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a b s t r a c t

Neural architecture search (NAS) has seen significant attention throughout the computational intel-
ligence research community and has pushed forward the state-of-the-art of many neural models to
address grid-like data such as texts and images. However, little work has been done on Graph Neural
Network (GNN) models dedicated to unstructured network data. Given the huge number of choices and
combinations of components such as aggregators and activation functions, determining the suitable
GNN model for a specific problem normally necessitates tremendous expert knowledge and laborious
trials. In addition, the moderate change of hyperparameters such as the learning rate and dropout
rate would dramatically impact the learning capacity of a GNN model. In this paper, we propose a
novel framework through the evolution of individual models in a large GNN architecture searching
space. Instead of simply optimizing the model structures, an alternating evolution process is performed
between GNN model structures and hyperparameters to dynamically approach the optimal fit of
each other. Experiments and validations demonstrate that evolutionary NAS is capable of matching
existing state-of-the-art reinforcement learning methods for both transductive and inductive graph
representation learning and node classification.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Network data and systems are ubiquitous [1,2] in the real
orld including social networks, document networks, biological
etworks, and many others. Relationship modeling is important
or many network or graph data mining tasks (e.g., link pre-
iction), which naturally desire flexible learning mechanisms to
apture the discriminative pairwise node relationships at dif-
erent levels, i.e., first-order and second-order neighborhoods.
ecently, Graph Neural Networks (GNN) [3,4] are developed to
irectly learn on networks or graphs, where nodes are allowed
o incorporate high-order neighborhood relationships to generate
ode embeddings through the design of multiple graph convolu-
ion layers. For example, with a two-layer Graph Convolutional
etworks (GCN) [4], the first and second GCN layers are able to
espectively preserve the first-order and second-order neighbor-
ood relationships between nodes in the embedding space. Due
o the inspiring learning ability for graph-structured data, GNN
as recently seen a plethora of successful real-world applications

∗ Corresponding author.
E-mail address: tangy@fau.edu (Y. Tang).
ttps://doi.org/10.1016/j.knosys.2022.108752
950-7051/© 2022 Elsevier B.V. All rights reserved.
such as image recognition [5], new drug discovery [6], and traffic
prediction [7].

As of today, many GNN structures with diverse learning mech-
anisms have been proposed for node relationships modeling [8,9].
For example, GCN [4] adopts a spectral-based convolution fil-
ter by which each node aggregates features from all immediate
neighborhoods. Graph Attention Network (GAT) allows each node
to aggregate features from all nodes in the network while learn-
ing to assign respective importance weights for different nodes.
GraphSAGE [10] learns a set of aggregation functions for each
node to flexibly aggregate information from neighborhoods of
different hops. Yet, developing a tailored learning architecture
comprising multiple GNN layers for a specific scenario (e.g., bi-
ological and physical network data) remains to be tricky, even
for neural network experts, because of two main reasons. First,
each of the multiple GNN layers may prefer a different aggrega-
tion function (a.k.a. aggregator) to better capture neighborhood
relationships of varying orders, i.e., GCN for the first-order while
GAT for the second-order neighborhood relationships. Second,
each specific aggregator alone may involve a number of structure
selections such as activation function and the number of attention
heads for GAT [10]. As a result, to identify a superior model

from the huge number of combinations of various components
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Fig. 1. Node classification accuracy of GCN and GAT models with changing hyperparameters: (a) learning rates, (b) weight decays, and (c) dropout rates, respectively.
We can observe that the variation of these hyperparameters can impact or even destroy the learning ability of a GNN model such as GAT.
(e.g., aggregators and activation functions), one usually must ap-
ply tedious and laborious efforts for GNN structure selection and
optimization.

To automate the model selection process, Neural Architecture
earch (NAS) was widely adopted [11–13] and has been a focal
oint of deep learning research in recent years. NAS seeks to find
n optimal combination of architecture components from a well-
efined searching space and finally generates an integral model
uitable for a target problem under study. To date, massive efforts
ave been made for optimizing Convolutional Neural Network
CNN) architectures, which pushed forward the state-of-the-art
n a number of significant benchmark tasks, e.g., image classi-
ication on CIFAR10/100 and ImageNet [14,15]. However, very
itter work has been done on the GNN architecture search dedi-
ated to graph-structured data. Two recent relevant works [16,17]
ainly focus on the reinforcement learning-based NAS and adopt
Recurrent Neural Network (RNN) as the controller to generate
ariable-length component strings that describe the GNN struc-
ures. Despite the promising results, they are all challenged by
he following two realities:

• Invariable Hyperparameters. Optimization of GNN struc-
tures is normally done based on a set of pre-defined hy-
perparameters. However, studies [18] show that the conver-
gence rate and final performance of common deep learning
models have significantly benefited from heuristics such as
learning rate schedules. Sensitivity experiments in Fig. 1
also corroborate that a moderate change of hyperparam-
eters (e.g., learning rate, dropout rate, and weight decay)
could impact the performance of a GNN model with already
optimized structures. Existing methods optimizing only the
structures with fixed hyper-parameter settings are likely
to produce a suboptimal GNN model, especially when the
model is sensitive to the hyperparameters.
• High Computation and Low Scalability. Training RNN adds

an additional burden to the searching process. Training
the controller (e.g., RNN) and individual GNN models si-
multaneously demands extensive run-time computation re-
sources. In addition, the controller typically generates can-
didate GNN structures and evaluates them in a sequential
manner, meaning that it is difficult to scale to a large
searching space and perform parallel model evaluations in
the searching process.

To address the aforementioned problems, this paper proposes
novel NAS framework termed Genetic-GNN through the evo-

ution of individual models in a large GNN architecture space/
opulation. Different from existing methods using fixed hyper-
arameters, Genetic-GNN provides a mechanism to optimize the
yperparameters dynamically to conform with changing GNN
tructures throughout the searching process. However, jointly
ptimizing the GNN structure and parameter is non-trivial since
2

Fig. 2. The proposed Genetic-GNN model for GNN architecture search. First,
the population of GNN structures is initialized (S0), where each individual
is a multi-layer GNN with each layer constructed from randomly sampled
components, i.e., aggregator, activation function, and hidden embedding size.
Then, the population (P0) of GNN parameters w.r.t S0 is initialized and evolved
to identify the optimal parameter setting (e.g., learning rate and dropout rate).
Subsequently, the architecture evolution (from S0 to S1) is performed to optimize
the GNN structures with the best parameter setting selected from P0 . After I
rounds of alternating evolution between the structure and parameter, it finally
generates a GNN architecture with optimal structure and hyperparameters
settings generated from SI and PI , respectively.

the structure and parameter are dependent on each other in that
a moderate change of hyperparameters could completely deterio-
rate the already fine-tuned model structures and vice versa (refer
to Fig. 1 as an example). In the proposed model shown in Fig. 2,
we adopt an alternating evolution process to dynamically opti-
mize both structures and parameters. In the structure evolution,
each individual in the initial population represents a multi-layer
GNN with randomly sampled components/parts for each layer.
At each state Sk, to determine the optimal model parameters,
we hold the GNN structures and meanwhile evolve to find an
optimal set of GNN hyperparameters fitting the GNN structure
well. Alternatively, to find the optimal GNN structure upon the
optimized hyperparameters, we hold the hyperparameters and
meanwhile evolve the entire population to optimize structures.

