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Abstract

Boundary effects play an important role in the study of hydrodynamic limits in

the Boltzmann theory. Based on a systematic study of the viscous layer equations
and the L? to L> framework, we establish the validity of the Hilbert expansion for
the Boltzmann equation with specular reflection boundary conditions, which leads
to derivations of compressible Euler equations and acoustic equations in half-space.
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1. Introduction and Main Results

1.1. Introduction

In the founding work of Maxwell [38] and Boltzmann [6], it was shown that the
Boltzmann equation is closely related to the fluid dynamical systems for both com-
pressible and incompressible flows. Great effort has been devoted to the study of
the hydrodynamic limit from the Boltzmann equation to the fluid systems. In 1912,
Hilbert proposed a systematic formal asymptotic expansion for Boltzmann equa-
tion with respect to Knudsen number 7, < 1. A bit later Enskog and Chapman
independently proposed a somewhat different formal expansion, in 1916 and 1917,
respectively. Either the Hilbert or the Chapman—Enskog expansions yield the com-
pressible and incompressible fluid equations, for example the compressible Euler
and Navier—Stokes systems, the incompressible Euler and Navier—Stokes (Fourier)
systems, and the acoustic system, etc., It is a challenging problem to rigorously
justify these formal approximation. In fact, the purpose of Hilbert’s sixth problem
[26] is to establish the laws of motion of continua from more microscopic physical
models, such as Boltzmann theory, from a rigorous mathematical standpoint.

Based on the truncated Hilbert expansion, Caflisch [7] rigorously established
the hydrodynamic limit from the Boltzmann equation to the compressible Euler
equations when solution is smooth; see also [18,36,39,45], and [22,23] via a re-
cent L2-L*> framework. As it is well known, solutions of the compressible Euler
equations in general develop singularities, such as shock wave. Generally speaking,
there are three basic wave patterns for compressible Euler equations: shock wave,
the rarefaction wave, and contact discontinuity. The hydrodynamic limit of Boltz-
mann to such wave patterns have been proved [27,29-31,48,49] in one dimensional
case. For multi-dimensional case, the only result is [46] for planar rarefaction wave.

The acoustic equations are the linearization of the compressible Euler equations
about a spatially homogeneous fluid state. Being essentially the wave equations,
they form the simplest PDE system in fluid dynamics. Bardos et al. [4] established
the convergence from the DiPerna—Lions [11] solutions of Boltzmann equation to
the solution of acoustic system over a periodic spatial domain with restriction on
the size of fluctuation. Recently, the restriction was relaxed in [32,34], and finally
removed in [23] via a L?-L* framework.

There have been extensive research efforts to derive the incompressible Navier—
Stokes system; see [2,3,5,8,11,13-16,19,25,33,35,37,40,47] and the references
cited therein.

All of the above-mentioned works on the compressible Euler limit and the
acoustic limit were carried out in either spatially periodic domain or the whole space.
However, in many important physical applications, boundaries occur naturally, and
boundary effects are crucial in the hydrodynamic limit of dilute gases governed
by the Boltzmann equation. Hence it is important to study the hydrodynamic limit
from the Boltzmann equation to the compressible Euler equations in the presence
of physical boundaries. The purpose of this paper is to justify the compressible
Euler limit and the acoustic limit of Boltzmann equation with specular reflection
boundary conditions by the Hilbert expansion method. The main difficulty, due to
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the presence of physical boundaries, is the possible appearance of both viscous
and Knudsen boundary layers, and the interaction between these layers is very
complicate.

More precisely, we consider the scaled Boltzmann equation

1
Ft“‘v‘vxF:yQ(F, F), (1.1)

n

where F(t, x, v) = 0 is the density distribution function for the gas particles with
position x € Ri = {x € R®: x3 > 0} and velocity v € R3 at time r > 0,
and %, > 0 is Knudsen number which is proportional to the mean free path. The
Boltzmann collision term Q (F1, F>) on the right is defined in terms of the following
bilinear form

Q(Fl,Fz)E/ / B —u,0)F (u)F>,(v") dodu
R3 JS§?

—/ / B(v —u,0)F;(u)F(v) dodu
R3 JS§2

= 04(F1, 12) — O (F1, ), (1.2)

where the relationship between the post-collision velocity (v/, u’) of two particles
with the pre-collision velocity (v, u) is given by

W=u+[w—u) oo, V=v—[v-—u- oo

for € S?, which can be determined by conservation laws of momentum and
energy

WV =utv, P+ =l + vl

The Boltzmann collision kernel B = B(v — u, 0) in (1.2) depends only on |v — u|
and 6 with cos® = (v — u) - w/|v — u|. Throughout this paper, we consider the
hard sphere model, i.e.,

B(v—u,0)=|(v—u)- o
We denote 1 = (0,0, —1) to be the outward normal of Ri. We denote the
phase boundary in the space Ri xR3asy = ENREL x R3 and split it into outgoing
boundary y., incoming boundary y_, and grazing boundary y; as follows:
e ={(x,v):x € R v-ii = —v3 >0},
v ={(x,v):x € dR3,v-ii=—v3 <0},
vo={(x,v):x € dR3 v -ii = —v3 =0}.

In the present paper we consider the Boltzmann equation with specular reflection
boundary conditions, i.e.,

F(thvv)lyf =F(t7-xa va)v (13)
where

Riov=v—2{v- -i}i= v, —v3). (1.4)



234 YAN Guo, FEIMIN HUANG & YONG WANG

1.2. Asymptotic Expansion

Since the thickness of viscous boundary layer is /%, for simplicity, we use
the new parameter ¢ = /%, and denote the Boltzmann solution to be F¢, then
the Boltzmann equation (1.1) is rewritten as

1
B,Fs—l—v-VxFE:—zQ(FS,FS). (1.5)
&
1.2.1. Interior Expansion We define the interior expansion
o0
FE(t, x, v) ~ Zska(t,x,v). (1.6)
k=0
Substituting (1.6) into (1.5) and comparing the order of ¢, one obtains

0 = Q(Fo, Fo),

0= Q(Fy, F1) + Q(Fy, Fo),

e {3 +v- Vi) Fo = Q(Fo, F2) + Q(Fa, Fo) + Q(F1, Fy),
e: {0 +v-Vi}F1 = Q(Fo, F3) + Q(F3, Fo) + Q(F1, F2) + Q(F2, F1),

ml»—‘mml'_‘

e {0 + v Vil e = Q(Fo, Fia) + Q(Figa, )+ Y Q(Fi, F)).
i+j=k+2
i,j=1

(1.7)

It follows from (1.7); and the celebrated H-theorem that Fy should be a local
Maxwellian

_ 2
w(t, x,v) == Fy(t, x,v) = P, x) {—M},

RaT@ P2 2Tt x)

where p(, x), u(t, x) = (ug, up, u3)(¢, x), and 7'(¢, x) are defined by

/ Fodv = p, / vFydv = pu, / |U|2F0dU = ,o|u|2 + 3pT,
R3 R3 R3

which represent the macroscopic density, velocity and temperature, respectively.

2
Projecting the equation (1.7)3 onto 1, v, % which are five collision invariants
for the Boltzmann collision operator Q(-, -), one obtains that (p, u, T') satisfies the
compressible Euler system

9;p + div(pu) =0,
3 (pu) +div(pu®@u) + Vp =0, (1.8)

3T 2 3T 2
0y [p (7 + %)} + div [,ou <7 + %)} + div(pu) =0,
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where x € Ri, t > 0and p = pT is the pressure function. For the compressible
Euler equations (1.8), we impose the slip boundary condition

U 7i|=0 = u3|x=0 = 0. (1.9)
and the initial data
(p,u, T)(0,x) = (14 68¢g, 5P, 1 + §p)(x), (1.10)

with ||(go, ®o, P0)llgso < 1, where § > 0 is a parameter and so = 3 is some
given positive number. Choose §; > 0 so that for any § € (0, &1], the positivity of
1 4+ 8¢p and 1 + 89 is guaranteed. Then for each é € (0, §1], there is a family of
classical solutions (%, u?, T%) € C([0, T°1; H*(R3)) N C' ([0, 7°]; H~1(R3))
of the compressible Euler equations (1.8)—(1.10) such that /o‘S > 0and T? > 0; see
Lemma 2.1 for details.

Generally, the solution of interior expansion F;, i = 1, 2, ... does not satisfy the
specular reflection boundary conditions. To overcome the difficulty coming from
the boundary condition, the boundary layer expansions is needed (see [43,44]).

For later use, we define the linearized collision operator L by

1
Lg = - { Q. Vi) + 0(Wiig w .

The null space N of L is generated by

1
x0() = —J/1,
Vo
Vi — U .
[ = ’ = 1527 35
Xi (V) s /T

1 [l—uP
x4(v) = «/_6_,0 {T —3}\//7.

Clearly, we have/ xi - xjdv = §;; for 0 < i, j < 4. We also define the collision
R3

frequency v:

v(t, x,v) =v(p) = / f B(v —u, 0)u(u)dwdu. (1.11)
R3 JS?
Furthermore it holds that

1
E(l + ) S v, x,v) S C+ |v]),

where C > 0 is some given positive constant. Let Pg be the L% projection with
respect to [xo, - - . , xa]. It is well-known that there exists a positive number ¢y > 0
such that for any function g

(Lg, g) = coll{I — P)gll?,
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where the weighted L-norm || - ||, is defined as

lgll? 1=/ g% (x, v)v(v) dxdv.
R3 xR3

X v

F
For each k 2 1, we define the macroscopic and microscopic part of \/—k_ as
w

X+ /gTX4 i —m(jﬁ)

Pk v—u 6 [lv—uf? k
;‘f-uk T +6—T< T _3>}\/ﬁ+{I_P}<_\/ﬁ>'
(1.12)

i [If 0
Si=
=

. +
:

1.2.2. Viscous Boundary Layer Expansion We define the scaled normal coor-
dinate:

yi=—. (1.13)
For notational simplicity, we denote
xy = (x1,x2), V,= (axp axz) and v, = (v1, v2). (1.14)

Noting (1.9), we know that the local Maxwellian u satisfies the specular re-
flection boundary conditions. However, in general, 1 may not satisfy the specular
reflection boundary conditions, therefore we need to construct viscous boundary
layer to compensate the boundary conditions starting from the first order of ¢.

Motivated by [44, Section 3.4.1], we define the viscous boundary layer expan-
sion as

o
FE(t, x,, y) ~ Zskﬁk(t,x,,, v, v).
k=1
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Plugging F¢ + F¢ into the Boltzmann equation (1.5) and comparing the order of
g, then using (1.7), in the neighborhood of physical boundary, we have

1 _ _
o 0= Q(no, F1) + Q(F1, o),
oF _ _ _ _
e 1138—})1 = [0 (o, F2) + Q(F2, o)l + y[Q 030, F1) + Q(F1, 0310)]

+ Q(FY, F1) + Q(Fy, F)) + Q(Fy, Fy),

k > 9 Fiy1 . _
FOR {at+U|| ~V||}Fk+U3 ay — Q(MO»Fk+2)+ Q(Fk+2,,bb())
¥l i} i (1.15)
T Z f[Q(aéﬂo, Fj)+ O(F;, 85u0)]
I+j=k+2
110, j21
+ 3 [QF F+ Q(Fj, F)) + Q(Fi, )]
i+j=k+2
izl

1
y — —
+ Y =[Q@F, F) + O(F;, 95 )], fork =1,

1!
i jH=k+2
1<1<0,i,j21

where we have used the Taylor expansions of u and F; at x3 =0, i.e.,

b b+1
1 l X3 b+1~
H(I,xl,xz,x3,l})—M0+;ﬁa3ﬂo~x3+ma3 i (1.16)
and fori > 1,
0 Ny 10 I ’C3b+1 b+1
+
Filt, x1,x2,x3,0) = F + ) 05} x5 + Gy s D

=1

Here we have used the simplified notations

Mo 1 = @)1, x1,x2,0,0), 39 = @I ) (1, x1, x2, E0, v),

(1.18)
WFY = @SF)(t, x1,x2,0,0), 38HF = @I E) @, x1, %2, &, v)

for some &; € (0, x3) with i = 0. The number b € N, will be chosen later.

The main reason to use (1.16) is to make the coefficients of linearized operator
of (1.15) be independent of y. The reason for (1.17) is to make the coefficients of
viscous boundary layer system be independent of ¢; see (1.27)—(1.28) for details.
Noting the polynomial growth coefficients y/ in (1.15), it is imperative to prove
that they decay with enough polynomial rate as y — 400 provided the initial data
decay sufficiently fast. For later use, we define Fo = 0.
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For the macro-micro decomposition of viscous and Knudsen boundary layers,
we define the corresponding linearized collision operator, macroscopic projection,
and null space as

LO=L(t9xll90’ U), P0=P(t,x,,,0, U)? N():N(t’xllvor U).
It is noted that Lo, Py and N are independent of normal variable. We define

fi = (1.19)

Fx
NTR
Then it holds that

fi =Po fi + {1 —Po} fi

_ 0 n 012
Pk~ v—u O (lv—u’ ;
:{F+uk.T+m<T—3>}«/_M0+{I—P0}fk,

where and whereafter we always use the notation (po, w0, TO) = (p,u, T)(t, x,,0).
Throughout the present paper, we always assume the far field condition

felt, x,, y,0) = 0, asy — +oo. (1.20)
In fact, it follows from (1.15); that f; € N, i.e.,

= 0 n 02
= = ol - v—u o1 (lv—u’|
flEPOf1={F+M1'T m(T—?’)}\/VvO- (1.21)
We denote
0) 0=
Op + 3T
’BkZW' (1.22)

Multiplying (1.15) by /1o, v3./mo and integrating over R3 with respect to v, one
obtains

Oyur3 =0, dyp =0, (1.23)
where pj is defined in (1.22) with k = 1. Noting from (1.20) and (1.23), we have

it15(t,%,y) =0 and pi(t,x,,y) =0, V(£,x,y) €0, 7] x R* x R;.
(1.24)

Note that from (1.22), (1.24), is similar to the Boussinesq relation in the diffusive
limit of Boltzmann equation.
For later use, we define the Burnett functions .A;; and 5;

(vi —u)(vj —uj ) lv—ul?

Aij I={ T : _SijT}«/l_h

v — U |v—u|2 )
B; : -5 .
2T ( T 2

(1.25)
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and denote
A) ;= A j(t.x,,0,v) and B} = B;(t.x,,0,v).

We define the viscosity and thermal conductivity coefficients ,u(TO), k(T of
viscous boundary layer

04, L

]’

w(T0) = TOAS,, Ly A = Lot AY), Vi #

i,j=123.

T
2 _
37 T%8Y, Ly'BY),

k(T?) = 5T°<B2, L,'BY) =
(1.26)

By Lemma 4.4 in [3], it holds that (T0A33, 61_,4%)3> — %M(TO). We denote
0 0 0 02
— Py o v—u 91 [lv —u”|
f fl(t leOv) p0+ulT+m<T_3 //-’L9

where (), ul, 07) := (p1, u1, 61)(t, x,,, 0).
fir will be constructed inductively as follows:

Lemma 1.1. Let fi (k > 1) be the solution of (1.15). Fork 2> 1, (iix.,, 6x) satisfies

Py ;i + pP@? - V..mk,,» + p°<63u8 -y +uf dyi

Ui

oip
0- 0
+ 0 g, - Vi 3T0

- A
= frm1 = —p0y[(03u -y + ”(1),1‘ +uy g3l — [31‘ - ;70 } Pk

+ Wimti — T (Ji—1, AY), i=1,2, (1.27)
_ _ S R | _
P90k + pO ) - V)G + p° @313 - y + u 3)dy 0k + g,oodwu%k - gK(To)ayyek
_ - 3 - 6 3 -
= Gk = =P GHT y + 67 + B3] + Hemt — (T 20y (1. BY)

3

10 o).
5{2a,+2u V,,—I—?dlvuo}pk, (1.28)

where divu® := (divu)(t, x,,, 0). Once one solvesiiy.,,, then (I — Pg) fii1, itk+1.3, Pht1
can be determined by the following equations:

A —Po) fit1 =L51{ — (I —Pg)(v30,Py /1)
+ %[Q(azﬂm V0P fi) + O(ViwoPo fi, 33#0)]

[Q(F1 VP i) + Q(/iaPo fi FY) ]

- 8-

[Q(ffl VoPo fi) + O(/oPo fi, ffl)]}Jrfk—l,
(1.29)
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_ 1 _ . _ _
dyllg41,3 =— pfo{atpk + div, (0%, + pkuﬂ)}, (1.30)
Oy Pi+1 = — poaﬂik,s - po(uﬂ “ViDug 3+ poaaug Ug,3
4 _ 4 _
= 32701035y +uf i 3]+ (T 3

2
2 -
+ 307 Dy 03] -y +uf )+ iy g, )
=1

— 1%, (Je—1. AY) + Wi 3, (1.31)

and

2
Wk_l,,-z—Za,/ T —Po} fi - AY jdv, fori=1,2,3, (1.32)
- R3 ’
j=1
— 2 3 -
Ao == Y o2 /R3{I—P0}fk'B?dU
j=1

2
+3 270 | (1-Po)fi -A?»dv] o Wilp,.  (1.33)
=1 R3 !

and
(B + v, - Vi) Fr_y

Jict =L51{ —a- Py ) — @ = P30, @~ Po) fil

Jio
[
y o1 1 ; 7 al
+ ———1 Q(33140, /1o fj) + O/ 1o fj, d3/40)
Y I i Q@0 VIO + QR . )]
2500, j21
1 _ _
+ — | O(F?, Vo f) + (o £, FO)
i+j§1;+l m[ veod; vhol; ]
i>2,j>1
O(JHofir /10 f))
+
i+j§k+l Viv
i.j>2
[
y 1 7 7
p> T T QG VR + 0. D)
i+j+l=k+1
11<0, 0,21
y r - -
— 0 , I—P I1—-P , 0
+m_Q( 3105 /10 ( 0) fx) + O (/1o 0) [k 3#0)]
Lr 0 = )|
+ e QP ViR P ) + Qo Po o D)
17 _ _ _ _
+ —| (Vo f1. /1o — Po) fr) + Q(M(I_Po)fk7\/%f1)]},
Jiol

(1.34)
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We point out that Wi_y, Hy_1 and Jx_ depend on fj, 1<j<k—-1

Remark 1.2. Since we have not found a direct reference which gives Lemma 1.1,
so we present details of calculation in the “Appendix A” for completeness though
it is somehow routine.

