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Abstract

Electromagnetic metamaterials are artificial media assembled from compo-
nents which have dimensions much smaller than the wavelength of the il-
luminating radiation. It has been demonstrated that these media can have
properties beyond those found in conventional materials with important ap-
plications to many areas of science and engineering. Among the collection
of such materials currently garnering significant attention are the Hyper-
bolic Metamaterials. These are highly anisotropic structures which have a
hyperbolic dispersion relation due to the fact that one principal component
of the relative permittivity or permeability tensor has the opposite sign of
the other two. For such materials scattered wave information at all scales
is transmitted far away which suggests a number of important applications,
the most immediate of which is imaging objects below the diffraction limit
(superlensing). Clearly it is of great current interest to have numerical simu-
lation capabilities for these fascinating materials. As the hyperbolic response
is quite strong and its nature is very sensitive, numerical simulations of these
configurations should be robust and highly accurate. For this reason we
focus on High—Order Spectral algorithms which efficiently produce high fi-
delity solutions. More specifically, we describe a High—Order Perturbation
of Surfaces approach which enjoys the greatly reduced operation counts and
memory savings of interfacial methods while avoiding the complexities and
indefinite linear systems faced by Integral Equation algorithms. We give a full
discussion of our formulation in terms of Impedance-Impedance Operators
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(which avoids spurious singularities of other formulations) and implementa-
tion details, followed by numerical validation and simulation of results which
appear in the engineering literature.

Keywords: High—Order Spectral Methods, Layered Media, Uniaxial
Hyperbolic Materials, Linear Wave Scattering, High—Order Perturbation of
Surfaces Methods.
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1. Introduction

Electromagnetic metamaterials are artificial media assembled from com-
ponents which have dimensions much smaller than the wavelength of the
illuminating radiation. It has been demonstrated that these media can have
properties beyond those found in conventional materials with important ap-
plications to many areas of science and engineering [1, 2, 3, 4, 5, 6, 7]. The
recent wave of interest in metamaterials was ushered in by the realization of
negative index materials (first envisioned by Veselago [8] in 1968) that have
permittivity, €, and permeability, u, simultaneously negative. These have
been demonstrated experimentally [9] and allow one to ponder the possibil-
ity of perfect cloaks, sub—wavelength imaging, and superlensing to name just
a few novel applications [2]. We refer the interested reader to the follow-
ing survey articles for more examples and details of how such materials are
constructed [4, 5, 6, 7].

Among the collection of metamaterials currently garnering significant at-
tention are the so—called Hyperbolic Metamaterials (HMMs). These HMMs
are highly anisotropic structures which have a hyperbolic dispersion relation
due to the fact that one principal component of the relative permittivity or
permeability tensor has the opposite sign of the other two. (From here we fo-
cus on non—magnetic materials where the permeability tensor is the identity.)
More specifically, if the permittivity tensor is
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it is not difficult to construct uniazial HMMs (e, = €,) where Re {¢, } Re{e.} <
0 [3]. In particular, these authors consider thin alternating layers of metal



and dielectric which feature effective permittivities

dem + dd€d o €m + Nea

o = dm+d; 1+n
1 dpet +daegt 1 1 7
€2 B dm + dd B 1+ 1 \€m €d .

Here €, and ¢, are the permittivities of the metal and dielectric, respectively,
and 7 = dg/d,, is the ratio of the layer thicknesses. With ¢; > 0 and
Re{€,} < 0 it is easy to see how an HMM could be built.

To explain the possibilities of these HMMs we recall that, in a homo-
geneous material layer, a plane-wave solution, exp(iax + ivz), of the time—
harmonic Maxwell equations in Transverse Magnetic (TM) polarization will
satisfy the dispersion relation
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where kg = w/cp, w is the frequency of the radiation, and c¢q is the speed of
light in the vacuum. In a natural dielectric €,,¢, > 0 and the wavevectors
(e, 7y) form an ellipse. Of fundamental importance, if « is small then ~ is real
and the solution is propagating, while if « is large then v is complex with
Im {7} > 0. Such solutions decay exponentially and are termed evanescent.
Only long wavelengths propagate information away from the material and
information at short wavelengths is lost exponentially quickly. This is the
diffraction limit.

By contrast, if one can arrange €,€, < 0 then the dispersion relation deliv-
ers a hyperbola and for all choices of o we have ~ real so that all wavelengths
are propagating. Information at all scales is, in theory, transmitted far away
from an HMM. This property suggests a number of important applications
for these hyperbolic materials, the most immediate of these is the possibility
of imaging objects below this diffraction limit (of a natural, elliptic, dielec-
tric) [3]. We direct the interested reader to the surveys [4, 5, 6] which describe
devices which have been built that can achieve this superlensing, despite the
inevitable losses due to absorption.