Since both GNN structures and hyperparameters can be
evolved to fit each other dynamically, we expect to achieve a
GNN architecture with both optimized structure and parameter
settings for the target graph learning task (e.g., node classifica-
tion). Extensive experiments and comparisons demonstrate that
Genetic-GNN is capable of matching the state-of-the-art methods
for both transductive and inductive node representation learning
and classification. An obvious advantage of Genetic-GNN is that
it is able to automatically identify suitable hyperparameters set-
tings for the searched GNN structure, which can significantly
improve the automation level of the NAS process. In comparison,
existing NAS methods typically rely on extensive human efforts
to perform careful hyperparameters selection, which is non-
trivial, especially for non-expert users. Since Genetic-GNN simply
follows the principle of survival of fitness over the evolution, it is
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ore robust and stable to find a good GNN model compared with
xisting methods which adopt a more sophisticated optimization
echanism delivering poor generalization ability. In addition,
nlike existing reinforcement learning-based methods, our model
an be easily scaled to a large searching space since all individual
odels in every generation of the population are independent
nd thereby can be evaluated simultaneously.
In summary, we make the following contributions in this

ork:

1. We formulated a graph neural network architecture search
problem under the evolutionary searching framework
which aims to optimize both model structures and hyper-
parameters. The searching process follows a principle of fit
of survival, which is robust to gradually optimize the GNN
models with iterative evolutionary training.

2. We proposed a novel evolutionary NAS framework called
Genetic-GNN to automatically identify the optimal GNN
architecture from a well-defined searching space. Differ-
ent from existing methods that only optimize the GNN
structures, an alternating evolution process is performed to
simultaneously optimize GNN structures and hyperparam-
eters until they have a good fit for each other.

3. We designed a series of experiments to evaluate Genetic-
GNN by conducting both transductive and inductive learn-
ing on graphs from three different domains. Compared
with existing state-of-the-art methods, experimental re-
sults show that Genetic-GNN is able to achieve compet-
itive performance w.r.t node classification accuracy, the
number of trained parameters, running time, floating-point
operations, and inference latency for the searched GNN
models.

The rest of the paper is organized as follows. Section 2 outlines
related work about GNN and NAS. Section 3 defines the GNN
architecture search problem. Section 4 introduces the preliminar-
ies regarding graph neural networks and the genetic algorithm.
Section 5 establishes the underlying principle of the proposed
Genetic-GNN model. Section 6 evaluates the evolutionary GNN
architecture search for both transductive and inductive graph
learning tasks. Section 7 presents the comparative results on the
benchmark datasets against baseline models. Finally, Section 8
discusses the advantages and drawbacks of the proposed evolu-
tionary architecture search method, and Section 9 concludes the
paper while laying out possible directions for future work.

2. Related work

We first survey current research on graph neural networks and
neural architecture search. Then, we summarize existing research
on graph neural network architecture search and highlight the
differences between our work compared with existing methods.

2.1. Graph neural networks

Many real-world systems take the form of graph or network,
i.e., social networks [19], citation networks [20], biology molecu-
lar networks [21] and others [22,23]. Different from the grid-like
data such as texts and images that are regular and sequential,
networked data are irregular in that network nodes may have
different numbers of unordered neighborhoods [3], making exist-
ing neural models such as CNN and RNN cannot be directly used
in the graph domain [24,25]. Recently, graph neural networks
(GNN) as a family of neural network models were proposed to
directly learn on graph-structured data [4,26]. The main idea of
GNN is to capture node relationships and features with carefully
designed graph convolution kernels or filters [25], where nodes
3

are allowed to aggregate features from their respective neigh-
borhood (e.g., first-order and second-order relationships) nodes
iteratively.

Naturally, flexible graph convolution kernels or feature aggre-
gators are desired to efficiently model the complex node relation-
ships in complicated graph systems and learning tasks, i.e., trans-
ductive and inductive network representation learning [10,27]. To
date, a significant number of graph neural kernel designs have
been proposed [9,28]. Gated graph neural network [29] adopts
a gated recurrent unit for neighborhood relationship modeling,
where the hidden state of each node is updated by its previous
hidden states and its neighboring hidden states. Chebyshev Spec-
tral CNN (ChebNet) adapts the traditional CNN to learn on graphs
by using the Chebyshev polynomial basis to represent the spectral
filters [25]. GCN [4] simplifies ChebNet architecture by using fil-
ters operating on 1-hop neighborhoods of the graph, where nodes
in each GCN layer only aggregate features from their direct neigh-
bors. Diffusion CNN (DCNN) [30] regards graph convolutions as a
diffusion process. It assumes that information is transferred from
one node to each of its neighborhoods following a transition prob-
ability distribution. In addition to convolution filters that treat
neighborhoods equally important, many works demonstrate that
attention-based filters could be beneficial. For example, Graph
Attention Networks (GAN) [31] introduce an attention mecha-
nism to determine the importance of neighborhoods to the target
nodes in the feature aggregation.

Although diverse graph convolution filters and feature aggre-
gators have been proposed to achieve new-record performance
in many real-world applications (e.g., node classification and link
prediction), it is impossible to identify a GNNmodel which is suit-
able for all kinds of networked data and systems [16,17]. In gen-
eral, nodes build relationships with each other in different gran-
ularities, i.e., direct and indirect neighborhood relations, which
intuitively demand different graph filters for different feature
aggregations and relationship modelings. For example, Graph-
SAGE [10] tries to train a set of aggregation functions that learn to
aggregate features from a node’s local neighborhoods, where each
aggregation function is responsible for aggregating information
from all neighborhoods at a particular hop.

2.2. General neural architecture search

Neural Architecture Search (NAS) is a fundamental step in
automating the machine learning process, which has been suc-
cessfully applied in many real-world applications such as im-
age segmentation [32] and text processing [33]. NAS aims to
design an optimal model architecture using limited computing
resources in an automated way with litter or no human inter-
vention [34]. Most existing works can be roughly classified into
three categories, including reinforcement learning, Bayesian, and
evolutionary optimizations [12,35].

Reinforcement Learning (RL), functioning as a model architec-
ture selection controller, has been extensively used in automating
CNN model designs [36,37]. Zoph et al. [38] first used an RNN to
generate the string description of a CNN model and then trained
this RNN with RL to maximize the expected accuracy (e.g., image
recognition) of the generated model. Baker et al. [39] proposed
an RL-based meta-modeling algorithm called MetaQNN which
incorporates a novel Q-learning agent whose goal is to discover
CNN architectures that perform well on a given machine learning
task with no human intervention. Above methods often design
and train each candidate neural model from scratch each time
after searching the architecture space. To enable more efficient
training, Cai et al. [40] proposed an RL-based method where
weights for historical network models can be reused to evaluate
the current model. However, a noticeable limitation for RL-based
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AS is the poor scalability, especially when the searching space is
ery large since the candidate models are sequentially dependent
n the progressive optimization process and it is impossible to
erform a parallel evaluation on multiple models.
Bayesian Optimization (BO) is a family of algorithms that build

probability model of the objective function determining the best
xpected neural network architecture [41]. Early work proposed
sing the tree-based frameworks such as random forest and tree
arzen estimators [42]. For example, Bergstra et al. proposed a
on-standard Bayesian-based optimization algorithm TBE, which
ses tree-structured Parzen estimators to model the error dis-
ribution in a non-parametric way. Hutter et al. [43] proposed
MAC which is a tree-based algorithm that uses random forests
o estimate the error density. Gaussian processes are also widely
sed in Bayesian optimization. Kandasamy et al. [44] proposed
Gaussian Process-based BO framework for searching multi-

ayer perceptron and convolutional neural network architectures,
hich is performed sequentially and at each time step all past
odel evaluation results are viewed as posterior to construct an
cquisition function evaluating the current model.
Evolutionary Algorithm (EA) performs an iterative genetic

opulation-based meta-heuristic optimization process, which is
mature global optimization method with high robustness and
ide applicability [12,41]. EA-based NAS has been widely used

or identifying suitable CNN models for specific tasks such as
mage denoising, in-painting, and super-resolution [45]. Different
A-based algorithms may use different types of genome encod-
ng methods for the neural model architectures. For example,
enetic-CNN [46] proposed to represent each network structure
ith a fixed-length binary string, where each element in the
tring corresponds to a particular kind of unit operation. Masanori
t al. [47] proposed to use Cartesian genetic programming to rep-
esent the CNN structure and connectivity, which can represent
ariable-length network structures and skip connections.

