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Abstract In this contribution we prove that small amplitude, resonant har-
monic, spatially periodic traveling waves (Wilton ripples) exist in a family of
weakly nonlinear PDEs which model water waves. The proof is inspired by
that of Reeder & Shinbrot (1981) and complements the authors’ recent, inde-
pendent result proven by a perturbative technique (Akers & Nicholls, 2020).
The method is based on a Banach Fixed Point Iteration and, in addition to
proving that this iteration has Wilton ripples as a fixed point, we use it as a
numerical method for simulating these solutions. The output of this numerical
scheme and its performance are evaluated against a quasi–Newton iteration.

Keywords Wilton Ripples · weakly nonlinear PDEs · Whitham equation ·
Benjamin equation · Kawahara equation · Akers–Milewski equation.

1 Introduction

In this work we consider the existence of a family of resonant traveling waves,
first described by Wilton [61], in a class of weakly nonlinear wave equations
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which model water waves. These waves occur in the models at certain criti-
cal values of the surface tension [42]. The surface tension coefficient appears
as a parameter in these PDEs and, for special values of this parameter, the
operator defining the linear portion of the equation has a two dimensional
kernel implying that the linear problem supports two co–propagating reso-
nant harmonics. Continuous branches of these near–bichromatic waves exist
about special combinations of the harmonics which are called “Wilton ripples.”
These waves have been studied for over a century now including asymptotic
[61,46,34,39], numerical [11,60,19,14], and experimental work [45,35,50]. In
this paper we present a rigorous treatment of the phenomena in a class of
weakly nonlinear PDEs, proving existence of these resonant ripples and build-
ing a rapid and robust numerical method based directly upon the iteration
we describe in our proof. We point out that, while connected to our previous
work on this topic [7], our iteration does not deliver the analyticity of solution
branches required of the previous numerical method of the first author [11].

Our method of proof is to apply a Banach Fixed Point Iteration (FPI)
[30], however, suitable “initiation” is required to demonstrate the existence
of a fixed point. In more detail, in the case of Stokes waves (which feature
only a one–dimensional null space in the linear operator) the first step must
be carefully described. By contrast, in the case of Wilton ripples the first two
steps must be constructed in order to assure that the correct type of solution
is found.

Away from special surface tension values, small amplitude traveling solu-
tions are monochromatic so that the linear problem has a one–dimensional
solution space, resulting in Stokes waves. These waves have a significant his-
tory of both asymptotic [56,33,23,44] and numerical study [52,53,48,3]. Their
rigorous study is also well developed as Stokes waves are known to exist [43,
57], and be parametrically analytic in amplitude [21,22,49]. The global bifur-
cation problem has been described and extreme waves on branches have been
characterized [13].

Wilton ripples have a shorter and less complete history of rigorous study.
Often the resonant and non–resonant cases are studied separately due to the
change in form of the wave’s asymptotics. The bifurcation structure has been
described for the non–resonant case for both potential flow [10] and the hy-
droelastic water wave problem [58]. Reeder and Shinbrot discuss the existence
and analyticity of small resonant Wilton ripples in potential flow [51] while
the bifurcation structure of Wilton ripples has recently been described for the
Whitham equation [29]. Although our motivation stems from water waves, here
we consider Wilton ripples in a family of weakly nonlinear models, including
the Kawaraha [40], Benjamin [15], Whitham [47] and Akers–Milewski [2] equa-
tions. In a recent paper the authors used a perturbation theoretic method to
demonstrate that resonant triad ripples exist along analytic bifurcation curves
in this class of model equations [7]. Although the proof in [7] gives a stronger
result, we believe that the proof in this work is also of value, both for its
associated numerical method and its potential to be applied to the stability
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problem (perhaps to amplitudes at which the spectrum is continuously, but
not analytically, connected to the flat configuration).

As a bifurcation problem, the computation of traveling waves shares sim-
ilar structure to that of the computation of their spectral data. This analogy
forms the inspiration for the numerical methods in [4–6]. In the setting of this
analogy, resonant traveling waves correspond to eigenvalue collisions; thus,
while resonant traveling waves might be considered “exotic” and “uncommon,”
eigenvalue collisions are viewed as the primary mechanism for instability and
are therefore the most interesting and important parts of the spectrum [9].
In the future, we hope to develop this proof and numerical method for trav-
eling waves to complement traditional studies of the spectrum, both numeri-
cal [28,27,59] and theoretical [17,36–38,8]. Recently Creedon, Deconinck and
Trichtchenko combined the Fourier–Floquet–Hill method from [28] with the
asymptotic ideas in [8] to compute high frequency spectrum in a Boussinesq–
Whitham model [25] and the Kawahara equation [26]. Applying the ideas of
this paper to the spectral data would be a natural complement to the work
this group is doing on high–frequency instabilities.

