i − ∂i p̄k, i = 1, 2, (A.6)

ρ0∂t ūk,3 + ρ0(u0
�
· ∇�)ūk,3 − ρ0∂3u

0
3 ūk,3 + ∂y p̄k+1

+ ∂y〈T 0A0
33, (I − P0) f̄k+1〉 = W̄k−1,3. (A.7)

Similarly, from (A.3)–(A.4), the equation (A.5) for θ̄k can be reduced to be

5

3
ρ0∂t θ̄k + 5

3
ρ0u0

�
· ∇�θ̄k +

(10
9

ρ0divu0 − 5

3
ρ0∂3u

0
3

)
θ̄k

+ (3ρ0∇�T
0 − 2T 0∇�ρ

0)ūk,� + ∂y〈2(T 0)
3
2B0

3, (I − P0) f̄k+1〉
= H̄k−1 + {2∂t + 2u0

�
· ∇� + 10

3
divu0} p̄k . (A.8)

We still need to deal with the microscopic parts in (A.6)–(A.8). In fact, by using
(1.15), we obtain (1.29). Then by using (1.29), we have〈

(I − P0) f̄k+1,A0
3i

〉
=

〈
− L−1

0 {(I − P0)(v3∂yP0 f̄k)}, A0
3i

〉
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+
〈
L−1
0

{ y√
μ0

[Q(∂3μ0,
√

μ0P0 f̄k) + Q(
√

μ0P0 f̄k, ∂3μ0)]

+ 1√
μ0

[Q(
√

μ0 f
0
1 ,

√
μ0P0 f̄k) + Q(

√
μ0P0 f̄k,

√
μ0 f

0
1 )]

+ 1√
μ0

[Q(
√

μ0 f̄1,
√

μ0P0 f̄k) + Q(
√

μ0P0 f̄k,
√

μ0 f̄1)]
}
, A0

3i

〉

+
〈
J̄k−1, A0

3i

〉
. (A.9)

A direct calculation shows that
〈
− L−1

0 {(I − P0)(v3∂yP0 f̄k)}, A0
3i

〉
=

〈
− v3∂yP0 f̄k, L−1

0 A0
3i

〉

= −
〈{∂y ρ̄k

ρ0 + ∂y ūk · v − u0

T 0 + ∂y θ̄k

6T 0

( |v − u0|2
T 0 − 3

)}
v3

√
μ0, L−1

0 A0
3i

〉

= −∂y ūk,i
〈
A0

3i , L−1
0 A0

3i

〉
=

⎧⎪⎨
⎪⎩

−μ(T 0)

T 0 ∂y ūk,i , i = 1, 2,

−4

3

μ(T 0)

T 0 ∂y ūk,3, i = 3,
(A.10)

where we have used (1.26) in the last equality.
From [19, p.649], we know that

L−1
0

{ 1√
μ0

Q(
√

μ0P0g,
√

μ0P0 f̄k) + 1√
μ0

Q(
√

μ0P0 f̄k,
√

μ0P0g)
}

= (I − P0)

{
P0g · P0 f̄k√

μ0

}
. (A.11)

We assume

P0g =
{
a

ρ0 + b · v − u0

T 0 + c

6T 0

( |v − u0|2
T 0 − 3

)}√
μ0.

Then a direct calculation shows that

(I − P0)

{
P0g · P0 f̄k√

μ0

}
=

3∑
l, j=1

bl ūk, j
T 0 A0

l j + 1√
T 0

( θ̄k

3T 0 b + c

3T 0 ūk
)

· B0

+ c · θ̄k

36(T 0)2
(I − P0)

{( |v − u0|2
T 0 − 5

)2√
μ0

}
.