.3. Graph neural network architecture search

Most existing work focuses on the NAS of CNN models for
rid-like data such as texts and images. For NAS of GNN mod-
ls evaluating on graph-structured data, very litter work has
een done so far. GraphNAS [16] proposed a graph neural archi-
ecture search method based on reinforcement learning. It first
ses a recurrent network to generate variable-length strings to
escribe GNN architectures and then trains the recurrent net-
ork with reinforcement learning to maximize the expected ac-
uracy of the generated architectures on a held-out validation
ataset. Auto-GNN [17] follows a similar architecture search-
ng paradigm as GraphNAS while proposing a parameter sharing
trategy that enables homogeneous architectures to share learn-
ng weights. These works all focus on GNN structure (e.g., aggre-
ators and activation functions) optimization with fixed hyperpa-
ameters. However, GNN structures and hyperparameters would
mpact each other in that the moderate change of hyperparam-
ters (e.g., learning rate) could severely degrade the accuracy of
he optimal GNN architecture achieved by existing methods.

Instead of focusing on reinforcement learning, we aim to eval-
ate the effectiveness of the evolutionary method for GNN archi-
ecture search and propose a novel framework through the evo-
ution of individual models in a large GNN architecture searching
pace. In addition, unlike existing methods that only optimize
he GNN structures, we propose to evolve and optimize both
NN structures and hyperparameters given that they may impact
ach other in the searching process. More specifically, we propose
two-phase encoding scheme that uses two strings to respec-

ively represent the GNN structures and hyperparameters. In this
ay, we are able to evolve and optimize both structures and
yperparameters until they fit each other to produce an optimal
odel.
4

Fig. 3. The representation learning scheme of GNN models.

3. Problem definition

In this paper, the objective is to identify the optimal GNN
architecture through NAS for network representation learning
(a.k.a network embedding) by doing semi-supervised node clas-
sification training. Formally, the tasks of network embedding and
graph NAS are defined as follows.

Definition 1 (Network Embedding). The target network can be
represented by G = (V, E,X), where V = {vi}i=1,...,|V| is a set of
|V| unique nodes, E = {ei,j}i,j=1,...,|V|; i̸=j is a set of edges that can
be represented by a |V| × |V| adjacency matrix A, with Ai,j = 1
f ei,j ∈ E, or Ai,j = 0 otherwise. X is a matrix R|V|×nf containing
ll |V| nodes with their associated features, i.e., Xi ∈ Rnf is the

feature vector of node vi, where nf is the number of unique node
features. The task of network embedding is to learn a mapping
f : G → {hi}i=1,...,|V| by preserving network topology and node
features, where hi ∈ Rnd represents the low-dimensional vector
representation of node vi, and nd is the embedding vector’s di-
mension. f can be the GNN model identified by NAS. In this paper,
the mapping is learned in a semi-supervised manner, i.e., labels
or a small part of nodes are known, where the node embedding
ectors are trained to predict their respective labels.

efinition 2 (Graph Neural Architecture Search). For the graph NAS
ask in this paper, the GNN structure space S ∈ R|S1|×|S2|×···×|Sm|

nd GNN hyper parameter space P ∈ R|P1|×|P2|×···×|Pn| have
een given, where Si=1,2,...,m ∈ R|Si| is the set of candidate
hoices for the ith structure component (e.g., GNN aggregator)
nd Pj=1,2,...,n ∈ R|Pj| is the set of candidate choices for the jth
yper parameter. m and n are respectively the numbers of struc-
ure components and hyperparameters required to build a GNN
odel. The task of graph NAS is to identify the optimal choices
r value specifications (e.g., Sbest

i and Pbest
j ) for each structure

omponent Si and hyper parameter Pj, such that the resulting
NN model f =

{
Sbest
1 , Sbest

2 , . . . , Sbest
m ;P

best
1 ,Pbest

2 , . . . ,Pbest
n

}
an achieve the optimal embedding performance for the target
etwork G.

. Preliminaries

To support the proposed graph NAS framework, this section
riefly introduces the preliminary knowledge about graph neural
etworks and the genetic algorithm.

.1. Graph neural networks

GNN is a family of neural network models that can directly
ncorporate graph topology and node features for efficient low-
imensional node representation learning. As shown in Fig. 3,
he main idea for GNN models is that each node vi generates
he representation hi by aggregating features from its neighbor-
oods (e.g., the first-order neighbors in this paper). Typically,
he following five GNN structure components are involved in the
onvolutional representation learning:
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1. Attention Function (S1). When each node aggregates fea-
tures from its neighbors, different neighborhood nodes may
have different contributions since affinities between neigh-
borhood nodes and the target node [31] are different. The
attention function aims to learn an importance weight wij
for each edge relationship ei,j linking node vi to node vj. S1
denotes the set of candidate attention functions.

2. Attention Head (S2). Instead of applying single-head at-
tention, studies [48] show that a model may have better
robustness if incorporating multiple parallel attention learn-
ings simultaneously. Multi-head attention allows the model
to jointly attend to features from different node represen-
tation subspaces. The multiple representation outputs by
multi-head attention for each node vi are then concate-
nated or averaged to generate the final representation hi.
S2 denotes the set of candidate attention head numbers.

3. Aggregation Function (S3). Each node vi may have multiple
neighborhood nodes, thus an aggregation function (e.g., av-
eraging operation) is required to combine features from
multiple neighbors and form the final representation hi. S3
denotes the set of candidate aggregation functions.

4. Activation Function (S4). After deriving the representation
hi for node vi, a non-linear activation function (e.g., ReLu
and Sigmoid) is usually applied to smooth hi or transform
hi as a probability distribution vector for multi-class node
classification. S4 denotes the set of candidate activation
functions.

5. Hidden Unit (S5). The hidden unit controls the dimen-
sion of the representation hi for node vi. For a multi-layer
GNN model, the output dimensions in the hidden or middle
convolution layers may impact the representation ability
of the entire GNN model. S5 denotes the set of candidate
dimension choices.

