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Attraction and Repulsion: Unsupervised Domain
Adaptive Graph Contrastive Learning Network
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Abstract—Graph convolutional networks (GCNs) are important
techniques for analytics tasks related to graph data. To date, most
GCNs are designed for a single graph domain. They are incapable
of transferring knowledge from/to different domains (graphs), due
to the limitation in graph representation learning and domain
adaptation across graph domains. This paper proposes a novel
Graph Contrastive Learning Network (GCLN) for unsupervised
domain adaptive graph learning. The key innovation is to enforce
attraction and repulsion forces within each single graph domain,
and across two graph domains. Within each graph, an attraction
force encourages local patch node features to be similar to global
representation of the entire graph, whereas a repulsion force will
repel node features so they can separate network from its per-
mutations (i.e. domain-specific graph contrastive learning). Across
two graph domains, an attraction force encourages node features
from two domains to be largely consistent, whereas a repulsion
force ensures features are discriminative to differentiate graph
domains (i.e. cross-domaingraphcontrastive learning).Thewithin-
and cross-domain graph contrastive learning is carried out by
optimizing an objective function, which combines source classi-
fier and target classifier loss, domain-specific contrastive loss, and
cross-domain contrastive loss. As a result, feature learning from
graphs is facilitated using knowledge transferred between graphs.
Experiments on real-world datasets demonstrate that GCLN out-
performs state-of-the-art graph neural network algorithms.

Index Terms—Domain adaptive learning, graph contrastive
learning, graph neural network, node classification.

I. INTRODUCTION

DOMAIN adaptation is a type of transfer learning method
that minimizes domain discrepancy to support knowledge

transferring from source domains, which often have sufficient
labeled information, to a target domain with unlabeled data.
Becausemany domains share inherent correlation, domain adap-
tation learning has attracted extensive interests in Computer
Vision (CV) [1] and Natural Language Processing (NLP) [2].
Nevertheless, applying domain adaptation to graph analytics,1
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to graph structure data.

like node classification across networks, has not been sufficiently
investigated. When training node classification models, a fre-
quently encountered dilemma is that the network to be classified
(i.e., target network)mayhave little or no label information at all,
whereas networks from similar or relevant domains (i.e., source
network) may have sufficient label information. The goal of
unsupervised graph domain adaptation learning [3] is to use rich
labeled information from the source network to predict nodes in
a target network into distinct classes, conditioned by that source
network nodes are fully labeled but target network nodes have
no label.
For years, domain adaptation research has been primarily

concentrated on the CV and NLP, mainly because that vision
and natural language are the two areas featured with many
cross domain needs and applications. For networked data, ex-
isting solutions cannot be utilized to domain adaptive network
classification, mainly because of two reasons: Firstly, these
methods are developed for CV and NLP tasks, where samples
(e.g. images) are independent and identically distributed (i.i.d),
meaning that there is no requirement for model rotational in-
variance. Networks, however, contain nodes (i.e., samples) and
edges representing their dependency relationships. The unique
data setting requires models to be rotation invariant because
two graphs might have identical topology but are presented in
different forms in adjacency matrix or node space (i.e. graph
isomorphism), due to rotations or other variance. Secondly,
most current domain adaptation models learn discriminative
representation in a supervised way, with the loss value simply
being related to the absolute position of each sample in the
feature space. However, graph representation learning for node
classification usually learns multi-purpose representations in an
unsupervised way, which increases the optimization difficulty.
A few studies emerged recently to transfer knowledge be-

tween networks via domain adaptation [4]. By minimizing a
maximum mean discrepancy (MMD) loss function, CDNE [4]
learns node embeddingswhich are transferable for cross network
classification.Nevertheless, it cannot exploit both network archi-
tecture and node content jointly, and thus it has limited model
capabilities. In order to tackle the above limitation, many ap-
proaches are proposed to leverage network topology information
for cross-network node classification. For example,AdaGCN[5]
employs graph convolutional networks and adversarial learning
to obtain node embeddings. UDA-GCN [3] combines domain
classifiers and source/target classifiers for network representa-
tion learning on the target network to leverage knowledge from
source networks.
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In summary, existing works mainly seek to improve cross-
domain node classification by combining graph convolutional
networks with an adversarial learning scheme, but they still fall
short in addressing three levels of challenges below for domain
adaptive graph learning:
Local vs. Global Consistency Within Single Domain: In a

single graph, graph convolutional networks (GCNs) [6] utilize
direct neighbour nodes (the local consistency) for knowledge
embeddings, but largely overlook global consistency in the
graph. However, the global consistency relationship is very
significant. Specifically, an individual in a social network may
be a member of some communities and may be affected by
neighborhoods at different scales, ranging from close neighbors
(e.g. families, friends) with local consistency relationship, to
far neighbors (e.g. society, community) with global consistency
relationship. Therefore, to learn a comprehensive node feature
representation in the network, both local and global consistency
relationships should be leveraged.
Intra- vs. Inter-Domain Consistency: When multiple graph

domains are available, existing GNN-based methods cannot
leverage information about high-level global factors of graphs
effectively for representation learning of source and target
domains. Specifically, these methods focus on learning node
embedding features by preserving proximity and/or local in-
formation in the graphs. Recently, in order to generate more
expressive node representations, the global properties of graphs
are considered by some researchwork. For example,DeepGraph
Infomax (DGI) [7] maximizes the mutual information between
the global graph representation and the local patch representa-
tion to obtain better graph representations,which is the firstwork
in this field and has performed well in many downstream tasks.
However, most of these methods are used for single-domain
graphs, and they cannot be applied to cross-domain graphswhich
require cross-domain node representation learning. Therefore,
learning high-quality node representations needs to take intra-
and inter-domain consistency into consideration so high-level
global factors in cross-domain graphs can be leveraged for
learning.
Domain Discrepancy and Adaptation: Existing domain adap-