In this paper we consider a family of model equations whose linear phase
speed allows two co–propagating resonant harmonics. In these equations we
show that small amplitude Wilton ripples exist, and that there are branches of
these waves, at least up to some maximal amplitude. The paper is organized as
follows: In § 2 we state the weakly nonlinear wave equations which govern the
physical phenomena of interest in this paper. We give a proof of the existence
of Stokes waves in § 3, with the study of the linear problem § 3.1, a description
of the iteration in § 3.2, and the result in § 3.3. Subsequent to this, we establish
the existence of Wilton ripples in § 4, with the study of the linear and quadratic
problems in § 4.1 & § 4.2, a description of the iteration in § 4.3, and the result
in § 4.4. We close with numerical results in § 5 and concluding remarks in § 6.

2 Governing Equations

In this paper we study x–periodic solutions of weakly nonlinear dispersive
wave equations of the form

∂tu+ L∂xu−
1

2
∂x
[
u2
]

= 0, u(x+ 2π, t) = u(x, t), (1)

where L is a linear operator (see Table 1 for examples considered here), which
model the full water wave equations [42] in the limit of long wavelength and
weak nonlinearity. Among the myriad choices, we focus on those which per-
mit co–propagating traveling waves in the linear regime. Examples are the
Whitham [47], Akers–Milewski [2], Benjamin [15], and Kawahara [40] equa-
tions (see Table 1). We now turn to traveling wave solutions of (1)

u(x, t) = f(x− ct)
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which satisfy

−c∂xf + L∂xf −
1

2
∂x
[
f2
]

= 0.

After integrating once with respect to x we find

(−c+ L)f = −1

2
f2.

which we write as

(−c0 + L)f = (c− c0)f − 1

2
f2,

where we define c0 presently. By defining

R := −c0 + L,

we express this as

Rf =

(
(c− c0)− 1

2
f

)
f. (2)

Remark 1 At this point we can clarify the requirements of the operators L
which fall into our theory. Principally we demand that they be “wave–like” in
that there exists a real value c0 such that (−c0 +L)[cos(x)] = 0 which delivers
a sinusoidal traveling wave in the linearized equation. Furthermore, we require
that the operator R (equivalently L) “take” only a finite number of derivatives,
0 ≤ τ < ∞, so that R : Hσ+τ → Hσ, c.f., Theorems 1 and 3. Also, we point
out that the nonlinearity

N(u) =
1

2
∂x
[
u2
]

can be generalized somewhat and still fit into our framework at the cost of a
slight increase in the complexity of our later estimates.

3 Stokes Waves

In order to give some notation and build intuition for the Wilton ripple case,
we begin with the simpler case of the classical Stokes waves which result from
simple bifurcation [24] in (2). For this we note that there is a speed c0 such
that the operators R and its adjoint R∗ have one–dimensional null spaces
spanned by φ and ψ, respectively, so that

Rφ = 0, R∗ψ = 0, φ(x) = ψ(x) =
cos(x)√

π
,

and we note that

〈φ, φ〉 = 〈ψ,ψ〉 = 〈φ, ψ〉 = 1.
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3.1 Preparing the Iteration: Linear Order

We now seek a solution of (2) of the form

f = εf1 + ε2F, c = c0 + εs, (3)

where we point out that, as proven in [7], F and s depend upon ε and, fur-
thermore, F = O(1) and s = O(ε). Inserting these into (2) gives

R[εf1 + ε2F ] =

(
εs− 1

2
εf1 −

1

2
ε2F

)(
εf1 + ε2F

)
. (4)

At linear order we find

Rf1 = 0

which demands that f1 ∈ N (R) so that f1 = αφ; without loss of generality
we may select α = 1.

3.2 The Stokes Iteration

Using this choice of f1 we return to (4) and, using the properties of f1, and
dividing by ε2 we find

RF − sf1 = −1

2
f21 + ε

{
sF − f1F −

1

2
εF 2

}
.

Inspired by this we conduct the following Stokes iteration

RFn − snf1 = −1

2
f21 + εG(Fn−1, sn−1; ε), (5)

where

G(F, s; ε) := sF − f1F −
1

2
εF 2.