Remark 1.3. We remark that the Taylor expansion of w in the derivation of the
viscous boundary layer equations is crucial for the control of large velocity v in
our L2-L framework. On the other hand, such an expansion creates a factor of y,
which leads to only algebraic decay in y in general. This is in stark contrast to the
other standard boundary layer theories which typically have exponential decay in
the normal direction.

Remark 1.4. For k = 1_, noting Jo = Wy = Hy = 0 and (1.24), then the system
(1.27)—(1.28) for [uy,,, €1] becomes

Pty ; 4 p°l - V..n‘n,i + 0% @313 - y + ul 3)dyity ;

i} 3 p
+ oy, - V) — 3T09 | = w(Tdyyity; =0, i = 1,2, (1.35)

p%3:01 + p°(w) - V)01 + p° (3313 - y + uf 3)0,6,
2 _ 3 _
+ gpodivu%l — -K(To)ayyel =0, (1.36)

which is indeed a linear system for (u 1, 61). As indicated later in Remark 1.9, the
g-order viscous boundary layer Fywill appear if one of 83u1 (t, x,,0), 83u2 (t, x,,0)
and 837°(z, x,,, 0) is nonzero. That means whether the main viscous boundary layer
F) appears depends only on the boundary properties of compressible Euler solution,
and has no relation with the interior expansion Fj.

Remark 1.5. We point out that the zero-order boundary layer does not appear in
the case of specular reflection boundary conditions. On the other hand, for the case
of diffuse reflection boundary conditions, the zero-order boundary layer (Prandtl
type boundary layer) must appear, which is a nonlinear and nonlocal system, see
(3.197)—(3.202) in [44, Section 3.4.2] for its equations and boundary conditions.
Such Prandtl type boundary layer makes the hydrodynamic limit of Boltzmann
equation much harder than the specular reflection boundary case, and the problem
will be considered in the future.

1.2.3. Knudsen Boundary Layer Expansion To construct the solution that sat-
isfies the boundary condition at higher orders, we have to introduce the Knudsen
boundary layer. Firstly, we define the new scaled normal coordinate as:

X3

= —. 1.37
ni=3 (1.37)

The Knudsen boundary layer expansion is defined as

o0
ﬁe(t, X, n) ~ Zekﬁk(t, X, 0, V).
k=1
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Plugging F¢ + F® + F# into (1.5) and comparing the order of &, then using (1.7),

(1.15), one obtains

1 aF . .
= v3— —[Quo. F1) + O(F1, no)] =
€ an
aF . .
e ”33_,72 —[Q(no, B2) + Q(F2, 10)]

= Q(F) + F, F1) 4+ Q(F1, F) 4+ F) + Q(F1, Fy),

dFiin . .
e v 8’: —[Q (o, Fiy2) + O(Fit2, 110)]
!
== +v,-Vahc+ Y (0@ ) + 0y huo)]
Jj+21=k+2 !
1<1<0,j21
+ Y [QEY+ FFp)+ QF. F) + E)) + Q(F;. F))]
i+ j=k+2
ij=1

)
n [ 0 f £ooal 20
+ E E[Q(33F5,Fj)+Q(Fj»33Fi )]
it j+20=k+2
i,j21,1S1<b

+ Y [Q(a FY Fj)+ Q(F; oL FD)], fork =1,

i+ j+l=k+2
i,j21,1<1<b

where we have used (1.16)—(1.17) and the Taylor expansion of F;

b+1
. 70 M gb+13
Fi(t,x1,x2,y,v) = F; +E l' y F- —(b+ o a0,
with
150 . _ (al &
s F; 1 = (03F;)(t, x1,x2,0,v),

_ _ _ for0SI<b
WG = @I E(t, x1, x2, &, v),

for some §,~ € [0, y].

(1.38)

(1.39)

Itis noted that the Knudsen boundary layer (1.38) is in fact a steady problem with
(¢, x,) as parameters, and the well-posedness has already been obtained in [17,28]
under some conditions on the source term and boundary condition. However, we
shall use the existence results in [28] since the continuity and uniform estimate in

Loo is needed in the present paper.
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1.3. Hilbert Expansion

Motivated by (3.184) and (3.189) in [44, Section 3.4.1], we consider the Boltz-
mann solution with the following Hilbert expansion with multiscales

N N
) . x3
F® =t x,v) + Es'F,-(t, x,v)+ 25’&-0, X, 0 0)
1= 1=
N s
+ D e Bl 3, o0+ F, (1.40)
i=1
which, together with (1.7), (1.15) and (1.38), yields that the equation for reminder
Fé as
R

1
O Fgp+v-ViFgp— 20w, F&) + O(F%, w)}

N
=& Q(Fk, FR)+ Y e HO(F; + Fi + Fi, Fi) + Q(Fg, Fi + Fi + F)}
i=1

+ R 4 R® + R®, (14D
where

R = — V7%, 4 v -V }(Fy_1 + eFy)

+eN0 N SN (R, ), (1.42)

i+jZN+1
1<, jSN

R = — 8N_6{at + v, - V||}(FN—1 + SFN) - 5N_6v3ayFN

!
L N6 Z glTi=N=1 F[Q(aéuo, Fj)+ O(F;, 3§M0)]

JHZN+1
ISjSN,1SISh

L gN-6 Z e NN OFY, F)) + Q(F;, ) + Q(F, F))]
i+j=N+1
1<5i,jEN
l
B N A Y y = -
+ehTO Y TN (O, ) + O(F) 05K

i+j+HZN+1
156, /SN, 1150

b+1 N
5y i - - -
+e° szgf Q@Y i, Fy) + Q(Fj, 95% )]
e
N
b—4 yor! i+j—2 b+1 > m. qb+l
T (b+1)v28 (0B, Fj) + Q(F;, 93730, (1.43)
T, j=1
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and
RE = — 8N_6{at + v V\\}(ﬁN—l +8ﬁN)

I
N—6 j+20-N—1 1 l 3 rooal
+e Y. & - Le@sno, i)+ O(Fj, d510)]
JH2AZN+1

1SjSNASISE

+eNT0 N NI QD + B Fp) + Q(F ) + FY) + Q(F;, F))]
i+jZ=N+1
156, jEN

. . l A A
4 N6 Z giti+2=N—-1 %[Q(aéFiO, Fj) + Q(F;, LFD)]
i+j+20>N+1 ’
150, jSN,1<I<b

o [ .
4+ eN-6 Z gitiH=N-1 %[Q(az Jal Ep+ Q(F gl Fo)]

yiio 77y
i+j+HZN+1
156, jSN,1SISh

4 g2b—4 77 Zg, 1 Q(3b+1~ F)+Q(F~,83b+1;1)]

(b + 1)'
R AR S (0@ Fy) + 0(Fj, 037150)]
©+D! = Y S
i,j=
1 N
+£b—4(:+ 1)' Z 8l+j -2 Q(ab"rl%vl’F )+Q(F ab+131)] (144)

—_

lj:

where 84110, 03! i, 94 F?, 931" §; and 9L FL, 99F13; are defined in (1.18), (1.39).

The main aim of the present paper 1s to establish the validity of the Hilbert
expansion for the Boltzmann equation around the local Maxwellian & determined
by the compressible Euler equations (1.8), so it is natural to rewrite the remainder
as

Fi = Vitfh (1.45)
To use the L2-L*® framework [22], we introduce a global Maxwellian
1 [v]?
= exp | — ,
M= o2 P T 2ty
where T); > O satisfies the condition
Ty < rnln T, x) =< max T(t,x) <2Ty. (1.46)
xeR xeR

By the assumption (1.46), one can easily deduce that there exists positive constant
C > 0 such that for some % < o < 1, the following holds:

1
el S u(t, x,v) = Cuy. (1.47)
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‘We further define

_x 1
Fp= {1+ 0} 2/umh = ooy P (1.48)
K
with the velocity weight function

we () = {1 + [v]?}2, for x =0.

Theorem 1.6. Let T > 0 be the life-span of smooth solution of compressible Euler
equations (1.8). Let k =7, N Z 6 and b = 5. We assume the initial data

N
; — X ~ X
FE0,x,v) =p(0, x,v) + ) &' {Fz«o,x, V) + Fi0.x 20 + F 0 x,, 8—; v)}
i=1
+ e Fg(0.x,v) 20,

and F;(0), F;(0),i = 1, ..., N satisfy the regularity and compatibility conditions
described in Proposition 5.1 (see Remark 5.2 for details on the compatibility con-

ditiOnS), and
”( FS ) FS
A :u‘M

Then there exists a small positive constants o > 0 such that IBVP of Boltzmann
equation (1.5), (1.3) has a unique solution for ¢ € (0, e9] over the time interval
t € [0, ] in the following form of expansion:

.

N
Fé(t,x,v) =u(t, x,v) + Zgi {Fi(t,x, v) + Fi (t,x”, xf v) + ﬁi (t,x‘., z—;, v)}

i=1

+ e F5 (1t x,0) 20 (1.49)
with
Fy(t Fé(t
{H @ +83Hw,<(v) r() } < C(1) < oo (1.50)
te[O 7] Hm WL

Here the functions F;(t, x, v), Fi (t, xy,y,v)and I:", (t, x,, n, v) are respectively the
interior expansion, viscous and Knudsen boundary layers constructed in Proposi-
tion 5.1.

Remark 1.7. From (1.49)—(1.50) and the uniform estimates in Proposition 5.1, it
is direct to check that

C7s

e (=750
tel0,7] N
Hence we have established the hydrodynamic limit from the Boltzmann equation
to the compressible Euler system for the half-space problem.

Ff—u

+ e ()]
L2(R3 xR3) “\ i ® LR xR3)

}§Ca—>0.
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Remark 1.8. For the initial data F; (0, x, v), F; (0, x,,, v, v) and ﬁi(O, X, 0, V), We
only need to impose data on the macroscopic part of F; (0, x, v), and the part of
the macroscopic part of viscous boundary layer F; (0, x,, y, v), and no conditions
are needed on I:} (0, x,,, n, v), see Proposition 5.1 for more details. Also, from
Proposition 5.1, we know that F; decay algebraically with respect to y, and F;
decay exponentially with respect to n; and the decay estimates are crucial for us to
close the estimate for R¢, RE.

Remark 1.9. For the first order of viscous boundary layer F7, its boundary condi-
tion is closely related to the boundary value of compressible Euler solution, i.e.,
(see (5.9) for details)

ity i (1, %, )ly=o = —03ud(t, x,,0), i=1,2,

‘ : (151)
8y9(l, Xiis y)|y:0 = _383T (t, X1y O).

It is also noted that F; does not interplay with Fi, see (1.24), (1.35)—(1.36) and
(2.26). Hence, if one of 3311(1)(1‘, X, 0), Bgug(t, x,,0)and 9:T7°(¢, x,,, 0) is nonzero,
then the viscous boundary layer 1 must be nonzero. That means the e-order viscous
boundary layer F; must be included in the Hilbert expansion. On the other hand,
the first order of Knudsen boundary layer F; does not appear, i.e., Fi = 0 (see
(5.11) for details), and this is reasonable since the Knudsen boundary layer is used
to mend the boundary condition at higher orders. Therefore the interplay of interior
expansion, viscous and Knudsen boundary layers start from &2-order.

Remark 1.10. For non-flat domains, as pointed out in [47], one needs to modify
the equation of expansion for boundary layers due to the non-trivial geometry.

1.4. Acoustic Limit

The acoustic system is the linearization of compressible Euler equations around
a uniform fluid state, for instance, (1, 0, 1). After a suitable choice of units, the fluid
fluctuations (¢, ®, 9) = (¢, 1, 2, 3, ¥) satisfies

0 + divd = 0,
yP+V(p+9)=0, (t,x)eRy xR (1.52)
30,9 4 dive =0,

We impose (1.52) with the following initial and boundary data:

(., @, 9)(0, x) = (99, Po, Vo) (x) € HO(R3), and @3(t, x)|x—0 = 0.
(1.53)

Clearly, the IBVP (1.52)—(1.53) is a linear hyperbolic system with constant coeffi-
cients and characteristic boundary, and there exists a unique global smooth solution
(¢, @,0)(t) € H (Ri). In fact, we can still use Lemma 3.1 with the Euler solu-
tion (p,u, T) = (1,0, 1) in (3.1) and slightly different coefficients to obtain the
global existence of smooth solution to IBVP (1.52)—(1.53). Moreover it holds that

sup ||(¢, @, 19)(5)”1-150([&1) < C(t» I (@0, Po, I?O)HHS()(]Ri)), vt > 0.
s€[0,7]
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On the other hand, the acoustic system (1.52) can also be formally derived from
the Boltzmann equation (1.5) by letting
F¢ =iy +8G%, (1.54)
where [/ is the global Maxwellian determined by the uniform state (1, 0, 1), i.e.,
i 1 ( E |2>
v = sexp| ——— ).
(2m)? 2

The fluctuation amplitude § is a function of ¢ satisfying

§—>0 as ¢—0.
For instance we can take
§=¢% for w > 0.
With the above scalings, G® formally converges to
o> -3
2

where (¢, @, ) is the solution of acoustic system (1.52), see [2,4] for detailed
formal derivation.

One of the purpose of present paper is to establish the acoustic limit for initial
boundary value problem of Boltzmann equation over half-space Ri. We use § to
denote the fluctuation amplitude and assume that

G = {(p—i—v-d)—i— 19}ELM, ase — 0, (1.55)

§—>O as ¢ — 0.

Theorem 1.11. Let © > 0 be any given time. Leting u’(0, x, v) be the local
Maxwellian with initial datum 1 + 8¢q, §®g and 1 4 59,

L+5p0) {_ v —§Po(0)|? }
27 (1 + 890(x))]3 2(1 4 890(x)) )’

where (pg, ©g, V9) is the initial data given in (1.53). We assume that the conditions
in Theorem 1.6 hold, and rewrite the corresponding Hilbert expansion established
in Theorem 1.6 as

120, x, v) =

N
. - X ~
Fo(t,x,0) =p’ (1, x,0) + ) & {Fi(t,x, v) + F; (t,xu, =, v) + Fi (t,xu, x% v)}
= & &
+ e F5(1,x,v) 2 0.
Then there exist e > 0 and 8o > O such that for each ¢ € (0, eo] and § € (0, o,
there exists a constant C > 0 so that

&
sup {1G* (1) = GOl gz + 1G5 = GOl 2oy | < CB+ ),
0<r<r * * 8

where % — 0 ase — 0,and G* and G are defined in (1.54) and (1.55) respectively.
The constant C > 0 here depends only on T and initial data || (o, Po, Do) s ®)



248 YAN Guo, FEIMIN HUANG & YONG WANG

We now briefly comment on the analysis of the present paper. For the Hilbert
expansion of Boltzmann equation over the half-space x € ]Ri with specular re-
flection boundary conditions, in general, the viscous and Knudsen boundary layers
will appear. To solve the interior expansion, viscous and Knudsen boundary layers,
we need to determine the boundary conditions so that each of them is well-posed.
We notice that the Knudsen boundary layer (1.38) is indeed a steady problem with
(t,x,) € [0, 7] x R? as parameters. From [28], we know that Knudsen boundary
layer is well-posed in weighted LOO ,-space under the conditions (2.11)-(2.12), see
Lemma 2.5 for details. In partlcular the weight with respect to normal variable
n can grow exponentially, which is important for us to close the remainder esti-
mate. In general, the source term on the right hand side of (1.38) does not satisfy
(2.11). We use the idea of [1] to introduce a correct function f, 1 to overcome this
dlfﬁculty, see Lemma 2.9 for details. To determine the boundary conditions for
F;, F;, F,, i=1, , N, we require that each F; + Fi + F satisfies the specular
reflection boundary Condmons, so that together with (2.12), we can finally obtain
the boundary conditions for interior expansion and viscous boundary layer, see
Section 2.3 for details. Here we point out that F;, F; and F; may not satisfy the
specular reflection boundary conditions alone.

For the existence of interior expansion, we have to consider a linear hyperbolic
system with characteristic boundary, see Lemma 2.2. We are able to construct
local in time solution with desired energy estimate in the presence of boundary
conditions in Lemma 3.1. For the existence of viscous boundary layer, we note
that it is involved to a linear hyperbolic system with partial viscosity (only in the
normal direction) and linear growth coefficients, which is not a standard linear
parabolic system, see Lemma 1.1. By using the energy estimate and several cut-
off approximate arguments, we establish its well-posedness in a weighted Sobolev
space with algebraically growth weight of y, see Lemma 4.1 for details.

With above preparations, then we can establish the well-posedness of F;, F; and
ﬁi, i =1,..., N and obtain the uniform estimate, see Proposition 5.1. Now with
the help of uniform estimates in Proposition 5.1, we can use the L2-L framework
[20,23] to obtain the uniform estimate for remainder term F%, and hence obtain
the solution of Boltzmann equation in the form of (1.49).

The paper is organized as follows: in Section 2, we reformulate the interior ex-
pansion and Knudsen boundary layers. Also we derive the corresponding boundary
conditions so that the formulations of interior expansion, the viscous and Knudsen
boundary layers are all well-posed. Section 3 is devoted to an existence theory for a
linear hyperbolic system with characteristic boundary, which are used to construct
interior expansion F;. In Section 4, to construct the existence of viscous boundary
layer F;, we establish an existence theory of IBVP for a linear parabolic system with
degenerate viscosity and linear growth coefficients in a weighted Sobolev space. In
Section 5, we construct solutions of interior expansion, the viscous and Knudsen
boundary layers. Theorems 1.6 and 1.11 are proved in Sections 6 and 7, respec-
tively. In “Appendix A” we give the proof of Lemma 1.1; we present a short proof
of Lemma 2.5 in “Appendix B”; and we show some anisotropic trace estimates in
“Appendix C”.
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Notations. Throughout this paper, C denotes a generic positive constant and vary
from line to line, and C(a), C(b), ... denote the generic positive constants de-
pending on a, b, ..., respectively, which also may vary from line to line. We use
(-, ) to denote the standard L? inner product in R%. I - ll;2 denotes the standard
Lz(R*jr X R%)-norm, and || - || Lo denotes the L“(Ri X Rg)-norm.

2. Reformulations of Expansions and Boundary Conditions

2.1. Reformulation of Interior Expansion

Firstly we introduce the existence result on the compressible Euler equations.