tation methods for graph data typically use domain labels as
supervised signals to train a classifier to model global distri-
butions of source and target domains. Specifically, the domain
classifier is trained with a Gradient Reversal Layer [8] to distin-
guish whether a node is from the source domain or the target
domain. During this time, a source classifier is trained with
source domain data for source domain classification. However,
the target domain and its semantic information are largely ig-
nored. Thus, to collaboratively learn domain-invariant semantic
representations, we should consider not only the source domain
information, but also the gap between domains as well as target
domain information jointly in cross-domain learning.
In this paper, we propose a Graph Contrastive Learning Net-

work (GCLN) to address the above challenges for unsupervised
domain adaptive graph learning. Our main theme is to advo-
cate a graph contrastive learning principle, which imposes an
attraction force and a repulsion force to networks within a single
domain and across different domains. In order to tackle local vs.
global consistency within a single domain, we employ multiple

networks, reflecting local and global consistency, to learn net-
work embeddings, where an attraction force intends to make
node features to be similar, and a repulsion force will repel node
features so they can separate network from its permutations (i.e.
domain-specific graph contrastive learning). In order to tackle
inter-domain consistency and domain adaptation, cross-domain
graph contrastive learning is introduced to use an attraction force
to make node features from different networks to be similar, but
a repulsion force will enforce node features to be discriminative
for graph domains to be separable. By using a unified objective
function to combine multiple losses, GCLN simultaneously
enforces within- and cross-domain graph contrastive learning to
learn network features for unsupervised domain adaptive graph
node classification.
The main contributions of the paper, compared to existing

research in the field, can be summarized as follows:
� A new graph contrastive learning framework is proposed
to combine attraction and repulsion forces to ensure intra-
and inter-domain consistency within a single network and
across multiple networks. The new contrastive learning
framework opens opportunities for knowledge transfering
between networks from different domains.

� Our proposed model utilizes graph contrastive learning to
learn node embedding features, by leveraging local and
global information of every graph, as well as domain
discrepancy across different graph domains. As a result,
domain discrepancy for unsupervised cross-domain node
classification is significantly reduced by using domain-
invariant and semantic representations.

� Experiments are conducted on real-world datasets, and the
results show that the proposed method outperforms all
baseline approaches.

II. RELATED WORK

In order to carry out domain adaptive learning for graphs, we
employ graph networks and contrastive learning principles in
our design. We now briefly review the closely related works in
this section.

A. Graph Neural Networks

Graph neural networks (GNNs) [9], [10] are emerging meth-
ods for learning representations for nodes in graph structured
data. By employing GNNs to encode nodes in a graph into
latent representations, many downstream analyticts tasks can be
easily performed, including node classification, link prediction,
and clustering. GCN [6] is a seminar work which employs
two graph convolutional layers to perform node classification
in a semi-supervised setting in a graph, demonstrating high
potential of graph convolutional networks (GCNs). GAT [11]
is further proposed to improve the message passing of GCN, by
automatically learning theweights of neighborswith an attention
mechanism.GraphSage [12] is proposed to generalize the aggre-
gation function of GCN, showing improved performance.While
most GNNs embed the nodes into the Euclidean space which
may not well capture the scale-free or hierarchical structure of
networks. Recently HGCN [13] is proposed to overcome this
problem by embedding nodes into the hyperbolic space.
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Although GNNs achieve impressive performance in many
tasks, many of them are primarily concerned with representation
learning of nodes in a single network. Thus, embedding space
drift [14] and distribution discrepancy [15] might occur when
transferring the learned models across networks to deal with
similar questions.

B. Contrastive Learning

Contrastive learning (CL) is a type of self-supervised learning
technique [16] which aims to construct supervision information
from the data, without using manual labels [17]. Typically, CL
constructs a pair of instances and feeds them into a comparison
module to learn the representation of data. Among existing CL
techniques, mutual information estimation and maximization is
a popular method [18].
Some recent works utilize the infomax principle [19] for

unsupervised representation leaning in different domains [20]–
[23]. For example, the Mutual Information Neural Estimation
(MINE) method uses a statistical network as the classifier
for distinguishing samples from the joint distribution and the
product of marginals of two random variables, thus facilitating
the process of learning mutual information estimation in deep
networks. DIM [21] employs several infomax objectives to
introduce structural information into the input patches. Deep
Graph Infomax (DGI) [22] maximizes the mutual information
between local patches of a graph and the high-level global
information, which is the first work to apply infomax to graph
structured data. Recently the methodMERIT [24] was proposed
to exploit multi-scale graph information from both local and
global perspectives, then the MI is maximized between node
representations from different views and networks. However,
most of these methods are used for the domain-single graphs,
and cannot consider the graphs of different domains. In order
to go beyond the single domain, we propose a novel Graph
Contrastive Learning Network (GCLN) for unsupervised do-
main adaption to learn node representations of different domains
through preserving global properties of graphs, where a novel
domain-specific graph contrastive learning module is designed
for each domain-specific graph, and a novel cross-domain graph
contrastive learning module is designed for different domains.

C. Cross-Domain Classification

As a subtopic of transfer learning, domain adaptation seeks
to learn models that can transfer knowledge across domains
that share the same label space [25]. In recent years, deep
feature representation-based domain adaptation methods have
gained lots of interest. There are three categories: reconstruction-
based methods [26], discrepancy-based approaches [27], and
adversarial-based methods [8][15]. To reduce the domain dis-
crepancy [28] between domains, many methods employ an
adversarial function as their learning objective. Specifically,
DANN [8] is proposed to obtain domain invariant features
by employing a gradient reversal layer in which gradients
are back-propagated from the domain classifier in a minimax
game between the domain classifier and the feature extrac-
tor. Zhang et al. [29] propose a novel model to enforce the
distributional and structural similarities during the adaptation.