Interestingly, natural Hyperbolic Materials (HMs) have been identified
which display the strong anisotropy of the HMMs discussed above, most
notably hexagonal Boron Nitride (hBN) [10, 11]. Though our developments
do not depend upon this choice, we will focus on hBN in this contribution



as it seems a most promising candidate for subwavelength imaging and other
applications. Of particular relevance are its low losses, nanoscale unit cells,
and capability of demonstrating both Type I (¢, > 0 and €, < 0) and Type
IT (e, < 0 and €, > 0) hyperbolicity [10]. (In most publications [4, 6, 11] one
uses the notation €, = ¢ for the component parallel to the anistropy axis
and €, = €, for the component perpendicular, though this is not universal
5],

Unsurprisingly, it is of great current interest to have numerical simulation
capabilities for these fascinating materials. As the hyperbolic response of
hBN is quite strong (the reflectivity can be enhanced by several orders of
magnitude) and its nature is very sensitive (it is only seen on the range
of tens of nanometers) [10], numerical simulations of these configurations
should be robust and highly accurate. For this reason we focus on High—
Order Spectral (HOS) algorithms [12, 13, 14] which efficiently produce high
fidelity solutions.

All of the classical numerical algorithms are available for the simulation
of this problem (e.g., Finite Difference Methods [15], Finite Element Meth-
ods (FEMs) [16], Discontinuous Galerkin Methods [17], Spectral Element
Methods [13], and Spectral Methods [12, 14]). Of particular interest to en-
gineers and scientists are black-box FEM solvers, most notably COMSOL
Multiphysics [18], see e.g. [19, 20]. However, these volumetric approaches
are greatly disadvantaged with an unnecessarily large number of unknowns
for the piecewise homogeneous problems we consider here.

Surface methods are orders of magnitude faster by comparison due to the
greatly reduced number of unknowns required to resolve a computation. In
addition, these methods enforce far—field boundary conditions exactly, e.g.,
through their use of the Green function [21, 22]|. As a result, these approaches
are an important alternative which are becoming more widely used by engi-
neers. Among these interfacial methods, the most important are those based
upon Integral Equations (IEs) [21, 23], but these face difficulties. Most have
been addressed by (i.) the use of sophisticated quadrature rules to deliver
HOS accuracy; (ii.) the design of preconditioned iterative solvers with suit-
able acceleration [24]; and (iii) new strategies to avoid periodizing the Green
function [25, 26, 27, 28, 29, 30, 31, 32]. As a result, these are an important
alternative to volumetric approaches, but two properties render them non—
competitive for the parameterized layered media problems we consider as
compared with the methods we advocate here: (i.) For geometries specified
by the real value € (the departure of the interface shapes from flat), an IE
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solver will return the scattering returns only for one value of ¢. If this value
is changed then the solver must be run again; (ii.) the dense, non-symmetric
positive definite systems of linear equations which must be inverted with each
simulation.

As we have shown, see e.g. [33, 34, 35, 36], a “High—Order Perturba-
tion of Surfaces” (HOPS) approach can convincingly address these concerns.
These formulations maintain the useful properties of classical IE algorithms
(e.g., surface formulation and exact enforcement of far-field conditions) while
avoiding the flaws listed above: (i.) Since HOPS methods are built upon ex-
pansions in the perturbation parameter, €, once the Taylor coefficients are
recovered, it is simply a matter of summing these (rather than beginning a
new simulation) for any given choice of € to recover the scattering quantities;
(ii.) due to the perturbative nature of the scheme, at every Taylor order one
need only invert a single, sparse operator corresponding to the order—zero
(flat—interface) approximation of the problem.

Regardless of method used, the formulation of the governing equations
strongly influences the performance of these approaches. With this in mind,
following the guidance in [37, 38], we recently investigated the surface formu-
lation of this problem in terms of Impedance-Impedance Operators (I10s)
(34, 39] which avoid the Dirichlet eigenvalues that plague the Dirichlet—
Neumann Operators (DNOs) of more straightforward statements [40]. This
non-overlapping Domain Decomposition Method (DDM) was first described
for Laplace’s equation by Lions [41] and adapted to the Helmholtz problem
by Després [42, 43, 37]. On interior layers these I1Os are unitary and they
deliver a very well-conditioned algorithm. We utilize a formulation of the
problem in terms of I1Os here which we restrict to two dimensions in the
current contribution.

Before leaving our discussion of numerical approaches, we mention the
recent work of J. Lin [44] on IE methods for HMs. In this delicate and
careful study, Lin describes a novel method for simulating the Green func-
tion associated to the relevant indefinite Helmholtz equation. This requires
sophisticated grid refinement technology to resolve the boundary between
regions of elliptic and hyperbolic behavior of the fundamental solution. In
contrast to this IE algorithm (whose utilization of the Green function re-
quires this refinement), the approach outlined in this work does not require
such considerations provided that the exciting source is not contained in the
HM, e.g., plane-wave incidence from above/below through a dielectric.

