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We study the problem of determining the capacity of the binary perceptron for two variants of the problem
where the corresponding constraint is symmetric. We call these variants the rectangle-binary-perceptron
(RPB) and the u—function-binary-perceptron (UBP). We show that, unlike for the usual step-function-
binary-perceptron, the critical capacity in these symmetric cases is given by the annealed computation in a
large region of parameter space (for all rectangular constraints and for narrow enough u—function constraints,
K < K*). We prove this fact (under two natural assumptions) using the first and second moment methods.
We further use the second moment method to conjecture that solutions of the symmetric binary perceptrons
are organized in a so-called frozen-1RSB structure, without using the replica method. We then use the
replica method to estimate the capacity threshold for the UBP case when the u—function is wide K > K*.
We conclude that full-step-replica-symmetry breaking would have to be evaluated in order to obtain the exact
capacity in this case.

I. INTRODUCTION

In this paper we revisit the problem of computing the capacity of the binary perceptron®? for storing random
patterns. This problem lies at the core of early statistical physics studies of neural networks and their learning and
generalization properties, for reviews see e.g.3 6. While the perceptron problem is motivated by studies of simple
artificial neural networks as discussed in detail in the above literature, in this paper we view it as a random constraint
satisfaction problem (CSP) where the vector of binary weights w € {£1}V (a solution) must satisfy M step constraints
of the type

N
> Xuwi > K, (1)
i=1
where p=1,...,M, K € R is the threshold, the random variables X,; are iid Gaussian variables with zero mean and

variance 1/N, and the rows of the matrix X € RM*¥ are called patterns. We define an indicator function associated
to the perceptron with a step constraint as p*(2) =1, > g

We say that a given vector w is a solution of the perceptron instance if all M constraints given by eq. (1) are
satisfied. The storage capacity is then defined similarly to the satisfiability threshold in random constraint satisfaction
problems: we denote the constraint density as & = M/N and define the storage capacity a.(K) as the infimum
of densities a such that in the limit N — oo, with high probability (over the choice of the matrix X) there are no
solutions. It is natural to conjecture that the converse also holds, i.e. the storage capacity a.(K) equals the supremum
of a such that in the limit N — oo solutions exist with high probability. In this case we would say the storage capacity
is a sharp threshold.

Gardner and Derrida in their paper! assume the storage capacity a.(K) is a sharp threshold and they apply the
replica calculation to compute it, but reach a result inconsistent with a simple upper bound obtained by the first
moment method. Mézard and Krauth? found a way to obtain a consistent prediction from the replica calculation and
concluded that the storage capacity a2(K) for the step binary perceptron (SBP), i.e. associated to the constraint ¢,
is given by the largest « for which the following quantity, the entropy in physics, is positive:

1 o0
Ohs (00, K) = SPyy.aq | 5 (90 = 1) do + / Dtlog [2 cosh (t qo)} ta / Dtlog /Hm Dul . 2)
Vi-ao
2
where Dt = [ < \/%2 dt is a Gaussian measure, and SP stands for “saddle point” meaning that the expression is

evaluated where the derivatives on the curl-bracket, with respect to go > 0 and go > 0, is zero.
Several decades of subsequent research in the statistical physics of disordered systems are consistent with the
conjectured Mézard-Krauth formula for the storage capacity of the binary perceptron. Despite the simplicity of the



above conjecture and decades of impressive progress in the mathematics of spin glasses and related problems, (see
e.g.” 12 and many others), the storage capacity of the binary perceptron remains an open mathematical problem. In
fact, even the very existence of a sharp threshold, i.e. the fact that in the limit N — oo the probability that patterns
can be stored drops sharply from one to zero at the capacity, is an open problem. Up to very recently only widely
non-matching upper bounds and lower bounds for the storage capacity of the binary perceptron were available!314,
As the present work was being finalized Ding and Sun'® proved in a remarkable paper a lower bound on the capacity
that matches the Krauth and Mezard conjecture (note that much like Theorem 4 below, the main theorem in'®
depends on a numerical hypothesis). A matching upper bound remains an open challenge in mathematical physics
and probability theory.

In this paper we introduce two simple symmetric variants of the binary perceptron problem. Let z,(w) =

Zij\il X,iw;. For a threshold K € R", we consider two different types of symmetric constraints:

e The rectangle binary perceptron (RBP) requires |z,| < K,Vp = 1,..., M. Its associated indicator function is
(2 =1, < k-

e The u-function binary perceptron (UBP) requires |z,| > K,Vu =1,..., M. Its associated indicator function is
cp“(z) = ]l|2| > K-

These constraints are symmetric in the sense that if w is a solution then —w is a solution as well.

The main result of the present paper, presented in section II, is a proof, subject to a numerical hypothesis, of
a formula for the storage capacity, defined in the same way as for the step-function binary perceptron above. In
particular, we show that in these symmetric variants the first moment upper bound (corresponding to the annealed
capacity in physics) on the storage capacity is tight (except for K > K* ~ 0.817 for the UBP case). We prove this
statement using the second moment method.

Let Z ~ N(0,1), and for K € R* let p, k = P[|Z| < K| and p, x = P[|Z] > K].

e The storage capacity for the rectangle binary perceptron is:

T _ —10g(2)
QLK) = s VK R* . (3)

e The storage capacity for the u—function binary perceptron is:

ox() = 22,

= for 0< K < K*~0.817. 4
IOg(pU,K) ( )

The constant K* ~ 0.817 stems from the properties of the second moment entropy eq. (10). In the physics terms it
is defined as the point of intersection between the annealed capacity a¥(K) and the local stability of the RS solution
air(K) eq. (17). That is, K* is the solution of the following equation:

2 e log(pu,i) = —2log(2) K. 5)

The two symmetric variants of the perceptron problem considered here share many of the intriguing geometric
properties of the original step-function binary perceptron problem. Most significant is the conjectured frozen-1RSB?
nature of the space of solutions that splits into well separated clusters of vanishing entropy at any a > 0. Remarkably,
this frozen-1RSB property can be deduced from the form of the second moment entropy as we explain in section
III. Our justification of the frozen-1RSB property does not rely on the replica method and is hence of independent
interest.

For the UBP and K > K*, the second-moment proof technique fails, and this failure marks tightly the onset of
the replica symmetry breaking region. In that region, we evaluate the one-step replica symmetry breaking (1RSB)
approximation for the storage capacity, but conclude that full-step replica symmetry breaking (FRSB) would be needed
to obtain the exact result. While the FRSB equations can be written along the lines of'®, they are more involved
than the ones for the Sherrington-Kirkpatrick model'” '°, and solving them numerically or getting additional insight
from them is a challenging task left for future work. We present the replica analysis in section IV. Table I contains
the summary of our main results along with the predictions for the step-function perceptron.

Finally let us comment on the simpler and more commonly considered case of spherical perceptron where the binary
constraint on the vector w is replaced by the spherical constraint wTw = Zﬁl w? = N. For K = 0 the spherical
perceptron reduces to the famous problem of intersection of half-spaces with capacity a. = 2 as solved by Wendell?°
and Cover?'. For K > 0 the Gardner-Derrida solution' is correct as proven in??23, For K < 0 the situation is
more challenging and FRSB is needed to compute the storage capacity; for recent progress in physics see!®2*, while

mathematical considerations about this case were presented in2®.



Binary perceptron Constraint Constraint function Range of K Storage capacity
Step-function 2> K ©(2)=1,> K VK € R RS eq. (2)
Rectangle lz| < K o (z) = ]l|z| <K VK € Rt Annealed eq. (3)
U-function lz| > K e (z) = ]l|z| > K 0< K < K*=0.817 Annealed eq. (4)
U-function lz| > K " (2) = ]l|z| > K VK > K* =0.817 FRSB?

TABLE I. This table summarizes results for storage capacity in binary perceptrons with different types of constraints. The
result for canonical step-function is from?. The results for the rectangle and u-function are obtained in this paper.

Il.  PROOF OF CORRECTNESS OF THE ANNEALED CAPACITY

To state the main results precisely we introduce some definitions. Let X (N, M) be the random M x N pattern
matrix. Define the partition functions

M M
zX)= Y JleGuw) and zuX)= > J]e"Guw

we{£1}N p=1 we{£1}N p=1

which count respectively the number of solutions for the rectangle and u—function constraints respectively. Let
ET(N, M) and E¥(N, M) be the events that Z,.(X) > 1 and Z,(X) > 1. We formally define the storage capacity.