Lemma 2.1. Let sg = 3 be some positive integer. Consider the IBVP of compress-
ible Euler equations (1.8)—(1.10). Choose 81 > 0 so that for any § € (0, 61], the
positivity of po and Ty is guaranteed. Then for § € (0, &1], there is a family of
classical solutions (p°, u?, T%) € C([0, °1; H*(R3)) N CL([0, 7°]; HO~1(RY))
of IBVP (1.8)—~(1.10) such that p° > 0 and T® > 0, and the following estimate
holds:

1) § §
(0 —1,u°, T° — 1)||c([o,fé];H»fo(Ri))mcl([o,ﬁ];ﬂvml(Ri)) § Co. 2.1)

The life-span t° have the following lower bound

e

5
The constant Cy, Cy are independent of 5§, depending only on the H**-norm of
(g0, o, Vo).

We refer [42] for the local existence of the IBVP of compressible Euler equation
(1.8)—(1.10); see also [10] and the references cited therein. We point out that the
local existence result in [42] is for smooth bounded domain with C°° boundary, but
the method can also be applied to our half-space problem. On the other hand, we
can also obtain (2.1)—(2.2) by using similar arguments as to those in Lemma 3.1,
below.

Throughout this paper, we will drop the superscript of (o°, u®, T%) when no
confusion arises. To derive the estimates of interior expansion, i.e., Fi(z, x, v), .. .,
Fn(t, x, v), we firstly present a useful lemma which will be used to estimate the
bound of linear terms.

1\

T (2.2)

Lemma 2.2. [21] Let (p, u, T)(t) be some smooth solution of compressible Euler
equations (1.8). For each given nonnegative integer k, assume Fy.’s are found. Then
the microscopic part of Fi.+1 is determined through the follow equation for Fy in
(1.7):

{0r +v - VadFim1 — D ivj=k+1 Q(Fi, Fj)

Fk+1) - ij21
I-P}|— |=L""|- 23
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for k = 0, where we define F_; = 0 for the consistency of notation. For the
macroscopic part, Pi+1, Uk+1, Ok+1 satisfy the following:

0t pk+1 + divx (pugy1 + pr1u) =0,

Pi+1 POk1 + 3T P41
p[3sz+1 +ugt1 ‘qu+u'quk+1l - TJer(pT) + Vy (¥ = fk,

3

2 . .
p[8,9k+1 + §(9k+1d1vxu+ 3Tdivyug41) +u- ViOry1 + 3up4 -VXT] = gk,
2.4

with

fi=— Zaxj< / -Az]Fk—H U>,

Zax, (ZTZ/ B; k+1dv+22u] / A \k/tldv)—2u.fk’
(2.5)

where the A;; and B; are the Burnett functions defined (1.25), and we have used
the subscript k for the source terms fi and gy in order to emphasize that the right
hand side depends only on F;’s for 0 < i < k.

Remark 2.3. To solve (1.7), it is equivalent to solve the linear hyperbolic system
(2.4). Since itis an initial boundary value problem, we still need to impose a suitable
boundary condition to (2.4). In fact, to ensure each Fj + F r+ E x satisfies the specular
reflection boundary conditions and Knudsen layer are solvable, we can not impose
boundary data of (2.4) arbitrarily. It is a very technical process to determine the
boundary condition and we will show the details in Section 2.3 below.

Remark 2.4. The original version of Lemma 2.2 in [21] is for the Hilbert expan-
sion of Vlasov-Poisson-Boltzmann equations, and one can obtain Lemma 2.2 by
dropping the electric field. Lemma 2.2 is slightly different from the original version
in [21] because we also consider the orders of 2~!, but the proof is very similar,
so we omit the details for simplicity of presentation. Noting A; ; and 5; are mi-
croscopic functions, the source term f; and gx depend only on the microscopic part
I — P) (el ) and hence depend only on F;’s for 0 < i < k.

2.2. Reformulation of Knudsen Boundary Layer

A

A Fy
Define f; := ——, then we can rewrite (1.38) as
NI
3 fi A
vsa—fk +Lofk =8k k21, (2.6)
n
where S; 1= S’k,l + Sk‘z(k = 1) with

o 0 II'VH ﬁ—
§py = —py | Lt v Vil Fia | 27)
NI
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. 1 - 2 ; 2
Ska= Y —=[0Q(F’+ FY. Jiwof)) + QWi fj. FO + L)
i+j=k Vo : :
ij=>1
+ 0o fi, J_ﬁ ]
l

T M [ Q@310. i f)) + Qo Bi10)]
j+2=k VI
1208, j21

l
+ Y \/_[Q(83F0 VoS + 0o fi, BFD)]

i+j42l=k
i,j21,1<1<b

| _ R .-
+ Y T —=[0@ . Jimf) + Wi, 8 F)]

!
i VR
i,j21,1<1<b
) SV} i
— (I—Py) {0: + v, -2 . 2.8)
N

Here we have used the notation F_; = Fy = 0 for simplicity of presentation. It is
easy to notice that Si,; € Np, Sk,» € N and

>

S/))
I
_C(:)
I
iﬂ)
IS
I
1
I
()

(2.9)

For later use, we introduce a result on the existence of solution to the Knudsen
boundary layer problem with a perturbed specular reflection boundary conditions.
Consider the following half-space linear problem

U3anf + LOf = S(t» -xllv ’77 U),

f(ts X 0’ Uy, U3)|v3>0 = f(ts X 0’ Uy, _U?)) + fb(t’ Xii, Uny _U3), (210)
lim f(, x,,n,v)=0,

17— 00

where n € R4 and (¢, x) € [0, 7] X R2. In fact, we think (t,x,) €10, 7] x R2 to
be parameters in (2.10). The function fy(#, x,,, v) is defined only for v3 < 0, and
we always assume that it is extended to be O for vz > 0.

Lemma 2.5. [28] Let 0 < a < % and k = 3. For each (t, x,) € [0, 7] x R2, we
assume that

S e Nj- and lwiepeg ® fo(t, .0, )l e + ||v’1w,(u5“e§0’7S(t,x.., )lLge, < oo,
2.11)
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for some positive constant ¢y > 0, and

f3 v3 fu(t, x,, V) /o dv =0,
(vl —u(l))v3 fo(t, x,,v) Jpodv =0,
(@ —ud)v3 fo(t, X, v) o dv =0,
lv — 1?03 fi(t, x,, v) YIodv = 0.

2.12)

R3

Then the boundary value problem (2.10)—(2.12) has a unique solution f satisfying

lwepg ®e F(t, 20, - g, + llwepg ® @, %0, 0, )l zge

Se 7 (Metsg® it 30, 0, Dllage + v wiepeg e, 3, lags )

(2.13)

So —

for all (¢t,x,) € [0, 7] x R2, where C > 0 is a positive constant independent
of (t, xy), and ¢ is any positive constant such that 0 < ¢ < o. Moreover, if S
is continuous in (t, x,,n,v) € [0, 7] x R2 x Ry x R3 and fp is continuous in
(7, Xy, vy, —v3) € [0, 7] x R2 x R? x Ry, then the solution f is continuous away
from the grazing set [0, T] X 0.

Remark 2.6. A sketch proof of Lemma 2.5 is presented in “Appendix B”, see [28,
Section 3] for details.

Remark 2.7. As indicated in [24], in general, it is hard to obtain the normal deriva-
tives estimates for the boundary value problem (2.10). Fortunately, it is easy to
obtain the tangential and time derivatives estimates for the solution of (2.10), i.e.,

D werg eV £ x0 s, + Iwiepg “ 9V £ x0, 0, ) e
i+j<r
< C
fo—2¢

S {lwertg 85! ot Yage + I werng 3 9 Sz, |,
i+j<r
(2.14)

provided the right hand side of (2.14) is bounded. And such an estimate (2.14) is
enough for us to establish the Hilbert expansion. To prove the estimate (2.14), we
study the equation of 8’ Vj (/1o f). Itis direct to check that the new source term and
boundary perturbatlon term satisfy the solvability conditions in Lemma 2.5, hence
one can obtain the estimate for of VJ (/o f) by applying Lemma 2.5, therefore
(2.14) follows immediately.

Moreover, taking L° N L2 over (2.14), one obtains

X

> sup {lweng eV Ol o2 1,
=2 rel0.n] " !
i+j=>r
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ety “V £0 0.9l e 2 1)

i

C
< sup {3 {lweng VI foOlge o2 1
So — CzeOr] e " !
i+j>r
T Z ||v*]w,(ua"‘emarivifS(’)||L§ﬁ,n,,,ﬂL£”Lg?v}' (2.15)

i+j<r
Remark 2.8. Golse, Perthame and Sulem [17] have proved an existence result for

(2.10) in the space / 1+ |v|)ez§’7f2 dvdn +/ ||e§’7f||%oodv. In the present
]R+ ><]R

paper, since the continuity and weighted L}°, estimate are needed, so the second

and third authors of present paper proved the well-posedness of (2.10) in the new

functional space, see [28].

Since the source term S € N in Lemma 2.5 is demanded, but Se ¢ Ntk = 3)

in general, i.e., S‘k_l # 0. Hence, to solve (2.6), we need to cancel the term §k,1.
‘We assume that

St = fa + b 0 =) + &y =} Vi, (2.16)

where (dg, b, &) = (ak, br, E1)(t, x,, ). By similar arguments as to those in
[1], we have the next lemma. The details of proof are omitted for simplicity of
presentation.

Lemma 2.9. For (i, by, &) defined in (2.16), we assume that

hm e{rI'(&kv ékv ék)(ti -xH’ 77)| = 0

17— 00
for some positive constant { > 0. Then there exists a function

for = [Akvs + B1vs(vp —ud) 4 By ovz(vy — ud)
+ By +(:‘kv3|v—u0|2}4/_uo, @.17)
such that
V30, fr1 — Sk € NG,

where

A * 2
Ar(t, xy, ) = —/ (Toak +36k)(t Xy, $)ds,
n
A 0 A
Bk,i(t’x\l9 T)) = _/ Fbk,i(taxms)dsv l = 1’ 27
! (2.18)
Bk,3(t1 Xiis T)) = _/ bk,3(t’ Xiis S)dsv
n

. 1 00
ot xs ) = W/n Gt x5, $)ds.
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Moreover it holds that
130y fi.1 — Sk.1l < Cl(a, br, &) (2, x0, MIA + [))* /10,

and

o0
| fea@t xpn,0)l = C(A+ Iv|)3«/u«o/ @k, bi, c)| — 0 as n — oo.
n

Remark 2.10. It is very important to note that S'k, 1 depends only on fk_z, which
is already a known function when we consider the existence of fk. Thus fk,l (or
equivalent (Ak, ék, é‘k)) is determined by fk,2. On the other hand, since 3‘1,1 =
3‘2,1 = 0, one has that

fii=Hi1=0, (2.19)
which yields that (A, By, C1) = (0, 0,0) and (A2, B>, C2) = (0, 0, 0).
Now we consider fk,z satisfying

3 fr

2 r & o ~ A
v3 877’ + LOfk,Z = Sk,2 — LOfk,] — (v3anfk,l — Sk,l) e NJ_, (2.20)
which can be solved by Lemma 2.5. Then it is easy to check that

fi = fu1 + fers 2.21)

is a solution of (2.6).

2.3. Boundary Conditions

To construct the solutions for interior expansion, viscous and Knudsen boundary
layers, the remain problem is to determine suitable boundary conditions for well-
posedness. As mentioned in Remark 2.3, we require that each Fj + Fr+ ﬁk satisfies
the specular reflection boundary conditions, i.e.,

(fi + fe + fOt, %0, 0, v, v3) = (fe + f + fi) (€, %0, 0, v, —v3),
which, together with (2.21), yields

fk,2(l‘, X Ov Uy, US)|U3>O
= fk,Z(tv X, 0, v, —v3) + [fk + fk + fk,l](ta X, 0, v, —v3)
— L + fi+ fial, x,, 0, v, v3). (222)

For notational simplicity, we denote

0, vz > 0,
gk(t, Xy, Uy, V3) = [fx + fk + fk,l](t, X, 0, v, v3)

—[fi + fe + fralt, x,,0, v, —v3), v3 <O.
(2.23)
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On the other hand, we impose the far field boundary condition
lim fia(t, x,, 7, v) = 0. (2.24)
n—00

Noting from Lemma 2.5, to solve (2.20), (2.22)—(2.23) and (2.24), we need g; to
satisfy (2.12), i.e.,

fn@ v38k+/ o dv = /R3 (v1 — u)v3gr /o dv = /R3(v2 — u)v38k/10 dv
= /3 v3lv — u’2gk/1to dv = 0,
R

which is equivalent to
| Rl i+ e, 0.0 dv = = 7Gx + ST°C ¢, 3,0,

| vt = A= P+ e, 50,00
= —p%(T%)? By (1, x,,0), i = 1,2,
/RS v3(Jv —u’)? = 5T7%) /o = Po)[ fic + fil(t, x,, 0, v) dv

= —IOpO(T0)3ék(t, X, 0),
(2.25)

where we have used (2.17).
For the case k = 1, from (1.21), (1.24) and (2.19), itis easy to know that (2.25);
is equivalent to

u1,3(t’x\\50) =0 (226)

Since fi(t, x,, 0, v), fi(t, x,,0,v) € No, (2.25)23 holds naturally for k = 1.
Now we consider (2.25) for the case k = 2. From (2.25)1, a direct calculation
shows that

g 3(t, x,, 0) = —itg 3(t, x,,,0) — TO(Ag + 5T°Co) (1, x,,, 0)
- ) {0+ i i D |y
— TY%(Ax +5T°C)(t, x,,, 0), (2.27)
where we have used (1.30). Clearly, tAhe right hand side terms of (2.27) can be
determined by f;, fi ( Sk —1)and f; (j < k —2).

Now we consider the rest terms of (2.25). By similar arguments as in (A.9)—
(A.16), and utilizing (1.24) and (2.26), one can obtain, fori = 1, 2,

/R o3(on — )y~ Po) fult, %, 0, ) do
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(@0 1i = o + i3 = (TOAY, T2 |0, 2, 0),
(2.28)

/ v3(jv — WP = 5T%) V(I — Po) /i (1, %, 0, v) dv
]R3

— 5 = 3 7
[ T8, 81 = 26°01 + 815 = QITOIBY. i) |03, 0.

(2.29)
Using (2.28) and (2.29), we can rewrite (2.25); 3 as
Oyitg—1,i(t, x,,0) = 70 {[po(ul,i + ity Ditg—131 + (T°AY, Ji2)
+(TOAG, (A= Po)fi) + p° (TP B}t 3,00, i =12,
(2.30)
0Byt x,.0) = — {5 [0y + 0D)itr—1.3) + (T8, Ji_s)
y k—1L, Xy, (TO) 1 1)Uk— 1,3 3 k=2
+T)BY, (= Po) fi) +100°(T)Cif 1, x,, 0).
(2.31)

Remark 2.11. Itiseasy to check that the terms on RHS of (2.30)—(2.31) depends on
fii Sk—1), f] (j<k=2) andﬁ (I < k—2).Once we solve (iig_1, Op_1) with
the boundary condition (2.30)—(2.31), then fk will be solvable by using Lemma 2.5.

3. Existence of Solution for a Linear Hyperbolic System

To study existence of interior expansion, we first need to consider the following
linear problem for (p, i, 0)(¢, x):

9 p + divy (ou + pu) =0,

L . Vip. 6+3Tp
pfoit +u - Viu+u- Vi) — ;p P+ Vy (%)=f, (3.1)

~ 2 . -
PA& 0 + 5 (@divyu+ 3Tdivyd) +u- Vo + 3 - V,T) = g.

with (7, x) € (0, 7) % Ri_. We impose (3.1) with a given boundary condition
i3(t, x,,0) = d(r, x,), Y(t,x) € 0,71)x R, (3.2)
and the initial condition
(5. i1, 0)(0, x) = (po. 0. o) (x). (3.3)
For later use, we define

¢, = 909

X1 X2
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where « is a vector index which is different from the one defined in (1.47). Defining
the nations || - ”Hk(Ri) and || - [l w2y

2 i 2
O, = D 10085 Ol )
lor|+i <k

e 7 gy = D 197,817 2 z0)-
lo| =k

(3.4)

Lemma 3.1. Let (p,u, T) be the smooth solution of compressible Euler system
obtained in Lemma 2.1, and Tt > 0 be its lifespan. We assume that

~ o~ A N2 2 2
1o, @0, 60) 134 g3 +t6s(1(1)g) [Il(f, DOy g, + IId(t)IIHk+z] <00, (3.5)

with k 2 3, and the compatibility condition for initial data (3.3) is satisfied (Here
the compatibility condition means that the initial data (3.3) satisfies the boundary
condition (3.2), and the time-derivatives of initial data (po, o, éo) are defined
through system (3.1) inductively). Then there exists a unique smooth solution to
(3.1)—=(3.3) for t € [0, t], which satisfies

sup /(5. . 0) )12 g5 ) = €2, Ees){11GBo. o, B0) s s

te[0,7]
+ sup (16 DO s s, + 140 Bz | -
re[0.7] 'Hk+l(R§r) Hk+2(]R2)
(3.6)
where Ey := sup,¢po. 1 1(p — Lu, T — D)(@) | .
Proof. We define

. pO+3TpH
pi=

To deal with the boundary terms, it is more convenient to use the variables (p, i, ] ).
Then (3.1) is equivalent to

. -5 . _ 5. . o1
8,p+u~pr+§pd1vxu+§d1vxup+pr~u:gg,

i vl V-
,oa,u—l—pu-qu—l—pr—%p%—pu-vxu— Pg_ 3.7)

3T
~ ~ 2 -
00,60 + pu-V,0+2pdiveu + 3pu -V, T + gpdivxue =g.

Let x be a smooth monotonic cut-off function such that

|1 seqo.11,
x(s) = 0, s€[2,00). (3.8)
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Then we define
ug(t, x) = (0, 0, d(t, x“)x(x3))T and w:=1u — uy. 3.9)

Now we can rewrite (3.7) to be

- -5 5 -
8,p+u-pr+§pd1wa+§d1vxup+VXp-w

1 5
=Go:=zg— gpdivud —Vyp-ug,

3
o Vb + Vip— P54 o v — P
POW + pu- Vxw + Vip — » p+pw- Viu— 3T (3.10)

=Gy :=f— pdiug — pu- Vyug — pug - Vxu,
~ - 2 ~
000 + pu- V.0 +2pdivyw + 3pw - Vi T + gpdivxué’

=Gy :=¢g—2pdivyug — 3pug - Vi T.
From (3.2), the boundary condition now becomes
wi(t, x,,0) =0. 3.11)

We can write the linear system (3.10) as a symmetric hyperbolic equations

3

Ao U+ AidiU + AU = G, (3.12)
i=1
where
2000 —p . p 00 —py
D 0 pp 00 O p ppu O 0 0
U=|w],A9=] 0 0 pp 0O 0 |, A = 0 0 ppur O 0 ,
6 0 0 0 pp O 0 0 0 ppuy O
—p 000 2 —pup 00 0 2oy
and
2uy 0 0 - 2 0 0 -
5U2 p puz 5U3 p pu3
0 ppur O 0 0 0 ppuz O 0 0
Ay = P 0 ppuy O 0 , Ay = 0 0 ppuz O 0
0 0 0 ppuy O )4 0 0 ppuz O
—pupy O 0 0 %pzuz —puz 0 0 0 %p2u3
3.13)

The matrix A4 and column vector G can be easily write down, and we do not give
the details here. It is easy to check that Ay is positive.