Our procedure for solving (5) at each iteration is two–step:

1. First, we solve for the speed correction sn by projecting the right–hand-
side of (5) and snf1 onto the range of R. This is enforced by demanding
that this be orthogonal to the null space of its adjoint,

0 =

〈
snf1 −

1

2
f21 + εG(Fn−1, sn−1; ε), ψ

〉
= sn 〈φ, ψ〉 −

1

2

〈
φ2, ψ

〉
+ ε 〈G(Fn−1, sn−1; ε), ψ〉 .

Using 〈φ, ψ〉 = 1 and (from our choices of {φ, ψ})
〈
φ2, ψ

〉
= 0 we find that

sn = −ε 〈G(Fn−1, sn−1; ε), ψ〉 .
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2. With this choice of sn we know that (5) is uniquely solvable provided that
we demand orthogonality of the solution to the null space of R. So, we can
write

Fn = R−1

[
snf1 −

1

2
f21 + εG(Fn−1, sn; ε)

]
,

〈φ, Fn〉 = 0.

This procedure can be replicated for the linearized version of this problem

RF − sf1 = −1

2
f21 + J,

with generic function J(x), and rigorous estimates derived for the unique so-
lution. This is summarized in the following “elliptic estimate” [7].

Theorem 1 For any real σ ≥ 0, given J ∈ Hσ there exists a unique solution
pair (F, s) of

RF − sf1 = −1

2
f21 + J,

〈φ, F 〉 = 0,

such that F ∈ Hσ+τ and

|s| ≤ Ce ‖J‖Hσ ,

‖F‖Hσ+τ ≤ Ce
∥∥∥∥sf1 − 1

2
f21 + J

∥∥∥∥
Hσ

for some Ce > 0 and

τ =


1/2, Whitham (A),

1, Akers–Milewski (B),

2, Benjamin (C),

4, Kawahara (D).

3.3 Banach Fixed Point Formulation

We now write this as an FPI so that we can appeal to the Banach Fixed Point
Theorem [30]. For this we write (2) as

RF − f1s = −1

2
f21 + εG(F, s; ε),

〈φ, F 〉 = 0,

or

M

(
F
s

)
=

(
−(1/2)f21 + εG(F, s; ε)

0

)
, M :=

(
R −f1
〈φ, ·〉 0

)
.
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We now express this as x = T (x) where

x :=

(
F
s

)
, T (x) := M−1

(
−(1/2)f21 + εG(F, s; ε)

0

)
,

and seek a fixed point of the iteration

xn = T (xn−1).

From Theorem 1 we know that M−1 is well–defined and that the action of
x∗ = T (x) can be given by

s∗ = −ε 〈G(F, s; ε), ψ〉 , (6a)

F ∗ = R−1

[
s∗f1 −

1

2
f21 + εG(F, s; ε)

]
. (6b)

A fixed point of the iteration xn = T (xn−1) would solve x = T (x) and
represent a solution of (2). To achieve this we appeal to Banach’s Fixed Point
Theorem [30] which requires a Banach space,

X = Hσ+τ ×R,

and a distance,

d(x, y)2 = ‖Fx − Fy‖2Hσ+τ + |sx − sy|2 .

To show that T is a contraction, we need the following classical Lemma [41,1,
31,30].

Lemma 1 Provided that σ > 1/2, if f, g ∈ Hσ then fg ∈ Hσ and

‖fg‖Hσ ≤ K ‖f‖Hσ ‖g‖Hσ ,

for some K > 0.

With this we can establish the following crucial estimate which demon-
strates that T is a contraction for ε sufficiently small.

Lemma 2 Provided that σ > 1/2 and x, y ∈ BR(0) ⊂ X, where BR(0) is the
ball of radius R centered at the origin, we have that

d(T (x), T (y))2 ≤ ε2C(R)2d(x, y)2,

where C(R) is a quadratic function of R.

Proof We begin with

d(T (x), T (y))2 = d(x∗, y∗)2

=
∥∥F ∗

x − F ∗
y

∥∥2
Hσ+τ

+
∣∣s∗x − s∗y∣∣2 .
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The first term can be estimated∥∥F ∗
x − F ∗

y

∥∥
Hσ+τ

=

∥∥∥∥R−1

[
s∗xf1 −

1

2
f21 + εG(Fx, sx; ε)

]
−R−1

[
s∗yf1 −

1

2
f21 + εG(Fy, sy; ε)

]∥∥∥∥
Hσ+τ

≤
∥∥(s∗x − s∗y)φ+ ε(∆G)

∥∥
Hσ

≤
∣∣s∗x − s∗y∣∣ ‖φ‖Hσ + ε ‖∆G‖Hσ ,

where we have used Theorem 1, f1 = φ, and defined

∆G := G(Fx, sx; ε)−G(Fy, sy; ε).