(A.12)

Noting

∂μ√
μ

=
{

∂ρ

ρ
+ ∂u · v − u

T
+ 3∂T

6T

( |v − u|2
T

− 3

)}√
μ, (A.13)
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which, together with (A.11) and (A.12), implies that the second term on RHS of
(A.9) is expressed as

3∑
l, j=1

ūk, j
T 0 [y∂3u0l + u01,l + ū1,l ]

〈
A0

l j , A0
3i

〉

=

⎧⎪⎪⎨
⎪⎪⎩

ρ0

T 0 {[∂3u03 · y + u01,3 + ū1,3]ūk,i + [∂3u0i · y + u01,i + ū1,i ]ūk,3}, i = 1, 2,
4
3

ρ0

T 0 [∂3u03 · y + u01,3 + ū1,3]ūk,3
− 2

3
ρ0

T 0

∑2
l=1[∂3u0l · y + u01,l + ū1,l ]ūk,l , i = 3,

(A.14)

where we have used〈
Ai i , A j j

〉
= −2

3
ρ,

〈
Ai j , Ai j

〉
= ρ, for i �= j, and

〈
Ai i , Ai i

〉
= 4

3
ρ.

Combining (A.9), (A.10) and (A.14), we obtain

∂y〈T 0A0
3i , (I − P0) f̄k+1〉

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−μ(T 0)∂yy ūk,i + ρ0∂y{[∂3u03 · y + u01,3 + ū1,3]ūk,i }
+ρ0∂y{[∂3u0i · y + u01,i + ū1,i ]ūk,3} + T 0∂y〈 J̄k−1, A0

3i 〉, i = 1, 2,

− 4
3μ(T 0)∂yy ūk,3 + 4

3ρ
0∂y{[∂3u03 · y + u01,3 + ū1,3]ūk,3}

− 2
3ρ

0 ∑2
l=1[∂3u0l · y + u01,l + ū1,l ]ūk,l + T 0∂y〈 J̄k−1, A0

33〉, i = 3.
(A.15)

Substituting (A.15) into (A.6) and (A.7), then by tedious calculations, one can get
(1.27) and (1.31).

As in (A.9)–(A.15), we can obtain

∂y〈2(T 0)
3
2B0

3, (I − P0) f̄k+1〉
= −κ(T 0)∂yy θ̄k + 5

3
ρ0∂y{(∂3u03 · y + u01,3 + ū1,3)θ̄k}

+ 5

3
ρ0∂y{(3∂3T 0

3 · y + θ01 + θ̄1)ūk,3} + 2(T 0)
3
2 ∂y〈 J̄k−1, B0

3〉, (A.16)

which, togetherwith (A.8) and (1.24), yields (1.28). Therefore theproof ofLemma1.1
is completed. ��

Appendix B: Sketch Proof of Lemma 2.5

Here we sketch the key steps of proof for Lemma 2.5, and we refer the reader
to [28, Section 3] for the details. Here (t, x�) ∈ [0, τ ] × R

2 are the parameters in
(2.10), so we shall not write them down explicitly in the following.

Recall the monotonic smooth cut-off function χ(·) defined in (3.8). Similar as
in [17], we define

f(η, v) := f (η, v) + χ(η) fb(v), (B.1)



304 Yan Guo, Feimin Huang & Yong Wang

then (2.10) is equivalent

⎧⎪⎨
⎪⎩

v3∂ηf + L0f = g := S + v3∂ηχ(η) fb(v) + χ(η)L0 fb,

f(0, v)|v3>0 = f(0, Rv),

limη→∞ f(η, v) = 0,

η > 0, v ∈ R
3,

(B.2)

with Rv = (v1, v2,−v3). Hence we only need to prove the existence of solution to
(B.2). And we divide the proof into several steps.
Step 1. As in [12, Section 3.2], using the L2-L∞ method developed in [20], we
can construct a unique solution for the following truncated problem with penalized
term

{
εfε + v3∂ηf

ε + L0f
ε = g,

fε(η, v)|γ− = fε(η, Rηv),
(η, v) ∈ (0, d) × R

3, (B.3)

where d ∈ [1,+∞), ε ∈ (0, 1], Rηv := v − 2(v · �n(η))�n(η), �n(0) = (0, 0,−1)
and �n(d) = (0, 0, 1). Moreover it holds that

‖wκμ−a
0 fε‖L∞

η,v
+ |wκμ−a

0 fε|L∞(γ ) � Cε,d‖ν−1wκμ−a
0 g‖L∞

η,v
, (B.4)

where the positive constant Cε,d > 0 depends only on ε and d. Hereafter we take
0 � a < 1