Since the matrix A3 is singular on the boundary, hence the IBVP (3.10)—(3.11)
is a linear hyperbolic system with characteristic boundary. We refer [9,41] for the
local existence of smooth solutions. To close our lemma, one needs only to establish
the a priori energy estimates.
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It follows from Newtonian—Leibnitz formula that
t
”U(t)”'%_[k—l < IIUOII%H +2/ 10: U () 1351 11U ($) lpgx—1dds
0

t
< NUoll3 s + fo 1U ($) 113 4ds. (3.14)

Hence we need only to close the highest order derivatives estimates. Let || +i = k,
and applying 9" 8’ to (3.12), we obtain

I,

3
Ao LU + Y Ajd9f, 05U
Jj=1

= 9% 05G — 9% 85 (AsU) — [92, 85, Aglo,U Z[ama&Aj]ajU, (3.15)

where and whereafter the notation [-, -] denote the commutator operator, i.e.,

(09, flg = 0°(fg) — f%g= Y.  Cp,dff-9g.

pty=a,1B121

Multiplying (3.15) by 9;" ”83 U T and integrating the resultant equation over [0, 1] x
Rj_, we obtain

t
195, 25U ()17 <C||8,“83U(0>||22+C(Ek+1)/0 (U, G)(5)[17 4 ds

+C (a, (U T A3 05U) (s, x,,, 0) dx, ds| .

(3.16)

For the boundary term on RHS of (3.16), noting (3.13) and u3z(¢, x,,,0) = 0, it
holds that

/ / (3%, 05U T A39%, 35U)(s, x,, 0) dx, ds

_2//(17(’%I| D ;*”a w3)(s, x,,, 0) dx, ds. (3.17)

To close the above estimates, we use an induction argument on the number of
normal derivatives d;. For i = 0, it follows from (3.11) that

37, wa(t, x,,0) = 0, (3.18)

which, together with (3.16) and (3.17), yields that

13
DN UM £ CIUO)Gp + C(Exg) /0 (U, G)(5)]17 s ds.
lo|=k
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Assume that we have already obtained

t
Yo 19 5UMI. S C(Erp) / U175 + 1G @) 17 441ds
loe|+i=k,i<I—1 0

+ ClIW, G)O) |74 (3.19)

Next, we shall consider the case for ||81 103 U(t)||i2 with |e| 41 = k. Noting (3.16)
and (3.17), we need only to control the boundary term

/ / (p 8, | , | 1])3)(s X, 0) dx, ds. (3.20)
It follows from (3.10) that

. . Op . B3P 5
B3P =—p@ +u-Voibs +==p = pib- Vais + 306 + Grs, - (32D)

2

pdzib; = —g(a, +u-Vo)p— p;Biﬁ)i — div,u p — % W+ 260.
(3.22)
By utilizing (1.8) and (1.9), we have
#3p(t,x,0) =0 and u3(z,x,,0) = 0. (3.23)

Substituting (3.23) into (3.21) and using (3.18), one obtains
ip(t, x,,0)=Gi3(t, x,,0) (3.24)
Applying Bé_l to (3.21) and (3.22), and using (3.23), then we have
AP, x,,0) = (3 +u- V)i s + 85 iy + 8,5 s

2
+303 %9l 8dus

i=1 |g|+j<i-2
+ > 8 8. w.6) + 0y "Gy, (3.25)
|BI+i<1-2
Bb3(t, X, 0) = (3 + u- Vi) p+Z{alal o+ 0l 4+ 0 p

2
+ g Ao+ Y. 8 8d(p. ) + 8y Go. (3.26)
' Bl+jsI-2

(e

where and whereafter we use to ignore the exact coefficients which depends
only on the Euler solution. Substltutmg (3.25) into (3.26), one can obtain

A5i3(t, X1, 0) = (3 + - Vi)d, 05 i3 +Z{a 05"y + 95
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+ 8,0, 23 + 970, 3+Z > ool 8i(p.w)
i= |pl+j<1-2

+ Y ol . o) +oG. (3.27)
|Bl+jSi-2

If [ is even, using (3.18) and (3.27), step by step, one can get

2 41
Ohw3(r, x,, 0) = >N (a9, 70y s + 000y T iy + 0l p

i=1 j=0
2 .

+3 Y w0l 8w
i=1 ||+ <12

-1

+ Y ol epow.6)+ > G (3.28)

Bl+jS1-2 j=0

Similarly, if / is odd, step by step, we have
=3
2

2
~ ~ — ~ 112 ~
431, 0, 0) = (3 + - V), 2aibs + ZZ[ iy

L

2
ALY F kel

i=1 ||+ <12
-1
+ Y ol w6+ > 6. (3.29)
1BI+jS1-2 j=0

Substituting (3.22) into (3.29), one obtains, for / being odd, that

1 1=2j 5.
[II

1

2
A3t 2, 0) = (3 +u- V)dl o+ Z

T Mw\

+olo }+8’ lp+Z o w0l 0] (p. )
=1 |Bl+j<I-2

—1
+ Y ol epow.6)+ > G (3.30)
B+ S1-2 j=

To estimate Bé P, we have to be careful. Let / be even. Substituting (3.28) and
(3.30) into (3.25), we can get

8éﬁ(t7 xll’ O)
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L

~ ~ 122 ~
= (3 +u- Va4 (3 +u- V)ZZ{B&M Ty
i=1 j=0

2
l 2-2j ~ —1 ~ i~ o~
AT BTV RS D DR TR
i=1|l+j<I-2
-1

+ Y w6+ 8G

|BI+iS1-2 j=0
2 7*1
=@ +u- VoI YD 07 p ol p
i=1 j=0

’ -1
DD TR HCENOFD SR AR NOR B A
j=0

i=1|p|+j<I-2 IBl+jS1-2
(3.31)

where we have used the facts that

0 +u-Vouw; =95+ 0()(p, w, 0) + G, (3.32)

which can be derived from (3.10).
Iterating (3.31) again, step by step, we have, for / being even, that

2
OLp(t.x 0) = (@ +u- Vo p+o p+ Y D 890 8] (p. . 0)
i=1|Bl+j<i-2

1—
+ Y w6+ 86,
1Bl+j=1-2 =0
For [ being odd, substituting (3.28) and (3.30) into (3.25), and using (3.32), we

get

ap(t, x,,0)

: 57
= (@3t us Vi) Y Y {0,005 Ty + 000y 2 My + 0l p
i=1 j=0
2 -1
+>3 Y wdlepowa+ Y ol (. +Y 8G
i=1|pl+j<I-2 IBI+jS1-2 j=0
) 52
;ZZaZat” l 2— 2]~ al lp_l_z Z alafua:{(ﬁ’d)’é)
i=1 :

i=l|g|+j<i-2
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-1
+ > ¥l d)+ > G (3.33)

IBI+j=I-2 j=0

Then, iterating (3.33) again, step by step, one obtains, for / being odd, that

2
b p(rx, 0) = sp ol p+ Y Y 890 (p.w.6)
i=1 |+ <i-2
-1

+ Y Mpw. o)+ G

IBI+j<1-2 =0
2
=0 p+y Y, aol o+ Y of 05 w.0)
=g+ =I-2 IBl+j=1-2
+Y 4G, (3.34)

where we have used (3.24) in the last step.

Now we estimate the boundary term (3.20) when [ is even. Using integration
by parts, (3.25), (3.28) and Lemma C.1, it holds that

/ / (pat I z||33w3)(5 Xy, 0) dx, ds
2 51
/ / DML, 3?#/31 1-2j ~l+a;¥|-:—2Jal 1- 2/~1}+3§x,|3l 1=
LS =1 j=0
2
DD DI T A R DI A 9)+Za,““a ¢}
i=l|g|+j<1-2 IBl+j=1-2

{(a,+u Va9 s + 0% 05y + 8,0¢, 95 2

+Z Sooaot ol Y 0ol 0)+ o 047 Gl axds

i=l1g|+j<I-2 1B+ S1-2
! 2 %_1 2j o l—1-2j
;f / 8% 05 Mg x (8 +u- vx){ZZ[a ot
0 i:lj:O
2jal—1-2j ~ o~ o~
+a;l|—:_ /8 ! l]+ataual 'p +Z Z 0; a;x,—:_ﬂa3(l77 w)
i=11g]4j<1-2

-1
+ Z ;YT/B83 (p,w 9)+ Zat Ha/G()]ddes
IBI+jS1=2 =0
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L
2

~ +2j—1-2j ~ +2j—1-2j ~

+/ og, 05 1w3x{§ Y taiar oy T ol ol T g

i=1j=0
2 _ .
N ks S S ST M 0 IS S M M)
i=1|g|+j<i-2 1Bl +jSI-2
l_
t t
+ > o o) G]dx,,‘o—i—C(EkH)/O U, G) ()17 1 ds. (3.35)
j:

From (3.14), (3.19) and Lemma C.1, the second term on RHS of (3.35) can be
bounded by

A 198, 4U 0112, + Cx 195, 05U (1) 117»
L L

loe|=k—1 lo|+i=k,i<I—1
FIUO s + U, YO 54 + 1G4

<aY 18R BUMIT. + CEDIU. )OI,
la|=k—1

t
+ C(Eys1) fo 1T @24+ 1G () 24 ds. (3.36)

Integrating by parts with respect to x; or x; for the highest order terms, using (3.32)
and Lemma C.1, we bound the first term on RHS of (3.35) by

~ 2jal—1-2j ~ 2jal—1-2j ~
Z// ;9,05 3x2{aaf‘”+fa Th+ a5 oy 7 py

t
f/ o5 3 - amazﬁdx..ds+C(Ek+1>/o U134 + IG5y ds

2 t
;Z/ / 9;0% 941 3><Zaa,“jzfa’ 272 5 dx, ds
i=1 70
' -1 L )
+/0/1R< /03 w3 -9/, ;ﬁdx||dS+C(Ek+l)/0 1U N5 + 1G 1541 ds

t t
%/0/ 07,05 b3 f‘..alﬁdx“ds+c<Ek+1>/0 U124 + G112 1 s,
(3.37)

where we have used (3.34) for 81 1=2J p.
If 97, = 9;°05 3%, withay +aa = 1, then by using Lemma C.1, the first term

on RHS of (3.37) is controlled by

t t
// o, 4~ s - BF, ,ﬁdx.‘ds§/ 1U ()13 ds.
0 JR? 0
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For the remaining case 9%, p = 3,k ! D, it follows from (3.30) and Lemma C.1 that

t
/ / OF ol s - ok pd, ds
R2

~ k—2—joj,~ ~
C/ ||U(s)||des+// [oF=15 +Z S 005 0] (5.
i=1

j<i-2
. k=2

+ 3 of 8(p.w.0)+ > afG] -k p d, ds
IBISk—j—2.j<I-2 j=0

' L t
= [Ciw, G><s>||31kds+/ o an )

/ Z 3 w00 ()

11<12

k—2
+ Z t||83(p w, 6)+ZB/G] ak 1pdx”‘
|BISk—j—2,jSI-2 j=0

scEanf Y IRAUOIL + 106 O3,
el +j=k, jSI-1

t
+IGO17 4 +/0 IV, G113 ). (3.38)

Substituting (3.36)—(3.38) into (3.35), for [ being even, we obtain
/ | k8 o)., 0 s

t
< C(Ek+1>{||<U, G)O)74 + /0 U3 + ||G(s)||§{k+lds}
+A > 195,5U M7 (3.39)
la|=k—1

For the case [ being odd, by using (3.30) and (3.34), one can also prove (3.39).
The proof is slightly easier than that for the even case, and we omit the details here
for simplicity of presentation.

Combining (3.16), (3.17) and (3.39), and taking A small, we get

t
D 197,53UM 72 £ C(Exp) fo U + 1G )71 ds
la|=k—1

+ C(Exs DU, G)O) 34

This completes the induction argument. Therefore we can obtain

t
UG < C(Ek+1>{ U, GYO) 54 + fo U5, + ||G<s)||${k+lds}.
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which, together with Gronwall’s inequality, yields that

t
U4 £ CE) (1T, OYOllpe + | 1G$)[5p1ds ). (3.40)
H ) H

Hence we conclude (3.6) by using (3.9), (3.10) and (3.40). O

4. Existence of Solution for a Linear Parabolic System

To construct the solution of viscous boundary layer, we consider the following
linear parabolic system of (u, 0) = (u1, uz,0)

p00u; 4+ 00l - V)u; + p85u3 - yoyu

9: 0
t+0%u - Vol = 2200 — (T + i, i = 1,2,
3T
2 9, 3
P00 + p° (il VIO + p0su3 - y0y0 + 3p divu’0 = Zke(T)d,0 + g,
4.1)
where (z, x,,y) € [0, 7] X R2 x R4, and (,00, ud, 70, 83u(3), divu, 81p0, 82p0)
are the corresponding values of Euler solution on the boundary x3 = 0, which

is independent of y € R. We impose the non-homogenous Neumann boundary
conditions for (4.1), i.e.,

ay“i(ta xH’ }’)|y=0 = bi(t7 xl\)v a}'g(t’ xH’ )’)|y=0 = a(ta xH)v

; 4.2)
limy_, oo (u, 0)(1, x,, y) = 0.

We also impose the initial data

u(t, xy, Y=o = uolxy, y), 0, x,,0)|r=0 = Oo(x,, y). 4.3)

The initial data (u(, 6p) should satisfies the corresponding compatibility condition.
Let! = 0, we define the notations

”f”ilz :/ (1 +y)l|f(xm )’)|2dxudy’ 4.4)
and

X :=(xy,y), and Vz:=(V,, dy) = (Oxy s Oxys ay)- 4.5)

Lemma 4.1. Let I 2 0, k 2 3, and the compatibility condition for the initial data
(4.3) is satisfied (Here the compatibility condition means that the initial data (4.3)
satisfies the boundary condition (4.2), and the time-derivatives of initial (ug, 6p)
are defined through system (4.1) inductively). Assume that

k
sip {3 IV @O+ Y IVE G, g)(r)uilzj]mo.

te[0,7] /3+2)/§k+2 j=0B+2y=j
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withlj :=1+2(k — j), 0 £ j < k. Then there exists a unique smooth solution
(u, 0) of (4.1)—-(4.3) overt € [0, ], which satisfies

k t
Yoo s {nayvﬁ(u 9)(f)||Lz +/ I8y VEay . 0112, ds}
=0 p+2y=j 1€10:7] i

k
<, Ek+3){ > 9 Vi 9)(0)||L2
J=0p+2y=j
+ 5w [ IV @hO g, + Z > IR wwi, ]}
1€0.71 " 5 1oy <ky2 Jj=0p+2y=j g
(4.6)
where the notation Ey43 is defined in Lemma 3.1.
Proof. We define the following background functions
up := yb(t, x,)x(y) and 6, := ya(t, x,)x (), 4.7)

where x is the smooth monotonic cut-off function defined in (3.8). Clearly, both
up and 6, are smooth with compact support in y.
We define

W=uy—u, and © =0 —0,, (4.8)
then (4.1) is reduced to

0: 0
W + (0 - V)W, + 931l - yd, Wi + W - V0l —%(a
= 10y W; + i, i = 1,2, (4.9)

2. - -
3O+ 1) -V, + 851 - y3,0 + gdlvuo O = RiyyO + 3,

1 3
where i 1= —M(TO), K= K(TO) and
pO 5p 0

re 1 0 0 0
fi == Ffi — Oup,i — (W - ViJup i — 03u3 - yoyup ;i — up - Vyui;
9 p° .
+ Wea + [0yyup,i (4.10)
__— 0 0 2.0 .
g:= Fg — 010, — (u; - V)0, — d3u3 - y0,0, — gdlvu Oq + K0yy0,.

The boundary conditions (4.2) becomes

ay"pi(tv-xll’ )’)|y=0 = 0’ ay®(tax\\a y)|y=0 = Oa l = 172a

: “4.11)
hmy_)oo(\l’, ), x,, y) =0.
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Noting the coefficient 83u(3) -y in (4.9) is singular as y — oo and there are no
horizontal viscous terms AW and A, ®, we can not directly apply the standard
linear parabolic theory. To prove the existence of smooth solution to (4.9)—(4.11),
we divide the proof into several steps.

Step 1. Approximate problem. We consider the following approximate problem

Wi + - V)W + 3313 - yxo ()3,
0: 0 _ 5 '
-Vl - 3’—1’)’0® = A0y W+ EAY T, i = 1,2,

i
2 y
30+ -V, + 8519 - y3,0 + 5divuo@ =R0,y0+EA,0+7°,
(4.12)

Wher~e (t, x, y) € [0, 7] x R? x [0, 3/c], x6(y) = x(oy) with0 < §,0 K 1,
and 7 := x5 (y)fi, §° = xo(¥)g. Here x(-) is defined in (3.8). We impose the
following boundary conditions for (4.12):

{ayw,-(r, X M|y =0, 90 x, Y],y =0,

(4.13)
Wt x,y)|,_3 =0, O x| _3=0.

Imposing the cut-off initial data
V0, x,,y) = (wo —up) o (y),  ©(0,x,, ) = (6o — 0a) xo (¥).

the compatibility condition of initial data at y = % is also satisfied due to the
property of x(s). For the approximate problem (4.12)—(4.13), now we can use
the standard linear parabolic theory to obtain the existence of smooth solution in
Sobolev space provided the initial data and (p°, u®, T7°) are suitably smooth. To
prove the lemma, we need only to obtain some uniform estimates of (¥, ®) with
respect to o and &, then take the limit o, § — 0+.