Defintition 1. The storage capacity o’ (K) is

(&

al(K) =inf{a: ]\;EDOOP[ET(N’ laN )] =0},

and likewise for o(K).
It is believed that there is a sharp threshold for the existence of solutions.

Conjecture 2. The storage capacity is a sharp threshold:
al(K) =sup{a: A}im PE"(N, |aN]|)] =1},
—00

and likewise for o(K).

The corresponding conjecture for the random k-SAT model is the celebrated ‘satisfiability threshold conjecture’
proved for k large by Ding, Sly, and Sun'?
Next, couple two standard Gaussians Z1, Zg by letting Z and Z’ be independent standard Gaussians and setting

Zy=\BZ+\1—=pBZ" and Zg = /BZ — /1 —BZ". Let

ar.x(B) =Pl2| < KA|Zs] < K] = qx(8), ©
qu.x(B) =PlZ1| = KN[Zp| = K] = 1=2p,x + qx (5),

with gx (8) the probability that two standard Gaussians with correlation 28 — 1 are both at most K in absolute
value, that is:

K+(A-28)y

2+/B(1-B) _z2+y2
ar (B 2 dx.
271' K+<1 2B)y

2¢/B(1-8)

Note that g (1) = prx and gk (1/2) = pj i for t € {r,u}. We now introduce the functions that dictate the
effectiveness of the second moment bound. Let

Fr,K,a(B) :H(B) +a10gQT,K(B) (7)

Fu,K,a(B) :H(B) +a10gQ’u,K(B) (8)

where H(f) = —flog 8 — (1 — ) log(1 — §) is the Shannon entropy function.
We state a numerical hypothesis in terms of the derivatives of these two functions.



Hypothesis 3. For all choices of K >0 and a > 0 so that Iy ,(1/2) <0, there is ezactly one 3 € (1/2,1) so that
F g o(8) = 0. The same holds for Fy K a-

Our main theorem is a proof, under Hypothesis 3, that the storage capacity is given by the annealed computation.
Theorem 4. Under the assumption of Hypothesis 3, the following hold.

1. For all K > 0, we have a(K) = —log(2)/log(pr k).

2. For all K € (0, K*), we have o¥(K) = —10g(2)/ log(pu,K)-

Under our definition of of,(K) and a¥(K), we must prove two statements to show that o (K) = —log(2)/ log(pr i)
(and similarly for a¥(K)). We use the first moment method to show that for o > —log(2)/ log(pr.x),
limpy oo Pr(E7(N, M)) = 0; then we use the second moment method to show that for @ < —log(2)/log(pr k),
lim inf y 00 Pr(E™(N, M)) > 0 (a result analogous to what Ding and Sun prove for the more challenging step binary
perceptron'®). Conjecture 2 asserts the stronger statement that for o < —log(2)/ log(pr k), imy_se0 Pr(E" (N, M)) =
1.

A. First moment upper bound

Proposition 5.

1. Ifa>al(K)= 1o_gl((;ii)) , then whp there is no satisfying assignment to the binary perceptron with the rectangle
activation function.
2. Ifa>a¥(K) = 1<:g1(;i(,i)) , then whp there is no satisfying assignment to the binary perceptron with the u-function

activation function.

Proof. We give the proof for the rectangle function as the proof for the u-function is identical. Let e = a—a/(K) > 0.
Let 1 denote the vector of dimension N with all 1 entries.

PIE"(N,aN)] < E[Z.(X(N,aN))] = 2VE

alN
H 1|zu(1)<K] = 2Vp % = exp(N (log(2) + alog(pr.x)))
p=1

= exp(Nelog(pr,x)) = 0 as N — 0.

B. Second moment lower bound

Proposition 6.

1L Ifa< 1o_gl((;ii))7 then

lim inf P[E"(N, aN)] > 0.
N —00

108(2)_ then

2.If K < K* and a < lc?g(pux)’

liminf P[E“(N, aN)] > 0.

N —o0

To prove Proposition 6 we will apply the second-moment method in a similar fashion to Achlioptas and Moore2® who
determined the satisfiability threshold of random k-SAT to within a factor 2 by considering not-all-equal satisfying
assignments (not-all-equal satisfiability (NAE-SAT) constraints are symmetric in the same way the rectangle and
u-function constraints are symmetric). Recall the Paley-Zygmund inequality.

Lemma 7. Let X be a non-negative random variable. Then

E[X]?
E[X?]"

P[X > 0] >



We will also use the following application of Laplace’s method from Achlioptas and Moore?S.

Lemma 8. Let g(8) be a real analytic function on [0,1] and let

9(8)
BA(L—p)t=r"
If G(1/2) > G(B) for all B #1/2 and G"(1/2) < 0, then there exists constants c1,ca so that

G(B) =

aG1/2)N Z( ) (I/N)N < e,G(1/2)N

1. Rectangle binary perceptron

We calculate
N
E[Z,(X)?] = Z P[w1, wo satisfying] = 2%V Z P[1, w satisfying] = 2%V Z ( )qT Kx(I/N)N
wi,wae{+1}V we{£1}N =0

where we recall ¢, x from eq. (6). Define

QT,K(B)Q
(- B
If we can show that Gy k.o (1/2) > Gy, k,a(B) for all B # 1/2 and G/ ¢ ,(1/2) <0, then by Lemma 8, we have

Grk,a(B8) = exp(Frk,a(B)) = (9)

E[Z,.(X)?] < cadV . 1 (1/2)*N
—c 4Np2aN.

Then since Z,(X) is integer valued, we have

E[Z,(X)]2  (2Vpek)?

P(Z.(X) > 1] > E[Z,(X)2]  E[Z,(X)2]
(2N gN)2
> ey e

It remains to show that when a < logl((;g(K)), then G k.a(1/2) > Gy ix.a(B) for all 8 #1/2 and G . ,(1/2) < 0. By
eq. (9) and the fact that G| - ,(1/2) =0, it is enough to show the same for F}. f .
Certainly one necessary condition is that Fy. x o(1/2) > Fj. g o(1). This reduces to the condition 2pr K > D or

a< gl(c;g(i)) which is exactly the condition of Proposition 6. Next consider F)'f . (1/2).

A calculation shows that
2 aK2e K’
TKQ(1/2) =4 <—1 +-—— -

m pr,K

In particular, F)/x ,(1/2) <0 if and only if

m pg,K
Ry e

But a calculation also shows that

log(2) T P?«,K
log(pr k) 2 K2e K?

for all K > 0 and so the condition of Proposition 6 implies that F)'p (1/2) < 0.

Moreover, since F i o (8) is symmetric around 8 = 1/2 and it has a local maximum at 8 = 1/2, Hypothesis 3 implies
that the global maximum of F, g o(8) occurs at either 1/2 or 1, and since Fy i (1/2) > F, k.a(1), we have that
Fr k.a(1/2) > F, k,o(B) for all 8 # 1/2, completing the proof of Proposition 6 for the rectangle binary perceptron.



2. wu-function binary perceptron

The proof for the u-function is similar. We can calculate

N o/N
E[Z.(X)?] =2V )" < / )(Ju,K(l/N)“N = exp (N(log(2) + Fuk,a(8))) ,
=0

where we recall g, x from eq. (6). Using Lemma 8 and Hypothesis 3 again, it suffices to show that for 0 < K < K*
and a < % we have Fy, k.o(1/2) > Fy k.o(1) and Ti’)K’a(l/2) < 0. The first follows immediately from the fact
that o < —22)L For the second, we have

IOg(pu,K)

2 aK2e K’
wK,a(1/2) =4 (—1 + -

0 pu7K

and so I/ ;¢ ,(1/2) <0 if and only if

™ piK
a < §7K2€_K2 .