Pilanci et al. [30] use graph matching as a domain discrepancy
metric. Das et al. [31] treat the source and target domains
as hyper-graphs and carry out a class-regularized hyper-graph
matching using first-, second- and third-order similarities be-
tween the graphs. In [32], Wang et al. propose a novel cross-
domain contrastive learning for unsupervised domain adap-
tation, by using contrastive self-supervised learning to align
features to release the domain discrepancy between training and
testing sets.
Domain adaptation has recently been used to graph-structured

data [4], [5], [33]. In [4], CDNE is proposed to minimize the
maximum mean discrepancy (MMD) loss to learn transferable
node representations for cross network learning. However, net-
work structures and node attributes cannot be modeled jointly,
whichmay limit its effectiveness. Some studies [5], [33] learn the
domain invariant node representation with graph convolutional
networks and adversarial learningmethods, for the task of cross-
network node classification. These methods gain promising
results. In [34], the deep multi-graph embedding (DMGE) [34]
is proposed which learns cross-domain embedding by extract-
ing a multiple graph from users’ behaviors across different
domains. A multi-graph neural network, which performs in an
unsupervised manner, is further employed for the cross-domain
representation learning. While the recent UDA-GCN [3] ap-
proach exploits local and global information for domain adap-
tation across networks, it does not fully exploit the intra- and
inter-domain consistency. In contrast, we propose an end-to-end
Unsupervised Domain Adaptive Graph Contrastive Learning
Networks (GCLN) by jointly modeling intra- and inter-domain
consistency, to improve the effectiveness of cross-domain node
classification.

III. PROBLEM DEFINITION AND OVERALL FRAMEWORK

A. Problem Statement

1) Node Classification: In this paper, we aim to conduct the
node classification on graphs. G = (V,E,X, Y ) represents a
graph,whereV = {vi}i=1,...,N is the set of vertices representing
the nodes in the graph and ei,j = (vi, vj) ∈ E is an edge that
represents relationship between node vi and vj . An adjacency
matrix A can represent the topological structure of a graph G,
withAi,j = 1 if (vi, vj) ∈ E orAi,j = 0 otherwise. The content
features associatedwith each node vi are represented byxi ∈ X .
The label matrix of G is Y ∈ RN×C , where N indicates the
number of nodes in the graph G and C represents the number
of categories of nodes in the graph. Y l

(i) = 1 if a node vi ∈ V is

linked to label l; else, Y l
(i) = 0.

2) Source Domain Network: Given Gs = (V s, Es, Xs, Y s),
Gs is a fully labeled source network, and V s, Es denote the
nodes and edges of Gs, respectively. The label matrix of Gs

is Y s ∈ RNs×C , in which Ns = |V s| indicates the number of
nodes in the graph Gs and C is the number of classes of nodes
in the graph.
3) Target Domain Network: Furthermore,Gt = (V t, Et, Xt)

denotes the target network, and Gt is a completely unlabeled
network. Here, V t, Et denote the nodes and edges of Gt, re-
spectively.
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Fig. 1. Overall architecture of the proposed Graph Contrastive Learning Network (GCLN) for unsupervised domain adaptive graph node classification. The
input consists of graphs from source domain (left) and target domain (right). GCLN consists of three main components: (1) Given adjacency matrices of source
networkAs and target networkAt, GCLN first creates PPMI matrices P s and P t to capture global consistency for representation learning. (2) For each individual
domain, domain-specific graph contrastive learning (detailed in Fig. 2) is carried out by encouraging local path features to be similar to global representation
(attraction force), and maximizing the discrepancy between permuted graph and global representation of the entire graph (repulsion force). (3) Across source and
target domains, cross-domain graph contrastive learning (detailed in Fig. 3) encourages node embedding features from different domains to be largely consistent
(attraction force), and domain adversarial loss (domain classifier) intends to make sure that node representations can separate domains (repulsion force). Algorithm
detailed in Section IV.

Unsupervised Domain Adaptation for Node Classification:
Given a target network Gt in which nodes are all unlabeled,
and a source network Gs where all nodes are labeled, the goal
of unsupervised domain adaptation for node classification is to
learn a model f from both Gt and Gs to classify the nodes in
Gs with a maximum accuracy.

B. Overall Framework

The crux of solving unsupervised domain adaption for net-
worked data is in determiningwhat should be shared and adapted
across domains. Feature representation is an apt metaphor for
domain comparison and adaption, therefore we introduce a
Graph Contrastive Learning Network (GCLN) to release the
domain gap and learn a low-dimensional common feature repre-
sentations across domains, aiming todevelop a classifier for node
classification using cross-domain graphs. The following three
components compose our framework, as indicated in Fig. 1:
� Node Representation Learning: We utilize two GCNs to
capture local and global consistency within each graph for
learning better feature representations.

� Domain-specific and Cross-domain Graph Contrastive
Learning:We design a graph contrastive learning network
to learn node representations for each domain-specific
graph. Specifically, to generate more expressive node em-
beddings, the average mutual information (MI) between
graph-level representations and local patch-level represen-
tations is maximized (attraction force), while the discrep-
ancy between permuted graph and global representation
of the whole graph is maximized (repulsion force). In
addition, a cross-domain objective function is developed
to incorporate the node representations across domains to
learn high-quality embeddings.

� Domain Adaptation Learning for Node Classification:
Three classifiers are trained using domain adaptive learn-
ing: 1) a source classifier is trained to minimize the clas-
sification loss on the nodes from the source domain; 2) a

domain classifier is learned with a domain adversarial loss
to distinguish samples from source or target domains; 3) a
target classifier is trained by minimizing an entropy loss.
This can better capture the semantic information of the
target domain and enhance the performance of the model.

IV. METHODOLOGY

A. Node Representation Learning

The node representation learning module consists of a dual
graph neural “networks” utilizing local and global information
of the graph to learn semantic representations of nodes.
1) Local Consistency Network (GNNA): We formulate the

GNNA as a type of feed-forward neural network to learn local
consistency by directly using the GCNmethod proposed by [6].
Given the characteristic matrix X and adjacency matrix A of
the graph, the output of the i-th hidden layer of network Z is
denoted as follows:

GNN
(i)
A (X) = Z(i) = σ

(
D̃− 1

2 ÃD̃
1
2Z(i−1)W (i)

)
, (1)

where Ã = A+ In is the adjacent matrix with self-loops (In ∈
Rn×n is the identity matrix), and D̃i,i =

∑
j Ãi,j . Accordingly,

D̃− 1
2 ÃD̃

1
2 is the normalized adjacency matrix. Z(i−1) is the

output of the (i− 1)-th layer, and Z(0) = X . W (i) are weight
values of the neural network, and σ(·) is an activation function.