Using (a+ b)2 ≤ 2(a2 + b2), we now have

d(T (x), T (y))2 ≤
(

1 + 2 ‖φ‖2Hσ
) ∣∣s∗x − s∗y∣∣2 + 2ε2 ‖∆G‖2Hσ . (7)

Now, the difference in the speed corrections can be estimated from the
solution formula (6a) and the Cauchy–Schwartz Inequality∣∣s∗x − s∗y∣∣ = ε |〈G(Fx, sx; ε)−G(Fy, sy; ε), ψ〉|

≤ ε ‖∆G‖H0 ‖ψ‖H0 ≤ ε ‖∆G‖Hσ ,

and we have used σ > 1/2 > 0 and ‖ψ‖H0 = ‖ψ‖L2 = 1. With this (7) tells us
that

d(T (x), T (y))2 ≤ ε2
(

3 + 2 ‖φ‖2Hσ
)
‖∆G‖2Hσ . (8)

Finally, we estimate the term ∆G with the following manipulations

‖∆G‖Hσ ≤
∥∥∥∥sxFx − φFx − 1

2
εF 2

x −
(
syFy − φFy −

1

2
εF 2

y

)∥∥∥∥
Hσ

≤ |sx − sy| ‖Fx‖Hσ + |sy| ‖Fx − Fy‖Hσ +K ‖φ‖Hσ ‖Fx − Fy‖Hσ

+
1

2
εK ‖Fx + Fy‖Hσ ‖Fx − Fy‖Hσ .

Since x, y ∈ BR(0) we have that

max {sm, ‖Fm‖Hσ} < R, m ∈ {x, y},

and since
max

{
|sx − sy| , ‖Fx − Fy‖Hσ+τ

}
≤ d(x, y),

we discover that

‖∆G‖Hσ ≤ |sx − sy|R+R ‖Fx − Fy‖Hσ +K ‖φ‖Hσ ‖Fx − Fy‖Hσ

+
1

2
εK(2R) ‖Fx − Fy‖Hσ

≤ {2R+K ‖φ‖Hσ + εKR} d(x, y).
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Finally, with this, (8) now gives

d(T (x), T (y))2 ≤ ε2
(

3 + 2 ‖φ‖2Hσ
)
{2R+K ‖φ‖Hσ + εKR}2 d(x, y)2

≤ ε2C(R)2d(x, y)2,

where

C(R)2 :=
(

3 + 2 ‖φ‖2Hσ
)
{2R+K ‖φ‖Hσ + εKR}2 ,

and we are done.

Now, using Lemma 2 we can show that, for sufficiently small ε, if the
sequence xn = T (xn−1) starts in BR(0) it always stays there.

Lemma 3 Provided that σ > 1/2, if x0 ∈ BR(0) and xn = T (xn−1) then, for
any R > 0, there exists ε > 0 such that xn ∈ BR(0) for all n ≥ 0.

Proof We work by induction. Given any x0 ∈ BR(0) we have

d(x0, 0) ≤ R,

and we are done with the base step. Now, suppose that xn ∈ BR(0) for all
n < N and consider

d(xN , 0) = d(T (xN−1), 0)

≤ εC(R)d(xN−1, 0)

≤ εC(R)R

≤ R,

provided that ε < 1/C(R).

With Lemma 3 in hand we are now able to prove our main result for Stokes
waves.

Theorem 2 Provided that σ > 1/2, for ε sufficiently small the mapping T is
a contraction on BR(0) implying that, for ε sufficiently small, there exists a
unique Stokes wave of the form (3).

Proof Consider 0 ≤ q < 1 and suppose that x, y ∈ BR(0). From Lemma 2 we
have that

d(T (x), T (y)) ≤ εC(R)d(x, y) ≤ qd(x, y),

provided that ε < q/C(R).
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4 Wilton Ripples

We now turn to the case of Wilton ripples and the situation where there is a
speed c0 such that the operator R and its adjoint R∗ have two–dimensional
null spaces spanned by φm and ψm (m = 1, 2) respectively, so that

Rφm = 0, R∗ψm = 0, φm(x) = ψm(x) =
cos(mx)√

π
; m = 1, 2,

where we observe that

〈φm, φ`〉 = δm,`, 〈ψm, ψ`〉 = δm,`, 〈φm, ψ`〉 = δm,`,

and δm,` is the Kronecker delta function.