The rest of the paper is organized as follows: In § 2 we state the governing



equations for scattering of linear waves by a periodic layered medium with
special discussions of the field equations in § 2.1, the interfacial boundary
conditions in § 2.2, and transparent boundary conditions in § 2.3. We recall
our DDM in § 3 and our HOPS scheme in § 4. Finally, we conclude with
numerical results in § 5 featuring specific discussions of implementation in
§ 5.1, validation in § 5.2, and comparision with results in the literature in

§ 5.3.

2. Governing Equations

We begin with the constituitive relations between the electric displace-
ment, D, the magnetic induction, B, the electric field, E, and the magnetic
field, H,

D =ecE, B = pouH,

where €y and ji9 are the permittivity and permeability of the vacuum, and ¢
and p are the relative permittivity and permeability tensors [45]. We focus

upon non-magnetic materials so that p = I, and, after diagonalization, we

have
ez, 0 O
e=10 ¢ O
0 0 e

Using these, the time-harmonic Maxwell equations (in the absence of currents
and charges) become

curl [E] = iwB = iwpoH, (1a)
curl [H] = —iwD = —iweyeE, (1b)

where time dependence of the form exp(—iwt) has been factored out.

2.1. Field Equation

We now seek a solution to (1) in Transverse Magnetic (TM) polarization
so that all quantities are y—invariant (the transverse direction) and the mag-
netic field has the form H = (0,v(z, 2),0)?. To accomplish this we write (1)
entirely in terms of H and, in turn, v. By solving (1b) for E and inserting
this into (la) we find

1
curl | ———¢ teurl [H] | = iwpoH. (2)
iwep=



Upon using the y—invariance of v we find that that the y—component of (2)
becomes

div [AVv] + kjv = 0,

4= ((1662) <1/Oew>>’

which is not the inverse of €

and

Remark 2.1. We note that the same derivation could be conducted for
Transverse Electric (TE) polarization resulting in the governing equation

div[(1/€,)Vv] + kjv = 0,

which, while interesting, 1s standard and can be treated with existing methods

[46]

Remark 2.2. In the case of an isotropic material, € = €1, we find the
familiar Helmholtz equation

Av + e kjv = 0.

Remark 2.3. As we mentioned above, rather than model an HMM we chose
to simulate a natural HM, namely hBN. For this we used the permattivity
specified in [11]

(wLO,m)2 - (WTO,m)Q
(Wrom)? —w? —iwly,

€Em = €co,m <1 +

). me Ly

where
€oo,l =487, T'\ =5 cm_l, wro,1 = 1370 cm_l, wro,. = 1610 cm_l,
and

€oo,|| = 2.95, FH =4 Cm_l, wro,| = 780 Cm_l, wro,| = 830 Cm_l.

From these we form

€ 0 0
ghBN — 0 €L 0 (3)
0 0 €||



2.2. Interfacial Boundary Conditions

At this point we fixate upon a (y—invariant) layered structure with M
interfaces located at

z=a"™ +¢"M(x), 1<m<M,
which are d—periodic,
9@ +d) = g™ (2), 1<m<M,

see Figure 1. These define the (M + 1) domains
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Figure 1: Plot of the structure under consideration: Graphene affixed to both the upper
and lower sides of the hyperbolic material, under an isotropic dielectric (e(o)) mounted on
another isotropic dielectric (6(2)). Structure rescaled by the period in the x coordinate
and the maximum amplitude in the z coordinate.

SO ={(x,2) | 2> aV +¢gV(2)},
St ={(2,2) | ™ + gt () <z <a™ 4+ g™ ()}, 1<m <M -1,
S ={(z,2) | 2 < a™ + g™ (2)},

with upward pointing normals

—0,g™
N = 0



These domains are filled with homogeneous non—magnetic materials with rel-
ative permittivity tensors g(m), and the uppermost and lowermost layers are
isotropic dielectrics so that for m € {0, M}, ™ = ™[ ™ ¢ RT. Addi-
tionally, we consider the case where two-dimensional materials are present
at the layer interfaces which we model with an interfacial current [47]. The
structure is illuminated from above by radiation of frequency w at angle 6
that has the form

vl = eV o = VeOkysin(0), 7 = VeOk,cos(d).