Based on above definitions, the first-layer learning structure of
GNN model (e.g., instantiated and indexed by 1) can be repre-
ented as an action string by S1 =

{
S1
1 , S

1
2 , S

1
3 , S

1
4 , S

1
5

}
. Formally,

he representation hi ∈ RS1
5 for node vi can be computed as:

i =

S1
2
∥
l=1

S1
4

(
S1
3

j∈Ni

(
S1
1 (Xi,Xj,Wl)WlXj

))
(1)

here ∥ represents concatenation, Ni represents the set of direct
e.g., first-order) neighborhoods of node vi, and Wl

∈ Rnf is
he learnable weight matrix for the lth attention head. One can
tack multiple GNN layers to form a multi-layer GNN model. At
he kth layer, suppose the action string be instantiated as Sk =
Sk
1, S

k
2, S

k
3, S

k
4, S

k
5

}
, then the output representation h(k)

i ∈ RSk
5 is

written as:

h(k)
i =

Sk
2
∥
l=1

Sk
4

(
Sk
3

j∈Ni

(
Sk
1(h

(k−1)
i ,h(k−1)

j ,Wl)Wlh(k−1)
j

))
(2)

where h(k−1)
i is the output representation by the (k − 1)th GNN

ayer and Wl
∈ RS(k−1)

5 represents the corresponding learnable
weight matrix. If k indicates the last GNN layer, the aggregation
function Sk

3 will be the averaging operation, meaning averaging
the representations generated by all Sk

2 attention heads. Then, the
final representation for node vi is written as:

h(k)
i = Sk

4

⎛⎝ 1
Sk
2

∑
j∈Ni

(
Sk
1(h

(k−1)
i ,h(k−1)

j ,Wl)Wlh(k−1)
j

)⎞⎠ (3)

In this paper, the weight matrix Wl at each GNN layer is
rained in a semi-supervised or supervised manner, i.e., by per-
orming end-to-end node classification [4,31] optimized with the
radient decent algorithm.
5

4.2. Genetic Algorithm

Genetic Algorithm (GA) belongs to the family of evolutionary
algorithms motivated by the principle of natural selection and ge-
netics [49]. The searching space is a major ingredient for all GAs,
which is encoded in the form of strings known as chromosomes or
individuals, and a collection of such strings constitutes a popula-
tion. A chromosome is composed of a sequence of elements called
genes which encode the solution of a target problem. Initially,
a random population is created representing different individual
solutions for the target problem. A fitness value is associated with
each individual to indicate its goodness within the population.
GA optimizes the population and tries to find the global optimal
solution through a standard evolution procedure as follows:

1. Initialize(population)
2. Evaluate(population)
3. While(stopping condition not satisfied):

(a) Select(population)
(b) Crossover(population)
(c) Mutate(population)
(d) Evaluate(population)
(e) Update(population)

4. Return the best individual in the population

where the evaluation step aims to calculate the fitness of each
individual, the selection step aims to choose some individuals
from the entire population as parents for mating, the crossover
step describes how parental individuals switch the information
(e.g., swap the genes) and produce the next generations (e.g., new
individuals), the mutation step aims to introduce diversity in the
population by randomly altering a gene from new individuals
conditioned on the mutation probability, and finally, it updates
the population by adding new individuals.

5. The proposed method

This section presents a Genetic Graph Neural Network
(Genetic-GNN) NAS framework to evolve the GNN architectures.
As shown in Fig. 4, Genetic-GNN can be organized into three
main components that aim to optimize both GNN structures and
hyperparameters, including GNN architecture representation &
population initialization, GNN hyperparameters evolution, and
GNN structure evolution. We detail the three components in the
following sections.

5.1. Architecture representation & population initialization

As discussed in previous sections, the optimization of GNN
structures and hyperparameters are dependent on each other.
Existing works that optimize only GNN structures may end up
with a suboptimal searched model since the change of hyper-
parameters could severely degrade the fine-tuned GNN struc-
ture. Therefore, we advocate evolving both GNN structures and
hyperparameters for reliable NAS. In addition, optimizing the
hyperparameters can further increase the automation level of
NAS compared to existing methods that only optimize the GNN
structures using fixed hyperparameters.

In this paper, we are specifically interested in optimizing the
following three types of hyperparameters, though Genetic-GNN
is a generic framework that is flexible to include other significant
parameters:

1. Dropout Rate (P1). Over-fitting is a common issue while
training neural network models. Dropout is a technique for

addressing this problem, which meanwhile helps to reduce
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Table 1
The search space for structure components.
Component Search space

S1 listed in Table 2
S2 1, 24, 6, 8, 16
S3 ‘‘sum’’, ‘‘mean-pooling’’, ‘‘max-pooling’’, ‘‘mlp’’

S4 ‘‘sigmoid’’, ‘‘tanh’’, ‘‘relu’’, ‘‘linear’’, ‘‘softplus’’,
‘‘leaky_relu’’, ‘‘relu6’’, ‘‘elu’’

S5 4, 8, 16, 32, 64, 128, 256

the training complexity for large networks [50]. The key idea
is to randomly drop units (along with their connections)
from the neural network during training. P1 denotes the set
of candidate dropout rates.

2. Weight Decay Rate (P∗2 ). Similar to the dropout, weight de-
cay (e.g., L2 norm regularization) is a widely used technique
to decrease the complexity and meanwhile increase the gen-
eralization ability of neural network models by limiting the
growth of model weights. P∗2 denotes the set of candidate
weight decay rates.

3. Learning Rate (P∗3 ). Learning rate determines how fast the
loss changes every time while training a neural model based
on the gradient descent algorithm. A larger learning rate
could cause the model to converge too quickly to a subop-
timal solution, whereas a smaller learning rate could cause
the optimization to converge too slowly. P∗3 denotes the set
of candidate learning rates.

The weight decay is usually applied to GNN model weights at the
first layer and the learning rate is set for training the entire GNN
model. Therefore, the hyperparameters P∗2 and P∗3 are set once
and shared throughout multiple layers of a GNN model.

Assume we search the optimal architecture for a two-layer
GNN model, as shown in Fig. 4, the GNN structure can be rep-
resented by a string/chromosome:{
S1
1 , S

1
2 , S

1
3 , S

1
4 , S

1
5 , S

2
1 , S

2
2 , S

2
3 , S

2
4 , S

2
5

}
(4)

where the first and second GNN layers are indexed by 1 and 2,
respectively. Similarly, the GNN hyperparameters can be repre-
sented by a string/chromosome:{
P1

1 ,P
2
1 ,P

∗

2 ,P
∗

3

}
(5)

where shared parameters in the two GNN layers are indexed by
the notation *. While evaluating the network embedding perfor-
mance (e.g., fitness of individuals), the structure and parameter
strings need to be combined to form the entire GNN architecture
(e.g., the mapping function f ):

f =
{
S1, S1, S1, S1, S1, S2, S2, S2, S2, S2

;P1,P2,P∗,P∗
}

(6)
1 2 3 4 5 1 2 3 4 5 1 1 2 3

6

Table 2
The search space of structure component S1 .
Search space Definition

const wi,j = 1
gcn wi,j =

1√
NiNj

gat wi,j = leaky_relu(Wl
∗ hi +Wl

∗ hj)
sym-gat wi,j = wi,j + wj,i based on gat
cos wi,j = cos(Wl

∗ hi,Wl
∗ hj)

linear wi,j = tanh(sum(Wl
∗ hj))

gene-linear wi,j = Wa
∗ tanh(Wl

∗ hi +Wl
∗ hj),

where Wa is a trainable weight matrix

Table 3
The search space for hyperparameters.
Parameter Search space

P1 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
P∗2 5e−4, 8e−4, 1e−3, 4e−3
P∗3 5e−4, 1e−3, 5e−3, 1e−2

For a given graph G, two datasets are created, including a
raining node set Dtrain and a held-out validation node set Dval.
he candidate GNN model f is trained on Dtrain by minimizing the
emi-supervised node classification loss:

f = −
∑

vi∈Dtrain

Yi lnhi (7)

where Yi is the one-hot label indicator vector for node vi. Then,
the classification accuracy of f is computed on Dval.