4.1 Preparing the Iteration: Linear Order

As before, we seek a solution of (2) of the form

f = εf1 + ε2F, c = c0 + εs.

Inserting these into (2) gives

R[εf1 + ε2F ] =

(
εs− 1

2
εf1 −

1

2
ε2F

)(
εf1 + ε2F

)
.

At linear order we find
Rf1 = 0

which demands that f1 ∈ N (R) so

f1 = αφ1 + βφ2, α, β ∈ R.

As before, we may, without loss of generality, assume that α = 1, however, β
is still free to be chosen. This must be done at the next order.

4.2 Preparing the Iteration: Quadratic Order

In contrast to the case of Stokes waves, for Wilton ripples additional initiation
is required to quadratic order rather than just linear. For this, we enhance the
form of our solution of (2) to be of the form

f = εf1 + ε2f2 + ε3F, c = c0 + εc1 + ε2s. (9)

Inserting these into (2) gives

R[εf1 + ε2f2 + ε3F ]

=

(
εc1 + ε2s− 1

2
εf1 −

1

2
ε2f2 −

1

2
ε3F

)(
εf1 + ε2f2 + ε3F

)
. (10)
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By our choice of f1 this equation is satisfied at linear order for any choice of
β, and we must study the quadratic order equation

Rf2 − c1f1 = −1

2
f21 .

The most general solution of this equation can be written

f2 = aφ1 + bφ2 + Φ, 〈Φ, φ1〉 = 〈Φ, φ2〉 = 0,

and we follow the lead of [7] by selecting a = 0, and finding the triple {Φ, c1, β}
which satisfies

RΦ− c1f1 = −1

2
f21 .

Following the procedure outlined in [7] we insist that

0 =

〈
c1f1 −

1

2
f21 , ψm

〉
, m = 1, 2,

or, expanding,

0 =

〈
c1φ1 + c1βφ2 −

1

2
φ21 − βφ1φ2 +

1

2
β2φ22, ψm

〉
, m = 1, 2.

If we define
Cjm := 〈φj , ψm〉 , Cj`m := 〈φjφ`, ψm〉 ,

we can show (c.f., [7], Lemma 4) that (from our choices of {φ1, φ2, ψ1, ψ2})

C11 = C22 = 1, C12 = C21 = 0, (11a)

C112 = C121 = C211 = 1/2, (11b)

C111 = C221 = C212 = C122 = C222 = 0. (11c)

We find that for m = 1, 2, respectively,

c1 − (1/2)β = 0, c1β − 1/4 = 0.

These can be solved sequentially to give

β = ± 1√
2
, c1 = ± 1

2
√

2
, (12)

and since we have (c1f1 − (1/2)f21 ) in the range of R we can solve

Φ = R−1

[
c1f1 −

1

2
f21

]
.

Before proceeding we note that, while we lose no generality by setting a = 0
we cannot yet choose b, and this is one of the unknowns of our iteration. To
summarize our developments thus far, we seek solutions of (2) of the form

f = ε(φ1 + βφ2) + ε2(bφ2 + Φ) + ε3F, c = c0 + εc1 + ε2s, (13)

where {c0, φ1, φ2, Φ, c1, β} are now known, and we must determine {F, s, b}.
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Remark 2 We note that the solution pair {c1, β} depends solely upon the
choice of null space (spanned by {φ1, φ2}) rather than the details of the linear
operator L. Naturally, the higher order corrections to our solution depend upon
the form of L quite strongly.

Remark 3 Before continuing we point out that the analysis becomes some-
what more involved if the null space is spanned by {φ1, φm} for m > 2. From
preliminary investigations we believe that, for instance, in the case m = 3 one
would need to further “prepare” the iteration at cubic order before proceeding
to the Wilton iteration that we describe in the next section, § 4.3.

Remark 4 Finally, we note that we are seeking one particular type of Wilton
ripple consisting of the resonance between two sinusoids of commensurate fre-
quencies, (1,m), where m is an integer. Of course there are other possibilities
including non–resonant ripples with frequencies (`,m) where `,m are integers
which do not divide each other [10].