The derivations in the previous section demonstrate that the transverse
component of the magnetic field in layer 0 < m < M, v{™, is governed by a
Helmholtz equation of the form

div [A(m)VU(m)] + k2™ =0, 0<m< M, (4)

w ()0
A = ( 0 (1/6(;”)))’

which must be supplemented with appropriate boundary conditions. First,
each of the fields is quasiperiodic

where

V(@ 4 d, z) = ™ (2, 2), 0<m <M. (5)

Next, at the interfaces z = a™ + g™ (x), we know that, in the presence of
interfacial currents, the tangential components of the electric and magnetic
fields must satisfy [47]

N xE=0, N™ xH=|N™|jm™ 1<m<M
where j{™ is the surface current at the m-th interface. Following [47], and
inspired by Ohm’s Law, we model this with the relation

E™) . T(m)
s(m) __ _(m) (m)
V=0 (T(m)-T(m))T , 1<m< M,

where T(™ is a tangent to the interface.
Using a straightforward generalization of [47], in TM polarization the
tangential continuity of the electric field yields

~Nm — D)™ ] = N m)[p™] =™, 1 <m < M, (6)

9



where .
ym) — NZ(O)[UIL m =1,
0, m > 1,

and the A™)-modified upper/lower exterior-pointing surface normal deriva-
tives are defined by

Nu(m)[v(m)] = N . (A(m)vv(m)) ’ 5= q™ + g(m)(x)7
NEm)™] = =N L (Amgym) = gt 4 gt (g

Continuing, the tangential boundary condition on the magnetic field gives

pm=1) _ yy(m) 4 |N<m)|—1p<m>Nu<m)[U<m>] =M 1<m<M, (7

f(m) _ _'Ui, m = ]_7
0, m > 1.

Remark 2.4. Arquably the most influential two—dimensional material in the
field of plasmonics is graphene [48, 49]. To give a flavor of the form which
o™ might take we note that, while the correct modeling of the electromagnetic
properties of graphene is still open, one reasonable choice for the surface
current is a Drude model [48, 49] of the form

R o AF /T
O'D = ﬁ7 UD - UO (F —fl/hw) ) UO - 7.‘-6060057 (8>

where

where « is the fine structure constant, Er > 0 is the (local) Fermi level
position, and I" := h~y, where h is the reduced Planck’s constant and ~ s the
relaxation rate. In our simulations we used Er = 0.45 eV and ' = 2.6 meV.

2.3. Transparent Boundary Conditions and the Dispersion Relation

We require two more boundary conditions to specify a unique solution:
The Upward and Downward Propagating Conditions (UPC/DPC). We de-
rive the DPC and simply state the UPC, but for each we require artificial
boundaries, {z = a} and {z = a}, where

a>aV+ ‘g(

1)‘Loo . a< a™M) _ |9(M)}Loo )
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For the DPC we seek plane—wave solutions of the form

2mp
7

io a:fi’y(M)(zfa)
e r P ,oap=a+

These are solutions of (4) in {z < a} if

1. 1
W(Zap>2 + E(—M)(Z"}’I()M))z + k’g = O,

which can be simplified to the Dispersion Relation for uniaxial materials in
TM polarization

ap (")
P P _ 1.2
on T on -~ ko )

Notice that if the M—th layer is isotropic then ES;M) = egM) = ¢M) and one
rediscovers the classical dispersion relation,

al + (M) = MK,

In order to specify the DPC we make the following choice for %M),

M M) .2 ~tz 2 M
= (s (S5 ) ) mi o

which guarantees that solutions are bounded as z — —oo. Separation of
variables gives

[e.e]
. . (M
V00, 2) = 37 e,
p=—00

and we observe that
o s ) 1[4 .
V(a0 = 3 e = po). =3 [ uaye o de
p=—00 0

It is a simple matter to compute

o0

0.0 M (x,a) = Y (—iyM) e r” = TD [y,

p=—00

11



which defines the order-one Fourier multiplier 7). From these calcula-
tions it is clear that the DPC can be specified transparently at the artificial
boundary with

.M — MM =0 2 =g (10)

In a similar fashion [39], the UPC can be specified by

800 4 TORO] =0, 2 =g, (11)
where
e}
TO[] = Y (=inf)ie'™™.
p=—0C

Gathering all of our developments (Equations (4), (7), (6), (11), (10), and
(5)) together we find the following set of governing equations

div [AVo™] + o™ = 0, 0<m<M, (12a)
pm=1) _gym) \N<m>}*1 PN m)™] = €M 1 <m <M, (12b)
— N(m — D)™ D] = N¥(m)[p™] = (™), 1<m< M, (12)
.00 £ TO[RO] = 0, 2z =a, (12d)
0.0oM) — T[] — ¢ z=a, (12e)
o™ (z +d, 2) = e ™ (g, 2). (12f)