2) Global Consistency Network (GNNP ): In addition to the
local network, we train another graph neural network GNNP

to capture the global consistency. Specifically, we construct
a Point-wise mutual information matrix (PPMI) matrix P ∈
RN×N , following previous work [3], [35]. The PPMI matrix
is calculated with the random walks which model semantic sim-
ilarities between nodes in a flexible way, thus it is able to traverse
neighbors within long distance and capture global consistency.
This global consistency network is given by (2) where P is the
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Fig. 2. Domain-specific graph contrastive learning module (source and target
domains use same architecture). The attraction force encourages local path node
features to be similar to global representation (by maximizing their mutual
information). The repulsion force ensures node features can separate networks
from its permutations (detailed in Section IV-B).

PPMI matrix and Di,i =
∑

j Pi,j for normalization.

GNN
(i)
P (X) = Z(i) = σ

(
D− 1

2PD− 1
2Z(i−1)W (i)

)
. (2)

B. Domain-Specific & Cross-Domain Graph Contrastive
Learning

Despite the fact thatwe can get node embeddingsZ fromnode
embeddingmodule by using graph neural networks, this module
often falls short to capture high-level global graph information
that might be valuable for graph representation learning. As a
result, we propose the graph contrastive learning network to ex-
ploit intra- and inter-domain consistency for domain adaptation.
1) Domain-Specific Graph Contrastive Learning: For

domain-specific graph contrastive learning, our method intends
to learn a low dimensional representation for each node by
retaining the representations of both the global properties and
the local graph patches.
Specifically, for source graph Gs and target graph Gt, we

introduce a domain-specific graph neural encoder network
GNNcl, to generate domain-specific node embedding matrix
H for their nodes. Taking source graph Gs in Fig. 2 as an ex-
ample, given its corresponding feature matrixXs and adjacency
matrix As, the domain-specific encoder GNNs

cl is designed as
a single–layered GCN to learn the matrix Hs:

Hs = GNNs
cl(X

s, As|W s) = σ(D̂− 1
2 ÂsD̂

− 1
2

t XsW s), (3)

where Âs = As + wIn, In ∈ Rn×n is the identitymatrix,n rep-
resents the number of nodes in the graphGs,Di =

∑
j Â

s
ij ,W

s

is a trainableweightmatrix of the domain-specific graph encoder
GNNs

cl, and σ is the ReLU nonlinearity. Unlike conventional
GCNs, we use a weight w ∈ R to control the weight of the
self-connections. A larger w indicates that the node itself is
more significant in generating its embeddings, which reduces
its neighboring nodes’ importance.
In order to generate global graph property summary, we

employ a non-linear Readout() function in (4) to compute a
representation s(s) summarizing global content of graph Gs.

s(s) = Readout(Hs) = σ

(
1

n

n∑
i

hs
i

)
. (4)

In (4), σ is the logistic Sigmoid function, and hs
i denotes the i-th

row vector of the matrix Hs.

Fig. 3. Cross-domain graph contrastive learning module. The attraction force
encourages node features from two domains to be largely consistent, whereas
the repulsion force ensures the features are discriminative to differentiate graph
domains (detailed in Section IV-B).

Then, given the source domain-specific node embedding ma-
trix Hs, and its graph-level summary representation s(s), we
define a domain-specific contrastive loss as follows:

Ls
cl=

1

2ns

⎛⎜⎜⎜⎜⎜⎝
ns∑
i

logD(hs
i , s

(s))︸ ︷︷ ︸
Attraction force

+

ns∑
j

log
(
1−D(h̃s

j , s
(s))

)
︸ ︷︷ ︸

Repulsion force

⎞⎟⎟⎟⎟⎟⎠,

(5)
wherens denotes the number of nodes of source graphGs, andD
is a discriminator which scores patch summary representation
pairs, i.e., (hs

i , s
(s)). Essentially, this loss function enables an

attraction force to maximize mutual information of a local patch
representation and the global graph representation, as well as a
repulsion force to maximize the discrepancy between permuted
graph patch representation and global graph representation.
Here, we use a simple bilinear scoring function:

D(hs
i , s

(s)) = σ((hs
i )

TQss(s)), (6)

where σ is the Sigmoid function, and Qs ∈ Rn×n is a trainable
scoring matrix. To obtain the negative node embedding h̃s

j , we
then corrupt the original contentmatrix by shuffling it in the row-
wise manner, i.e., X̃s ←− Xs, and reuse the encoder GNNs

cl

in (3):

H̃s = GNNs
cl(X̃

s, As|W s) = σ(D̂− 1
2 ÂsD̂− 1

2 X̃sW s). (7)

After independently maximizing the average MI between
local patches hs

1, h
s
2, . . ., h

s
n and the graph-level summary s(s)

of graph Gs, we can obtain source domain-specific node em-
bedding matrix Hs to capture global information in Gs.
Likewise, for target graph Gt, we can obtain target domain-

specific node embedding matrix Ht that learns global infor-
mation in Gt by minimizing target domain-specific contrastive
loss Ls

cl. Finally, we combine these domain-specific contrastive
losses into a single loss Lspecific

cl as follows:

Lspecific
cl = Ls

cl + Lt
cl. (8)

2) Cross-Domain Graph Contrastive Learning: In order to
measure local and global information across different domains,
a cross-domain contrastive objective function is designed to in-
tegrate embeddings across domains to jointly learn high-quality
representations. Fig. 3 illustrates the overview structure of cross-
domain graph contrastive learning. The motivation is to make
node representations of the source domain largely consistent
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with that of the target domain (the attraction force to the right),
but also make the node presentations sufficiently discriminative
for domain classifier to separate source vs. target domains (the
repulsion force to the left).
For each graph including the source graph Gs and the target

graph Gt, we first obtain corresponding domain-specific node
embedding matrix H , graph-level summary embedding s and
negative node embedding matrix H̃ based on previous domain-
specific graph contrastive learning network. Then, we try to
enhance domain-specific node embedding matrix H in each
domain by leveraging the global summary information from the
other domain. In order to do that, we design novel cross-domain
contrastive losses Ls,t

cross and Lt,s
cross as follows:

Ls,t
cross=

1

2ns

⎛⎝ns∑
i

logD(hs
i , s

(t))+
ns∑
j

log (1−D(h̃s
j , s

(t)))

⎞⎠,

(9)

Lt,s
cross=

1

2nt

⎛⎝nt∑
i

logD(ht
i, s

(s))+
nt∑
j

log (1−D(h̃t
j , s

(s)))

⎞⎠,

(10)

where ns and nt represent the number of nodes of the source
graph Gs and the target graph Gt, respectively. As a result,
the attraction force of the cross-domain contrastive learning
is defined by the cross-domain contrastive loss Lcross in (11),
which tries to make source and target node features to be largely
consistent.