Step 2. Uniform energy estimates. We use an induction argument to prove the
uniform estimates. Firstly we consider the zero-order derivatives estimation. Mul-
tiplying (4.12)1 by (1 4+ y)/°W; and integrating the resultant equation over [0, 7] x
R2 x [0, %], we have

1 1
J[ 30+ P asdy+ 5 [ [ o+ poamanw)
! t
é /O // 1+ )’)loayy‘l’i‘l’i dx, dyds +§/(; //(1 + y)lOAn‘I’ - ; dx,dyds

t t
+C||(p,u,T)||W1.oo/ ||(w,®>||§2ds+cf 1117, ds + CllW; ()17, .
0 lo 0 lo lo

(4.14)
Clearly, we have
Xo() =0, Vy 22, @.15)
[ydyxe M) = lyox'(e)| = C, Vy € Ry.
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For the second term on LHS of (4.14), integrating by part w.r.t. y and using (4.15),
we obtain

1
< Cllullyios /0 1% ()1} ds.
0
(4.16)

t
‘ fo / / 33udy(1 + ) 0 ()3, (19 2) dx, dyds

For the viscous terms, integrating by parts yields
/ (1+y)OA||\I" Wi dxdy = —||V,\; ”Lz s

and
ff (1 + Y)loayy\lji\pi dx,dy
- /f i (14 019, w;? dx,dy — f/ loft (1 + y)o=19,w; w; dx,dy
3
+fuu+w%wwmwg

§—§//ﬁ(1+y)l"|3y‘lfil dx,dy + CIW 13, . (4.17)
0

where we have used (4.13) in (4.17).
Substituting (4.16)—(4.17) into (4.14), we get that, for some positive constant
co >0

t
(01 +/ ||ayw(s>||’iz +s||V..\v<s>||2zds

<C II‘I’(O)II _/ ||f|| dS +C(|I(p u, T)Ilwloc)/ (W, ®)(S)||
(4 18)

Similarly, we can prove
t
leml?, +/ 19,©) 17, +EIV,O@)3, ds
lo 0 lo lo

t t
< c(leol; +/0 1817 ds) + CCli(o. w. T)||Wm)/0 1O, ds.
0 0 0

which, together with (4.18), yields
1
v, )OI, + / 19y (W, ©)($) 1172 + &IV, (W, ©)(s)7, ds
lo 0 lo lo
[ ~
< c(lw Ol + f 1. @12 ds)
lo 0 lo

t
+ C(l(p, u, T)IInyoc)/O (W, ®)(S)|Iilz ds. (4.19)
0
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Now applying the Gronwall’s inequality to (4.19), we have
13
lw, &I, + / 19y (W, ©)($) 117> + &IV, (W, ©)(s)7, ds
lo 0 lo lo

1 ~
< C o w Dl {100, OO + /O IG. D13 ds|. @20
0 0

We shall use induction arguments to close the uniform energy estimates. We
assume, for0 < r <k — 1 (r = 1), that

r—1 ¢
oy {/0 135 V{8, ©))72 +EIV,07 VE (. )17, ds
J J

J=02a+|gl=j

+ 17vE (. )01, |
J

r—3
<ca, ||(p,u,T>||wnoo>{Z > 10/ VEG DO,
J=0p+2y=j i
r—1 t _
+3 Y [vie ool +f 107 VE G B )12, ds]}.
=0 2a+18|=) v Jo i

4.21)

Here we point out that one order of time derivative 9, is equal to two orders of space
derivatives.
Now we consider the r-order derivative estimates. Let 8,’,5 = af]‘ 8)’?22 Applying

999F to (4.12)1, we have
8,029 w; + 10 - v, 020 W + 0313 - yxo (1)3,0%0° W,
= 029) (Ro2W;) + £A, 0780 w; — [0297, u - v, 1
0; 0 5
— o (I7] 330,19 — 03] | w - v, %@} + 029770
(4.22)
Let 2o + | 8| = r. Multiplying (4.22) by (1 + y) b af W;, and integrating over
[0, 1] x R? x [0, 2], we have

1 t
Slaral v, +& f IV, 35 i ()17 ds
r 0 r

=

t
||a;>‘af?xlf,»(0)||§l2 +/0 / (1 + "ol w; - 9797 (202 W;) dx, dyds

1

2
t

* ‘ /0 / f Ve L+ (8907, a3ula,1w; - 9297 w; dx”dyds‘

t . ~
+C o w D) D [ 19FVE L. ©)(5)II7; ds
26-+BI<r '
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+c Y / |I8°‘8ﬂf,(s)ll (4.23)

2a+|ﬂ|<r

Using (4.13), we have that

ool wi| =0 and o7ofo,w|
y=5 y=0

which, together with integrating by parts, yields that
t
/ / (1 + ool w; - o2af (102w;) dx,dyds
0 )
t
- / / (1 + ' a%al o, w; - 9997 (0, W;) dx,dyds
0

t
_ lr/(; / 1+ y)l,—la,‘"a,’,slll,- . 8;18‘/‘3(;18),\1114) dx, dyds

1 (! -
<=5 | [0 sturala ne asaas

r t -
ah 2
+C@, (o, T lyyret.0) Z Z /0 llo; V¢ ‘I’(S)IIlede- (4.24)
J=02a+|8|=j
The third term on RHS of (4.23) is bounded by

t
‘/O // YXoe (1 + )" [3f ..,83u3 oy - a"‘a W; dx, dyds

r
SCElp Dy X [ 1V vOIE 6
2a-+|fI<r '

+Z[ > gy 8“Vﬂ\11(s)||2 ds, (4.25)

0
J=0"" 2a+|8|1=j

where we have used the fact [, +2 =1,_; <ljfor0< j <r — 1.
Combining (4.23)—(4.25), and taking A > 0 suitably small, we obtain

> {ua“aﬂw(nan fna a“a"wwni?_+5||V.8;"8’.3W(s)||§lzds}

2a+|B|=r

§C{ >zl volg, +Z 3 /|a°'aﬂ )17 }

2a+|B|=r J=02a+|B|=j

LU D) Y Y / 17V, OO ds

J=02a+|8|=j

—i—CZ > -/||8y8,&V§\I’(s)||ilzds. (4.26)
J

J=02a+|8|=j
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For the normal derivative estimate, applying 9y to (4.22), we have

3,000, w; + 10 v,0%07 5, ; + 831] - yXU(y)aaalf?ayw
= 0290 (RO W;) + £A,0%0) 9,0 — yxo ([6%0] ., 8313021
— 9313 - 9y (yxo ()00 o, w; — [920F, W0 - v, 18, W;
— 0y (yxte ())[8%07, 8300, 1W; 8“aﬂay{\y Vol — 8'—p0®}
+0%9Pa,57. 4.27)
Multiplying (4.27) by (14 y)* 07 BI‘? dyW;, and integrating over [0, 7] x R2 x [0, %],

we have

1 13
> {5||af‘a.ﬁ“aywm||ii +/0 s||V..afafayws>||iids}

2a+|Bl=r—1

= Z / /[(1 +y)l'3a3ﬂ3y‘lli : 3,‘)‘3I}|3(/13;\I/,~)dx”dyds

20+|B|=r—1
+{ > —||a°‘aﬁa W<0>||L2+c2 3 /|a°‘a’38 flleds}
20+|Bl=r— 1 j=0124 +|/3‘ =j
+Ct, (o, u, T)||wroo>Z > / 1975 (W, ©)(s)1I7, ds
J=02a+||=j !
& B 2
+CZ > /|I8y8flvillf(s)||lejds. (4.28)

J=026+|8|=j

Using (4.13) and (4.22), we have

ool w| =0,
y=0

ocal (102w =0,

= engd

o

y—

which, together with integrating by parts, yields that
t
fo / (1 + ool o, w; - 97af (103 W;) dx, dyds

t

—/ / (1 + o8l 92w; - 979 (102 w;) dx, dyds
0

t
- lr/O /[(1 + ) a%al 8, w; - 979f (102 W;) dx, dyds

1 [ -
< —5/0 [[ ma st iorafae P as dvas
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+C, ||(,0uT)||Wr+|oo)Z > /|a“v’3\y(s)|| . (4.29)

J=026+|8|=j
Combining (4.28)—(4.29), we obtain
{/ 1820285 W ()12, + E11V,0%8] 9, W ()2, ds
2a+\}3\ r—1 Ir !

B 2
+ 5||a;xa” aleJ(t)||ler}

1
c{ > §||af‘a.’?ayw0)||2z+cz > /na“a’gafn }

20+|Bl=r—1 J=026+|8|=j

A

+C (o, T>||wroo>Z > f 192 vEcw, ©)(s)lI7 ds

J=026+|8|=j

+CZ Z /||aya;iv§xp(s)||i[2ds. (4.30)
J

=026+ |8|=j

For the higher order normal derivatives estimate, we shall use the equation
directly. In fact, applying 9; Bf dy withn 2> 0to (4.12)1, then we have

aagal 2w, = o000l anw; — a0 0l o w; — [9%af w18l 2w,

+ ool {osud - v 0w | + 00 {03 193, o (010 Wi

+a°‘a’f’{ A A B

aqBaonso
-3 vol - oralafe,

which yields that

2a-+1Bl=m

<c ) |a,a.’?aﬁm+C<||<p,u,T)||wr,oo){ > Eviw e
2a+|fl=m+2 2a+|BISm+n+1

+ Y y|ayaf‘vf\y|]+ > v, (4.31)
26+ |B1Sm+n 26+|B|Sm-+n

For any fixed 0 < n < r — 2, by (4.31), a direct calculation shows that
3 {|\3§5+23;"3f\1/(t)|\iz +/ lan+3a¢ aﬁxp(s)uz2 ds}
20+|B|=r—n—2 Ir

<c Y aref a‘“\v(mnzz +f o+ ad aﬁ\l—l(s)||22ds}
2a+|B|=r—n
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r—1
+Ciow Dl 3 3 198w, )02 2 +/ I3y V’3W|\L2 dv}
J=02a+|B|=j
r—2 ro. A
+Cy > ||3avﬁf(,)”22 +cZ > /0 ||a;>‘vff(s)||i[2_ds. (4.32)
J=02a-+|B|=j U j=0%4ip=) !

Noting (4.26) and (4.30), by using induction arguments on 0 < n < r —2in (4.32),
we can obtain

> {na;*V,’?wr)niz +/ 10,5 VEWOIF2 +EN1,05 ws)n%ds}
2a+|Bl=r i b

r—1 s t =
< Cllito.u. Dllwr) Y > {||a,°‘vj§(w,®><z>||§lz +/ ||ayaf‘v)€\v||§]2}
J=02&+|8|=j 30 g

r t N ~
Ol Dy Y Y [ 10 vEw oIz, as
J

J=02a+|8|=j
= Bz o2 T aaoPr o2
ey Y pEviiol 2+CZ > [iEeion; o
J=02a+|8|=j J=026+ 8=/ !
+c Y eviwoll,
2a+|8l=r Ir
- B 2 FaoB o2
gc<t,||<p,u,r>||wr+l,w){Z 3 [II3?V;W(O)IIL2+/ 107VE G 812, |
J=02g+|B|=j e i

/ S eV, ®>||2ds+cz > ||3avﬁ(f9)(0)||Lz }

20+|Bl=r J=02a+|8|=j
(4.33)

where we have used (4.21) in the second inequality.
As in (4.33), we can also get

> {na“vﬁ@(z)an +/ 1953 VEOWI, + 19,57 VEOI7, ds}
20+|B|=r

< C. i, T>||W,+loo>{2 > [na“vﬁO(anz +/ 19792, 9>“L2]

J=026+4|8|=j
r—2 L.
/ £ vﬂ®<s>||22ds+cz > VG DO, } (4.34)
0 l;
2a+|Bl=r J=026+||=j /

Now, combining (4.33) and (4.34) and then using the Gronwall’s inequality, we
obtain

{/ |9y 85" Vﬁ(‘lf @)(s)||22 +§IIV.|0aVﬁ(‘P ®)(S)||22 ds
2a+\ﬂ\ r
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+192vE (w, @)(z)lliZ }

t ~ 2 o~
<. ll(p.u, T>||W,+loo>{2 > [ua,“v;?w, O3, +/ IIB?V)‘?(f,ﬁ)IIiz]
—020(+\/3\ =j lj 0 lf

eSS v DO, }

J=023+|B)=j !
Hence by the induction arguments, we have

Z 3 {f 1,80 VE (W, ©)(s)112, +EIIV,5 VE (W, ©)(5)]12, ds
J=02a+(B|=j i i

+ 197 V5 (¥, )07 }
J
k
<Ca, o, u, T)||Wk+1m){ ooy [||a;"V§<w, @)«»Hi?
J=02&+|/§|=j !

t
- / 189 G, g)(s)nizds]wZ DRRL A DO, [ (439)
0 J=026+|8|=/

Step 3. Taking limits o, & — 0+. Based on the uniform estimates (4.35), we
can first take the limit 0 — 0+, and then & — 0+. Then, by using (4.7)—(4.10) and
(4.35), Lemma 4.1 is proved, the details are omitted for simplicity of presentation.

0

Remark 4.2. In the proof of Lemma 4.1, we can improve the polynomial decay of
y to an exponential decay if 83112 < 0 with a positive contribution in (4.16).

5. Construction on the Solutions of Expansions

We define the velocity weight functions
B, (V) = W, LT 1z, (V) = wg, (W) and Wz, (v) = we, WG ® (5.1)
for constants k;, kj, K =2 0,1 <i < Nand0 < a < % Note that the weight
function w,; depends on (z, x), while tvz, and tv;, depend on (z, x,). For later use,
we define

= (x,m) eRY, Vii=(V,, 8,

andrecallx = (x,, y) € Ri and Vz = (V,;, dy) in (4.5), and the weighted le—norm
in (4.4).
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Proposition 5.1. Ler 0 < a < % in (5.1). Let sg, s;, 5,8 € Ny, kj, ki, ki € Ry
for 1 i < N;and define l'; :=I; +2(5; — j) for L Si SN, 0= j < 5. For
these parameters, we assume the restrictions (5.42)—(5.44) hold. Let the initial data
(oi» ui, 0;)(0) of IBVP (2.4), (2.26), (2.27), and initial data (i;,,,, 6;)(0) of IBVP
(1.27)—(1.28), (2.30)—(2.31) satisfy

N
S X vt (p,,u,,9)<0)||Lz+Z DO /874 (u,u,e)(O)uLz}mo.

i=0  y+B<s; J=0j=2y+p b
(5.2)

We also assume that the compatibility conditions for initial data (p;, u;, 6;)(0) and
(@i, 0:)(0) are satisfied (see Remark 5.2 for details). Then there exist solutions

Fi = Jifi, Fi = Juofi, i = Jmofi to (1.7), (1.15), (1.38) over the time

intervalt € [0, 1], respectively. Moreover, we have the following uniform estimates

N

sup Z{ > ||wmayvﬂﬁ(r>||LzLoo+Z 3 livg 8] V2 fansz

t€l0,7] i=1 J/+f3§5 j=0j=2y+B

+ > ||e§i'nm,gi32/V|/|3ﬁ(t)“L;’°vﬁL§|L$?v}
y+BSS;i

N
<c<r, 1@, @0, ¥0)lleso + Y Y 187 VE (i, i, 6:)(0) | 1.2

i=0 y4+B<s;
+ ZZ 3187 VE i O )(0)||L2) (5.3)
i=0 j=0 j=2y+p
where the positive constants §; > 0 = 1,..., N) satisfying iy = %{i and

=1L

Remark 5.2. The compatibility conditions for (o, ug, 6x)(0) withk = 1,..., N
mean that uy 3(0) satisfies the boundary conditions (2.26)—(2.27), and the time-
derivatives of (o, ux, 6x)(0) are defined through system (2.4) inductively. The com-
patibility conditions for (i, 6x)(0) withk = 1, ..., N mean that (it ,, 6% ) (0) sat-
isfies the boundary conditions (2.30)—(2.31), and the time-derivatives of (i, 0)(0)
are defined through equations (1.27)—(1.28) inductively.

Remark 5.3. Since the Knudsen boundary layer f, is indeed a stationary problem
with (z, x,)) as parameters, hence there is no necessary to give initial data for f,
Here the functions f;, f; are smooth, however 14 Vf f, is only continuous away
from the grazing set [0, 7] X 0.

Proof. Since the proof is very complicate, we divide the proof into several steps.
Step 1. Construction of solutions fi, fi and fl

Step 1.1. Construction of solution f1.Noting fi € N, we need only to construct
the macroscopic part (p1, u1, 61). Hence we consider (2.4) with k = 0 and the
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boundary condition (2.26). Then by using Lemma 3.1, we establish the existence
of smooth solution of (2.4) (with k = 0), (2.26) with the following estimate

sup 197 VE (o1 w1, 0D Ol 2,

te[0,7] y+B<s

S C@ Eary) Y 18] VEGorur, 00Ol 2gs )
y+BSs

with s1 > 1 such that s = 2+s; > 0, and E} is defined in Lemma 3.1. Therefore
we have proved the existence of smooth solution f; over [0, 7] with

sup |l AA0llgzre < C(x, Ears) D 18] Vo1, w1, 00O 23 )
tef0,7] s

for any x1 > 0.

Step 1.2. Construction of solution f] . Noting (1.22), (1.21) and (1.24), we need
only to calculate (i1, 01). Taking k = 2 in (2.30)—(2.31), then using (1.24) and
the facts that

Jo=0, (A, By, C2) =(0,0,0),

we have
dyity,i(t, x,,0) = —(TOAS;, (L= Py) fo)(t.x,.0), i = 1,2,
) (T »o (5.4)
9011, x.0) = o (2(T%)3 B3, (1 —Py) f2)(t, x,,, 0).
It follows from (2.3) that
- {0 +v - Vil 1
I-P =L1<——+— : )
{ 1 fa N ﬁQ(ﬂfl Vif
From (A.13)
{I—P}( M) Z djuAj +Z (5.5)
\/_ J.l=1

Since f1 € N, asin (A.11)—(A.12), it holds that

-1 (ﬁ OWiih, ﬁfu)

3 2 2
1 01 0; v — u|
=Y — A+ —u - I-P -5 ,
' 2Tu],lul,] l]+3T%u1 72T2{ }{< T \/ﬁ

which, together with (5.5), yields that

3

(I—-P}fy = —L! ZaulAjl—f-Z—B Z u1,u1,A1,

J.l=1 =1
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2

0, 07 lv — ul?
e B+72T2{I—P}{( T —5) ﬁ}. (5.6)

Since L™! preserves the decay property of v, it is direct to check that

HE =P} fa(t, x, )| £ CAV (W, T + |1, 0D ) (2, x) (1 + [v)* /.