3. A Non—Overlapping Domain Decomposition

Following our previous work [39], and for completeness of presentation,
we restate (12) using a Non—Overlapping Domain Decomposition. For this
we follow the lead of Després [42, 43] by using carefully chosen Impedance—
Impedance Operators (I1Os) which are free of the artificial singularities which
plague other surface operators such as Dirichlet—~Neumann Operators (DNOs).
To summarize these developments we begin by defining the order—r Fourier
multipliers

= D Ymgert 20 gl = Y Z0m),gen,

p=—00 p=—0o

—_— —_— ,,,./2
YOI 200, ~ (L ), e {01,

12



and rearrange the boundary conditions, (12b) & (12c), by the operator
—ym _g
(m) _
P = (e 1)
giving

{J\/’Z(m — 1)[1)(’”‘1)] _ y(m) (m— 1 } + {N“ (m ] + y(m)[ (m)}}

_y(m) ‘Nm)‘*l m)Nu( ym] = _Y(m) [5(’"’] —ym), (13a)
{N*(m — D)™ +Z( =D + {N“(m)[p™] — Z(™[p™]}
+Z m)HN(m D m)/\/"(m)v )| = Z(m) [£t™)] — o), (13b)

We select (Y™ 4 Z(m) invertible so that this transformation can be inverted,
and point out that Després made the choice Y™ = Z(™ = in n e R" so

that r = 0 [42, 43].
In light of (13) it is natural to define the surface impedances

U™ (@) = N (m)[p™] = Yy D[],
U (z) = N4 m)[™] = 2 [,
U (@) = N (m)[v (m]+Z(m“)[ ™,
U (z) i= N (m) ™) + Y " o],

and, upon using these to solve for {v™ N'*(m)[v™]} in terms of {U/(™u Tmul,
we find that the boundary conditions (13) become

U(m—w [romu . pem)prem)u 4 fm) frem)a — ¢m)
From=1 . rlm)a 1 Gom) rm)u 4 Glm)frm)u — (m).

where
() = ) =y e,
P = = 4 2],
Fm) — _y(m) [pm INC™|~ y(m)] (Vim 4 zom) ™
Bm) — _y(m) [p<m) |N<m>|’1 Z<m>} (Yim 4 zm) ™t
Q) — o (m) [pw) |N<m>|—1y<m>] (vom 4 Z(m))—l,
Cim) _ 7(m) [p(m) |N<m>|‘1 Z“ﬂ (Yo 4 zm) ™"



We direct the interested reader to our previous work [39] for full details.

To close (and simplify) this system of equations we introduce the following
Impedance-Impedance Operators (I1Os) which are a generalization of those
defined in [39].

Definition 3.1. Given an integer s > 0 and any 6 > 0, if gV € Cs+3/2+9
then, for order—r (r € {0,1}) Fourier multipliers {Y V), ZW}  if a unique
quastperiodic solution exists of

div [A(O)VU(O)] + k20 ® =0, aV 4+ gW(z) < 2 <7, (14a)
0.0 4+ 7O [U(O)] =0, z=a, (14Db)
N0 O] — YO O] = y©+, o+ gW(x), (14c)

we define the upper 110
Q[U(O),q = Q(@a, a® g ))[U(O) ] = 70t — = NY(0)[v (0)] +Z(1)[v(0)]. (14d)

Definition 3.2. Given an integer s > 0 and any 6 > 0, if g™ € Cs+3/2+9
then, for order—r (r € {0,1}) Fourier multipliers {Y ™M), Z(M " if o unique
quasiperiodic solution exists of

div [AMVoM] 4 k2™ = 0, a<z<a™ 4 ¢™M(z)  (15a)
NYM) M) — ZOD[yM)] = gD = M) gD (), (15Db)
8,0 — TON[AD] = o, z=aq, (15¢)

we define the lower 110

S[U(M)ﬂ] S(a, a() M))[U(M] M) — ./\/“( )[ )]er(M)[U(M)]‘
(15d)

Definition 3.3. Given an integer s > 0 and any 6 > 0, if g™, g™+ ¢
C*3/249 then, for order—r (r € {0,1}) Fourier multipliers {Y (™) Ym0 7z(m)  7m+1)1
if a unique quasiperiodic solution exists of

div [ATIV] 4 kg™ =0, A g () < 2 < 0™ 4 g (a),
(16a)

N )[p™) = 20 = U0, s = o) 4 g (a), (16)

Né(m) [U(m)] _ y(m+1) [U(m)] _ U(m),f, 2= qmtD) 4 g(erl)(iU), (16¢)

14



we define an inner 110

m U(m)7u m m m m m U(m)’u
R )[(Uwf)] R (gm)_glm) glm1) 1)) KU(mm)]
R(m),uu R(m ),ul (m)
= (e o) ()
gtm- “(m)["™] + Y [plm)]
B (mm»f) :( N m)[pm 1+Zm+1>[ ) (169

Remark 3.4. As far as we are aware, the uniqueness of solutions to the

problems (14), (15), and (16) is still an open question. However, it is known

(see, e.g., [50]) that in the case of an isotropic material, e = eggm) = egm),

these problems are well-posed provided that

Im{/od (Y™e) @dx} >0, Im{/od (2t™) g?)dx} > 0.