Lcross
cl = Ls,t

cross + Lt,s
cross. (11)

The repulsion force of the cross-domain contrastive learning
is later defined in (15), which intends tomake node presentations
sufficiently discriminative to separate source vs. target domains.
We combine domain-specific contrastive losses and cross-

domain contrastive loss as the final objective function Lcl of
graph contrastive learning module.

Lcl = Lspecific
cl + Lcross

cl . (12)

Note that, we use the same dimension d in the source-domain
graph and target-domain graph to simplify model adjustment.

C. Attention Mechanism

The node embedding module aims to generate four embed-
dings: Zs

A, Z
s
P for source graph and Zt

A, Z
t
P for target graph.

In addition, by leveraging the cross-domain graph contrastive
learning module, we obtain two embeddings denoted asHs for
source graph and Ht for target graph. A unified representation
is obtained by aggregating embeddings from different graphs.
Specifically, aiming to learn a unified representation, we use
an attention scheme, following [3], to capture the significance
of all embeddings from the local, global consistency and graph
contrastive learning networks in each domain, for the sake that
the contributions of their embeddings are different.

D. Domain Adaptive Learning for Cross-Domain Node
Classification

To better classify nodes in the target network, a knowledge
transfer from different domains is enabled. Our proposed model
consists of an adversarial module, a source classifier, a target
classifier as well as domain-specific and cross-domain graph
contrastive learning,which can learn discriminative and domain-
invariant node embeddings.
The overall objective function can defined as follows:

L(Zs, Y s, Zt) = LS + γ1LDA + γ2LT + γ3Lcl (13)

In (13), γ1, γ2, and γ3 are the balance factors. Their values all
range from 0 to 1. Specifically, γ1 is the balance factor of the loss
for the domain classifier,γ2 regulates loss for the target classifier,
and γ3 balances the loss of the graph contrastive learning mod-
ule. The Lcl represents the graph contrastive learning loss. The
LS denotes the loss of the source classifier. Similarly, LDA is
the loss for the domain classifier, andLT is the loss for the target
classifier. The definitions of respective loss terms are detailed as
follows.
1) Source Classifier Loss: A cross-entropy loss is used in the

source domain as the source classifier loss LS(fs(Z
s), Y s):

LS(fs(Z
s), Y s) = − 1

Ns

Ns∑
i=1

yi log(ŷi), (14)

where yi is the ground-truth label of the i-th node in the source
domain, and the classification prediction for the i-th source
labeled node vsi is denote as ŷi.

2) DomainClassifierLoss: To separate the twodomains (i.e.,
source domain network Gs and target domain network Gt), we
design a domain classifier loss LDA(Z

s, Zt) to act as a repul-
sion force for node representation from the two domains to be
discriminative for separation. To achieve the goal, with the help
of adversarial learning, a domain classifier fd(Qλ(Z

s, Zt); θD)
parameterized by θD is learned to discriminate if the node comes
from Gs or Gt.

On one hand,with source classifier fs viaminimizing (14),we
can classify each node into the correct class. On the other hand,
in order to make node representations from different domains
dissimilar, we use a domain classifier which can differentiate
if the node comes from Gt or Gs. Here, with the aid of adver-
sarial training, we use Gradient Reversal Layer (GRL) [8] and
minimize the following domain classifier loss:

LDA = − 1

Ns +N t

Ns+Nt∑
i=1

mi log(m̂i)

+ (1−mi) log(1− m̂i), (15)

In (15), mi ∈ {0, 1} is the ground truth of node i. m̂i denotes
the domain prediction result for the node i in the source domain
or target domain.
3) Target Classifier Loss: In the target domain, we use an

entropy loss as target classifier loss, as defined as follows:

LT (ft(Z
t)) = − 1

N t

Nt∑
i=1

ŷi log(ŷi), (16)
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where ŷi is the result of classification prediction for the i-th node
vti in target domain.
By minimizing the objective function in (13), LS(Z

s, Y s),
LDA(Z

s, Zt), LT (Z
t) and Lcl can be jointly optimized. Fur-

thermore, we utilize the standard backpropagation algorithms to
optimize all parameters.

E. Algorithm Description

Algorithm 1 shows the detailed algorithmic process. Given a
source graph Gs = (V s, Es, Xs, Y s) and a target graph Gt =
(V t, Et, Xt), our goal is to learn node embeddings for source
and target graphs Zs and Zt, respectively.
Firstly, a dual graph convolutional network is utilized to learn

local and global consistency relationship of each graph (Steps
2-7). Then, we utilize domain-specific and cross-domain graph
contrastive learning networks to learn node representations of
different domains by preserving global properties of correspond-
ing graphs (Steps 8-10). Specifically,Xs Xt denote the original
input, Zs

A, Z
s
P , H

s denotes the output for source domain and
Zt
A, Z

t
P ,H

t for target domain. Then an attention mechanism is
introduced to the output of each domain to obtain the final node
representation outputZs andZt (Step 11). Finally, to release the
domain discrepancy for cross-domain node classification (Steps
12-14), GCLN maximally utilizes the domain and label infor-
mation to learn domain-invariant and semantic representations
effectively by using the source classifier, domain classifier and
target classifier.