Following the literature [16], the candidate choices or search-
ing space for each GNN structure component are summarized
in Tables 1 and 2. Similarly, we define the searching space for
each hyper parameter summarized in Table 3. Based on the
chromosomes (e.g., Eqs. (4) and (5)) and their respective search-
ing spaces (e.g., Tables 1 and 3), the GNN structure population
S0 = {structi}i=1,...,Ns and hyper parameter population P0 ={
paramj

}
j=1,...,Np

are respectively created and initialized, i.e., feed-
ing each structure component in Eq. (4) and hyper parame-
ter in Eq. (5) with values randomly selected from their respec-
ive searching spaces, where Ns and Np are the population sizes
e.g., number of individuals). We use fi,j =

{
structi; paramj

}
to

epresent a candidate GNN model and its classification accuracy
s Acc(fi,j), where structi ∈ S0 and paramj ∈ P0. In the following
ections, we adopt an alternating evolution procedure to evolve
0 and P0, aiming to identify the optimal f for learning a target
raph.
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Fig. 5. An example to show the crossover process between two parents, where
the point index for learning parameter crossover is 2.

Fig. 6. An example to show the crossover process between two parents, where
the point index for structure crossover is 4.

5.2. GNN hyper parameter evolution

The parameter evolution component aims to evolve Pk to
ptimize and identify the optimal parameter setting for the cor-
esponding GNN structure population Sk before evolving to the
ext structure population Sk+1, where the goodness/fitness of a

particular parameter setting need to be measured regarding all
individuals in the structure population. To this end, as shown in
Fig. 4 (e.g., k = 0), we combine S0 and P0 to create an intermedi-
ate population PS0 =

{
PSj
}
j=1,...,Np

, where each individual PSj ={
fi,j
}
i=1,...,Ns

packages a set of GNN models with the common
hyper parameter setting paramj ∈ P0, and different individuals
have the same GNN structure settings in S0. The fitness of PSj is
computed as:

fitness(PSj) = αAcc(fb,j)+ (1− α)
1
Ns

Ns∑
i=1

Acc(fi,j) (8)

here fb,j =
{
structb; paramj

}
← argmaxfi,j∈PSjAcc(fi,j) is the

best individual with highest classification accuracy Acc(fb,j) in the
opulation. The last term of Eq. (8) calculates the average clas-
ification accuracy over all individuals. The idea is that we seek
o find a parameter setting paramj that fits the entire structure
population S0 well while simultaneously considering its fit to the
best structure individual structb ∈ S0. α is a balance parameter to
adjust the importance between the global and local structures for
flexible fitness calculation.

Then, based on the standard GA algorithm, we evolve PS0 to
ptimize the learning parameter P0 by holding the GNN structure
0, which includes the selection, crossover, mutation, evaluation,
nd updating steps. For example, Fig. 5 shows the crossover step
etween two selected parents, where the crossover only happens
o the hyperparameters with fixed GNN structures. The parameter
volution (e.g., P0 evolves to P1) finally identifies and outputs the

parameter individual with highest fitness calculated by Eq. (8),
.e., the param3 shown in Fig. 4.

.3. GNN structure evolution

Once the optimal hyper parameter paramj ∈ Pk+1 for Sk has
een identified, the structure evolution component proceeds to
7

Algorithm 1 Training procedure of the Genetic-GNN model
Require: The target graph G, train set Dtrain and validation set Dval
Ensure: The optimal GNN architecture and the learned embedding

vector hvi for each node vi ∈ V

1: Initialize the structure population S0
2: Initialize the hyper parameter population P0
3: procedure ArchitectEvolving(Dtrain, Dval, S0, P0, Ks, Kp)
4: for i← 1 to Ks do
5: Construct intermediate GNN model population PSi
6: for j← 1 to Kp do
7: Select(PSi)
8: Crossover(PSi)
9: Mutate(PSi)
10: Evaluate(PSi)
11: Update(PSi)
12: end for
13: Construct intermediate GNN model population SPi
14: Select(SPi)
15: Crossover(SPi)
16: Mutate(SPi)
17: Evaluate(SPi)
18: Update(SPi)
19: end for
20: end procedure

evolve Sk to identify the optimal GNN structure. For this purpose,
as the case (e.g., k = 0) shown in Fig. 4, an intermediate popu-
lation SP0 = {SPi}i=1,...,Ns is created by concatenating the optimal
parameter individual with each structure individual structj ∈ P0,
where SPi = fi,j indicates an individual GNN model with its fitness
calculated as:

fitness(SPi) = Acc(fi,j) (9)

Similarly, we evolve SP0 to optimize the GNN structure S0
e.g., S0 evolves to S1) by holding the hyperparameter P0 based
on the standard GA algorithm. For example, Fig. 6 shows the
rossover process by altering only the structural parts of the two
arents while keeping the hyperparameters fixed.

.4. Algorithm explanation

The hyperparameters evolution and GNN structure evolution
ontinue in an alternating manner until an optimal model is gen-
rated. Before evolving the structure population Sk, the parameter

population Pk is evolved to identify the optimal hyperparameters
itting Sk and meanwhile Pk evolves to Pk+1. Subsequently, the
tructure population Sk is evolved to optimize the GNN structures
nd meanwhile Sk evolves to Sk+1. The above alternating process
s performed iteratively to finally achieve a multi-layer GNN
rchitecture with both optimal structures and hyperparameters.
he training procedure of Genetic-GNN is summarized in Algo-
ithm 1, where Ks and Kp are numbers of generations for structure
volution and parameter evolution, respectively. In the evolution
f intermediate populations PSk and SPk, since all individual GNN
odels are independent and can be evaluated simultaneously,
enetic-GNN is able to scale to a large searching space without
ncreasing the evaluation time exponentially like the RL-based
AS methods, i.e., RL-based NAS method can only evaluate one
andidate model at a time.

. Experiment

.1. Evaluation task and dataset

Following literature [16,17], we test the performance of
enetic-GNN for both transductive and inductive graph learning
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Table 4
Statistics information of various networks used in the experiments.
Domains Document networks Image networks Biology network

Items Cora Citeseer PubMed MIR ImageCLEF PPI

# Nodes 2708 3327 19,717 5892 3461 56,944
# Edges 5429 4732 44,338 380,808 221,185 818,716
# Features 1433 3703 500 500 × 375 500 × 375 50
# Classes 7 6 3 152 134 121
# Training nodes 140 120 60 500 500 44,906 (20 graphs)
# Validation nodes 500 500 500 1000 1000 6514 (2 graphs)
# Testing nodes 1000 1000 1000 2000 2000 5524 (2 graphs)
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and node classification on graphs from three different domains
shown in Table 4.
Transductive Learning. The transductive learning is performed
n the same graph, where a subset of nodes with labels are used
or training and other nodes are used for validation and test.
wo different classification tasks are examined for transductive
earning:

• Document classification: Three benchmark citation net-
works including Cora, Citeseer, and Pubmed [4] are used
for transductive node representation learning. Cora con-
tains 2708 research papers grouped into 7 machine learning
classes such as Reinforce Learning and Genetic Algorithms.
There are 5429 edges between them and each paper node is
described with a feature vector of 1433 dimensions. Citeseer
contains 3327 research papers in 6 classes with 4732 links
between them, where each paper node has a feature vec-
tor of 3703 dimensions. Pubmed contains 19,717 literature
nodes and 44,338 edges. Each node belongs to one of the
3 classes and has a feature vector of 500 dimensions. For
these three datasets, 20 nodes per class are used for training
(e.g., the train set Dtrain), 500 nodes are used for validation
(e.g., the validation Dval), and 1000 nodes are used for testing
the model performance.
• Image classification: We adopt two multi-class image net-

works MIR and ImageCLEF for performing the image classifi-
cation. MIR contains 5892 nodes from 152 classes. Each node
is a 500 × 375 RGB color image and there are 380,808 edges
among images for this network. ImageCLEF contains 3461
nodes and 221,185 edges. Each node is also a 500 × 375
RGB image that corresponds to one or more classes out of
a total of 134 classes. For each image in these two datasets,
we extract a CNN feature descriptor and the feature dimen-
sions for MIR and ImageCLEF are transformed to 152 and
134, respectively. For the MIR and ImageCLEF datasets, we
use 500 labeled image nodes for training the model. For
other unlabeled nodes, we select 1000 and 2000 images for
validation and test respectively.