Therefore, the choice of Després [42, 43], Y = Zm) —in n >0, ensures
well-defined I10s.

Following [39] we can write this system of equations as

AV =R, (17)
where
{/(0),¢
UMu ¢
ML P
V - : s R = .
UM=1)u ¢
[J(M=1),¢ w(M)
U(M) u
Also
DM Uu® ¢ 0 0
L® D® yu®@ 0 0
A 0 0 0
0 0 ., . .. . .. ) O ’
0 0 LW-1) pWwm-1) y-1
0 0 0 LM D)

15



where

=\ ampmae g

>7 1§m§M_17

and

Umzcimfwo,nggM,

pw _ (1 FY+ I+ FO)ROw
T\Q (I+GW) 4 GOHRMwu |

Do _ I Fm 4 (] 4 FOm)Rm)uu
T ARV ([ 4 G 4 G Rim)uu

HOn _ I FM) (] FODYS
A\ RMEDL (T4 @My 4 GG )

)7 QSWSM—L

4. A High—Order Perturbation of Surfaces Method

At this point we have several options for solving our governing equations,
(17). We adopt a geometric perturbation approach based upon the assump-
tion

g™ (@) =ef™(2), 1<m<M,

for ¢ sufficiently small and f™ sufficiently smooth (at least C*+3/2+% for
some § > 0). In this case, the operator A = A(e) and the right-hand-side
R = R(¢) depend analytically upon & so that

A(e)=> A", R(e) =) R, (18)

With this it can be shown that the solution V'(¢) depends analytically upon
€, so that

V(e) = f:Vngn, (19)

where, upon insertion of these forms into (17), we find at order O(e"),

n—1

AOVn = Rn - Z Anfﬂva

=0
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or
n—1
V,=A;" [Rn -y An_gvg] . (20)
=0

We refer the interested reader to [39] and the references therein for a more
formal justification of these developments, in particular, the demonstration
that the relevant 110s, {@Q, R™, S}, depend analytically upon the pertur-
bation parameter e which justifies the expansion of the terms {A,R} in
convergent power series. We further mention that the paper [39] provides a
possible path to establishing that, under certain hypotheses, unique solutions
of (17) exist.

Remark 4.1. We anticipate that the smallness assumption on the pertur-
bation variable, €, can be dropped provided that it is real and that there is
no topological obstruction (e.g., intersecting layer interfaces). The papers
[51, 52] provide one possible approach to establishing such a result.

5. Numerical Results

We now present the results of numerical experiments based upon the
formulation of grating structures featuring hyperbolic materials stated above.
We begin with a brief validation by the Method of Manufactured Solutions
and follow up with simulations of structures appearing in the engineering
literature.

5.1. Implementation

To simulate layered media problems featuring hyperbolic materials we
utilize (17), the surface formulation of the governing equations in terms of
[IOs which are functions of the interface height/slope e,

A(e)V(e) = R(e).

As in [39], we seek a solution of the form (19) which is truncated after a finite
number of orders, N > 0,

V(o) m VN(e) =) V" (21)

To find the V,, we must solve (20) for 0 < n < N which, in turn, requires
the application of the operators A, and the formation of the functions R,
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which come from the series expansions of A and R, respectively. For this we
must be able to evaluate the operators {Fy™, E\™ . GI™, G} and the 110s
{Qn, R,(Zm), Sy }. For the former, all of the details are provided in the papers
(34, 39], while for the latter, the method of Transformed Field Expansions
(TFE) [53, 51, 46] was used to simulate the IIOs. Again, all of the relevant
details are specified in [34, 39]. To summarize, we used a spectral Fourier—
Chebyshev approach [12, 54, 14] where

Nz/2—1 N,

Vo(z,2) = VYol (g 2) = Z Zvn,pﬁqTq(z/h)empz,

p=—N/2 q=0

and T} is the g-th Chebyshev polynomial. To find the Fourier-Chebyshev
coefficients, {V,,, 4}, we used the collocation method by demanding that the
governing equations be true at the gridpoints, e.g. on a layer {[0, d| x [—h, h|},

{x; =j(d/N;) | 0<j<N,—1}, {z =hcos(nr/N,)|0<r<N,}

With fast Fourier and Chebyshev transforms [12, 54, 14] the resulting equa-
tions were solved efficiently and stably.