F. Time Complexity Analysis

The key parts of our model include node representation learn-
ing (Local Consistency Network (GNNA) and Global Consis-
tency Network (GNNP )), and the graph contrastive learning
component. Regarding the node representation learning net-
work, for the source domain, given a source graph with ns nodes
andms edges, the time complexity for the graph convolution of
GCN isO(ms) for sparse adjacentmatrix (i.e. a sparse network).
Furthermore, instead of the adjacency matrix, the point-wise
mutual information (PPMI) matrix is utilized for propagation.
Because the PPMI matrix is not necessarily a sparse matrix,
its complexity is akin to the complexity of a dense matrix:
O((ns)2). Furthermore, because our local and global GCNs
mainly consist of two matrices, the sparse adjacency matrix and
a dense PPMImatrix from the source domain and target domain,
the overall time complexity of the node representation learning
network is O(ms + (ns)2 +mt + (nt)2).

Next, the computation of the graph contrastive learning
component mainly consists of domain-specific encoder net-
work (GNNcl), domain-specific contrastive loss, (8), and cross-
domain contrastive loss, (11). Specifically, about the domain-
specific encoder network (GNNcl for source and target domain,
its complexity isO(2 ∗ms + 2 ∗mt). For domain-specific con-
trastive loss, its complexity is O(2 ∗ ns + 2 ∗ nt). For cross-
domain contrastive loss, the complexity is also O(2 ∗ ns +
2 ∗ nt). Therefore, the overall time complexity of the graph
contrastive learning component is O(2 ms + 2 mt + 4 ∗ ns +
4 ∗ nt).

Algorithm 1:GCLN: Graph Contrastive Learning Network
for Unsupervised Domain Adaptive Node Classification.
Require:

Source domain network: Gs = (V s, Es, Xs, Y s);
Target domain network: Gt = (V t, Et, Xt);
The numbers of GCN layers: L;

Ensure:
[Zs, Zt]: learned output embeddings
[fs, fd, ft]: learned source classifier, domain classifier,
and target classifier, respectively;

1: while not convergence do
2: for i=1 to L do
3: Zi

A ← Conv
(i)
A (Z(i−1))

4: Zi
P ← Conv

(i)
P (Z(i−1))

5: if i == 1 then
6: Z(i−1) ← X
7: [Zs

A, Z
s
P , Z

t
A, Z

t
P ] ← Obtain embeddings Zs

A, Z
s
P

for source domain nodes and Zt
A, Z

t
P for target

domain nodes.
8: Hs ← GNNs

cl(X
s, As|W s)

9: Ht ← GNN t
cl(X

t, At|W t)
10: [Hs, Ht] ← Learn two domain-specific node

embedding matrices following (7)
11: [Zs, Zt] ← Learn embedding features for source

and target domains, respectively, using the attention
mechanism.

12: fs ← Update source classifier from Zs and Y s using
(14)

13: fd ← Update domain classifier from Zs and Zt

using (15)
14: ft ← Update target classifier from Zt using (16)
15: Back-propagate loss gradient from Zs, Zt and Y s

using (13)
16: Update weights
17: Terminate if early stopping criteria satisfied.

In summary, the complexity of GCLN is O(3 ms + (ns)2 +
3 mt + (nt)2 + 4ns + 4nt). Because the most dense network
is the one with each node connecting to all other nodes, we
have ms ≤ (ns)2 and mt ≤ (nt)2 for general networks. Thus,
the asymptotic complexity of GCLN is bounded by O((ns)2 +
(nt)2).

V. EXPERIMENTS

A. Benchmark Datasets

We conduct multiple experiments on DBLPv8, ACMv9, and
Citationv2, which are three paper citation networks [3], [36] and
their statistics are reported in Table I. In our experiments, these
three datasets (DBLPv8, ACMv9, and Citationv2) are extracted
from different sources (DBLP, ACM and Microsoft Academic
Graph respectively). In addition, for each dataset, we select
papers from different time periods. Following [3], each dataset
is regarded as an undirected network and each edge denotes the
relationship (i.e., the citation relationship between two papers).
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TABLE I
STATISTICS OF THE EXPERIMENTAL DATASETS

Specifically, in the experiments, we have six categories, which
are “Database”, “Datamining” “Artificial intelligent”,Computer
vision”, “Information Security” and “High Performance Com-
puting”. We classify each paper to the corresponding category
based on its research topic. To evaluate the performance of our
model, we conduct node classification tasks on these different
network domains (we use D, A, C to represent DBLPv8 domain,
ACMv9 domain, and Citationv2 domain, respectively). In the
experiments, we carry out six transfer learning tasks, which are
D→ C, A→ C, D→ A, C→ A, C→ D and A → D.

B. Baselines

To demonstrate the effectiveness of our proposed model, we
compare our method with the following baselines, including
the single-domain node classificationmethods and cross-domain
node classification methods.
Single-domain node classification methods:
� DeepWalk [37]: DeepWalk designs a random walk sam-
pling strategy to obtain the low-dimensional representation
for each node, which is a classic single domain graph
representation method.

� LINE [38]: LINE is a classic network embedding method
designed to learn the undirected network representation.
LINE takes the first-order and second-order proximities of
each graph into consideration tomodel node co-occurrence
probabilities and node conditional probabilities.

� GraphSAGE [12]: GraphSAGE is an inductive frame-
work that leverages node feature information (e.g., text
attributes) to efficiently generate node embeddings for
target network node classification.

� DNN: DNN is a node-based multi-layer perceptron (MLP)
that employs just node features.

� GCN [6]: GCN is a graph-based deep convolutional net-
work that incorporates network architecture, node features,
and observed labels into the learning framework to learn
embedding features for nodes.

For these methods, we train a classifier from the embedding
of the source domain and use the classifier to make predictions
on the target domain.
Cross-domain node classification models with adaption:
� DGRL [8]: In DGRL, the feature generator is a 2-layer
perceptron and a gradient reverse layer (GRL) is added to
learn better representations for domain classification.

� AdaGCN [5]: AdaGCN utilizes the GCN as the feature
generator and it also uses the gradient reverse layer (GRL)
to conduct domain classification.

� UDA-GCN [3]: UDA-GCN employs a dual graph convo-
lutional network as the feature generator to preserve the
local and global consistency for the node representation
learning, and the domain classification is conducted by
adding a gradient reverse layer (GRL).