nductive Learning. For inductive learning, the graphs for train-
ng and testing are different. Therefore, different from transduc-
ive learning, inductive learning involves the embedding learning
f multiple different subgraphs. We use a protein–protein in-
eraction (PPI) dataset [31] which contains 24 subgraphs for
nductive node representation learning. PPI consists of graphs
orresponding to different human tissues, which has a total num-
er of 56,944 nodes and 818,716 edges. Each graph has 2372
odes on average, and each node has 50 features including po-
itional gene sets, motif gene sets, and immunological signatures.
ach node corresponds to multiple classes (labels) from a total
f 121 classes. For this dataset, we use 20 graphs for training,
graphs for validation, and 2 graphs for testing, where both

alidation and test graphs have no connections with graphs in
he training set.
8

.2. Baseline

We compare Genetic-GNN with the following state-of-the-art
ethods which adopt either handcrafted GNN architectures or
utomatically searched GNN architectures.
ethods based on Handcrafted GNN Architecture:

• Chebyshev [25] adapts the traditional CNN to learn on
graphs by using the Chebyshev polynomial basis to repre-
sent the spectral CNN’s filters.
• GCN [4] is a two-layer GCN architecture, where each node

generates representation by adopting a spectral-based con-
volutional filter to recursively aggregate information from
all its direct neighbors.
• GraphSAGE [10] is a general inductive framework that lever-

ages node features to generate node embeddings for pre-
viously unseen data. It learns a function that generates
embeddings by sampling and aggregating features from a
node’s local neighborhood.
• GAT [31] is a method built on the GCN model. It introduces

an attention mechanism at the node level, which allows
each node to specify different weights to different nodes in
a neighborhood.
• LGCN [51] selects a fixed number of neighboring nodes for

each feature based on value ranking in order to transform
graph data into grid-like structures. Then, the traditional
CNN model is directly applied to learn from the transformed
graph.

ethods based on GNN Architecture Search

• GraphNAS [16] first uses a recurrent network to gener-
ate variable-length strings that describe the architectures
of graph neural networks, and then trains the recurrent
network with reinforcement learning to maximize the em-
bedding accuracy of the generated architectures.
• Auto-GNN[17] is a reinforcement learning-based method

similar to GraphNAS, which adopts a parameter sharing
strategy that enables homogeneous architectures to share
parameters during the training.
• SNAG [52] is a simplified version of GraphNAS for GNN

architecture search. It extends from GraphNAS by designing
a novel search space and adopts a reinforcement learning-
based search algorithm with a weight sharing mechanism.

Following the literature [16], Chebyshev and GCN are for
ransductive learning since they require the whole graph struc-
ure and nodes to be available during the training. GraphSAGE is
sed for inductive learning which is able to predict embeddings
f unseen graphs based on the trained model. Other baselines
ncluding GAT, LGCN, GraphNAS, Auto-GNN, and SANG are used
or both transductive and inductive embedding learning. In the
xperiment, all baseline methods adopt a semi-supervised train-
ng, meaning only a handful of labeled nodes are used for training
he GNN model, while others are used for validation and testing.
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Table 5
The transductive node classification results on citation networks. The first and second best results are boldfaced
and underlined respectively.
Categories Methods Layers Accuracy

Cora Citeseer Pubmed MIR ImageCLEF

Handcrafted

Chebyshev 2 81.2% 69.8% 74.4% 54.3± 0.3% 58.8± 0.5%
GCN 2 81.5% 70.3% 79.0% 56.1± 0.4% 61.0± 0.5%
GAT 2 83.0± 0.7% 72.5± 0.7% 79.0± 0.3% 57.3± 0.8% 61.5± 0.3%
LGCN 2 83.3± 0.5% 73.0± 0.6% 79.5± 0.2% 57.8± 0.4% 61.9± 0.5%

GNN NAS

GraphNAS 2 84.2± 1.0% 73.1± 0.9% 79.6± 0.4% 58.1± 0.3% 62.4± 0.6%
Auto-GNN 2 83.6± 0.3% 73.8± 0.7% 79.7± 0.4% 58.0± 0.5% 62.1± 0.4%
SNAG 3 83.5± 0.5% 72.6± 0.5% 79.3± 0.4% 57.9± 0.6% 62.0± 0.7%
Genetic-GNN 2 83.8± 0.5% 73.5± 0.8% 79.2± 0.6% 58.7± 0.4% 62.3± 0.5%
6.3. Experimental setting

We set the number (Ns) of initial structure individuals be-
tween 10 and 50, the number (Ks) of evolving generations of
tructure population between 10 and 50, and the balance param-
ter α in Eq. (8) between 0.2 and 1.0. For comparison, the default
yperparameters for Genetic-GNN are set as follows. We set the
umber of initial structure individuals Ns as 20, the number of
nitial parameter individuals Np as 6, the number of structure
volving generations Ks as 50, the number of parameters evolving
enerations Kp as 10, the balance ratio α as 0.6, the numbers of
arents for structure and parameter genetics as 10 and 4, the
umbers of children for structure and parameter genetics as 4
nd 2, the mutation probability for both structure and parameter
volution as 0.02. For transductive learning, we aim to identify
he optimal architecture of a two-layer GNN model within the
earching space, while for inductive learning a three-layer GNN
odel is optimized in this paper. We also evaluate the per-

ormance of Genetic-GNN for searching GNN architectures with
eeper hidden convolution layers ranging from 2 to 6. We train
00 epochs for each specific GNN model, where the accuracy and
icro-F1 are used as evaluation metrics for the transductive and

nductive embedding learning tasks, respectively. We compare
he transductive and inductive embedding learning performance
f various baseline methods on the respective datasets (refer to
ection 6.1). In the experiments to examine the computational

cost and test sensitivities of various parameters such as the
number of hidden convolution layers, we adopt the Cora and
Citeseer since they are relatively smaller and easier to perform
the parameter permutation than other datasets. The detailed
implementation and code can be available by the GitHub link:
https://github.com/codeshareabc/Genetic-GNN.

7. Results

This section demonstrates the node classification performance
f both transductive and inductive graph embedding learning.
hen, some important parameters are empirically examined
hrough their impacts on the Cora and Citeseer datasets, respec-
ively.