Unlike with the rectangle function it is not true that

_log(2) m Pk
log(pu,K) 2 K2€_K2

(10)

for all K: the left and right sides of the inequality cross at K = K™, which implicitly defines K*. Thus for K < K*

and o < —% we have I/ ;- (1/2) < 0, which completes the proof of Proposition 6 for the u-function binary
perceptron. ‘
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FIG. 1. Second moment entropy densities. a): the rectangle binary perceptron for o < o, = 1.816 (dashed pink), 8 % is the

global maximizer. For a > «af,, 8 = 0 and 8 = 1 are the maximizers. b): the u-function binary perceptron for o < a* = 0.430,
8= % is the maximizer while for a* < a < a; = 0.604 (dashed yellow), the maximizer is non-trivial 8 # 0.



3. llustration

As an illustration, we plot the second moment entropy density limy o0 & log E[Z7] = log(2) + Fy,k,a for t € {r,u}
at K =1 > K* in fig. 1. For the rectangle function (a), the second moment is tight: the maximum is reached for
B = 1/2 for all @ smaller than the first moment «f, (dashed pink). Exactly the same happens for the u—function
with K < K*. However for K > K*, the second moment method fails (b): 8 = 1/2 becomes a minimum and the
maximum is obtained for non trivial values 5 # 1/2 for constraint density smaller than the first moment o (dashed
yellow).

I1l.  FROZEN-1RSB STRUCTURE OF SOLUTIONS IN BINARY PERCEPTRONS

One of the most striking properties of the canonical step-function perceptron is the predicted frozen-1RSB? nature
of the space of solutions. This means that the dominant (measure tending to one) part of the space of solutions splits
into well separated clusters each of which has vanishing entropy density at any o > 0. This frozen-1RSB scenario and
quantitative properties of the solution space were studied in detail recently?”-2®. Following up on conjectures that
such a frozen structure of solutions implies computational hardness in diluted constraint satisfaction problems??, it
was argued that finding a satisfying assignment in the binary perceptron should also be algorithmically hard since
its solution space is dominated by clusters of vanishing entropy density?®. Yet this conjecture contradicted empirical
results of3Y. This paradox was resolved in3! where the authors identified that there are subdominant parts (i.e. parts
of measure converging to zero as the system size diverges) of the solution space that form extended clusters with large
local entropy and all the algorithms that work well always find a solution belonging to one of those large-local-entropy
clusters. These sub-dominant clusters are not frozen and somewhat strangely are not captured in the canonical 1RSB
calculation®'. It was argued that existence of these large-local-entropy clusters bears more general consequences on
the dynamics of learning algorithms in neural networks, see e.g.32.

While frozen-1RSB structure has also been identified in constraint satisfaction problems on sparse graphs we
want to note that its nature in the binary perceptron is of a rather different nature. In sparse systems a simple
argument using expansion properties of the underlying graph and properties of the constraints show that each cluster
with high probability contains only one solution. In the perceptron model, which has a fully connected bipartite
interaction graph, this argument from sparse models does not apply.

In the present paper, we deduce from the second moment calculation of the previous section that the space of
solutions in the symmetric binary perceptrons is also of the frozen-1RSB type and this property moreover extends to
any finite temperature (with energy being defined as the number of unsatisfied constraints). This is different from the
locked constraint satisfaction problems of??:34 living on diluted hypergraphs, where the solution-clusters have extensive
entropy at any non-zero temperature. Another difference is that whereas in the locked constraint satisfaction problems
the size of each cluster is one with high probability, in the binary perceptron there are still many solutions in the
clusters, it is only their entropy density (i.e. logarithm of their number per variable) that vanishes as N — oo.

Investigation of the large local entropy clusters and their implications for learning in the symmetric perceptrons is
also of great interest, but left for future work. Clearly since mathematically the symmetric perceptrons are simpler
than the step-function one, they should also be the proper playground to deepen our understanding of the large local
entropy clusters and their relation to learning and generalization.

We present the frozen-1RSB scenario as a conjecture and then below indicate how the second moment calculation
gives evidence for this conjecture. Given an instance X and a solution w, let I'(w, d) denote the set of solutions w’
with Hamming distance at most d from w.

33,34
b

Conjecture 9. For every K > 0 and every o € (0,al(K)) there exists dmin > 0 so that with high probability over
the choice of the random instance X from the RBP, the following property holds: for almost every solution w,

1
N
as N — oo. The same holds for the UBP for all K < K*.

log |T(W, dmin)| — 0

A. The link between the second-moment entropy and size of clusters

In this section we use ¢ € {r,u} and note that the form of the second moment entropy density + logE[Z?] has
very direct implications on the structure of solutions in the corresponding models. As we defined it above, the second
moment entropy is the normalized logarithm of the expected number of pairs of solutions of overlap 3.



For problems such as the symmetric binary perceptrons where the quenched and annealed entropies are equal in
leading order, there is a striking relation between the planted and the random ensemble of the model®3¢. The
random ensemble is the problem we have considered so far, while the planted ensemble is defined by starting with
a configuration of the weights (a solution) and then including only constraints that are satisfied by this planted
configuration. As long as the quenched and annealed entropies of the random ensemble are equal in leading order
the planted and random ensembles should be contiguous, meaning that high-probability properties that hold in one
ensemble also hold in the other. Moreover the planted configuration in the planted ensemble has all the properties of
a configuration sampled uniformly at random in the random ensemble. These properties follow on the heuristic level
from the cavity method reasoning36. They were established fully rigorously in a range of models, see e.g.3%37:38 . In the
present case of symmetric binary perceptrons we have not yet managed to prove contiguity between the random and
the planted ensemble, and so we leave a rigorous mathematical result for future work. (In fact the missing ingredient
is a version of Friedgut’s sharp threshold result?” suitable for perceptrons; such a result combined with Theorem 4
would also prove Conjecture 2). We hence rely on the above heuristic argument and assume it holds in what follows.

Given a planted solution w and a configuration wg that agrees with w on SN coordinates, the probability that
wpg is a solution in the planted model is (q: i (8)/pe, i), and thus the expected number of solutions at Hamming
distance SN from the planted solution in the planted ensemble is

B(2] = ( ) @B/,

and its entropy density is

wi(B) = lim —logE[Z5] = Fixca(B) — alogps for ¢ € {r,u}. (11)
N—oco N

Recalling that contiguity implies that the planted solution has the properties of a uniformly chosen solution in the
random ensemble then this entropy gives us direct access to properties of the solution space in the random ensemble
at equilibrium. Most notably we notice (see derivation in section IIIB below) that the derivative of wy(8) at 5 =1
is +oo thus implying that Ve > 0 with high probability there are no solutions at overlap 8 € [dmin(c, K), (1 — €)].
In turn, this means that the dominant (measure converging to one as N — oo) part of the solution space splits into
clusters each of which has vanishing entropy density (i.e. logarithm of the number of solutions in the cluster divided
by N goes to zero as N — o0). The missing ingredient in a full proof of Conjecture 9 is a proof of the contiguity
statement.

B. Form of the 2nd moment entropy implying frozen-1RSB

In fig. 2a we plot w,(8) for the rectangle binary perceptron, at K = 1, « = 1.80 < oL (K = 1). Thanks to the
contiguity between the planted and random ensembles that holds as long as the second moment entropy density is
twice the first moment entropy density, this curve represents also the annealed entropy of solutions at overlap £ with
a random reference solution. We see notably that there is an interval of distances in which no solutions are present.
Analytically we can see from the properties of the functions F i o(8) and logp, i that Fi k o(1) = alogp, x and
the derivative of F} i o () — oo. This is in contrast with, for instance, the satisfiability problems studied in?%, where
the function corresponding to Fi g o(8) would have a negative derivative in 8 = 1 (see fig. 2b). There could still be
an interval of forbidden distance, but the bump in entropy for § ~ 1 corresponds to the size of the clusters to which
typical solutions belong and those would be extensive.