These are current state-of-the-art models which enable joint
training between source and target domains for domain adaptive
network classification.

C. Experimental Settings

We use Pytorch [39] as our deep learning framework and
utilize Adam as an optimizer. Following the evaluation strategy
in the unsupervised domain adaptation [3], [5], best results of all
approaches are reported by grid search on the hyperparameter
space. We set the learning rate to 1e−4 for each method. For
some deep approaches (i.e. GCN, AdaGCN, and UDA-GCN),
they all contain two hidden layers (L = 2) with a structure of
128− 16 for both source and target networks. To be consis-
tent, our proposed model GCLN, GNNA module and GNNP

module have the same hidden layers configuration as above,
and domain-specific graph neural encoder module GNNs

cl and
GNN t

cl contain a single layer with dim = 16, respectively.
Here, the final dimension of node output embedding is set to
16.
For DeepWalk and LINE, we first learn node embeddings and

train a classifier with the labels of data in the source domain.
The dimension of node embeddings for these methods are the
same, which are set to 128. DNN and DGRL have similar
parameter settings with GCN and AdaGCN, respectively. The
adaptation rate λ is set according to the following schedule:
λ=min( 2

1+exp(−10p) − 1, 0.1), and the p changes from 0 to 1
during training process as in [8]. We set balance parameters γ1,
γ2 and γ3 to 1, 0.8, and 0.6, respectively. The dropout rate for
each GNN layer is set to 0.3.

D. Cross-Domain Classification Results

To show the performance of each approach compared with
our proposed model, we list the results of different methods in
Table II. Based on the results, we have observations as follows:
1) GCN and GraphSAGE, the graph-based approaches per-

form better than DeepWalk and LINE, which indicates
that the graph convolutional neural networks have com-
petitive advantages over the traditional two-step network
embedding methods. The reason may be that the tradi-
tional methods like DeepWalk and LINE lack the ability
to encode both the local graph structure and node features
at the same time for cross domain node classification tasks.

2) DGRL, AdaGCN, UDA-GCN obtain better performances
than DNN and GCN (single-domain node classification
approaches), confirming that the introduction of domain
loss can assist in improving the model performance in
cross-domain node classification tasks. In addition, UDA-
GCN outperforms AdaGCN, indicating the effectiveness
of the global consistency relation and target classifier loss.

3) The proposed GCLN model achieves the best perfor-
mance among all baseline methods on these six transfer
learning tasks. It confirms that the proposed GCLN com-
bines attraction and repulsion force to ensure intra- and
inter-domain consistency within a single network and
across multiple networks, where the latent representa-
tion of each node can be deeply explored and the dis-
tribution gap across different domains can be largely
decreased.
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TABLE II
CLASSIFICATION ACCURACY COMPARISONS ON SIX CROSS-DOMAIN TASKS

TABLE III
CLASSIFICATION ACCURACY COMPARISONS BETWEEN GCLN VARIANTS ON SIX CROSS-DOMAIN TASKS

E. Analysis of GCLN Components

Because GCLN has multiple key components, in this section,
we compare several variants of GCLN with respect to the
following aspects to demonstrate the effectiveness of GCLN.
In particular, the following variants of GCLN are compared.
� GCLN¬d: A variant of GCLN with the domain classifier
loss (LDA) of GCLN being removed.

� GCLN¬t: A variant of GCLNwith the target classifier loss
(LT ) of UDA-GCL being removed.

� GCLN¬ds: A variant of GCLN with the domain-specific
contrastive loss (Lspecific

cl ) of GCLN being removed.
� GCLN¬cd: A variant of GCLN with the cross-domain
contrastive loss (Lcross

cl ) of GCLN being removed.
� GCLN¬p: A variant ofGCLNwith theGlobal Consistency
Network (GNNP ) being removed.

The ablation study results are shown in Table III.
1) Impact of Domain-Adversarial Loss: To verify the effec-

tiveness of the domain-adversarial loss, we compare GCLN
model and GCLN¬d in Table III, from which we can find
out that the GCLN model performs significantly better than
GCLN¬d. This shows that the proposed model can learn a
superior representation for nodes from different domains by
using the domain-adversarial loss.
2) Impact of the Target Classifier Loss: A variant model

GCLN¬t is used to show the effectiveness of the target classifier
loss. The only difference between GCLN¬t and GCLN is that
GCLN¬t does not use target domain information which is also
the core information in cross-domain learning. Table III shows
that node classification performance on both datasets is raised
when using the target information, indicating the effectiveness
of the target classifier loss.
3) Impact of the Domain-Specific Contrastive Loss: The

domain-specific graph contrastive learning module learns node
embeddings by considering local and global information of each
domain-specific graph. From Table III, our GCLN outperforms
the GCLN¬ds, showing that the importance of relationships
between local and global information can be better captured by

the domain-specific contrastive loss, which can enhance node
representations of source and target domains.
4) Impact of the Cross-Domain Contrastive Loss: The cross-

domain contrastive graph learning module focuses on modeling
connections between local andglobal information cross different
domains to facilitate them to learn high-quality node represen-
tations. The performance of GCLN is superior to GCLN¬cd,
indicating the effectiveness of this cross-domain contrastive loss.
5) Impact of the Global Consistency Network Module: To

investigate the effectiveness of the global consistency network
used in the proposed model, we compare GCLN with GCLN¬p
(i.e., the version without global consistency network). The re-
sults show that the GCLNmodel performs better thanGCLN¬p,
which confirms the superiority of the global consistency net-
work.

F. Parameter Analysis

1) Impact of Feature Dimensions for Node Representations
Zs and Zt: We set the same dimensions d for source output
feature Zs and target output feature Zt, and vary d from 4 to
128. We report the results for cross domain node classification
on six datasets in Fig. 4(a).We observed that when d is increased
from 4 to 128, the performance for the node classification in the
target domain also increases. Moreover, when d increases from
16 to 128, there are only slight differences.
The results indicate that with sufficient feature dimensions

(e.g., d ≥ 16), the performance of our algorithm is relatively
stable.
2) Impact of Global Consistency Network With Contrastive

Learning: In order to learn more expressive node representa-
tions for source and target domain by capturing global graph
property, we leverage a graph contrastive learning module to
achieve representation learning on each domain-specific graph.
Specially, we only utilize the original topological structure
(adjacency matrix A) of each domain-specific graph as input
to train each domain-specific graph neural encoder network
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Fig. 4. (a) Impact of feature dimensions of node output embeddings; (b) Impact of balance parameter γ3 of the graph contrative learning loss.