Remark 5.1. We point out that these developments eventually lead to the
simulation of two—point boundary value problems for the quantities \A/'n’p(z)
on {—h < z < h} which we successfully addressed with our Chebyshev col-
location method. For this, the only (mild) challenge to our algorithm was
the indefinite nature of the two—point boundary value problem to be solved.
Such difficulties were ameliorated when physically mandated dissipation was
considered.

A final, important, question is how the Taylor series, (21), in ¢ is summed,
e.g., the approximation of V,, ,(¢) by

N
VD (e) = Z Viope™
n=0

For this, Padé approximation [55] has been used in conjunction with HOPS
methods to great effect [56, 51] and we recommend its use here. Padé approx-
imation seeks to estimate the truncated Taylor series \Afi,v ,(€) by the rational
function
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and
[L/M](e) = V) (e) + O("TMT1);

well-known formulas for the coefficients {ay, b,,,} can be found in [55]. This
technique has remarkable properties of enhanced convergence, and we refer
the interested reader to § 2.2 of Baker & Graves-Morris [55] and the insightful
calculations of § 8.3 of Bender & Orszag [57] for a thorough discussion of the
capabilities and limitations of Padé approximants.

5.2. Validation

To validate our scheme, we utilized the Method of Manufactured Solutions
(58, 59, 60]. To summarize, consider the general system of partial differential
equations subject to generic boundary conditions

Pv =0, in €,
Bv =0, at 0f).

It is typically easy to implement a numerical algorithm to solve the nonho-
mogeneous version of this set of equations

Pv = F, in €,
Bv=J, at 0.

To test an implementation we began with the “manufactured solution,” v,
and set

Fy:=Pov, T, :=Jv.

Thus, given the pair {F,, J,} we had an ezact solution of the nonhomoge-
neous problem, namely v. While this does not prove an implementation to
be correct, if the function ¥ is chosen to imitate the behavior of anticipated
solutions (e.g., satisfying the boundary conditions exactly) then this gives us
confidence in our algorithm.

For the current implementation we focused upon the three—layer prob-
lem (M = 2) and considered the quasiperiodic, outgoing solutions of the
Helmholtz equation (14a)

vO(z,2) = A,(no)em”””ﬁmz, reZ, AV ecC,

and their counterparts for (15a)

vﬁz)(w,z) = B(Q)eio‘Tx_i7£2)z, red, BﬁQ) e C.

r
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Further, we considered the quasiperiodic solutions of the Helmholtz equation
(16a)

oM (x, 2) = Aﬁl)em“””’(“l)z + Bﬁl)em“’””’(})z, rez, AV BYecC.
We selected two simple sinusoidal profiles
gV (@) = efWD(x) = ecos(2z), ¢ (x) =efP(z) = esin(2z),  (22)

and defined, for any choice of the layer half-thickness h, the Dirichlet and
Neumann traces

&% (z) = v (@, h + gW(x)
( h )

From these we defined, for any choices of the operators {Y'(1), Z() Yy () 72}
the impedances

VO . O _yWO)] 0L 0 L zO[eO), (23a)

YW O _ g Wb W Wh Ly DR (23)
VL O _y @ eMh] L Wk | ZO) k] (930
VO )@ _ Z@e@] FOu._ 0 4y, (23d)

We chose the following physical parameters

e+1.1i 0 0
d=2r, a=01 V=P=1 €Y= 0  e+1.1i 0
0 0  —23+1.1i

eM =02, @ =0.45,
A£0) - _3 67“727 B(Q) - 4 57‘,27 Ag‘l) = —€ 6’7‘,2) B'I(’l) =7 6T12’ (24>

T

(where 6, ¢ is the Kronecker delta) in TM polarization, and the numerical
parameters

N, =64, N,=24, N=10, a=1/5 b=1/5. (25)
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To illuminate the behavior of our scheme we made the Després [42, 43, 37|
choice of operators

YW =20 =y® = 2O =in, 5=k, (26)
and studied four choices
e = 0.005,0.01,0.05,0.1,

in (22). For this we supplied the “exact” input data, {VT(OM, AU ARRS Vr(Q)’u},
from (23) to our HOPS algorithm to simulate solutions of the IIO formula-
tion of the three—layer scattering problem. We compared the output of this,
{‘N/;(O),Z,approx"z‘(l),u,approx"Zn(l),f,approx"77“(2),u,approx}’ with the “exact” output,

{XN/T(O)’E, 17,,(1)’“, f/r(l)’e, ‘N/T(z)’u}, by computing the relative error

/

We note that the choice to measure the defect in the upper—layer quantity,
f/r(o),e’ was arbitrary, and measuring the mismatch in any of the other output
quantities produced similar results.