Noting (2.26) and dju3(¢, x,,, 0) = duz (¢, x,,, 0) = 0, and using (1.26), (5.6),
we compute

(TOAY;, A -P) A, x,,0) = —85u)(TOAY, Ly ' AY) = —p(1%) 35u?, (5.7)
fori = 1,2, and
QT)3BY, (I —P) f2)(t, x,.0) = —2T°8: 753, Ly BY)
= =3k (T% 35 T°. (5.8)

Substituting (5.7) and (5.8) into (5.4), we get the exact expression of boundary
condition for viscous boundary layer (it; ;, 61), i.e.,

dyity i (1, x,,0) = —d3uf, 9,601 (2, x,,0) = =305 T°. (5.9)

By using Lemma 4.1, we can obtain the existence of smooth solution of (1.35)—
(1.36) and (5.9) over [0, 7] x R3 satisfying

Z > {nayv (ul..,eo(mnzz +/ 187 VEdy iy, 0 ()12, dt}

J=0p+2y=j

< C(, E3+n>{2 > o0avE (ul..,91>(0>||L2

j=0p+2y=j
+osup Y (1afa) s, a3, a3T°>(r>||iz(Rz)}
tel0,7] B2y <5142
<c(=. A S S A (ul..,eo(muLz) (5.10)
j=0p+2y=j

where l}. =1, 4+ 2(5; — j) with I} > 1 and s9 = 4 + 5;. Combining (5.10) with
(1.24), we get

Z 3 vz, 8] VE fl(t)”LZLoo

J=0p+2y=j

< (v, Bars,. Z > e (ul..,01><0>||L2)

J=0p+2y=j

for any k1 > 0.
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Step 1.3. Construction of solution fl. From (2.19), we know fl,l = 0, we need
only to consider fl,z. Noting (2.22)(with k = 1), using (2.26) and (1.24)1, one has
the boundary condition for fj >

f1,2(t’ -va Ov vHs U3)|v3>0 = fl,z(ts st 07 v\l» _U3),
which, together with Lemma 2.5, yields the existence of f 1.2 with ff » = 0. There-
fore we have proved the existence of fl with
fi=o0. (5.11)

Such an absence of the e-th order Knudsen boundary layer is expected since the
Knudsen boundary layer is used to mend the boundary conditions at higher orders.

Step 2. Construction of solutions fi, fi and ﬁ We shall use an induction
argument. Suppose we have already proved the existence of f;, f; and f, for 1 <
i < k such that

Dy + Dy + Dy < C(r ESO,ZZ > ey ve (u,u,e>(0>||L2

i=0 j=0j=2y+8
+Z > ||a,Vvﬂ<p,»,u,-,e,»>(0>||L;>, (5.12)
i=0 y+p<s;
where

k
Dy i= sup Z Z ||II)Ki8,VVfﬁ(I)||L§LgO} < 00,

tel0,7] U35 y+ﬁ§x,-

Dy := sup ZZ Z ||t'0;(,3yV ﬁ(f)||L2L°°}<OO’

1€[0,7] i=1 j=0j=2y+8

Dy := sup Z Z ||e(""’m,giafvlfﬁ(l)”LngmLing?,,} <

0T =ty s

for some si > 5> 8 2 Si+1 > Siv1 > Siv1 2 Lk > i > ki > Kyl >
Kix1 > Kiyr > lwith1 <@ S k-1, andl’ =1l +2Gi — j), l; > 1 with

1 £i <kand0 £ j < 5. Inthe following, we c0n31der the existence of fiats frat

and ﬁ+1.
Step 2.1. Construction of solution fiy1. Let r > 3. Since L™! preserves the
decay property of v, by using (2.3) and Sobolev inequality, we have that

D7 N, 8 VEI=PY fip 1 (Dl 2
y+IBISr

k
SC(E Y X M@ VEfOlag). 613

J=ly+B<r+1



280 YAN Guo, FEIMIN HUANG & YONG WANG

To obtain fi1, we still need to obtain the estimate for macroscopic part. For
the source terms on RHS of (2.4), it follows from (2.5), (5.13) that

k
> ||afo(fk,gk>(t)||L;§C(Er+3,2 > ||wx_,.a,yvff,-<z)||L;Lgo).

yHBISr+1 J=ly+B<r+3
(5.14)

Before applying Lemma 3.1, we need to estimate the boundary condition. Not-
ing (2.27) (with k replaced by k + 1), we have that

S 019 8 urr 3t 0l 2

y+BSr+2
<C(Er+4>{ > / 187 87 (B @) (2, -, ) 122y dy
y+BSr+3
+ ) ||ayaﬁ(Ak+1,ck+1)<t,,0)||L2<Rz>} (5.15)
y+BSr+2

From [ j‘ > 1, a direct calculation shows that

3 ||ayaﬂ<pk,uk><t, W2 @2y dy
y+BSr+3
2(r+3)
2>
SC Y X WA A®I (5.16)
J=0 B+2y=j /

By using (2.18), (2.16) and (2.7), one obtains

> 1079 (Arr Byt Ceyn) (@ 0)ll 2oy
y+BSr+2

< C(Erqa) Y, / 10707 Gacer, bisr, ), 2 d
y+BSr+2
SCEa) Y 150 9 Gt Brvr, G O 2 1
y+BSr+2
SC(Ess) Y 1er™ g 0] O i Olla 1 - (5.17)
y+BSr+3
Here we emphasize that although only time and tangential derivatives are avail-
able for the Knudsen boundary layer f,, but the trace (Ak+1, Bk“, Ck+1)(t, ,0)

(equivalent to fk+1,1 (t, x,, 0, v) ) is indeed well-defined from (2.18).
Substituting (5.16)—(5.17) into (5.15), we deduce

2(r+3)

D L TETeeRI(3 ,o>||Lz<c<Er+5>{ >N ueref fkanzLoo

y+BSr42 j=0 B+2y=j
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1 ~
+ Y IIeﬂk"'"mﬁk,l32/3."3fk—1(t)||LguLg?U]-
y+B<r+3
(5.18)

Therefore (3.5) is valid with time and tangential derivatives and we can apply
Lemma 3.1.
Now applying Lemma 3.1, using (5.14) and (5.18), we obtain

> 187 VE (Pt g1 Ok+ DOl 2
y+BEr

§C<r,Er+s, > 00 VE iyt w8 DO 2

y+B<r
2(r+3) B .
sp [ 30 30 0ol felpa et D 125 g 0 8 i 02
tel0.T] 30 piape; i yrbori3 w s
k
Y ||wk,.a,yv)€‘f,-(r>||L%Lgo]), (5.19)
J=ly+B<r+3

Now, taking r = si41 yields
50 2 5+ Ska1s Sk 2 Skl + 30 Skt 2 sk + 3 and 5 2 2(seqq + 3).

Therefore, combining (5.19) with (5.13), we get

D g3 VE firr Ol 2

Y +BSsk41
= C<T, Eg, Di+ Dy +Dio1, Y 1107 VE(orsr, uesn, 9k+1)(0)||L§).
y+BEsir
(5.20)
Having constructed f; with 1 < i < k + 1, by using (2.3), we deduce
D g d VAT =P a0 1210
yHIBISser1—1
k1
<C(Bin Y X Mt VA0l 20y )
=1 y+BSspr
= C(T, Eg, Dk + D+ Diors Y 197 VE (oryr, iy, 9k+1)(0)||L§),
y+BE sk
(5.21)

which will be used when consider the trace of (dyutyy1,, 8),«9_k+1)(t, X, 0) in the
following.
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Step 2.2. Construction of solution for fi,1. Since L, ! preserves the decay
property of v, then it follows from (1.29) that

D i, VA= Pol fir1 Ol 2

2y+p=j
gC(EHs, o B! VEAOIe+ Y 08 VEADI 2
2y +Bj+3 2y+BS
+ > lwgd) Vfﬂ(r)||L§+]Lgo)+ > Iog 8 VER1 Ol
2y+B<j+1 2y+p=j
(5.22)
From (1.34), a direct calculation shows that
Yo e 8 VET1 Ol 2
2y+p=j
k—1
<C(Epron Y D Mgl VR0
i=02y+p<j+2
k
Y N VO
i=02y4+B< j+2+b
+C(Ejro2) Y lwed! VEI = Po) (0l 2 (5.23)
j+b+ kO Vi L}, L% :

2y+B<j+1

Substituting (5.23) into (5.22), and noting l;‘-“ < l; for 1 £i < k, we can obtain
the estimate for microscopic part {I — Po} fis1

D i, 8 VI = Po} ferr (O 20
2y+p=j

k
<C(Ejwora ), Y I0gd] V0l 2ss

=0 2y +B=j+b+2
k
+3Y g, a,yvfﬁ(t)||le+2tho). (5.24)
i=1 2485 j+2

On the other hand, substituting (_5.24) (with k replaced by k — 1) into (5.23),
one can obtain a better estimate for J;_

Yo Mg 3 VER-1 Ol 2
2y+B=j

k—1
<C(Ejrosn Y 2 Mg dl VIR0 x
=02y +p=j+3
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k
Y Y 10 VOl ) (5.25)

=02y +B< j+3+b
For Wi_1, Hr_1, it follows from (1.32)—(1.33) and (5.24) that

o 1 VEWier, B Ol

2y+p=j

SCE) Y 19 VR =P} f)ll 2y
2y+pSj+1

k—1
<C(Ejporn Yo X Mo VEAOlay

i=0 2y 4+ j+3+b

k—1
32 IR VRO, ). (5.26)

i=12y 4+ j+3

For uy+1.3(¢, x, y), it follows from (1.30) and (1.20) that

o0

_ L O
fig1,3(2, %0, ¥) = — / E{atpwdlv..(pouk,u+pku.?)]<r,x..,z)dz, (5.27)

y

which yields that

>0 Vi 3012
2y+B=j

o0 oo
= C(Ej+3)/ (14 y)dy > ||3,}/V,',9(ﬁk,ﬁk)(t, S D22y dz
0 Y oy+p<i+n

* o (= 2-44\? v B
< , —2- o, il
<cEpa [ <1+y>(fy G+~ @) ay 3 WY GOl
2y+BSj+2

SCER Y 1V GOl
2y+B<j+2

SCE3) Y 1V ROl o for 120, (5.28)
2y+BSj+2

On the other hand, we assume that Vf contains at least one dy, then it follows from
(1.30) that

DR [V Z4T SO P S [ i N R O] [P

2y+p=j 2y +B=j

C(Ejys) Y 0] VE Wl forl 20,
2y +BZj+1

[IA
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which, together with (5.28), yields that for [ = 0,

18! VE i1 5012 £ C(Ej13) 19 VE el 2 e
] 20+4%0
2y+B=j 2y+BSj+2
(5.29)

By using (1.31) and the same arguments as (5.27)—(5.29), one can obtain the
estimate for py_

S 00V sl S CEp (X 1 VEROI, e

b= 2y+BSj+2
Y VROl e Y IV )
2y+B<j+1 2y+BS)
k
<C(Ejrares Y D Moed! VEROI e
=12y +psj+4
k
£ 1m0y ). (530)

=12y +B< j+4+b

where we have used (5.25)—(5.26) in the last inequality.
By similar arguments as to those of (5.28), we can have the following trace
estimate:

S 10! VPitar 3t Ol 2y
2y+B=j
o0

< C(Ej+3)/ Z ||8zyv‘/‘3(/5k, U, - 2 me) dz
2y+pSj+2

SCE) Y 19V i 0l 2
2y +BZj+2

<C(Ej3) Y. ||afvfﬁ((t)||leL3c, for 7> 1. (5.31)

2y+B<j+2

Taking so 2 Si1 + b+ 6, 5% > 5k > Sk > Sk+1 = 51 + 7 4 b, and 1§ = 2b for
i <k, j < 5, we deduce from (2.30)—(2.31) that

S 18V @yitksran 90T Ol 22y
2y+BS5i1+2

=< C(E§k+l+4a Z [||17);q 8,Vfo1(t)||Lz + [lrog, Bt}'fol(t)HLz]
2y+BSSiy1+4

> [0V Ak Ol 10 V=P it 0,92 g
2y +BS5kr142
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1107 VI 0.9z 1+ 18] 9] (Arsa, Brsa, Cna) (0., 0)||L;,]>

< c(r, Eg. Di+Di+De. Y 18] VE (orgr, upr, ek+1)(0>||Lg) < o0,

Y+BS sS4
(5.32)

where we have used (5.31),(5.20), (5.21), (5.25), (5.17) (with k — 1 replaced by k
in (5.25), (5.17)) and the trace theorem.

Similarly, for the source terms of (1.27)—(1.28), from (5.25)—(5.26) and (5.29)—
(5.30), a direct calculation shows that

Sk+1
33T @0 VE G . 9 VE G gk)xr)n ., SC( Eyy, D+ Do),

Jj=0B+2y=j
(5.33)

where we have taken

50 Z Sert + 046 Skt 2 St + 840, [ 225 18420, for 1 Si Sk,
(5.34)

with [ = lyy + 26 — J) and gy > 1.

Using Lemma 4.1 (the time and tangential derivatives estimate (5.32) for the
boundary condition are used enough when using Lemma 4.1) and (5.32)—(5.33),
and noting (5.34), one can obtain

Sk+1 _ - _
>y (nafv;?(ﬁm,..,9k+1)(t)||izkl+/ ||3tyv)€3y(ﬁk+l,us9k+1)||izkldf>
=0 j=2y+p gt o i

Sk+1
§C<r Egp. De+ D+ D >0 3 19) VE G, .‘,0k+1>(0)||L2
Jj=0j=2y+p it

+ Z ||3,7/Vf(:0k+1,Mk+179k+1)(0)||L)2C>- (5.35)
y+BSsiy1

Finally, combining (5.24), (5.29), (5.30) and (5.35), and noting (5.34), we have

Sk+1
Yooy ||mkk+layvﬂfk+1(r>||Lz 1
j=0 j=2y+pB

Sk+1
§C(r Eg Di+ D+ DY Y 1187 VE iy, ..,9k+1>(0>||L2
J=0j=2y+p

+ ) ||32/Vf(pk+1,Mk+1,9k+1)(0)||L§> < o0. (5.36)
yHBSSit1
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Step 2.3. Construction of solution fr41.Letting 0 < ¢ < ¢x_1, by using (2.18),
(2.16) and (2.7), we have

> 16187 9 (Aksr. Byt Coa) (@ x|
yH+BSSkt

o0
SCEyis,) 3o [ e 1T da e 170 0 @ppr B, k) 3, )0

y+BESir 7
S CEpg,) 3 e 1m0 b2 o gy, by, )t 3, )l oo
Y BS54
SCEsg,) 2o e 1w ol of iox )l (5.37)
YHBE1+841
and
3 1e50) 0 0y (Arsr. Bigr. Cop) (. x|
Y +BS8i41
S CEpys) 9 165908 g b, Gesn) (3. )l
Y+BSSkp
S C(Esysn,) . e g 0700 fioa(txy - )iy, (538)
Y+BS 1454

Then, combining (5.37), (5.38) with (2.17), we obtain the existence of fk+1,1(t)
with

3 A
EYTURE Y qB
Z Z ||eZZkJrl nml?kﬂ,laf 3, 8:7fk+1’1(t)||L§f’uﬂL§”L%?u
i=0.1y+8<5 41
1 YaB 2
< C(E34,,) Z || eSk=11 g 0/ 0, fk—l(t)”]‘fme)Zng,ov» (5.39)
Y+HBS 14541

where we have used Kg41,1 < Kg—1, | + Sg+1 = Sk—1, and ¢ = %Ck—H such that
0 < %§k+1 < Zx—1. Moreover, from (2.18) and (2.17), we conclude that fAkHJ is

a continuous function over (7, x,,, 7, v) € [0, 7] x R? x Ry x R3.
Using (5.39), (2.17) and the trace theorem, one can obtain

31 Yab 2
D e W11 0 Oy Jirr1 (- 0l Lo nr2 Loe
Y+BESir

S C(Esrsy) . e Mg 3] 3 oDl o2 1+ (5:40)
y+BE148k41

We still need to construct fk+1,2. Firstly, it follows from (2.23), (5.20), (5.36),
the trace theorem and (5.40) that

Yob s
Z ”m/?Hl,] 9 V) 8k+1 (t)"L?O WNLE LY
y+BSSi+1
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S Y e 8V it firt franD (0.9 e ar2 1o
Y+BES1

Sk+1
<c(r Eg Di+ D+ DY Y 118) VE iy, ..,9k+1><0>||L2
Jj=0j=2y+p

+ Y ||a,VVf<pk+1,uk+1,ek+1><0>||L;>,
y+BSsk41

provided that 2 + 8511 < Spy.
On the other hand, using (2.8) and Sobolev inequality, a direct calculation shows
that

Y
> ||e45k”m,(k+“8 8’ Sk+12(t)||L°o nL2 L,
Y+BSSkp1

k
§C(Eb+2+§k+1,2 Yo [0 9 i) lless, + g, 87 0 i)l ]

=1y +p<Sir1+b

k
b3 f
£ Y Y e g8 Ol oz 1)

=1 y+ B 148511

< C(L Ey,, Dy + Dy + ﬁk),

provAided thatsg = m + 2+ Sga1, Sk 2 2+ S and S +b+2 < % . Clearly
for Sk1,1,

v
> le3s Mg, 0 8’ S, 1Dl Ar2 1o

X nv
Y +HBS5k+1
£ ~ ~ ~
S CErps) . e 9] 9 @uer, busr, Gan)(txi lizarz 1o
Y +BE5k1
< C(Eyy. Di-). (5:41)

Let 0 < &1 = 5g and 1 < &1 < Rig1,1 < Kkp1. Then, by us-
ir}g Lemma 2.5, (2.15), and (5.39)—(5.41), one establish the existence of solution
Jk+1.2(t) over t € [0, T] with

> {Ilm,ek SeY VP i, 2OliLge, N2 L,
Bty =S4

YobB 7
+ [z, 97 V), Se+12@2, -, 0, ')||L(gﬁ‘an)2(HLgc}

Sk+1
<c(r Eg. Di+ D+ DY Y 18] VE G, ..,9k+1><0>||L2
j=0j=2y+8
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+ > ||a,yv;?<pk+1,uk+1,9k+1)<0>||L;),
Y +BSset1

which, together with (5.39) and (5.40), yields the existence of solution ka satis-
fying

> {Ivg e 0 fer Ol o2 1
B+y S8kt
gy, 8V firr 10, ) e i 1
Sk+1
<c(r Eg. Di+ D+ DY > 18] VE s, ..,9k+1><0>||L2
Jj=0j=2y+p i

+ > ||8,Vv;?<pk+1,uk+1,9k+1)(0>||L;).
y+BSsk41

Step 3. Combining all above estimates and the induction assumption (5.12),

we have proved the existence of solutions f;, f;, ﬁ, i=1,..., N with
N 5
Dy + Dy + Dy < c<r Ew Y 3 > 0] VE (i 6 ><0>||Lz_
i=0 j=0j=2y+p 1

N
+ Z Z 187 VE (pi, us, 91’)(0)”L§>’

i=0 y+8<s;
where we have chosen s;, §;, §; such that

S0 Zs1+b+6, s1=5=5§>1;
S| > 8 >8 > 8 2841 >8it1 > 812> 1, fori=2,...,N—1,;

U _ R 1_
si+1 < min{§;, 55 = 3}, 5it1 S sip1—8—b, Siy1 = Sit1 — 2—b,

fori=1,...,N —1,
(5.42)

and taken 1;'. =1; +2@; — j) with0 £ j <5 so that

1> 26 and I =20 418 4+2b, forl i SN —1. (5.43)
Here we can taken s; = §; = §| because f1, f] and fl depend only_on the Euler
solution, and do not depend on each other. We also point out that f;, f; are smooth,
but f; is only continuous away from the grazing set {(x,,0,v)|x, € R?, v, €

R2, v3 # 0}. For the velocity weight functions, we demand

Ki > Ki > K > Kigl > Kiv1 > kip > 1 (5.44)
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for 1 <i < N — 1, and we do not describe the precise relations between «;, i; and
k; because the functions F;, F; and F; indeed decay exponentially with respect to
particle velocity v. This completes the proof. O

Remark 5.4. To establish the interior expansion Fj, viscous boundary layer F
and Knudsen boundary layer F, one should deal with the boundary interaction
very carefully. In fact, due to the boundary effects, one can only obtain the uniform
estimates of time and tangential derivatives for the Knudsen boundary layer Ey.
Fortunately, such time and tangential derivatives estimates of Knudsen layer are
enough to control the boundary interplay, see (5.15)—(5.17) and (5.32) for details.