TABLE IV
CLASSIFICATION ACCURACY COMPARISONS BETWEEN GCLN AND GCLN_G (THE CONTRASTIVE LEARNING WITH THE PPMI MATRIX ON TWO DOMAINS)

ON SIX CROSS-DOMAIN TASKS

GNNcl, but ignore PPMI matrix P which is used to ensure
global consistency for trainingGNNencoderGNNp effectively.
Intuitively, PPMI matrix P may also improve performance of
GNN encoderGNNcl in our graph contrastive learningmodule.
In this part, we aim to explore the impact of PPMI matrix P on
the graph contrastive learning module, and conduct extensive
experiments by using the corresponding PPMI matrix P instead
of the adjacency matrix A, to train each domain-specific graph
neural encoder network GNNcl, denoted as GCLN_G. The
results of six cross domain node classification tasks are reported
in Table IV.
From the results, the performanceofGCLN_Gmodel isworse

than our proposed model in all cases (it is nearly the same as
UDA-GCN), demonstrating that global consistency information
of PPMImatrixP has no positive effect on our graph contrastive
learning module for learning more expressive representations.
The worse results of GCLN_G model may be due to conflicts
between its global consistency information and global summary
information of our graph contrastive learning module, which
may lead to the worse effect of node representation learning.
3) Impact of Balance Parameter γ3 of the Graph Contrative

Learning Loss: We analyze the sensitivity of balance for param-
eter γ3 in (13) by fixing γ1 = 1.0, γ2 = 0.8 on cross-domain
datasets (γ1 and γ2 are reported best parameters for UDA-GCN
[3]). We change the values of γ3 from 0 to 1.0 and the results
on six cross-domain tasks are shown in Fig. 4(b). From the
results, we get the best score when γ3 = 0.6 on all cross-domain
tasks. This demonstrates that graph contrastive learning module
is able to adapt to the cross-domain data for obtaining more
expressive representations and further enhance the effect of
objective classifiers.
4) Visualization: It is an important application that uses

network representation to create meaningful visualizations.

We visualize the learned feature representations for the target
domain dataset. For simplicity, to show the effectiveness of
GCLN, we only visualize two learned feature representations
in the ACM → DBLP. Specifically, we visualize the feature
embedding into a 2-D vector space by using the T-distributed
Stochastic Neighbor Embedding (t-SNE) [40] method. Fig. 5
shows the visualization results of different approaches. We can
observe that it is not very meaningful to visualize embeddings
of DNN, as many nodes that belong to the same category are not
grouped together and many clusters overlap. GraphSAGE and
UDA-GCN achieve better visualization results compared with
DNN. The embedding obtained by these algorithms result in
more meaningful visualization. However, it is still hard to find
the boundaries of most clusters. For the proposed GCLN, the
clustering results are clearer and the clusters are well separated.
This observation indicates that GCLN can produce much more
meaningful layout for networks compared with other models.
5) Sample Complexity: We conduct experiments and report

accuracy of our model in terms of data sampling rates in Fig. 6
for different domain learning tasks including ACM->DBLP
(A->D), ACM->Citation (A->C) and DBLP->Citation (D-
>C). When sampling rate of source domain rises from 0.1 to
0.9, accuracy increases due to more training data from source
domain being used. For different sampling rate of target domain
(100% and 50%), they behave differently, showing that data of
target domain has different influences on the performance of our
model.
6) Different Loss Functions Evolve Through the Different

Epochs: We show the result curves of different losses as the
epoch changes from 0 to 200 in Fig. 7. From results, we can
conclude that the losses fluctuate greatly due to the lack of data
training at the beginning, but eventually they will be stable,
indicating the convergence of our model. In addition, with the
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Fig. 5. Visualization of the embedding features learned from different methods using t-SNE [40]. The source domain is ACM and the target domain is DBLP.
Each plot shows the learned embedding for the target domain dataset (DBLP), which has six classes. Nodes are color-coded using their class labels.

Fig. 6. Impacts of data sampling rates for different domain adaptation learning tasks including ACM->DBLP (A->D), ACM->Citation (A->C) and DBLP-
>Citation (D->C).

Fig. 7. Impacts of different loss functions for different epochs including the total losse L(Zs, Y s, Zt), the source classifier loss LS , the domain classifier loss
LDA, the target classifier loss LT , and the graph contrastive learning loss Lcl.
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increase of training epochs, each losses decrease and tend to be
stable, which also illustrates the usefulness of these losses to our
model.

VI. CONCLUSION

In this paper, we studied unsupervised graph domain adapta-
tion learning. We argued that transferring knowledge between
graph domains is challenging in both graph representation learn-
ing and domain adaptation, and proposed a novel method, Un-
supervised Domain Adaptive Graph Contrastive Learning Net-
work (GCLN) to enable knowledge transferring between graphs
via domain adaptation. To learnmore expressive representations
of nodes for source domain and target domain by capturing
global information of graphs, we designed a graph contrastive
learning framework to facilitate representation learning on each
domain-specific graph (source and target domain) by maximiz-
ing the mutual information between patch-level representation
and graph-level representation of the graph data. In addition,
we developed a cross-domain objective function to jointly learn
the node embeddings from different domains, so that the data
from one domain can enhance another for the representation
learning.Byoptimizing a cross entropy loss function for the node
classification from the source domain, a domain adversarial loss
function to distinguish nodes from different domains, and an
entropy loss function to exploit the target domain information,
we can reduce the discrepancy between domains and further
enhance the task of domain adaptation. Extensive experiments
on three real-world graphdatasets anddemonstrated that our pro-
posedmethodGCLNoutperforms state-of-the-art algorithms for
node classification in the unsupervised cross network settings.
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