1. Frozen 1RSB in rectangle binary perceptron

In the rectangle binary perceptron, the random and planted ensembles are conjectured to be contiguous for all
K >0and a € (0,a%(K)). Using eq. (8), the first derivative of w,(3), eq. (11), is given by (see Appendix VIE)

ow, OF. ko _ log (1 —ﬁ) L a 1 (e‘mfzm (em B 1))
B B B ¢r.x,7(B) 7\/B(1 = B) ’
and it diverges for all K € RT, a > 0 in the limit 8 — 1:
Owy
oo, (12)

% p—1

This implies vanishing entropy density of clusters to which typical solutions belong.
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FIG. 2. a) Density of the annealed entropy of solutions at overlap 8 from a random solution in the rectangle binary perceptron
at K =1, a = 1.80 < o (K = 1). We see there are no solution in an interval of overlaps (1 — dmin, 1 —€). This curve is obtained
from the second moment entropy and contiguity between the random and planted ensembles. It implies the frozen-1RSB nature
of the space of solutions. The same holds for the u—function. b) To compare we plot the density of the annealed entropy of
solutions at overlap 8 from a random solution in the k--NAE SAT model®® at k = 7, a = 40. We see the density is positive in
a large region close to 8 = 1, showing the absence of frozen-1RSB structure in this problem.

2. Frozen 1RSB in the u-function binary perceptron

In the w-function binary perceptron, the random and planted ensembles are conjectured to be contiguous for all
0< K <K*and a € (0,a%(K)). Using eq. (8), the first derivative of w,(8) eq. (11), is given by

Owu _ OFurka _ <1 —ﬂ) L« 1 (e% <e% B 1>)
Bk 93 S\ 758 dur,r(B) 7y /B( - B)

— +00,
B—1

thus reaching the same conclusion on presence of frozen-1RSB.

In appendix VIE we extend the second moment calculation to finite temperature (for both the rectangle and
u—function case). This means that we define energy of a configuration £(w) as the number of constraints that are
violated by this configurations. Then the corresponding partition function is defined Z(T') = " e ¢W)/T  There
is a one-to-one mapping between the temperature 7' and energy density e = £/N, consequently the corresponding
finite-temperature second moment entropy density counts the number of pairs of solutions at overlap  and energy
density e. In appendix VIE we apply the same argument as here connecting the random and planted ensemble, and
deduce that the finite-temperature solution space of the models is of also of the frozen-1RSB type for any T < oo.

C. Frozen-1RSB as derived from the replica analysis

We stress that we derived the frozen-1RSB nature of the space of solutions without the use of replicas. For
completeness we summarize here how this translates to the properties of the one-step-replica-symmetry breaking
solution. This is the way this phenomena was originally discovered and described in?274°. For readers not familiar
with the replica method this section should be read after reading section IV.

In general, three kinds of fixed points of the 1RSB equations are possible:

e The replica symmetric (RS) solution ¢o = ¢1 = qrs < 1,
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FIG. 3. Illustration of the configuration space for the different phases: a): RS - solutions are concentrated in a single cluster
of typical size 1 — grs. b): 1RSB - solutions form clusters of size 1 — ¢1 at a distance 1 — go from each other. c¢): fIRSB -
clusters are point-like (1 — ¢1 ~ 0) at a distance 1 — go = 1 — grs from each other.

e The frozen-1RSB solution (f1RSB) (go,41) = (grs, 1),
e The 1RSB solution (qo, ¢q1) with g1 # 1.

The frozen-1RSB is characterized by an inner-cluster overlap ¢; = 1 and an inter-cluster overlap gy = grs, which
means that clusters have vanishing entropy density and remain far from each other. Mathematically RS and f1RSB
solutions are equivalent in the sense that these solutions have the same free energy eq. (20) ®1rs{grs,qrs} =
®1rse{qrs, 1}, and the complexity of the fIRSB solution equals the RS entropy (¢ = 0) = ¢rs eq. (22, 15).
However, RS and f1RSB do not share the same configuration space. The RS phase is associated to a single cluster of
solution with typical size 1 — qrs, while the fIRSB configuration space is composed of many point-like solutions of
size q1 ~ 1 and at distance 1 — gy = 1 — grg of each other, see fig. 3. From this point of view f1RSB is the correct
description of the phase space.

IV. REPLICA CALCULATION OF THE STORAGE CAPACITY

In this section we recall the replica calculation leading to the expression of the storage capacity in the step-function
binary perceptron. We show that in the symmetric binary perceptrons the annealed calculation is reproduced by the
replica symmetric result. For the u—function binary perceptron we show that K* coincides with the onset of replica
symmetry breaking and we evaluate the 1RSB capacity for K > K*.

A. Replica calculation

For the purpose of the calculations, we introduce the constraint function C(z) that returns 1 if w satisfies all the

constraints {¢(z,)} 1L, and 0 otherwise

M
C(z) = H o(z,) with z, = X, w.
p=1

Recall the partition function Z is the number of satisfying vectors w, with prior distribution P, (w), for a given
matrix X

M
zX)= Y. J[eXuw) :/dwpw(w)/dzqz)a(z_xw).

we {1}V pu=1

The replica method allows one to compute explicitly the quenched average Ex [log(Z(X))]*'. More precisely, using
the replica trick, the average of the logarithm can be expressed as the limit n — 0 of the derivative with respect to n
of the average of the n-th moment of the partition function. Finally the free entropy reads:

1 1 dlog (Ex|[Z(X)"
#(0) = Jim < Exllog(Z(X)) = tm _limy L 08 EXEA).

(13)



11

Computing the n-th moment of the partition function Z, for n € IN| is equivalent to considering n copies, also called
replicas, of the initial system. For a given disorder, these n replicas are non-interacting and Z™ can be computed easily.
However, averaging over the ”disorder” with distribution Px makes the replicas interacting: replicated weight-vectors

n
w? and w, for a,b € [1: n], are correlated by the overlap matrix Q = (Qup)s ,—; = (% vazl wfwf) .
’ a,b=1

We show in Appendix VI A that after averaging over the distribution Py, using an analytical continuation for n € R
and finally reversing the limits N — oo and n — 0, the free entropy ¢ eq. (13) can finally be expressed as a saddle

point equation over n X n symmetric matrices Q and Q
. 95.(Q,Q)
d(a) = —SPq a {hm o [ (14)

where Q is a parameter involved in the change of variable between {w? w’} and Q,; and with

5.(Q. Q) = 1Tr(QQ) — log(Z1(Q)) — arlog (I2(Q))
IQ(Q) = f]R" dﬁp@(ﬁ’)e%WTQW where W € R™ and Pg(w) = H[5(1Da —1) +0(wa +1)],

a=1

TIMQ) = [n. dzP:(7)C(Z) where z € R" and P; 2 NV (0,Q) .

In order to be able to compute the derivative of S,, with respect to n eq. (14), we need an analytical formulation of
Q and Q as a function of n.

B. RS entropy

The simplest ansatz is to assume that the overlap matrix Q is Replica Symmetric (RS), which means that all
replicas play the same role: the correlation between two arbitrary, but different, replicas is denoted qg, and therefore
the RS ansatz reads:

1 qo ifa#b
V(a,b) € [1:n] x[1:n], —=(w* w’) = ’
(a,0) € IxI ] N( ) {Q_lifa_b.
It enforces the matrix Q to present the same symmetry, respectively with parameters gy and Q = 1. Using this ansatz

and the n — 0 limit, the Replica Symmetric (RS) entropy can be expressed as a set of saddle point equations over
scalar parameters gy and gp, evaluated at the saddle point (Appendix VIB):

1 1 ~ w (A z
Prs(a) = SP 0,40 {—5 + 5(‘10‘]0 —1) + Zgs(do) + QIRS(‘JO)} ) (15)
AN ~ w A\ — A (1 — qAO) 2 \/A—
I¥s(do) = [ Dtlog (gi(t,do)) 9 (t.4o) = [ dww'Py(w)exp | ———=w" +ty/qow | ,
with and for i € N

Tis(qo0) = [ Dtlog (f§ (. q0)) » fE(t, q) = /DZ Z'o(vqot + /1 = qo2).-

(16)
2
Note that above and in what follows Dt = [ £ \/%2 dt. In the binary perceptron case, the function P, is defined as

Py(w) = [0(w—1)4+d(w+1)] (note that this is not a probability distribution because of the normalization), and recall
©(z) is the indicator function, checking that a constraint on the argument is satisfied (e.g in the step case, p*(z) =1
if z > K).