To evaluate our implementation we selected the I1Os specfied by (26), and
we report our results in Figures 2 and 3. More specifically, Figure 2 displays
both the rapid and stable decay of the relative error as IV is increased, and
how this rate of decay improves as ¢ is decreased. Figure 3 shows both how
the error shrinks as € becomes smaller, and that this rate is enhanced as N
is increased.

. |17(0),2 ( 7(0),£,approx
Error,y := V;( e _ Vr( ),¢,app

V(O)ve‘

Lo Lo

5.8. Comparison with Published Results

Having verified the accuracy and reliability of our implementation we felt
justified in simulating results which appear in the engineering literature, in
particular the computations published by Kumar et al [11]. In this work
the authors investigated the dispersion relation of hybrid plasmon—phonon
polaritons excited in a configuration consisting of graphene-hBN heterostruc-
tures. In this study the tunable graphene surface plasmons which are gener-
ated in the mid—infrared to terahertz regime were coupled to the hBN phonon
polaritons which also exist in this regime.

Kumar et al studied the linear dispersion relation for a thin (50 nm
thick) layer of hBN in air, and then recomputed this with a monolayer sheet
of graphene attached to the hBN. In short, they computed the singularities of
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Relative Error versus N
; :

Relative Error

Figure 2: Plot of relative error with six choices of N = 0,2,4,6,8,10 and four choices of
e = 0.005,0.01,0.05,0.1 for IO choice (26) with Taylor summation. Physical parameters
were (24) and numerical discretization was (25).

Ay, see (18), as the spatial wavenumber ¢ = 27 /d and illumination frequency
w = 2w/ were varied. We have reproduced these results in the regimes of
Type I hyperbolicity (760 cm™ < w < 860 cm™!) without graphene (Fig-
ure 4) and with graphene affixed above and below the hBN layer (Figure 5).
In addition, we have computed in the Type IT hyperbolicity range (1000 cm~*
< w < 1700 cm™!) without graphene (Figure 6) and with graphene above
and below the hBN layer (Figure 7).

In these plots we see the characteristic appearance of multiple slab polari-
ton modes in the regions of hBN hyperbolicity, Re {¢, } Re {e.} < 0, indicated
by the yellow regions where

log (Re {A}) = log (Re {condA,}), (27)

c.f. (18), becomes large, hinting at small values of the dispersion relation.
For instance, in Figure 4 we find a range of frequencies between 780 and
830 cm™! which feature multiple ranges of large A indicating that several
modes propagate in the hBN for these frequencies. In addition, we see that
the number of such modes increases with increasing w in Figure 4 (Type I
hyperbolicity) and with decreasing w in Figure 6 (Type II hyperbolicity).
Additionally, these figures are significantly modified with the introduction of
graphene. In both configurations an additional mode, of quite strong mag-
nitude, is introduced at lower frequency than the hypebolic regions, which
merges rather smoothly to this range as ¢ increases, as noted in [11].
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Figure 3: Plot of relative error with six choices of N = 0,2,4,6,8,10 and four choices of
e = 0.005,0.01,0.05,0.1 for IIO choice (26) with Taylor summation. Physical parameters
were (24) and numerical discretization was (25).

Beyond this we can use our solver for (17) to investigate whether one can
realize these properties in an actual device. For this we introduce corruga-
tions to the upper air/hBN and lower hBN/air interfaces shaped by

FO (@) = 12 (@) = cos(2ma/d),

which generate the necessary momentum to realize surface plasmon waves
[49]. (We note that, by contrast, Kumar et al generate this momentum with
periodically spaced ribbons of graphene.) We chose the following physical
parameters

d=2r/q, =0, V=P =1 D=MN 5O _52_
= = = OA-D,
(28)
(see (3) and (8)) in TM polarization, and the numerical parameters

N,=201, N,=N,+1, N,=16, N,=16, N=4, a=b=1/2.
(29)
Again, we made the Després choice of operators (26) and considered the value
e = 0.01 which is sufficiently large to generate a plasmonic response [61].
To study the response of these configurations under plane-wave illumi-
nation we computed the absorbance (the total energy minus the reflected
and transmitted energies) which characterizes the energy propagating inside
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Figure 4: Linear dispersion relation for a layered air/hBN/air structure in the frequency
range of Type I hyperbolicity of hBN.

the hBN layer. Here we see in this nonlinear dispersion relation the strong
resemblance between our device simulations and the predictions of the linear
dispersion relation. More specifically we note the similarities between Fig-
ures 4 and 8 in the Type I hyperbolic regime without graphene, Figures 5
and 9 in the Type I hyperbolic regime with graphene, Figures 6 and 10 in
the Type II hyperbolic regime without graphene, and Figures 7 and 11 in
the Type II hyperbolic regime with graphene. Such results indicate that,
in fact, such devices can be built and a construction strategy based upon
periodically corrugated diffraction gratings is one realistic possibility [62].
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