.1. Graph NAS-based embedding learning performance

Table 5 shows the document classification results on Cora,
iteseer, and Pubmed, as well as the image classification re-
ults on MIR and ImageCLEF. From the comparative results, we
onclude three main observations as follows:

• The NAS-based methods including GraphNAS, Auto-GNN
and Genetic-GNN can achieve better results than handcraft-
based GNN models on all five datasets, which verified the
effectiveness of NAS to identify good GNN models for the
given graph-structure data. This is because the handcrafted
9

models are usually determined by several manual trails,
i.e., tuning the number of GNN layers and hyperparameters,
which has a very low chance to obtain an optimal model.
In comparison, the NAS-based methods are able to evaluate
a large number of candidate models from a well-defined
searching space automatically. For example, we can observe
from Table 1 that there are 7840 (7×5×4×8×7) possible
GNN models from different combinations of structural com-
ponents in the searching space. The problem becomes even
more complicated after considering the hyperparameters
(Table 3), which results in a total of 878,080 candidate
models. However, we can use NAS to efficiently find a
well-performed GNN model for the target graph data and
learning task. It is helpful for non-expert users who have
litter knowledge about the application domains and the
neural network models.
• In the category of NAS-based methods for document clas-

sification on Cora, Citeseer, and PubMed, the performance
of our model Genetic-GNN is able to match those of the
reinforcement learning-based methods GraphNAS and Auto-
GNN. A t-student significant test is performed between
them with the p value equals to 0.05. It shows that
Genetic-GNN is not significantly different from other state-
of-the-art methods such as GraphNAS, which verified the
effectiveness of Genetic-GNN for GNN architecture search
to achieve state-of-the-art results. However, there are two
major advantages for Genetic-GNN compared to other NAS
methods including GraphNAS, Auto-GNN, and SANG. First,
Genetic-GNN follows a principle of survival of fitness to
optimize the GNN architecture, which is robust to generate
a good model as the evolutionary process continues. In
comparison, other NAS methods normally need to manage
an extra controller such as the RNN model to iteratively
optimize the GNN architecture. Training the RNN-based
controller will cause extra computation resources and suffer
from the overfitting problem in the semi-supervised train-
ing [52]. For example, in addition to training and evaluating
the GNN models, the number of trained parameters for the
RNN controller alone in GraphNAS reaches up to 87.2K, and
needs an extra time of about 20 s per GNN architecture
to optimize the RNN controller through the reinforcement
learning feedback. The second advantage is that, unlike
GraphNAS and Auto-GNN which still need users to manually
select the hyperparameters while optimizing the GNN struc-
tures, Genetic-GNN is able to optimize both GNN structures
and hyperparameters until they reach a good fit for each
other, which has greatly increased the automation level
of GNN NAS (as we demonstrate in Fig. 1 that optimizing
model parameters is also important to contribute to an
optimal GNN model).
• In addition, NAS-based methods have shown promising re-

sults in the multi-label node classification on image net-

works, i.e., each image may have multiple labels. We can

https://github.com/codeshareabc/Genetic-GNN
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Table 6
The inductive node classification results on the PPI network. The first and second
best results are boldfaced and underlined respectively.
Categories Methods # Layers PPI

Micro-F1

Handcrafted
GraphSAGE (RNN) 2 61.2%
GAT 3 97.3± 0.2%
LGCN – 77.2± 0.2%

GNN NAS

GraphNAS 3 98.6± 0.1%
Auto-GNN 3 99.2± 0.1%
SNAG 3 98.8± 0.1%
Genetic-GNN 3 98.6± 0.4%

further observe that Genetic-GNN can achieve competing
and even better performance than existing state-of-the-art
NAS methods. For example, Genetic-GNN has an improve-
ment of 0.6% over GraphNAS, 0.7% over Auto-GNN and 0.8%
over SNAG, respectively. This verified the effectiveness of
Genetic-GNN for graph neural network architecture search
applied in the multi-label node classification task. Since
Genetic-GNN directly evaluates the candidate GNN models
and retains the improved models at every generation over
the evolutionary process, it can always end up with finding a
well-performed GNN model. Therefore, Genetic-GNN tends
to be more robust to find an optimal GNN model for vari-
ous graph learning tasks, compared to other NAS methods
relying on the RNN controller to optimize the GNN models
which is sometimes unstable, i.e., returning a locally optimal
model or an over-fitting model.

We also compare various baseline methods for the inductive
graph embedding learning on the PPI data and Table 6 shows the
inductive node classification results. Similar conclusions can be
drawn in transductive learning on the document and image net-
works. First, automated methods perform generally better than
handcrafted methods. Second, the performance of Genetic-GNN
is as good as the state-of-the-art model GraphNAS. The reasons
why Genetic-GNN does not show an obvious performance advan-
tage are in two aspects. First, existing methods such as GraphNSA
and Auto-GNN applied a manually sophisticated parameter fine-
tuning process, meaning the hyperparameters adopted by these
methods can well support the searched GNN structures to per-
form well. Therefore, although our method can automatically
identify suitable hyperparameters, it does not mean it must show
much superiority using the automatically identified hyperparam-
eters. The advantage is that GNN-Genetics has its unique mech-
anism, as an alternative to existing methods, to find good hyper-
parameter settings with limited human efforts. Second, genetics-
based algorithms favor a larger search space, a larger population,
and a larger number of evolving generations in order to discover
a near-optimal solution. In this paper, due to the limitation of
computation resources, we only set the maximum population size
as 50 and the evolution generations as 50. However, we argue
that with the increase of population size and evolution genera-
tions, our model has the potential to further achieve improved
performance which is guaranteed by its adopted principle of
survival of fitness (e.g., the best models survive).

7.2. Computational cost of the GNN architecture

It is important to consider the efficiency of the searched GNN
architectures to be applied in practical scenarios [37], especially
for some resource and response — constraint deployments and
applications, i.e., mobile devices and Web-based services. There-
fore, we design a series of experiments to compare the rela-

tive computational cost of the GNN models identified by various

10
methods. We measure the computational cost with several crit-
ical indicators including the number of trainable parameters,
running time per epoch, floating-point operations (FLOPs), and
inference latency. All these computational costs are tested using
a machine with an Intel Core i7 and 16 GB CPU.

Similar to literature [16], we collect the top 5 GNN architec-
tures that achieve the best validation accuracy and calculate their
average computational cost. Table 7 compares different methods
egarding the number of trainable parameters, running time per
poch, FLOPs, and latency. We can observe for all the NAS meth-
ds including GraphNAS, Auto-GNN, SNAG, and Genetic-GNN, our
odel Genetic-GNN needs generally less running time per epoch,

ewer FLOPs, and shorter inference latency compared with other
AS methods, which demonstrates that the Genetic-GNN can find
computationally efficient GNN model. Moreover, Genetic-GNN
oes not rely on training an additional controller during the GNN
rchitecture searching process, whereas SAGN, GraphNAS, and
uto-GNN adopt RNN as the controller to generate the GNN struc-
ures which will bring additional computational costs such as
he number of training parameters and running time. For exam-
le, beyond evaluating the candidate GNN models, for GraphNAS
he number of trained parameters of the RNN controller alone
eaches up to 87.2K, which needs an extra 20 s for each GNN
odel to optimize the RNN controller with reinforcement learn-

ng. We can also observe that on the Cora and Citeseer networks
enetic-GNN generates more parameter-optimized GNN models
han SANG and GraphNAS.

In addition, we also compare the performance and compu-
ational cost (w.r.t the number of trainable parameters and the
unning time per epoch) between Genetic-GNN and GraphNAS
or searching GNN architectures with deeper hidden convolution
ayers. Since deeper GNN models often suffer from the over-
itting problem in the semi-supervised training, we adopt the
upervised training instead following a previous work [53], where
he training, validation, and testing splits are 60%, 20% and 20%
espectively. The comparison results on Cora and Citeseer with
he convolution layers ranging from 2 and 6 are summarized
n Table 8. We can conclude that Genetic-GNN is able to find
NN models with similar or even better performance as the
raphNAS. The number of parameters and training time for the
earched GNN models are generally smaller for Genetic-GNN
ompared to GraphNAS, which again verified the effectiveness of
he evolutionary architecture search for GNNs.