While in the step binary perceptron (SBP) the fixed point solution (go,do) is non-trivial, the symmetry of the
activation function in the RBP and UBP cases enforces the configuration space to be symmetric and the fixed point
(g0, G0) = (0,0) to exist. If this symmetric fixed point is stable and has the lowest free energy, the RS free entropy
matches the annealed entropy ¢! () = log(2) + alog(py,x) = + log Ex[Z(X)] from section IT A with ¢ € {r, u}.
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1. Rectangle

Solving numerically the corresponding saddle point equations leads to the single symmetric fixed point (go, go) = (0,0).
Hence the RS entropy saturates the first moment bound:

¢rs(a) =log(2) + alog (pr.x) = ¢5(a),
and the RS capacity equals the annealed capacity eq. (ITA):

—log(2)

aps(K) = ag(K) = o8 (0rrc)

2. U-function

e For K < K*, only the symmetric fixed point (qo,Go) = (0,0) exists, which leads again to the annealed free
entropy:

Prs(a) = log(2) + alog (pu,x) = ¢ (),

and annealed capacity eq. (ITA):

afis (K) = af(K) = %

e For K > K*, the RS entropy does not match the annealed entropy because the fixed point (go,do) # (0,0)
corresponds to a lower free energy than the symmetric fixed point (0,0). The symmetric fixed point becomes
unstable for K > K*, where K* is remarkably given by the same value as in the independent section IIB 2.
Hence it naturally verifies eq. (5) even though its definition derives from the stability of the RS solution, that
we study in the next section.

C. Stability

The local stability of the RS solution can be studied using de Almeida and Thouless (AT) method*?, based on the
positivity of the Hessian of S, (Q, Q) The replica symmetric AT-line car is given by the solution of the following
implicit equation (Appendix VID):

z 2 w oW w 2
1_ /Dt (f6(f6 = f5) + (f9)?) (t,qo(a))/Dt(gOg2 — (91)%) (t, do(a).-

a  (1-qa)? f5)* (96)*
As illustrated above, for the rectangle and u—function, the symmetry of the weights P, and the constraint ¢
imposes the existence of the symmetric fixed point (qg,go) = (0,0). This simplifies the previous condition and

becomes equivalent to the linear stability condition of the symmetric fixed point (go,Go) = (0,0) (see Appendix VID):

~wn 2 i
1 w
S f2 = fo (%) , where for ¢ € IN:
aar 5 90 7z

We plotted the annealed capacity, the replica symmetric capacity and the AT-line for the step, rectangle and
u-function binary perceptrons as functions of K in fig. 4, 5, 6.

1. Step binary perceptron

We note that for the step binary perceptron the RS solution is always stable towards 1RSB, even for negative
threshold K < 0. This is interesting in the view of recent work on the spherical perceptron with negative threshold
where the replica symmetry breaks for all K < 0, and full-step RSB is needed to evaluate the storage capacity'®



13
2. Rectangle

As the RS capacity ofg is always below the AT line o'y, the RS solution is always locally stable.

3. wu-function

There is a crossing between the values of the RS capacity afg and the AT-line a{, which defines implicitly the
value K* ~ 0.817, and matches the equality in eq. (10):

—log (2)
log (pU,K* )

(pu,K* )2
e—(K*)? (K*)2 '

(17)

77‘(
2

For K < K*, the RS solution is locally stable, while for K > K* the RS solution becomes unstable, and a symmetry
breaking solution appears.

10° — Annealed capacity o,
RS stability ap 0.08
10° — RS capacity ajg 1.014 ‘
==

10*

o 10°%

"||w‘

s 107 UNSAT
10’
10° SAT
107!
—4 -2 0 b} )]
K

FIG. 4. Step binary perceptron (SBP): the RS capacity agg (black) does not match the annealed capacity «a; (blue) and is
always below the AT-line o (orange). The AT-line is closest to the annealed capacity for Kmin =~ 3.62 where the difference
abr —af ~ 0.0012. For K = 0, we retrieve well known results®: afzg ~ 0.833, a’ar ~ 1.015 and o, = 1. The left and right hand
sides, and the inset, represent the same data on different scales. The satisfiable (SAT) phase is represented by the beige shaded
area and is located below the RS capacity, while the unsatisfiable (UNSAT) starts at the capacity (black line) and extends for
a larger number of constraints.
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106
— Annealed capacity o, 50
10 RS stability a/yp
______ RS capacity apg
10t 40
== /= 30
Il 102 I
3 3
10! .
SAT
10 10
107!
0 1 2 3 4 5 %

K

FIG. 5. Rectangle binary perceptron (RBP): the RS capacity aig (black) matches the annealed bound aj (blue), and the RS
solution is locally stable for all K: aRs < app. The AT-line (orange) is closest to the annealed capacity for Kmin ~ 1.24 where
the difference air — @) ~ 0.15. The left and right hand sides, and the inset, represent the same data on different scales. The
satisfiable (SAT) phase is represented by the beige shaded area and is located below the RS capacity, while the unsatisfiable
(UNSAT) starts at the capacity (black line) and extends for a larger number of constraints.

— Annealed capacity o 14
. RS stability oy
10 — RS capacity ajig 1.2
1.0
100
- UNSAT < 08
I I UNSAT
3 3
1071 0.6
K*
0.4 K*
1072 SAT
0.2 SAT
0 1 2 3 4 5 1 2 3 4 5
K K

FIG. 6. U—function binary perceptron (UBP): the RS capacity black) matches the annealed bound (blue) for K < K*. At
K = K*, the RS capacity crosses the AT-line (orange). For K > K™, the RS solution is unstable and the RS capacity deviates
from the annealed capacity. The left and right hand sides, and the inset, represent the same data on different scales. The
satisfiable (SAT) phase is represented by the beige shaded area and is located below the RS capacity, while the unsatisfiable
(UNSAT) starts at the capacity (black line) and extends for a larger number of constraints.
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D. 1RSB calculation

In the previous section we concluded that the replica symmetric solution is unstable in the u—function binary
perceptron for K > K* we analyze therefore the first-step of replica symmetry breaking (1RSB) ansatz in this
section. This ansatz and calculations is due to seminal works of G. Parisi and is classic in the field of disordered
systems and well presented in the literature!” 1?43, we thus mainly give the key formulas and defer the details into
the Appendix VIC.

The 1RSB ansatz assumes that the space of configurations splits into states. Consequently replicas are not symmetric

anymore and instead n replicas are organized in = groups containing m replicas each:
m

q1 if a,b belong to the same state,
V(a,b) € [1:n] x [1:n], —=(w*-w’) = { qo if a,b do not belong to the same state, (18)
Q=1lifa=0b.

2|

Following**, the partition function Z,, associated to m replicas falling in the same state is expressed as a sum over
all possible states ¥ weighted by their corresponding free entropy ¢:

2, = 3 exp(Nm(¥) = Y- Ny exp(Nmo) = 3 exp(VE(@) exp(Nmo) ~ [ doexp(N(mo+ £(0)),
{7} {¢} {¢}

where we introduced the number of states at a given free entropy ¢: Ny = exp(NX(¢)) and the complexity X(¢), also
called the configurational entropy.

Using the saddle point method in the N — oo limit, the 1RSB replicated free entropy ®1rsp is written as a function
of the Parisi parameter m, the free entropy ¢ and the complexity X (¢):

Pinsn(m,a) = Jim_ L Ex og(Zn(X))] = mo + £(6). (19)

Injecting the 1RSB ansatz eq. (18) in the replica derivation eq. (14), the 1RSB replicated free entropy ®irsp is

written as a saddle point equation over q = (qo,q1) and § = (go, 1) (see Appendix VIC):
m. m?
®irsp(m, a) = <Slfc)‘1 D) (g1 — 1) + 5 (9040 — q141) + mIigsp(@) + amIirsp(q) (20)

Itss(@) = £ [ Dtglog ([ Dtrgy (t,@)™) |

Zirsg(a) = = [ Dtolog ([ Dt1 f§ (t,q)™) ,

with

9 (t,q) = [ dww' Py (w)exp ((1_—2@1)1”24' (Vdoto + a1 — dot1) w) )

denoting t = (to, t1), and for i € N: (21)
fZ(t,q) = [ Dz 2"o(\/qoto + Va1 — qot1 + VI —q12).
Taking the derivative of ®1gsp with respect to m, the free entropy ¢ and complexity ¥ can be written as:
0 m,o N N N w ~ .
$a) = Loamsplma) EI; {3(@d —1) +m (0G0 — @1d1) + Tihsp(@) + aTRsp (@)}
(22)

X(¢) = 1rsp — mo = glz {mT(‘JUJl — qodo) + m(Zigsp — Jiksp) (@) + ma(Zigsp — jlzRSB)(q)} )

w ) O(mI Dtq lo w t,” w t,” m
Tirsp(@) = (—6”‘&) = thof al fg]:()grlvg(g(‘i)és;%( "

o(mT Dty lo t t
b e

with

J{rsB (@) =
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FIG. 7. Complexity 3(¢) as a function of the free entropy ¢ for the u—function binary perceptron at K = 1.5 > K*. Complexity
reaches ¥ = 0 (black dot) at meq. For K = 1.5 and a = 0.33 a) the free-entropy corresponding to meq is positive ¢eq > 0,
whereas for @ = 0.34 b) the free entropy at meq is negative ¢eq < 0 and therefore there is no part of the curve where both

complexity and free entropy are positive: thus this value of « is beyond the 1RSB storage capacity, and the capacity is in the
interval [0.33; 0.34].