6. Hilbert Expansion: Proof of Theorem 1.6

In this section, with the uniform estimates in Proposition 5.1, we shall use L2-
L method to estimate the remainder term Fj, in (1.40) over half-space. Firstly,
from the formulation of boundary condition in Section 2.3, it is easy to know that
F, satisfies the specular reflection boundary conditions, i.e.,

qu(t, X, v)|y7 = F;(tsxm Oa Uy, _U3). (61)

6.1. L*-Energy Estimate
Recalling the definition of f§ in (1.45), we rewrite the equation terms of f§ as

& £ 1 &
atfR+v'vfo+_LfR

0; + Vi 1
S U 0L/ P S i N i

Jﬁ vz
+Zs’ - {Q(F + Fi+ By JifR) + QWi fi. Fi + F; +F)}
+LR€ Ly i (6.2)
NN N '

where R¢, R¢, R¢ are defined in (1.42), (1.43) and (1.44), respectively. From (6.1),
we know that fj satisfies specular reflection boundary conditions

fr(t, x1,x2,0,v1, 02, 13) lyy>0 = fr(t, x1, %2, 0, v1, V2, —03). (6.3)

Lemma 6.1. Let 0 < %(1 —a) <a< %, k27, NZ26andb =5 Lett >0
be the life span of compressible Euler solution obtained in Lemma 2.1, then there
exists a suitably small constant ey > 0 such that for all ¢ € (0, &), it holds that

d e 2 €0 & 2
E”fR(t)”LZ + EH{I - PRI}

< cfi+ef OB} - AfROIL + 1, forrefocl 64)
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Proof. Multiplying (6.2) by fy and integrating over Ri x R3, one obtains that

1
||fR||L2+ 2||{I—P}f,§II§—*/%/%v3|f,§(t,X1,xz,0,v)lzdxldxzdv

/M /M {0 +v- V}f|f1e| +e / / — QW fr VI fR) [}

/ wael > O+ F o+ B i)+ O ff Fik B+ B )

/R/R{f +}RS+} }fR

Using the boundary condition (6.3) yields
/ f 3| fe(t, x1, x2,0, v)|> dxydxa dv = 0.
IR} JR3

For any A > 0, as in [23], taking « = 7, we obtain

{0 + (- VI .0
/]1;8 - NG | frl”dvdx

§C/ / [(Vep, Vart, Vo D)|(1+ [v])?| 51 dvdx
R} JR3

<c{f/ +// }(...)dvdx
RY Jjp|<t JRY Jpiz

A
S Ce—zll{I—P}fﬁllﬁ + G+ e IR o) I Rl s

and

@ [, [ e g fiavds
Ry
- /R % / = QRS VL~ P ff dud

€ II{I—P}fRII 1A% Lo Il fR Il L2

2II{I—P}fRII + Cre® [ h 1 7o | £

A

H/\

From (5.42),

SN >S5y 22b4+445y, Sy =1,

(6.5)



Hilbert Expansion of the Boltzmann Equation 291

which, together with (5.43), (5.44), (5.3) and Sobolev imbedding theorem, yields
that,for 1 <i < Nandt € [0, 7]

2b+2
S | [ae v o)
k=0

~ k :
i HlEvhao] < e,

2 { o5, (1 " FVE fito)
k

1 A
Z { Hm,zieZN nvt,x”fi(t)

k=0,1

L eV o) }g Cr(®),

1 "
o9, 0
L2

X,V

} < Cr(1),
L,

(6.6)
where we have denoted

N
Cr(t) :=C<r, 1@o. @0, D0 lleso + Y > 1187 VE (i i, 6:)(0)]| 2

i=0 y48<s;

+ZZ > 9] vE (ul..,e)«»an)

i=0 j=0 j=2y+p

Noting (1.47), we have, for 1 < i < N, that

1+a
N o o
‘wK(v)—fi(I,x..,y, V)| £ Clwe@pg * fi(t, xy, v, v)| - =2
\/ﬁ I,LZ

< Clu UG fi (0, 20, 3, )] - () FH2)3

. 1ia)ae
‘wx(v)?ﬁ(t X, 1, V)| = Clwe W)y ® fi(t, x5y, v)|~(MM)(2Jr )

D=

6.7)

Taking 0 < La(l —a)<a< %, we have (% + a0 — % > (0 which, together with
(5.1), (6.6) and (6.7), implies that the third term on RHS of (6.5) is bounded by

N
j— /10
=Py fElull fRlly - > Z{Hwkﬁn@oﬁnw

Y— fillr,
P N \/ﬁ ! .
VIO
+ ||w/(_fi||L§0U}
i

1 A
s C—II{I—P}fEIIVIIfEIIu S 8—2II{I—P}f§||l2) + Gl fRI

<+ CA€2) ST =PYARIT + Call £5117 2



292 YAN Guo, FEIMIN HUANG & YONG WANG

From (1.42) and (6.6), a direct calculation shows that

1

2
( / 3 / R€| dvdx) < a0, (6.8)
Ry R3

It follows from (1.43), (1.44) and (6.6) that

1

2
(/1 /3 — R dvdx) < CENTP 44,
RS JR

1

2
(/3 / R£| dvdx) SC@EN T 46573,
R R3

Combining (6.8)—(6.9) and Cauchy inequality, we conclude that

/R3 fR}{\/_ +%RE+%R8}f§dvdx

Hence (6.4) follows from above estimates. This completes the proof of Lemma 6.1.
i

(6.9)

SCEVT ) fEl e

6.2. Weighted L°°-Estimate

Given (z, x, v), let[X (s), V (s)] be the backward bi-characteristics of the Boltz-
mann equation, which is determined by

dX (s) — V), dV(s)
ds ds

(X (@), V()] =[x, v].

=0,

The solution is then given by
[X(s), V()] =[X(s52,x,0), V(sit,x,v)] =[x — (1 — s)v, v].

For each (x, v) with x € Ri and v3 # 0, we define its backward exit time
th(x, v) = 0 to be the last moment at which the back-time straight line

[X(s;0,x,v), V(s;0,x,v)]
remains in Ri
mx,v) =sup{t 20:x —tVv E R3 T
We therefore have x — v € B]Ri and x3 — mpv3 = 0. We also define
xp(x,v) =x(tp) =x —tpv € aRi.

Note that v - 7(xp) = v - 71 (xp(x, v)) < 0 always holds true.
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For half space problem the back-time trajectory is very simple, and the particle
hit the boundary at most one time. More precisely, for the case v3 < 0, the back-
time cycle is a straight line and does not hit the boundary; on the other hand, for

v3 > 0, the back-time cycle will hit the boundary for one time. Now let x € ﬁi,
(x,v) ¢ yo U y_ and (fo, xo, vo) = (, x, v), the back-time cycle is defined as

Xer(s;t,x,0) = 1y 1) () {x — v — )} + L—o0,r) () {x — Ry, v(t — )},
Ver(si 1, x,0) = 1 19)($)V + 1(o0,11) (8) Ry v,
with
([17 xb) - (t - tb(-xa U), .Xb(.x, v))

The explicit formula is

X3
tp(x,v) = —, forv3 >0 and fH(x,v) =00, forvz <O0;
U3

(v1,v2,v3), ifs €[1,1]

Ver(s) =

(v, v2, —v3), ifs e (=00, 1),

X)) =x—v(t—s), ifseln,t], (6.10)

x1 — vt —s),
Xei(s) = {x2 —va(t —s),  ifs € (—o0,11).
—x3 +v3(t — ),

As in [22,23], we denote
Lug = ——{Q(M VENE) + O(Wing. 1w | = v(wg — Ke.

where the frequency v(w) has been defined in (1.11) and Kg = K>g — K1 g with

kig= [ [ 10=0 ol dudo,

NITTIO))
Kag = / / (v — u) - o) YL ((l;))g(v@dudw
//|(v—u) w|,u(v)\/£u/))g(u’)dudw.

Lemma 6.2. [23] It holds that Kg(v) = / [(v, v)g(W)dv' where the kernel
R3
I(v, V) satisfies
_ a2
I, vy < cZRAZE =V 6.11)

lv—v|
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Letting K, g = w,(K(i), we deduce from (1.41) and (1.48) that

Wy
v(p) 1
dh% +v- Vihy + 2 h% — ;Kwhi
N
=Y 2 e ) {Q(F-+F-+13"- vMMh%HQ(‘MMh?Q F-+F-+ﬁ-)}
P 'l,LM(U) 1 1 I B B s Ll 1 1
I Jihe o
+g3\/’”LQ( EMZR SEM R)+J“’L[RS+R£+R8]. (6.12)
12974 Wy Wy nm

Lemma 6.3. Fort € [0, t], it holds that

sup [le¥ i () lIre £ COlIe3h%0)lzoe + &N+ &%)+ sup [ £5()ll 2.
0<s<t 0<s<t

Proof. For any (¢, x, v), integrating (6.12) along the backward trajectory, one has
that

A 1 (! A
h(t, x,v) = exp {—87[0 V(S)dé}h}(O, X1(0), Ver (0))

1! [
+ /(SXP{*;Z/ V(é)dé}(/(whfg)(syXd(S),VL»I(S))ds,

&2 Jo
t 1 t " hE hs
+a3/0 exp{—;/ v(&)ds}( “’TMQ( RVEM RwV“M))<s,xd<s>,vd<s>>ds

Wy

' 1 N, we N YN
+[0 exp{—;[ V(é)d$}~[§6 ﬁQ(F,-+E+Fi,TK)

N
i W hia /M _ .
+Y P —=0 (R— Fi+Fi + E-) (5, Xei (5), Ver (5))ds
i VMM Wy

t l t » _ n
+/0 exp{—e—z/; u(s)ds} (%,[RWRHR’?]) (s, Xet(s), Va(s))ds, (6.13)

where we have denoted

V(&) = v(w) (&, Va(§). Xa(§)).

It follows from (6.10) that |V,;(s)| = |v|. Then a direct calculation shows that

v(p) ~ vy (v) = / / B(v —u, )y (w)dwdu = (14 |v)),
R3 J§?

and

t t 1 _
fem%%/v@@hwms/wdiﬂ@%l4wwm§0@y
0 &= Js 0 Ce
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For the first term on RHS of (6.13), it is easy to know that

vy (v)t

— 5 ) IOl

1 t
exp{—g—Z/O v(é)dg}h%(O, X (0), Ve (0))] < Cexp (—

We note that

wi (V) 0 (h%«/,UvM h% MM) ©
NI Wy Wie
then the third term on RHS of (6.13) is bounded by

< Com) M%)z < Co() 1A% )7,

t 1
C83/0 exp{—g—/ v(g)dg}u(s)nh )3 ds < Ce> sup [|A5 ()17 -

0<Ss<t
From (1.47), (5.1) and (6.6), a direct calculation shows that

N ) _ e
Yo {Q(Fi‘f'Fi-f—Fi, RV“M)+Q< Vi F+F+F>}(S)
= UM Wy

< Copyr )1 ()l Lo - Zel -
i=1

wo [P f oy o VPO VHo o
[ Fro+ 2o+ 22

o))

< Cop ) 1hy(5) 1 s - Ze’ 2[ Nk, fi o + g, Fi ) lzoo + Ivog, £ )= |
i=1

< RO M o).

where we have used lz_—a“ <a< % Then the fourth term on RHS of (6.13) is
bounded by

1 ! 1 !
Cr(t)— eXP{——Z/ V(S)dé}VM(U)”h%(S)HLOOdS = Cr()e sup [[h%k(s)ll L.
e Jo &% Js 0<Ss<¢

Similarly, it follows from (1.42)—(1.44), (1.47) and (6.6) that

[R® 4 R® + 1%81) ()| = Cr(s)(EN O +£°79),

Wi
(G
wbhi;:h implies that the last term on RHS of (6.13) is bounded by Cg(r)[eV~* +
’ L]f;t I, (v, v') be the corresponding kernel associated with K,. Recalling (6.11)
we have
we (V) exp{—clv — v} _ _exp{—jclv—v'P’}

C . (6.14)

L, V)| 2 C
b (v, VO S we (V)| — V| lv— /|

A

Now we can bound the second term on RHS of (6.13) by

1 ! 1 !
—f exp{—S—Z/ v(e§)dé§}/}Rz 1Ly (Ver (s), v )R% (s, Xer(s), v))| dv'ds.  (6.15)

&2 0
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We denote V/,(s1) = Vii(s1;s, Xei(s),v') and X/, (s1) = Xei(s1: 5, Xei(s), v).
Using (6.13) again to (6.15), then we can bound (6.15) by

1 ! 1 !
=7 exp{——zf V(S)dé}/ [ 1V 00 V500 )

X /S exp{—gi/x v(v )(é)d$}|h (s1, X2y (s1), ") dv'dv”ds;ds
0 s1

+ Cllh Ol + Cr)fe sup A5l +e¥ ™ + 873
0<Ss<t

+C0 sup [[h5(5)] 2w, (6.16)
0<s<t

where we have denoted v(v')(s) = v(u)(s, X.,(s), V) (s)) for simplicity of pre-
sentation. And we also used the following fact

fR3 |l (v, V)|V < C(1+ (o))", (6.17)

which follows from (6.14).

We now concentrate on the first term in (6.16). As in [23], we divide things into
several cases.
Case I For |v| = N, by using (6.17), one deduces the following bound:

C ! _
= sup Il / exp{——”M(”)(’ S)} / 1 (Ver(5), )]
&€ 0 R3

0<s<1 Ce?
s / _
X/ exp{_w}/ 1 (V/,(s1), v |dv"ds dv'ds
0 Ce R3
c
< — sup [[hR()|lL.
Mo

CaseZFor either [v| < M, |v/| = 2N or V| £ 27, || = 39‘1 noting |V (s)| =
lv[and |V/,(s1)| = [v'| we get either [V (s) —v'| = Nor [V (s1) —v”| = N, then
either one of the following is valid for some small positive constant 0<c £ £

32
(where ¢ > 0 is defined in Lemma 6.2):
2
(Ve 9), V)] = €T 1y (Ve (5), vy exp (e1] Ver(s) = '),
_ 2
(Vi (), 0] < e 1, (Vs 0"y exp (e |V sn) — ')
which, together with (6.14), yields that
/ 1l (v, 01| dy’ <
R3 14 Jv|’ 6.18)
/ (0 "y Py < —
R L+ v
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Hence, for the case of [v — v'| = Nor [v/ — V| = N, it follows from (6.18) that

t N
/ / // +[[ (---)dv"dv'ds ds
0 Jo ]S, v/ | =227 [V [S291, v 230

é%e—“‘“ sup (1A (s>||Loo/ / /uw(v v)|exp{ ”M(”)(’_”}

0<Ss<t
/ —
xexp{ W} v'dsds
< Ce ™ sup (|G ().