4.3 The Wilton Iteration

Using these choices we return to (10) which is now satisfied at linear and
quadratic orders. Using the fact that f1, bφ2 ∈ N (R) and dividing by ε3 we
find

RF =

{(
c1 −

1

2
f1

)
f2 +

(
s− 1

2
f2

)
f1

}
+ ε

{(
c1 −

1

2
f1

)
F +

(
s− 1

2
f2

)
f2 −

1

2
f1F

}
+ ε2

{(
s− 1

2
f2

)
F − 1

2
f2F

}
+ ε3

{
−1

2
F 2

}
= {(c1 − f1)f2 + sf1}+ εG(F, s, b),

where

G(F, s, b; ε) :=

{
(c1 − f1)F +

(
s− 1

2
f2

)
f2

}
+ ε {(s− f2)F}+ ε2

{
−1

2
F 2

}
.

Using the fact that f2 = bφ2 + Φ and simplifying we find

RF − sf1 − (c1 − f1)bφ2 = (c1 − f1)Φ+ εG(F, s, b; ε).

Inspired by this we conduct the following Wilton iteration

RFn − snf1 − (c1 − f1)bnφ2 = (c1 − f1)Φ+ εG(Fn−1, sn−1, bn−1; ε). (14)

Our procedure for solving (14) at each iteration is two–step:
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1. First, we solve for the speed corrections {sn, bn} by projecting the right–
hand-side of (14) and snf1 + (c1 − f1)bnφ2 onto the range of R. This is
enforced by demanding that this be orthogonal to the null space of its
adjoint,

0 = 〈snf1 + (c1 − f1)bnφ2 + (c1 − f1)Φ+ εG(Fn−1, sn−1, bn−1; ε), ψm〉 ,

m = 1, 2. Using (11) we find that(
1 −1/2
β c1

)(
sn
bn

)
= −

(
Q1

Q2

)
,

where

Qm := 〈(c1 − f1)Φ+ εG(Fn−1, sn−1, bn−1; ε), ψm〉 , m = 1, 2.

Using the fact that c1 = β/2, c.f. (12), this can be solved explicitly as

sn = −1

2

(
Q1 +

Q2

β

)
(15a)

bn = −1

2

(
−2Q1 +

2Q2

β

)
. (15b)

We also know from (12) that β = ±1/
√

2 so that once a choice is made,
these formulas give the unique solution.

2. With this choice of {sn, bn} we know that (14) is uniquely solvable provided
that we demand orthogonality to the null space of R. So, we can write

Fn = R−1 [snf1 + (c1 − f1)bnφ2 + (c1 − f1)Φ+ εG(Fn−1, sn−1, bn−1; ε)] ,
(16a)

〈φ1, Fn〉 = 0 (16b)

〈φ2, Fn〉 = 0. (16c)

This procedure can be replicated for the linearized version of this problem

RF − sf1 − (c1 − f1)bφ2 = (c1 − f1)Φ+ J,

and rigorous estimates derived for the unique solution. This is summarized in
the following “elliptic estimate” [7].

Theorem 3 For any real σ ≥ 0, given J ∈ Hσ there exists a unique solution
triple {F, s, b} of

RF − sf1 − (c1 − f1)bφ2 = (c1 − f1)Φ+ J,

〈φ1, F 〉 = 0,

〈φ2, F 〉 = 0,

such that F ∈ Hσ+τ and

max {‖F‖Hσ+τ , |s| , |b|} ≤ Ce ‖(c1 − f1)Φ+ J‖Hσ
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for some Ce > 0 and

τ =


1/2, Whitham (A),

1, Akers–Milewski (B),

2, Benjamin (C),

4, Kawahara (D).

4.4 Banach Fixed Point Formulation

We now write this as an FPI so that we can appeal to the Banach Fixed Point
Theorem [30]. To accomplish this we write (2) as

RF − sf1 − (c1 − f1)bφ2 = (c1 − f1)Φ+ εG(Φ, s, b; ε),

〈φ1, F 〉 = 0,

〈φ2, F 〉 = 0,

or

M

Fs
b

 =

(c1 − f1)Φ+ εG(F, s, b; ε)
0
0

 , M :=

 R −f1 −(c1 − f1)φ2
〈φ1, ·〉 0 0
〈φ2, ·〉 0 0

 .

We now express this as x = T (x) where

x :=

Fs
b

 , T (x) := M−1

(c1 − f1)Φ+ εG(F, s, b; ε)
0
0

 ,

and seek a fixed point of the iteration

xn = T (xn−1).