E. 1RSB results for UBP

From now on we only consider the u—function binary perceptron, whose RS solution is unstable for K > K*.
The Parisi parameter m is fixed to its equilibrium value by maximizing the total entropy in the SAT phase,
Prot = ¢ + S(¢), under the constraint that the free entropy and complexity are both positive ¢ > 0 and 3(¢) > 0:

o = ().
Mg mﬁ%f{zgo(bjL (¢)

Using the expressions eq. (22) and varying the Parisi parameter m € [0; 1], we obtain the curve of the complexity
Y(¢) as shown in fig. 7. At m = 1, the complexity is negative. Decreasing m, the complexity increases and becomes
positive at the value meq. Besides for small values of m, an unphysical (convex) branch appears, as commonly observed
in other systems solved by the replica method.

We note that at « increases both the equilibrium complexity and free entropy decrease. In constraint satisfaction
problems such as K-satisfiability or random graph coloring the mechanism in which the satisfiability threshold appears
is that the maximum of the complexity becomes negative. In the present UBP problem it is actually both the free
entropy and the complexity that vanish together, as illustrated in fig. 7.

Computing the equilibrium value meq(cx), we have access to the corresponding equilibrium overlaps ¢§ and ¢}, that
we may compare with the RS solution grs. All these are depicted in fig. 8. We also compute the 1RSB entropy
?'rsp < Png which vanishes at the 1RSB capacity afggqp as depicted in fig. 9a. The 1RSB solution provides a small
correction to the RS result for storage capacity, as illustrated in fig. 9b, where we plotted the difference between the
annealed upper bound and the capacity for the RS and 1RSB solutions: o) — afg and ay — af'ggp-
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FIG. 8. Equilibrium values of the overlap gy # grs, g1 and the Parisi parameter meq for the UBP at K = 1.5. For K < K™,
the RS solution is stable and the only fixed point is go = ¢1 = qrs = 0.

0.12 —— Ppsp(@) B
— dis(@) <
| 0.020
0.10 . . s
o Q1RsB: QRS e
I0.08 £
X £ 0.015
- 3]
<
=006 ©
S e
> "
> ul04 £ 0.010
(o wn
9] ~
H0021, | ok %
£ 0.005
0.00 -+ S
0.0
—0.02 0.2 0.3
0.28 0.30 0.32 0.34 0.000%5
a=24 '
N

FIG. 9. a): Comparison of the RS (blue) and 1RSB (orange) entropy for the UBP at K = 1.5. For a < aar ~ 0.118, RS and
1RSB entropies are equalled. For a > aaTr, 1RSB entropy deviates slightly of the RS entropy before vanishing respectively at
afrsp =~ 0.337 and apg ~ 0.334. The inset represents the same data on a different scale. b): Difference between the annealed
upper bound and the 1RSB capacity a; — ajrsp (orange) and the RS capacity ag — apg (blue). Below K™ the RS solution
is stable: RS and 1RSB entropies match exactly. Above K™, the RS solution is unstable: the 1RSB entropy deviates slightly
from the RS solution.
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F. 1RSB Stability

In the previous section we evaluated the 1RSB storage capacity of the u—function binary perceptron for K > K*.
In this section we will argue that this cannot be an exact solution to the problem.

We could investigate the stability of 1RSB towards further levels of replica symmetry breaking along the same lines
we did for the RS solution. However, in the present case we do not need to do that to see that the obtained solution
cannot be correct. The explanations lies in the breaking of the up-down symmetry in the problem. This symmetry
must either be broken explicitly as in the ferromagnet, where the system would acquire an overall magnetization, but
we have not observed any trace of this in the present problem. Or this up-down symmetry must be conserved in the
final correct solution. The conservation of the up-down symmetry is manifested in the value go = 0 in the replica
symmetric phase. The fact that in the 1RSB solution evaluated above we do not observe gy = 0, but instead gop > 0
is a sign of the fact that we are evaluating a wrong solution. The only possible way to obtain an exact solution we
foresee is to evaluate the full-step replica symmetry breaking with a continuity of overlaps g(x), the smallest one of
them should be 0 in order to restore the up-down symmetry. We let the evaluation of the full-RSB for future work.

Finally let us note that the 1RSB solution obtained in the previous section can be interpreted as frozen-2RSB. In

2RSB we would have 3 kinds of overlaps, qo, ¢1 and ga. In frozen 2RSB we would have g2 = 1, ¢1 = ¢iF5B, ¢o = ¢3RSE.

V. CONCLUSION

The step-function binary perceptron has thus far eluded a rigorous establishment of the conjectured storage capacity,
eq. (2). This prediction is expected to be exact because of the frozen-1RSB nature of the problem?27. At the same
time the work of3! sheds light on the fact that the structure of the space of solutions is not fully described by the
frozen-1RSB picture, and that rare dense and unfrozen regions exist and in fact are amenable to dynamical procedures
searching for solutions. It remains to be understood how is it possible that the 1RSB calculation does not capture these
dense unfrozen regions of solutions®'. They do not dominate the equilibrium, but the RSB calculation is expected to
describe rare events via their large deviations, which in this case it does not.

In this paper we focus on two cases of the binary perceptron with symmetric constraints, the rectangle binary
perceptron and the u—function binary perceptron. We prove (up to a numerical assumption) using the second
moment method that the storage capacity agrees in those cases with the annealed upper bound, except for the
u—function binary perceptron for K > K* eq. (5). We analyze the 1RSB solution in that case and indeed obtain a
lower prediction for the storage capacity. However, we do not expect the 1RSB to provide the exact solution because
it does not respect the up-down symmetry of the problem. Though the precise nature of the satisfiable phase for the
u—function binary perceptron for K > K* remains illusive, we can conjecture it is full-RSB!7~19. Establishing this
rigorously would provide much deeper understanding and remains a challenging subject for future work.
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VI. APPENDICES

A. General replica calculation

We present here the replica computation for general prior distribution P, and constraint function ¢. In order to
compute the quenched average of the free entropy, we consider the partition function of n € N identical copies of
the initial system. Using the replica trick, and an analytical continuation, the averaged free entropy ¢ of the initial
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system reads:

pla) = lim %Ex[log(Z(X))]: i Ji L 2108 (Ex[2(X)"])

NS too N—+oon—0 N on ’

where the replicated partition function can be written as

Ex[2(X)"] = / X Py (X) Z(X)" / X Py (X H / dw" P, / d2°C(2")5 (2" — Xw") (24)

M
with the global constraint function C(z H
We suppose that inputs are 7id dlstrlbuted from Px £ N (0, ). More precisely, for i,j € [1: N|, p,v € [1 : M],
Ex[XinX;] = L ~0uv0ij. Hence z# sz\il Xiuwi is the sum of #id random variables. The central limit theorem
insures that z¢ ~ N (Ex[24], Ex[242}]), with two first moments:
EX[Zﬁ] = Zi\il Ex [qu]wa =0 N (25)
EX[Zﬁ Z] ZZJ Ex[XinXjp|wf j = % Zij 61!7'“’?“’? = % D im1 w;-’wﬁ?.