2 and κ � 3.
Step 2. Taking the limit ε → 0+. Noting the conditions (2.11)–(2.12) and using
(B.3), a direct calculations shows that

∫ d

0
aε(η)dη =

∫ d

0
bε
1(η)dη =

∫ d

0
bε
2(η)dη =

∫ d

0
cε(η)dη = 0, (B.5)

where we have used the notation

P0f
ε(η, v) = {aε(η) + bε · (v − u0) + cε(x)(|v − u0|2 − 3)}√μ0.

Furthermore, by choosing suitable test function and noting (B.5), for the solutions
fε constructed in Step 1, we deduce

‖P0f
ε‖2L2

η,v
� Cd6

{
‖(I − P0)f

ε‖2ν + ‖g‖2L2
η,v

}
. (B.6)

Applying the energy estimate to (B.3) and using (B.6), we can have

‖fε‖2L2
η,v

� Cd‖g‖2L2
η,v

, (B.7)

which, together with the L2-L∞ method, yields the uniform estimate (uniform in
ε ∈ (0, 1]

‖wκμ−a
0 fε‖L∞

η,v
+ |wκμ−a

0 fε|L∞(γ ) � Cd‖ν−1wκμ−a
0 g‖L∞

η,v
. (B.8)
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With the help of uniform estimates (B.7)–(B.8), we can take the limit ε → 0+, and
obtain the unique solution fd to the linearized steady Boltzmann equation

{
v3∂ηfd + L0fd = g, (η, v) ∈ (0, d) × R

3,

fd(η, v)|γ− = fd(η, Rηv),
(B.9)

with

‖wκμ−a
0 fd‖L∞

η,v
+ |wκμ−a

0 fd |L∞(γ ) � Cd‖ν−1wκμ−a
0 g‖L∞

η,v
. (B.10)

Step 3.Taking the limit d → +∞. To obtain the solution for half-space problem,we
need some uniform estimate independent of d, then we can take the limit d → ∞.
Let fd be the solution of (B.9), we denote

P0fd(η, v) = [
a(η) + b(η) · (v − u0) + c(η)(|v − u0|2 − 3)

]√
μ0.

Multiplying (B.9) by
√

μ0 and using (2.11)–(2.12), we have

0 = d

dη

∫
R3

v3
√

μ0 f (η, v)dv = d

dη
b3(η) ≡ 0.

Since fd satisfies the specular boundary, it holds that b3(x)|x=0 = b3(x)|x=d = 0,
which yields b3(η) = 0, for η ∈ [0, d]. Let (φ0, φ1, φ2, φ3) be some constants
chosen later, we define

f̄d (η, v) =[ā(η) + b̄1(η) · (v1 − u01) + b̄2(η) · (v2 − u02) + c̄(η)(|v − u0|2 − 3)]√μ0

+ (I − P0)fd ,

where ā(η) = a(η) + φ0, b̄i (η) = bi (η) + φi , i = 1, 2, and c̄(η) = c(η) +
φ3. In fact, we can prove that there exist constants (φ0, φ1, φ2, φ3) such that∫

R3
v3 f̄d(d, v)(v3

√
μ0, L

−1
0 (A0

31), L
−1
0 (A0

32), L
−1
0 (B0

3))dv = (0, 0, 0, 0).

(B.11)

With the above chosen constants (φ0, φ1, φ2, φ3), then we can obtain

‖eζη f̄d‖L2
η,v

� C

ζ1 − ζ
‖eζ1ηg‖L2

η,v
(B.12)

with 0 < ζ < ζ1 � ζ0, and the constant C is independent of d. Now combining
(B.12) and the L2-L∞ method, one can get

‖wκμ−a
0 eζη f̄d‖L∞

η,v
+ |wκμ−a

0 eζη f̄d |L∞(γ ) � C

ζ0 − ζ
‖wκμ−a

0 ν−1eζ0ηg‖L∞
η,v

.