.3. Parameter influence

We empirically demonstrate the impacts of some important
arameters used in Genetic-GNN on Cora and Citeseer data. α is a
alance parameter used in the fitness calculation in Eq. (8) and its
mpact is shown in Fig. 7(a). We can observe that the best setting
or both data is 0.6. Fig. 7(b) shows the influence of the number
f structure population size Ns. We can observe that with the
ncrease of Ns, the performance first goes up and then decreases
n both citation networks. Generally, a larger population size
eans a larger search space which tends to generate a better
olution. However, the large search space normally requires more
volution generations to finally identify an optimal model, which
robably explains that the performance decreases as the popu-
ation size increases in Fig. 7(b). Fig. 7(c) shows the influence
f evolution generation on the structure population, where the
erformance gradually increases over the evolution generations.
Fig. 8(a) and (b) present the validation and test performances

hange with the training iterations on Cora and Citeseer, respec-
ively. We can observe the performances have a tendency to
mprove with the training, though they have some turbulence.
he reason for the unstable curves is that both validation and
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Table 7
The computational cost on Cora and Citeseer networks. (Time: seconds per epoch)
Methods Layers Cora Citeseer

Params Time FLOPs Latency Params Time FLOPs Latency

Chebyshev 2 0.09M 11.2 s 0.48M 0.34S 0.09M 11.4 s 1.04M 0.28S
GC N 2 0.02M 0.8 s 0.21M 0.15S 0.05M 0.7 s 0.36M 0.16S
GAT 2 0.09M 1.8 s 258M 0.51S 0.23M 2.7 s 525M 0.73S
LGCN 2 0.05M 1.2 s 195M 0.24S 0.05M 1.7 s 376M 0.25S

GraphNAS 2 0.09M 0.9 s 185M 0.22S 0.23M 0.8 s 269M 0.26S
Auto-GNN 2 0.05M – – – 0.71M – – –
SANG 2 0.09M 0.9 s 171M 0.21S 0.25M 0.9 s 254M 0.23S
Genetic-GNN 2 0.07M 0.6 s 163M 0.13S 0.18M 0.8 s 173M 0.18S
Table 8
Comparison of NAS-based GNN models w.r.t various GNN hidden layers (train/validation/test data splits are 60%,
20% and 20% respectively).
Methods # GNN Layers Cora Citeseer

Accuracy Params Time Accuracy Params Time

GraphNAS

2 89.6± 0.8% 91.8K 1.2 s 77.8± 0.7% 234.3K 0.8 s
3 88.4± 0.6% 94.6K 1.7 s 77.6± 0.6% 238.3K 1.3 s
4 88.4± 0.4% 97.5K 2.0 s 75.1± 0.6% 242.2K 1.8 s
5 87.9± 0.5% 101.2K 2.4 s 75.2± 0.5% 246.3K 2.2 s
6 87.5± 0.4% 105.1K 3.0 s 74.4± 0.8% 250.3K 2.5 s

Genetic-GNN

2 89.5± 0.7% 74.0K 0.8 s 78.2± 0.5% 182.4K 0.8 s
3 89.1± 0.5% 77.9K 1.3 s 77.8± 0.8% 186.5K 1.2 s
4 88.5± 0.6% 81.7K 1.6 s 76.4± 0.6% 190.5K 1.7 s
5 88.2± 0.4% 85.5K 1.9 s 75.8± 0.5% 193.1K 1.9 s
6 87.7± 0.6% 89.4K 2.4 s 74.9± 0.7% 198.9K 2.1 s
Fig. 7. (a) Influence of the imbalance parameter α. (b) Influence of the number of initial structure population size Ks . (c) Influence of the number of evolving
enerations Ks for structure population.
est sets are unseen, and the best performance on the train set
annot guarantee the best performance on the validation and test
ets. In addition, we can observe that although the validation
nd test accuracies are not consistent locally, they both have a
rend to improve overall with more training iterations. This is
ecause the validation and test node sets are different, making
heir evaluation performances have some degree of discrepancy
hen applied to the GNN model trained on the training set. How-
ver, the difference is minor and they both have an increasing
endency, which means the GNN model is optimized with the
terative training.

. Discussion

Nowadays, graph neural networks have become the de facto
olution for learning feature representations of graph-structured
ata. However, it is challenging, even for expert users, to identify
GNN model with optimal architectures in the real-scenario

raph learning task due to the various choices of feature aggrega-
ors and hyperparameters. Neural architecture search is a promis-
ng technique for automatically identifying a well-performed
11
GNN model and has attracted increasing attention in the commu-
nity [54,55]. In this paper, the proposed evolutionary architecture
search for graph neural networks has four obvious advantages:
(1) It follows a principle of survival of fitness to optimize the
individual GNN models, making it an easily understandable and
conceptually interpretable architecture search method for the
general users; (2) Due to the principle of natural selection, the
evolutionary architecture search method has a potential to re-
turn a globally optimal GNN model; (3) Genetic-GNN is more
robust and stable to find a good GNN model mainly because it
is less likely to encounter the overfitting problem in the semi-
supervised training, compared to many reinforcement learning-
based methods which need to train an additional burdensome
controller; (4) Both the GNN structures and hyperparameters
can be optimized, which has increased the automation level of
NAS compared to existing methods which only optimize the
structures. From the comparisons of Genetic-GNN with existing
methods regarding both the graph representation learning perfor-
mance and the computational cost, we observe that Genetic-GNN
shows superiority to some extent, especially in the computational
costs. One major advantage for Genetic-GNN is to automatically
identify suitable hyperparameters for a searched GNN model.
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Fig. 8. (a) Validation and test performance on Cora change over the training iterations. (b) Validation and test performance on Citeseer change over the training
iterations.
Although the automatically identified hyperparameters are not
necessarily better than those identified from the manually fine-
tuning process, it is indeed desirable especially for non-expert
users to avoid the tedious hyper-parameter fine-tuning process.

Although the above merits make Genetic-GNN a promising
pproach, Genetic-GNN favors large population size and the num-
er of generations in order to find a near-optimal GNN model.
his would cause heavy overhead for evaluating tremendous and
ven duplicate candidate GNN models. In this work, we adopt a
elatively small size of population and generation, which is the
ain reason why the performance of Genetic-GNN is not better

han some state-of-the-art NAS methods. Nevertheless, in most
ases, one can still quickly find a satisfactory GNN model by
anaging a relatively small population and evolving a limited
umber of generations. Such an advantageous point cannot be
een in the reinforcement learning-based NAS methods since they
ften need to train the entire architecture search process with the
radient descent algorithm and end until it is converged.

. Conclusion

In this paper, we aim to demonstrate the effectiveness of
volutionary neural architecture search for optimizing graph neu-
al network models on graph-structured data. We proposed a
ovel genetic-based approach called Genetic-GNN for automat-
cally identifying the optimal GNN models with a well-defined
earch space. Instead of only optimizing the GNN structures with
ixed hyperparameters, Genetic-GNN is able to evolve and op-
imize both structure and parameter to fit each other. The ex-
erimental results and parameter sensitivity tests demonstrated
hat our model is able to match the state-of-the-art reinforcement
earning-based methods.

Since the evolutionary algorithms tend to achieve better solu-
ions with larger population size and evolution generations, it is
future work to test on larger search space and evolution gener-
tions. In addition, parameter sharing between individual models
s also an interesting direction, i.e., when a parameter individual
volves to another parameter individual, their model structures
emain the same, thereby the model weight parameters can be
hared between the two models.
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