In the following we introduce the symmetric overlap matrix Q = (% Zil wlw?), p=1.n. Define z,, = (28)a=1..n

a=1..n- Zy follows a multivariate gaussian distribution z, ~ P; = N(0,Q) and Py (W) = [[_, [0(a —
1)+ 6 (1w, +1)]. Introducing the change of variable and the Fourier representation of the d-Dirac function that involves
a new parameter Q:

1= [dQ]]s <NQab - Zw ) ~ [aa [ Qe (5@ ) exy (% iv"vmvm) ,

a<b

and w; = (wf -

the replicated partition function becomes an integral over the matrix parameters Q and Q, that can be evaluated
using Laplace method in the N — oo limit,

A — LTr(QQ)—lo ‘v'(/—v'(leleQ‘x'fao "dzP;(Z)C(Z
EX[Z(X)n] _ /deQe N(éT (QQ)-1 g(jd Py (W)e2 ) log( dz Pz (2)C( ))) (26)
:/deQe*NSn<Q=Q> ~ e NSPqa{Sn(QQ} (27)
N—o00

where SP states for saddle point and we defined

Sn(Q Q) =1Tr(QQ) - log( (Q)) —alog(Z7(Q))
I¥(Q) = [y dWPg(W)ez™ (28)
)

C().

Finally, using eq. (23) and switching the two limits n — 0 and N — oo, the quenched free entropy ¢ simplifies as

a saddle point equation
. 95,(Q,Q)
d(a) = —SPq g {hm — (- (29)

I;(Q) = [ dZPs (2

n—0 n

over general symmetric matrices Q and Q In the following we will assume simple ansatz for these matrices that
allows to get analytic expressions in n in order to take the derivative.

B. RS entropy

Let’s compute the functional S, (Q, Q) appearing in the free entropy eq. (29) in the simplest ansatz: the Replica

Symmetric ansatz. This later assumes that all replica remain equivalent with a common overlap gy = % Zi\il w;-’wﬁ?
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for @ # b and a norm Q = % Zﬁl wiwf, leading to the following expressions of the matrices Q and Q e R*m:

Q q - q Q do - do

Q: q0 Q ...... and Q: q0 Q ...... (30)
......... qo qb
) q @ do Qo Q

Let’s compute separately the terms involved in the functional S,,(Q, Q) eq. (28): the first is a trace term, the second
a term of prior Z\V and finally the third a term depending on the constraint Z7.
a. Trace term The trace term can be easily computed and takes the following form:

= 1 (nQQ +n(n — l)qotjo) . (31)

RS 2

ST(QQ)

b. Prior integral Evaluated at the RS fixed point, and using a gaussian identity also known as a Hubbard-
Stratonovich transformation, the prior integral can be further simplified

= /dé'va(\'fv) TWTQw /de (W) exp <@ Z(m“ﬁ) exp | go <; ﬁ)“) (32)

/Dt /de )exp<(Q2(j)w +t (ﬁﬂu)] . (33)

c.  Constraint integral Recall the vector Z ~ P; 2 N(0,Q) follows a gaussian distribution with zero mean and
covariance matrix Q. In the RS ansatz, the covariance can be rewritten as a linear combination of the identity I
and J the matrix with all ones entries of size n x n: Q|rgy = (Q — qo)I + qoJ, that allows to split the variable
2% = \/qot + v/Q — qou® with t ~ N(0,1) and Va, u, ~ N(0,1). Finally, the constraint integral reads:

T(Q)|ps = /dzP~ /Dt/HDu <p(\/q_0t+ VO = qout ) (34)
= [ UDW @HMU)] . (35)

d. Summary and RS free entropy ¢rs Finally putting pieces together, the functional S,, taken at the RS fixed
point has an explicit formula and dependency in n:

7y (Q)

50(QQ)[ = $TH(QQ) ~ log(TL(Q)) - o log ((Q)

36
RS RS (36)

1 A _ A~
03 (nQQ +n(n — 1)QOQ0 — n/Dt log (/ dwP,, (w) exp <Mm2 +t (jow>> (37)
- na/Dtlog (/ Dug (y, Vaot + v/ Q — qou)) . (38)
Finally taking the derivative with respect to n and the n — 0 limit, the RS free entropy has a simple expression
1A L w (A z
rs(a) = SPqy g0 | —50@Q + 54060 + Tits(do) + Zs(90) ¢ (39)
with Q = Q = 1 and the following notations,

T¥s(qo) = [ Dtlog (f dwP,, (w) exp ((Q;éo)wz 1t (jow))
(40)

Tis(q0) = [ Dtlog ([ Dz¢ (Vaot +vQ — qoz))
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C. 1RSB entropy

The free entropy eq. (23) can also be evaluated at the simplest non trivial fixed point: the one step Replica Symmetry
Breaking ansatz (1RSB). Instead assuming that replicas are equivalent, it assumes that the symmetry between replica
is broken and that replicas are clustered in different states, with inner overlap ¢; and outer overlap qg. Translating
this in a matrix formulation, the matrices can be expressed as

Q=qoJn+ (@1 —q) T2 ®Jp+(Q—q) T, and Q=GoTn +(G1 —Go) T2 @Iy + (Q - fil) L. (41)
a. Trace term Again, the trace term can be easily computed
1 A 1 A . .
§Tr(QQ) =3 (nQQ +n(m —1)q1d1 +n(n — m)QoQo) : (42)
1RSB

b. Prior integral Separating replicas with different overlaps, the prior integral can be written as

N (Q—d1) n ~a (d1—40) ™ m ~a - 1 n ~ a2
77(Q) = /dWP@(W)GTh T @)+ R S S ymgr @O0+ R (T, @) (43)

— [pta| [ o1

c.  Constraint integral Again the vector Z ~ P; = N(0, Q) follows a gaussian vector with zero mean and covari-
ance Q|gsp = q0Jn +(q1 — @) Iz ® I +(Q — q1) I,. The gaussian vector of covariance Q|;rgp can be decomposed
in a sum of normal gaussian vectors tg ~ N(0,1),Vk € [1: 2], ¢, ~ N(0,1) and Va € [(k—1)m+1: km], uy ~ N(0,1):
2% = /qoto + v/q1 — qotr + v/ Q — q1ug. Finally the constraint integral reads

1RSB

/de (w) exp <(Q 5 w? + (\/q_oto-i- VvV —QOtl) )]m] i (44)

Z:(Q)lirsp = /DtO / H Dtk/ H Duqp(v/qoto + Va1 — qotr + VQ — q1uta) (45)

=(k—1)m+1

— /Dto [/ Dt [/ Dup(/qoto + V@1 — qot1 + \/Hu)} F- (46)

d. Summary and 1RSB free entropy ¢1rsp  Gathering the previous computations eq. (42, 44, 46), the functional
S, evaluated at the 1RSB fixed point reads:

= STHQQ) ~ 05(T3(Q)) ~ alog (17(Q))

1RSB

5.(Q. Q) (47)

1RSB

o5 (nQQ +n(m—1)q1¢1 +n(n — m)Qolio) (48)

__/Dtolog (/Dtl [/de (@ )exp<(Q;q1 02 + (\/q_0t0+\/m151) >1m> (49)
—a% /dy/Dto log </ Dt Upmp(y,\/q_otoJr V@ = qot1 + \/ﬂu)]m> . (50)

Let’s introduce the replicated free entropy following®*. We consider m reals replicas of the same system and we
imagine we put a small field, that allows the m replicas to fall in the same state. The replicated free entropy is the
free entropy corresponding to these m uncorrelated copies in the limit of zero coupling. To compute it, we consider
n’ = I replicas. Denoting q = (qo,¢1) and § = (go, G1), the replicated free entropy reads as m times the free entropy

of n replicas with 1RSB structure:

1 1 dlog (Ex[Z2™" (X)]
PIRSB () : = (leloo 7 Ex log(Z (X)]) ~ Jim 5 i ( on’ ) (5)
101 Zn(X 95,(Q, G
R e e R N e
m 2
= EE {5 (Q1(J1 QQ) ((Jqu —q1q1) + mIiRsp(a) + o‘mIIRSB(q)} (53)
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with t = (o, 1), g3 and f§ defined in eq. (21) and