(B.13)

Noting the above uniform estimates (B.12)–(B.13) and using the L2-L∞ method,
we can take the limit d → +∞ to obtain the unique solution f of (B.2). The
uniform estimate (2.13) follows directly from (B.13) and (B.1). Therefore the proof
of Lemma 2.5 is completed. ��
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Appendix C: Some Trace Inequalities

Lemma C.1. (1). Let �b := {(x�, x3) : x� ∈ R
2, x3 ∈ [0, b]} with b � 1. We

assume f, g ∈ H1(�b), it holds, for any x3 ∈ [0, b], that
∣∣∣∣
∫

R2
( f g)(x�, x3)dx�

∣∣∣∣ � ‖∂x3( f, g)‖L2(�b)
‖( f, g)‖L2(�b)

+ 1

b
‖ f ‖L2(�b)

‖g‖L2(�b)
.

(C.1)

For i = 1, 2, we have
∣∣∣∣
∫

R2
(∂xi f · g)(x�, x3)dx�

∣∣∣∣ � ‖∂x3( f, g)‖L2(�b)
‖∂xi ( f, g)‖L2(�b)

+ 1

b
‖∂xi f ‖L2(�b)

‖g‖L2(�b)
. (C.2)

(2). Let f, g ∈ H1(R3+), and x3 ∈ R+, it holds that
∣∣∣∣
∫

R2
(∂xi f · g)(x�, x3)dx�

∣∣∣∣ � ‖∂x3( f, g)‖L2(R3+)‖∂xi ( f, g)‖L2(R3+), for i = 1, 2.

(C.3)

Proof. We only prove (C.1) and (C.2) since (C.3) can be obtained by taking the
limit b → ∞ in (C.2).

Without loss of generality, we assume that f, g ∈ C2(�b) ∩ H1(�b). There
exists a point zb ∈ [0, b] so that

∫
R2

( f g)(x�, zb) dx� = 1

b

∫ b

0

∫
R2

( f g)(x�, x3) dx�dx3. (C.4)

For any given x3 ∈ [0, b], by using (C.4), we have
∣∣∣∣
∫

R2
( f g)(x�, x3) dx�

∣∣∣∣ �
∣∣∣∣
∫ x3

zb

∫
R2

∂z( f g) dx� dz

∣∣∣∣ + 1

b

∣∣∣∣
∫ b

0

∫
R2

( f g)(x�, x3) dx�dx3

∣∣∣∣
�

∫ b

0

∫
R2

|∂z f · g| + | f · ∂zg| dx� dz + 1

b
‖ f ‖L2(�b)

‖g‖L2(�b)

� ‖∂x3( f, g)‖L2(�b)
‖( f, g)‖L2(�b)

+ 1

b
‖ f ‖L2(�b)

‖g‖L2(�b)
.

Hence we conclude (C.1).
Similar as (C.4), for i = 1, 2, there exists a point zb ∈ [0, b] so that

∫
R2

(∂xi f · g)(x�, zb) dx� = 1

b

∫ b

0

∫
R2

(∂xi f · g)(x�, x3) dx�dx3.

For x3 ∈ [0, b], integrating by parts w.r.t xi , we obtain∣∣∣∣
∫

R2
(∂xi f · g)(x�, x3) dx�

∣∣∣∣
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�
∣∣∣∣
∫ x3

zb

∫
R2

∂z(∂xi f · g) dx� dz

∣∣∣∣ + 1

b

∣∣∣∣
∫ b

0

∫
R2

(∂xi f · g)(x�, x3) dx�dx3

∣∣∣∣
�

∣∣∣∣
∫ b

0

∫
R2

∂z f · ∂xi g dx� dz

∣∣∣∣ +
∣∣∣∣
∫ b

0

∫
R2

∂xi f · ∂zg dx� dz

∣∣∣∣
+ 1

b
‖∂xi f ‖L2(�b)

‖g‖L2(�b)

� ‖∂x3( f, g)‖L2(�b)
‖∂xi ( f, g)‖L2(�b)

+ 1

b
‖∂xi f ‖L2(�b)

‖g‖L2(�b)
.

This completes (C.2). ��
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