From Theorem 3 we know that M−1 is well–defined and that the action of
x∗ = T (x) can be given by

s∗ = −1

2

(
Q1(F, s, b) +

Q2(F, s, b)

β

)
, (17a)

b∗ = −1

2

(
−2Q1(F, s, b) +

2Q2(F, s, b)

β

)
, (17b)

F ∗ = R−1 [s∗f1 + (c1 − f1)b∗φ2 + (c1 − f1)Φ+ εG(F, s, b; ε)] , (17c)

where

Qm(F, s,B) := 〈(c1 − f1)Φ+ εG(F, s, b; ε), ψm〉 , m = 1, 2, , (17d)

c.f. (15) and (16). A fixed point of the iteration xn = T (xn−1) would solve
x = T (x) and represent a solution of (2). To achieve this we appeal to Banach’s
Fixed Point Theorem [30] which requires a Banach space,

X = Hσ+τ ×R×R,
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and a distance,

d(x, y)2 = ‖Fx − Fy‖2Hσ+τ + |sx − sy|2 + |bx − by|2 .

We are now in a position to prove the central estimate which establishes
that T is a contraction for ε small enough.

Lemma 4 Provided that σ > 1/2 and x, y ∈ BR(0) ⊂ X we have that

d(T (x), T (y))2 ≤ ε2C(R)2d(x, y)2,

where C(R) is a quadratic function of R.

Proof Exactly analogous to that of Lemma 2.

Just as we did for the Stokes waves, using Lemma 4 we can show that, for
sufficiently small ε, if the sequence xn = T (xn−1) starts in BR(0) it always
stays there, c.f. Lemma 3.

Lemma 5 Provided that σ > 1/2, if x0 ∈ BR(0) and xn = T (xn−1) then, for
any R > 0, there exists ε > 0 such that xn ∈ BR(0) for all n ≥ 0.

This results in our final theorem which has the same proof as that of the Stokes
result, Theorem 2.

Theorem 4 Provided that σ > 1/2, for ε sufficiently small the mapping T is
a contraction on BR(0) implying that, for ε sufficiently small, there exists a
unique Wilton ripple of the form (9).

5 Numerical Results

Inspired by the above results, we have implemented a numerical algorithm
based on the FPI (14) which, we note, converges only for amplitudes up to a
finite value, beyond which the iteration ceases to be a contraction. Due to the
flexibility of not only our formulation but also our numerical implementation,
we readily computed traveling Wilton ripples for four model PDEs which ap-
pear in the literature, the Kawaraha [40], Benjamin [15], Whitham [47], and
Akers–Milewski [2] equations. We refer the reader to Table 1 for a detailed
prescription of each of these four PDEs, in particular the “Spectral Gap” that
we define as

min
k>2
|L(k)− L(1)| ,

which is significant as the radii R from Theorems 2 and 4 tend to zero as this
gap vanishes.

Regarding our novel numerical FPI algorithm, we implemented a Fourier
collocation approach [32,18,16,54,55] where the unknown functions, Fn(x), in
(14) were approximated by

Fn(x) ≈ FNxn (x) =

Nx/2−1∑
k=−Nx/2

an,ke
ikx, an,k ≈

1

2π

∫ 2π

0

Fn(x)e−ikx dx,
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Model Operator c0 Spectral Gap Asymptotic ε+ ε−

(A) Whitham (Deep Water) L̂ =
√
|k|−1 + 1

2
|k|

√
3/2

√
11
6
−

√
3
2
≈ 0.129 O(k1/2) 0.14 0.22

(B) Akers–Milewski L̂ = |k|−1 + 1
2
|k| 3/2 1/3 O(k) 0.38 0.61

(C) Benjamin L̂ = |k| − 1
3
|k|2 2/3 2/3 O(k2) 1.48 0.96

(D) Kawahara L̂ = k2 − 1
5
k4 4/5 8 O(k4) 3.33 5.10

Table 1 Listing of key parameters of the four models simulated in this paper: The Fourier
symbol of the linear operator, the phase speed at which there are Wilton ripples (between
wavenumbers k = 1 and k = 2), the spectral gap, the high frequency asymptotics, and an
estimate for the maximal ε for which each branch converged for each model.

and (14) was enforced at the equally–spaced gridpoints {xj = 2πj/Nx} for
0 ≤ j ≤ Nx−1. We began by choosing {c0, φ1, φ2, Φ, c1, β} as outlined in § 4.1
and § 4.2, and initiated our iteration with {F0, s0, b0} = {0, 0, 0}. For n ≥ 1
we conducted the iteration (14) which involved two steps: Utilizing (15) to
determine the next {sn, bn} iterates, and then solving (16) to find FNxn via the
Discrete Fourier Transform (DFT)—accelerated by the Fast Fourier Trans-
form (FFT) algorithm—which diagonalizes the operator R. In these formulas
derivatives and Fourier multipliers were evaluated in Fourier space with the
DFT, and products were implemented in physical space; we did not notice ap-
preciable errors due to aliasing. This iteration was continued until the Cauchy
error,

eN := ‖fN − fN−1‖L2 + |sN − sN−1|+ |bN − bN−1| , (18)

reached machine precision (≈ 2× 10−16).
We compared the results of this novel iteration scheme with a classic quasi–