(@ = [ Dtotog ([ Digi (6.0 and Tinta) = - [ Dratos ([ Dufi (ea)™) . 60

D. RS Stability
1. De Almeida Thouless RS Stability

The stability of a given saddle point ansatz is related to the positivity the hessian of the functional S,,. This stability
analysis has first been done by de Almeida Thouless and following!>42, replicons eigenvalues of the RS ansatz \§
and A\¥ can be expressed as functions of {g¥, f7}2_, defined in eq. (16):

2

z(fz _ £z 212\ 2 w W w)2
M) = gy [ I U 4 ) ana g = [ e BE ) gy o)

The instability AT-line is defined when the determinant of the hessian vanishes that translates as an implicit equation
over a, where qo, §o are solution of the saddle point equations eq. (15) at a = aar:

L\ (o), B) A (dolaar) - (56)
aaAT

However for a < aar, (qo,do) = (0,0) is the only solution. Using {f7, ¥ }%, defined eq. (58), this expression
simplifies because of the symmetry of the prior distribution P, and the constraints ¢ in the rectangle and u—function
cases. In fact the symmetry imposes f{ = 0 and gi* = 0 and the condition reads:

1 _ f~2z_.f~(§ 2<§_2w>2 (57)
aar fé )

2. Existence and stability of the RS fixed point (qo, §o) = (0, 0)

We provide an alternative approach to get the instability condition of the RS solution for symmetric prior and
constraint. In this symmetric case, the stability can be derived from the existence and stability of the symmetric fixed
point (qo, o) = (0,0). Let’s define

2)2_op zrz $2(£7)2 ~ .
Flao) = a [ D= BRS04, go) Jw) = [ D=iel2), 5
with o8
w ~—1/2 w ~ 1 w?
Gldo) = [ DEE=—2 (1 o) gy’ = [ dww Py(w)e’s .

In fact the saddle point equations at the RS fixed point eq. (15) can be written using the functions F, G, and can
be reduced to a single fixed point equation over gg:

q0 = G(do)

= {QO =GoF(q) = H(q)- (59)
do = F(qo) »

As stressed above, the RS stability is equivalent to the existence and stability of the fixed point ¢y = 0. According
to that, let’s compute the stability of the above fixed point equation eq. (59). Computing F, F’,G,G’ in the limit

(g0, d0) — (0,0), expanding {f#,g%}; as functions of {f?,§"*}; and finally using the symmetry that implies f7 = 0
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rz 2 £z Fz\2 Fz\4 F2\2/fz rz rz rz 2
_ J1i ( 2~_f0) (f~1) _ 21U (~f2 —fo)) 2\ [~ (f2 ffo)
Flao) @ [( oz) +qo( Tr T3 T +O(q‘))} o \Z7) 500
72\ 2 Fz Fr_ Fr Fz 72N\ 2
FE) (3420 4 Uit +(9((J0)] o (E25)",
0

( I5 q0—0 i
Gldo) = (g_lw)%”j (£)2+£ 3(@”)3‘4@?@; +0(G"*) — 0
0 Go—0 95 0 95 ay ay y)? 0 do—0 5
oG aw\? a\® L argy )2
0 = 5w b Ii) — 4892 Vao) — (=) .
940 4050 (96“) + 95 (3 (96“) 4(96”)2) O(Vdo) P (%U)

Finally, the existence and stability conditions of the fixed point (go,do) = (0, 0) translate as an explicit condition over
« that defines aap

+

H(qo) = GoF(q) — 0

~ ~ 2
qo—0 z _ £z ~w 2
= a < 13 = i (%) = . (61)
oH|  _ 9G R o 0 9o
9q0 20=0 940 Go=0 9q0 q0=0

E. Moments at finite temperature

In this section we generalize the definition of the partition function for any temperature 7. The energy of a
configuration w is defined as the number of unsatisfied constraints and the corresponding partition function is defined
by Z(X,T) = e (£1}N e~¢(W)/T In particular for the rectangle and u—function constraints, the partition functions
at temperature T read

X1 = 3 ﬁe_%@_lzﬁw)'“‘) and Z,(X,T)= 3 ﬁe_%@_lzu(W)i”‘). (62)

We define the probabilities that constraints are satisfied at temperature 7":

R Ny U
prxr = [Dze T (1j2120) — e +(l—e T)pri,

#(1-1j212x) :

purT = [ Dze =e T+ (1—e T)pux, (63)

Hl=

Ds. KT = szei <17]12 > K) —e T 4+ (1- e’%)psyK.

1. First moment at finite temperature

Let E"(N, M, T) the event that Z,.(X,T) > 1. Let’s compute the first moment in the rectangle case,

aN -1 (1—]1 )
P[E"(N,aN,T)] < E[Z,(X(N,aN),T)] = 2VE | [] AR (64)
=2"pR = exp(N (log(2) + alog(p,,x,1))) - (65)

and this derivation holds similarly for the step and u—function.

2. Second moment at finite temperature

Again we show the computation for the rectangle and it can be done similarly for the u—function.



25
a. Expression of Fr i o1

E[Z,(X(N.aN), 7= Y E QNe_%<l‘“12u<wﬂSK>;%(1‘IZ#<W2>1SK> (66)
wi,wa {1}V p=1

It e_%{<1_“12u<1>1sr<>+(l_lizu<W>1SK>} (67)

we{£1}N p=1
oN Z ( )qr k1 (l/N)*N = exp(N(log(2) + Frx.a1)) s (68)

where we defined g,k the probability that two standard Gaussians with correlation 3 are both at most K in absolute
value at temperature T'. Defining p(8) =1 — 28 and

1 Bi1t+py

o B1 B2 e~ 3 (@ +y’+2pzy) N v _y24a?
af,gf / / ey = 27T/ /ﬂ " dydzeF (69)
[e5]

7T 1 — 1+py

the function F; g o7 at finite temperature can be written

Fr ka0 = H(B) + alogqrk1(B),

where

(;lr.,K.,T(ﬂ)E/]R2 dxdye_;;%y)e_%((1_1'2u(1)'<1<>+( 'Zu )'<K>> (10)

=T b e (T + TR T TR ) e (T T T + TS TS

b.  Ezpression of 0sFy k.o,
To compute the derivative of g, i 7, we first introduce

3 B2 2 10+ y)
gy 2(P)E—/ dye™ e 2= (y+7p).

The derivative of each integral involved in eq. (71) can be easily computed as

O 0l0) = sy (9577 — 9a™) (ol6)). (72)

Hence taking the derivative of each term of the form sz 512 and simplifying it, the probability ¢, x r reads:

_ ,—1/T\2 -~ 2
L (7 =) (1 - e = B (ot (S 1))

CA(B(1 - B ( /B0 - B)

In the end, the derivative of the second moment can be evaluated for 5 =0 and 8 =1 at all temperature T :

8Fr,K,a,T . 1-8 &7 8qT‘,K,T(/B)
0B (8) =log < B > * gk OB (73)

1—ﬂ> a  (1—eVT)? < k2 ( @5-1K? ))
=1lo + e 20-8 [e208F —1)) — s +00. 74
& < B ¢r.x,7(B) m/B(1 = j) B1/241/2 (74)

In particular at T = 0,

8FT,K,0¢ - 1-p o 1 7% (25111)1(2 B
e =oe (50) + S (7 (1)) (72)

QT‘,K,T(ﬂ) =




c. Expression of 0sFy K a1
Adapting the previous steps and using

Qu.x.T(B) = /1112 dxdyej;%y)e%(<1H‘Zu(l)'§K>+(ll‘z#(w)‘SK>>

_ —o00,—K K,+o00 —o0,— K K,+o00 . —K,K —K,K —o00,—K K,+o00 -2 —K,K
= (I—oo,—K +170 "k Tk 1no +IK,+OO> +te T ( ook T L oo T gk +I—K,K) +e T (I—K,K)

S

=qrK,-T€¢ T,

and eq. (74) the derivative for the u—function is straightforward to compute and is given by

OFuKaT 1-5 ol 0qu, Kk, T
o (ﬁ)‘log< B )+qu,K,T<ﬁ> o5 P

. 1-p a (efl/T_l)Q ( %< (25111)K2 B ))
_log< 3 )+qu,K,T(ﬁ)7r = e 3a-p |e20-mF — 1

=
B—1/2+1/2
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