0<s<t
Case 3a |[v| SN, || £ 2M, [v”| £ 391. We note vy (v) = vy > 0 where vy is a
positive constant independent of v. Furthermore, we assume that s — s; < Ae? for

some small & > 0 determined later. Then the corresponding part of the first term
in (6.16) is bounded by

//A2 { UO(tsz_S)} Xp{_w}”hg(ﬁ)lhwdﬂds

! vo(t — ) §
<Csup () [ Xp{—°—2}ds./ s
()<3<[ 0 & S7A62

< Cx sup {[|A%(s)lle}.
0<s<t

Case3b|v| <N, |v/| £ 20, [v”| < 30tands—s; > Ae?. This is the last remaining
case. We can bound the corresponding part of the first term in (6.16) by

Vol —s) vo(s — 1)
/// T2 [P e

X |y (Ver (8), vy (V) (s1), v") - h% (51, X0 (s1), v7)|dsdv'dv”ds,  (6.19)

where D = {|v/| £ 2N, |v”| £ 3M}. It follows from (6.14) that

f |y (v, V) [2dv" £ C,
]R3

1

which, together with Cauchy inequality, yields that (6.19) is bounded by
1

{/ .// { UO(tC ZSI)}lh (s1. X/, s, v") P dv"dv’ dslds}
olf = 1IN12 Ay 2
Ce 2 Il (Ver (), vl (VY (s1), v")]7dv" dv’ dsy ds

1

{ / [ / { ol ) 251)}|f,§(s1,X2z(S1),v”)|2du”du’ds1ds}2
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1

0 2
C {/ / ,/ { - (t }'fR(sl X/[(Sl) UH)' ds]dU/dUNdS}
max{tl 0}
1

Cm 4 it vo(t — s1) 2 :
2{/0 /D/O - exp{—T | £5 (51, XLy (s1). v dsy dv'dv”ds
(6.20)

where 1] := 5 — 1, (X],(s), v'). To estimate (6.20), we integrate over v’, and make
a change of variable v/ — z := X él (s1). From the explicit formula (6.10)3 4, we
have that

—(s — 0 0
b _ Xy _ [(T6 )
5o = # = 0 —G-s) 0 , (6.21)
v v 0 0 —(s —s1)
if max{0, 1{} <51 <5 — re?, and
5, ax’ —(s—s1) O 0
a-f:%”: 0 —(-s) 0 |.if0<si<e. (622
v v 0 0 s — 85

From (6.21) and (6.22), for both cases, it holds that

det ( 0z ) )| =

which yields that, for s; € [0, s — A&?],

C
[ s X0 P < o [ sz 629
| <29 A%e% Jr3

(s —s1)° = (x&e?)? > 0, fors; €[0,s — r&?],

Using (6.23), we can further bound the two terms in RHS of (6.20) by

Cota
3= sup [Ifz()l 2.
£ 0Ss<t

Collecting all the above terms and multiplying them with &3, for any small
A > 0 and large 91 > 0, one obtains that

sup {lle*he @)z} £ Cr){Ie Ol + e+
0Ss<t

1
+ C(1)e* sup |E3h% ()30 4+ C {A +5t CR(t)s} sup [[e3h% (s)] oo
0<Ss5<t 0<Ss5<t

+ Cotp sup || fr)llz2
0<s<t

Noting ¢ € [0, t], first taking 9 > 1 large enough and A > 0 small, and finally
choosing 0 < ¢ < gp with gy small enough, we deduce

sup {le¥he @)=} £ Cr){Ieh @l + eV 28+ € sup I fp@)e.
0<s<t 0<s<t

Therefore the proof of Lemma 6.3 is completed. O



Hilbert Expansion of the Boltzmann Equation 299

6.3. Proof of Theorem 1.6

With Lemmas 6.1 and 6.3 in hand, the rest proof is the same as [23]. We
omit the details for simplicity of presentation. Therefore we complete the proof of
Theorem 1.6.

7. Acoustic Limit: Proof of Theorem 1.11

To prove Theorem 1.11, we first derive the estimate for two solutions to com-
pressible Euler equations (1.8)—(1.10) and acoustic systems (1.52)—(1.53). We de-
fine (gofl, @2, 03) as

1 1 1
= 6—2(;;‘S —1-38¢), @:= ﬁ(u'S —8®), )= 8—2(T5 —1—689).

As in [23], a direct calculation shows that

3@+ W - V)@d 4 p° divd? + 8[Ve - d + divd ¢)] = —div(p®d),
P28, + o’ (W - V)@Y + V(p°9) + T°¢))
—05Vp? — @) VT +8[0,D @)} + p°(D4 - V)@ + 9) Ve + ) VD]
=~ ® — p*(® - V)P — V(p¥),
0+ W - V)OS + 2T0 divd? + 8[ VY - &Y + Fdivd 9]
=—®. V0 — 9 dive,

(7.1)
with (¢, x) € [0, t] x R3., and the initial and boundary conditions
(@5, @5, 9PDli=0 =0 and @} (1, x,,0) = 0. (7.2)

Clearly, (7.1) is a linear hyperbolic system with characteristic boundary. Then we
apply Lemma 3.1 to (7.1)—(7.2) (the coefficients of (7.1) is slightly different, but
Lemma 3.1 is still applicable) to obtain

sup [1(9g, ©3. 9D D llpegy) < C @ 1o, Do, 00l grory)  (7:3)
tel0,7]

provided k < 59 — 2 where H* (Ri) is defined in (3.4).

With (7.3) in hand, we can prove Theorem 1.11 by using the same arguments
as in section 3.2 of [23]. The details are omitted for simplicity of presentation.
Therefore this completes the proof of Theorem 1.11. O
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Appendix A: Proof of Lemma 1.1

In “Appendix A”, we prove Lemma 1.1. For the macroscopic variables py, ik
and 0y of Fy, a direct calculation shows that

/3 Frdv = fy, /3(”1’ —ud) Frdv = pii 5, /3 vi Frdv = p%tg; + prud,
R R R
/3 [v? Fedv = p% + 375 + 20" - ity + pre|u’)?,
R.
/3 lv — u P> Frdv = %0 +37%%¢,
R

00 + 375

[ e = 2600+ i +
R3 3

+ / 71 — Po) fi - AV d,
R3

/3 vivj Frdv = pwitg j + p'witg; + prul + f3 T = Po) fi - Aydv. i # j.
R R

/ vi|v|217"kdv
R3

5 0 oz _ o
= T + WPk i + 300 (00 +3T°) + ) @0’ - i + pelu”)

2
+ 30 [ 2TOW0AY - A= Po) fidv + | 2(T)3BY - (X~ Po) fidv.
= /B3 l R l

(A.1)
and
/11@3 v3/R0 - yPo frdv = p dyity 3,
/N viv3N/ito - 3yPo frdv = pu0dyitx 3, i = 1,2,
/R . v3 /1o - 3Py frdv = 9, (w) , (A2)

| vl VG 0,0 fdw = (ST + P

/ v3(Jv — u0)? = 57%) /10 - 8,Po fir dv = 0.
]R3
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Multiplying (1.15)3 by 1, v, |v|?, integrating over R> and using (A.1)—~(A.2),
we obtain

2
aip+ Y 05 (p ik j + pru)) + p Byitkg 1.3 =0, (A3)
j=1
p%0k + 3T0,5k)

2
0, (P ik, + o) + Y 9 (p"u‘}ﬁk,,- + o wity j + o) + 8 3

j=1

0%0s1 + 3T 5p 41 >

+ pOudyitg 11,3 + 83 dy < 3

+ [ i A= P, fiardo = Wi, (A%
and

01 (p%0k + 3T i + 200 - ity + )
2
_ 5 - _ _ _
+ D 0AGT + WP ik + 30 (000 +3T%%) + 1) @o%u” - e+ A1)
j=0

+ 06T + WO P)ayiigs1,3 + /R} v3[[* V0 - (X~ Po)dy fyq1dv

2

2
=-Y 9 { 2T°u?/R3 Af - (I —Py) fidv +2(T%)3 /N B?-(I—Po)f'kdv}.
j=1 I=1 :

(A.5)

Then (1.30) follow directly from (A.3).
Substituting (A.3) into (A.4) and by tedious calculations, one can obtain

_ _ _ _ap° _
P it i + p ) - V)it — p 03] g i — pklp—o + Pk - Vi

+ (T A, (L —Po) frr1) = W1 — i i, i = 1,2, (A.6)
P itz + pO) - Viik 3 — p003u ik 3 + By Pt
+3,(TOAY;, (L —Pg) fir1) = Wi 3. (A7)

Similarly, from (A.3)—(A.4), the equation (A.5) for 6; can be reduced to be

5 - 5 - 10 . 5 _
—,008;91{ + —pouﬂ -V,0r + (—podlvuo — —p083u(3))6k
3 3 9 3
- 3 =
+ 3oV, 70 = 27V, p%ig + 3, (2(T*)2 B3, (X = Po) fis1)
_ 10
=Hi + {28, +2u° -V, + ?divuo} Pr. (A.8)

We still need to deal with the microscopic parts in (A.6)—(A.8). In fact, by using
(1.15), we obtain (1.29). Then by using (1.29), we have

(= Po) v, A3) = (Lo~ Po)wsd Py fo), AY)
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+ <LEI{J%[Q(33M0, VP fi) + O(JioPo fi d310)]

1 _ _
+\/—M_0[Q(\/M_of9, VIOPo f) + O(J1oPo fi /10 f1)]

1 _ _ _ _
+ ﬁ[Q(«/th VioPo fi) + OV 1oPo fi, \/%fl)]}, A2i>

+ (-1, AS) (A9)
A direct calculation shows that

(- L5 a=Po s, Pofo). AS) = ( - vsdyPo i, L5 AG)

Pk _ov—uY 3,6 slv—ul)? _
([ () 150

T0 670 70
TO
— 40 y~140 _M(To )ay’zk)i’ i=12,
=~y A%. L' A% =1, T (A.10)
—gTayb_tk’g,, l = 3,

where we have used (1.26) in the last equality.
From [19, p.649], we know that

1 _ 1 _
Lo — Pog. /P — P f, P
0 {MQ(\/MO 08> v/ 1oPo fi) + \/%Q(«/,U«O 0.fks /100 og)}
Pog-Pofk}
=0-P —_— 7. A1l
( 0){ N ( )
We assume

0 02
a v—1u c lv —u”|
Ppg={—4+b-———+ — | —— -3 .
o8 {p” 70 +6T°< 70 >} o

Then a direct calculation shows that
3

Pog - Py fi brug; 1 Ok c _ 0
[—Py) |28 "0kl _ ) Yk p € 2. B
( ” { NI 1JZ=1 7o Mt JTO (3T0 * 370 uk)

c- b lv —u? 2
+ 3501~ PO {(—TO -5) w—o}
(A.12)

Noting

o ap v—u 33T [|v—uf?
— - -3 , A.13
{p tou ——+ ( T N (A.13)
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which, together with (A.11) and (A.12), implies that the second term on RHS of
(A.9) is expressed as

3
Uk, j _
Z T—Oj[y83u? +ul, + u1,1]<¢4?j, A‘;-)
1,j=1
0’ 0 0 L 7 7 0 0 47 7 ;
qollosuy -y +uy 5+ i 3luk + (9307 - y +uy ; +unilugs), i = 1,2,
0 - -
= 5%[3311% Y+ M?,_o, + ity 3]itg 3
—%% 212:1[83u? Y+ M(l)y, +uylugy, i =3,
(A.14)

where we have used
2 o, 4
<Aii, A,-,-): —3P <-Aijv Aij>= p, fori # j, and <An, Aii>= 3P
Combining (A.9), (A.10) and (A.14), we obtain
9 (T°AY. (X —Po) fii1)
—u(TO)dyyiig i + O3, {[0313 - y + uf 5 + ity 3lig i}
+000,{[05u) - y +ul ; + a1 ilik 3} + T00, (Je1, AY), i = 1,2,
—3(TNdyyitx 3 + 3000 {10305 - y + uf 5 + ity 3iig 3)

—%PO 212:1[83u? Y+ “(1),1 + iy itk + T00y (Jeor, AS3), i = 3.
(A.15)

Substituting (A.15) into (A.6) and (A.7), then by tedious calculations, one can get
(1.27) and (1.31).
As in (A.9)-(A.15), we can obtain

042 120 z
8y(2(T%)2 B3, (L= Py) firr)
_ 5 o
= —Kk(T)0 0k + 30705 ((O313 - y + ul 3 + 01,3)0k)
5 _ 3 -
+ 3P 0GHT -y + 07 + )ik + 2T 20, (S, BY),  (A16)

which, together with (A.8) and (1.24), yields (1.28). Therefore the proof of Lemma 1.1
is completed. O

Appendix B: Sketch Proof of Lemma 2.5

Here we sketch the key steps of proof for Lemma 2.5, and we refer the reader
to [28, Section 3] for the details. Here (¢, x,,) € [0, 7] x R2? are the parameters in
(2.10), so we shall not write them down explicitly in the following.

Recall the monotonic smooth cut-off function y (-) defined in (3.8). Similar as
in [17], we define

fm,v) == f(m,v) + x() fp(v), (B.1)
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then (2.10) is equivalent

v39yf + Lof = g := S + v33,x () fo(v) + x (MLo fp,
(0, v)|y3>0 = (0, Rv), n>0 velkR’,
lim;, 0 f(, v) = 0,

(B.2)

with Rv = (v1, v2, —v3). Hence we only need to prove the existence of solution to
(B.2). And we divide the proof into several steps.

Step 1. As in [12, Section 3.2], using the L2-L*® method developed in [20], we
can construct a unique solution for the following truncated problem with penalized
term

ef® +v309,§° + Lof* = g,

, 0,d) x R?, B.3
Fn ol = F 0, Ryv), (n,v) € (0,d) x (B.3)

where d € [1,400), ¢ € (0, 1], Ryv := v —2(v - n(n))n(n), n(0) = (0,0, —1)
and 71(d) = (0, 0, 1). Moreover it holds that

+ wettg “Flie) < Coallv ™ wepg *glle (B.4)

nov’

—age
lwie g llLge,

where the positive constant C, 4 > 0 depends only on ¢ and d. Hereafter we take
O§a<%andx§3.

Step 2. Taking the limit ¢ — 04-. Noting the conditions (2.11)—(2.12) and using
(B.3), a direct calculations shows that

d d d d
[ atonan= [ sinan= [“vsonan= [ cman=o. @)
0 0 0 0
where we have used the notation

Pof (0, v) = {a® () + b° - (v —u°) + ¢ () (Jv — u°1> = 3)}/To.

Furthermore, by choosing suitable test function and noting (B.5), for the solutions
f¢ constructed in Step 1, we deduce

IPof 13, < ca®{ia@—Pof iz + gl |. (B.6)
Applying the energy estimate to (B.3) and using (B.6), we can have

If°11Z2, < Callglzz . (B.7)

which, together with the L%-L° method, yields the uniform estimate (uniform in
e e (0,1]

lwertg *F lzge, + lweng “Flewe) < Callv ™ wepggliee,.  (B.8)



Hilbert Expansion of the Boltzmann Equation 305

With the help of uniform estimates (B.7)—(B.8), we can take the limit ¢ — 04, and
obtain the unique solution f, to the linearized steady Boltzmann equation

v3877fd + L()fd =8, (77’ U) € (0’ d) X R3a (B 9)
fa(n, v)|y, = fa(n, Ryv),
with
lwie g *allLee, + lwierng “falreg) = Cdllv_leMEQgIIL;?U~ (B.10)

Step 3. Taking the limitd — +o0. To obtain the solution for half-space problem, we
need some uniform estimate independent of d, then we can take the limit d — oo.
Let f4 be the solution of (B.9), we denote

Pofa(n, v) = [a(m) + b)) - (v —u®) + c()(jv — u°1* = 3)] /0.
Multiplying (B.9) by /10 and using (2.11)—~(2.12), we have

d d
0= — ,v)dv = —b =0.
a7 /R3 v3/ 1o f(n, v)dv a 3(1)

Since f4 satisfies the specular boundary, it holds that b3(x)|x=¢ = b3(x)|x=q¢ = 0,
which yields b3(n) = 0, for n € [0, d]. Let (¢o, ¢1, ¢2, ¢3) be some constants
chosen later, we define

fan,v) =1am +b1(n) - 1 —ud) +ba(n) - (3 —ud) + (v —u? = 3)1 /o
+ (I —Pg)ig,

where a(n) = a(m) +¢o. bi() =bi(n) +¢i. =12, and &(n) =c@) +
¢3. In fact, we can prove that there exist constants (¢g, ¢1, @2, ¢3) such that

/R . v3fa(d, v)(W3/I0, Ly (A9, Ly (A%), Ly (B))dv = (0, 0,0, 0).
(B.11)

With the above chosen constants (¢g, ¢1, ¢2, ¢3), then we can obtain

- C
el L2, = - el .2, (B.12)

with 0 < ¢ < ¢ £ £, and the constant C is independent of d. Now combining
(B.12) and the L?-L> method, one can get

—a —1
lwiepeg “v™" e g L, .

(B.13)

3 _ B - C
lwepeg *e M allnge, + lwieptg *eMal L) <

: fo—2¢
Noting the above uniform estimates (B.12)—(B.13) and using the L2-L° method,
we can take the limit d — 400 to obtain the unique solution f of (B.2). The

uniform estimate (2.13) follows directly from (B.13) and (B.1). Therefore the proof
of Lemma 2.5 is completed. O
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Appendix C: Some Trace Inequalities

Lemma C.1. (1). Let Q5 = {(x,,x3) : x, € R?, x3 € [0,b]} withb > 1. We
assume f, g € HY(Qp), it holds, for any x3 € [0, b], that

1
= [0 (f5 g)||L2(Qb)||(f, 8)||L2(g2b) + E”fl'Lz(Qb)”g”Lz(Qb)'
(C.DH

’/ (fg)(x, x3)dx;,
R2

Fori = 1,2, we have

‘/Rz(ax,-f - ) (X, x3)dx, | = (193 (fs @)l 1202 10 (Fs )M 222,
1
+ E||8xif||L2(Qh)||g||L2(Q;,)- (C2)
(2). Let f, g € H'(R3), and x3 € Ry, it holds that

< 10 (s @)l 2 105 (s O 2ge3 e fori = 1,2
(C.3)

'/ (ax,-f'g)(xuax?’)dxu
R2

Proof. We only prove (C.1) and (C.2) since (C.3) can be obtained by taking the
limit » — oo in (C.2).

Without loss of generality, we assume that f, g € C%(Qp) N H' (). There
exists a point z; € [0, b] so that

1 b
/ (fe)(x,, zp)dx, = _/ / (fg)(x, x3) dx, dx3. (C4)
R2 b 0 R2

For any given x3 € [0, b], by using (C.4), we have

X3 b
f f 0.(fg) dx, dz +1' / f (Fg) (s 33) dx s
o JR? bl)o Jre

b
1
é/ \/\2|81fg|+|fazg|dx”dz+E”f”Lz(Qb)”g”LZ(Qb)
0 JR

=

‘/ (fg)(x,, x3)dx,
R2

1
= [0 (f5 g)”LZ(Qb)”(fa 8)||L2(szb) + l_)”f”LZ(Qb)”g”Lz(Qb)-

Hence we conclude (C.1).
Similar as (C.4), for i = 1, 2, there exists a point z; € [0, b] so that

1

b
/(ax,-ﬁg)(xu,zza)dxu:—/ / (@, f - §) (s x3) oy dixs.
R2 bJo Jr2

For x3 € [0, b], integrating by parts w.r.t x;, we obtain

‘/ (axif'g)(xm)@)dxu
R2
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X3
/ / az(axif'g)dxudz
zn JR?

b
/ / 0z f - Oy, dx, dz
0 JR2

1
+ E||8x,-f||L2(Qh)||g||L2(Qb)

b
§ / / (ax,-f'g)(xu,XS)dxndx3
0 JR?

b
/ / Oy, [ - 9 dx, dz
0 JR2

Ll
b

s +

1
= 11055 (fs O 1200 195 (s M 12, + E”3)6,'f”Lz(Qb)”g”Lz(Qb)'

This completes (C.2). O
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