Newton iteration of (2) given the quadratic Wilton ripple as a starting guess.
More specifically, we once again used a Fourier collocation method [32,18,16,
54,55] where the unknown function, F (x), in (2) was approximated by

F (x) ≈ FNx(x) =

Nx/2−1∑
k=−Nx/2

ake
ikx, ak ≈

1

2π

∫ 2π

0

F (x)e−ikx dx,

and a numerical continuation approach [12] applied to (2) with an initial guess
provided by (13) with {F, s, b} set to zero. We note that both approaches
produced the same branches of traveling Wilton ripples, provided that they
converged. While the quasi–Newton solver converged for larger solutions, it was
far more expensive due to the formation and factorization of the full Jacobian
matrix. By contrast, our FPI was much more rapid, though its utility for larger
solutions was more limited.

In Figure 1 we display results of our novel iteration scheme for the numeri-
cal simulation of (2) for the case of the Akers–Milewski equation (B in Table 1).
On the left we display two traveling wave profiles, the solid curve correspond-
ing to β = 1/

√
2, c.f. (12), and the dashed curve comes from β = −1/

√
2.

The speed–amplitude curve for each of these two branches is plotted on the
right of this figure with both our FPI scheme and the quasi–Newton approach
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Fig. 1 Left: Example profiles from the FPI, (14), with ε = 0.01 (the profile on branch
with β = 1/

√
2, (12), is the solid curve, the profile on the branch with β = −1/

√
2 is

the dashed curve). Right: The speed–amplitude curves for two branches of ripples in the
Akers–Milewski equation are depicted. The output of the FPI (triangles) is compared to
that of the quasi–Newton iteration (solid lines).

[20]. The FPI converges for a finite range of amplitudes which we denote as ε±

corresponding to β = ±1/
√

2. More specifically, the FPI converges for |ε| ≤ ε+
for the choice β = 1/

√
2. By “converge” we mean that the Cauchy error in the

iteration is less than 10−5 in under 5000 iterations and a finite limit has been
found. We estimated these amplitudes for the four PDEs listed in Table 1 and
report the results there.

We close with results on the estimated errors in our computations and the
time required for our new FPI versus the classical quasi–Newton method. For
the error, as there is no exact solution, we settled on the Cauchy measure,
(18). On the left panel in Figure 2 we plot this versus iteration number N ,
while on the right of Figure 2 we display run times for the FPI (triangles)
and the quasi–Newton method (circles) as a function of the number of spatial
points, Nx. Over this range of points the cost of the quasi–Newton method is
dominated by the formation of the Jacobian matrix, O(N2

x logNx), while the
FPI has computational complexity O(Nx logNx) (these asymptotic curves are
depicted with solid lines in the figure).

6 Conclusion

In this paper we have undertaken the study of weakly nonlinear dispersive
wave equations which admit Wilton ripple solutions. Not only do we demon-
strate their existence rigorously using a Banach Fixed Point Iteration, but we
also utilize a numerical simulation of this iteration scheme to produce highly
accurate solutions in a fraction of the cost of a classical quasi–Newton ap-
proach.

The Wilton ripple problem has very similar structure to that of the spectral
stability problem near an eigenvalue collision. This similarity suggests that
very similar methods to those of this paper can be used to prove their existence
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Fig. 2 Left: The Cauchy error, (18), measured for a Wilton ripple in each of the PDEs
listed in Table 1 from the FPI (14) at ε = 0.01. The markers correspond to the PDEs as
follows: (A) circles, (B) x’s, (C) stars, (D) squares. Right: The run times for our novel FPI
(triangles) and the quasi–Newton method (circles) as a function of the number of spatial
points. The amplitude parameter ε = 0.01 was simulated for the Akers–Milewski equation.
The asymptotic curves N2

x logNx and Nx logNx are plotted with solid lines.

and compute instabilities. The tools of this paper do not require analyticity
(in contrast to our previous work [7]) and thus have the potential to compute
instabilities which are merely continuous, e.g., of Benjamin–Feir type.
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