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Abstract: A deep learning aided optimization algorithm for the design of flat thin-film8

multilayer optical systems is developed. The authors introduce a deep generative neural network,9

based on a variational autoencoder, to perform the optimization of photonic devices. This10

algorithm allows one to find a near-optimal solution to the inverse design problem of creating11

an anti-reflective grating, a fundamental problem in material science. As a proof of concept,12

the authors demonstrate the method’s capabilities for designing an anti-reflective flat thin-film13

stack consisting of multiple material types. We designed and constructed a dielectric stack on14

silicon that exhibits an average reflection of 1.52 %, which is lower than other recently published15

experiments in the engineering and physics literature. In addition to its superior performance,16

the computational cost of our algorithm based on the deep generative model is much lower than17

traditional nonlinear optimization algorithms. These results demonstrate that advanced concepts18

in deep learning can drive the capabilities of inverse design algorithms for photonics. In addition,19

the authors develop an accurate regression model using deep active learning to predict the total20

reflectivity for a given optical system. The surrogate model of the governing partial differential21

equations can then be broadly used in the design of optical systems and to rapidly evaluate their22

behavior.23

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement24

1. Introduction25

Multilayered flat thin-film diffraction gratings are essential optical elements in nanoplasmonic and26

photonic devices as they modulate light intensity and spectral composition in such systems [1].27

In practice it is often important to determine the best multilayer design among a wide choice of28

dielectrics and metals of varying thicknesses to achieve a desired reflection and transmission29

spectrum. This problem has a long and distinguished history, beginning at least with Baumeister’s30

characterization of optimal coating design as an optimization problem in 1958 [2]. Numerous31

inverse algorithms have been constructed to find such optimal designs for use in efficient photonic32

devices [3]. For instance, a multitude of conventional optimization methods perform well at this33

particular task including genetic algorithms [4, 5], topology optimization [6, 7], and the needle34

optimization technique [8, 9] which, e.g., have delivered the remarkable results on design of35

anti–reflective coatings found in [10, 11]. However, it is well known that this problem is highly36

nonlinear and non-convex, featuring numerous suboptimal local minima which make it difficult37

to find the global optimum [3].38

In the past decade the artificial intelligence technique of machine learning, in particular deep39

learning, has revolutionized many fields of computational science, and nano-phototonics is no40

exception. There are already a multitude of survey articles on the topic, e.g., [12], and a staggering41

number of techniques have been brought to bear on this task. Of particular note, we point out the42

work of Peurifoy et al [13] who trained an artificial neural network (ANN) and then optimized43

this using conventional techniques, and Liu et al [14] who considered a tandem approach which44

begins the same, but then trains a second ANN to produce desired reflectivity values. We also45
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mention the work of Unni et al [15] on convolutional mixture density networks and the paper of46

Barry et al [16] demonstrating how nature itself identifies optimal structures for its own purposes.47

Recently, deep generative models including (conditional) variational autoencoders have been48

introduced to optimize the shape of two-dimensional unit cells giving a two-dimensional binary49

image [17–20]. As deep neural networks deliver such superior performance in computer vision,50

one expects that shape optimization algorithms can also be improved. We close by mentioning51

the deep learning approach that has been considered to find optimal designs using a ResNet52

generative model [21].53

In this paper, we develop an alternative approach based on deep learning strategies which is54

both fast and efficient, and which can readily be extended to more general thin-film structures55

featuring, e.g., corrugated layer interfaces. In this way we view our new algorithm as particularly56

promising in the design of new metamaterials [22]. More specifically, in this paper we develop a57

novel and effective inverse design algorithm with the aid of deep learning to identify 𝑚-layer58

flat thin-film stacks composed of materials with varying refractive indices and thicknesses. In59

this scheme we begin by constructing a structure/response database using a rapid and accurate60

classical Fresnel solver [23]. Then, we make use of a generative deep neural network (DNN),61

a conditional variational autoencoder (CVAE), to obtain a nearly optimal design of the optical62

system. The goal of this CVAE is to minimize the average reflection of the structure over a range63

of incident illumination angles (0 ≤ 𝜃 ≤ 𝜋/3) and wavelengths (400 nm ≤ 𝜆 ≤ 1600 nm), which64

we denote65

O(p) = 3
𝜋

1
1200

∫ 𝜋/3

0

∫ 1600

400
R(𝜆, 𝜃, p) 𝑑𝜆 𝑑𝜃, (1)

where p is the design vector and R is specified in (4). We also propose a deep active learning66

algorithm to effectively search for the optimal solution. While our method effectively and67

efficiently delivers a configuration with quite a small reflectivity, we cannot guarantee that it is68

the “best” design with the smallest possible reflectivity.69

2. Methods70

In this section we present the governing equations for a thin-film multilayer optical system and71

an accurate method for numerically approximating its solution based upon the classical Fresnel72

equations [23]. We then present a novel approach to coupling this to not only a Deep Learning73

(DL) algorithm (we consider a CVAE), but also an active learning methodology.74

2.1. Governing equations75

We consider a thin-film multilayer optical system consisting of flat layers of varying materials
with rather arbitrary thicknesses. The variety of dielectrics and thicknesses leads to a considerable
practical design challenge of finding a “best” grating structure. To be more precise, dielectrics
occupy each of the 𝑚-many domains

𝑆1 := {𝑦 > 𝑔1}; 𝑆𝑚 := {𝑦 < 𝑔𝑚−1}; and 𝑆 𝑗 := {𝑔 𝑗 < 𝑦 < 𝑔 𝑗−1}, 2 ≤ 𝑗 ≤ 𝑚 − 1;

where the (flat) interface locations are given by {𝑦 = 𝑔 𝑗 }𝑚𝑗=1. This structure is illuminated by
incident radiation of frequency 𝜔 and angle 𝜃 in the uppermost layer, 𝑆1, of the form

𝑣𝑖𝑛𝑐 = 𝑒−𝑖𝜔𝑡+𝑖𝛼𝑥−𝑖𝛽𝑦 , 𝛼 = 𝑘0 sin(𝜃), 𝛽 = 𝑘0 cos(𝜃), 𝑘0 = 𝜔/𝑐0,

and 𝑐0 is the speed of light in the vacuum. Factoring out time-dependence of the form exp(−𝑖𝜔𝑡)
we define the (reduced) scattered fields

𝑣 𝑗 = 𝑣 𝑗 (𝑥, 𝑦) in 𝑆 𝑗 for 1 ≤ 𝑗 ≤ 𝑚,



and seek 𝛼-quasiperiodic, outgoing (upward/downward propagating) solutions of the following
system of Helmholtz equations [23]

Δ𝑣 𝑗 + 𝑘2
𝑗𝑣 𝑗 = 0, in 𝑆 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, (2a)

𝑣1 − 𝑣2 = −𝑒𝑖𝛽𝑔1𝑒𝑖𝛼𝑥 , at 𝑦 = 𝑔1, (2b)

𝜕𝑦𝑣1 − 𝜏2
1 𝜕𝑦𝑣2 = (𝑖𝛽)𝑒𝑖𝛽𝑔1𝑒𝑖𝛼𝑥 , at 𝑦 = 𝑔1, (2c)

𝑣 𝑗 − 𝑣 𝑗+1 = 0, at 𝑦 = 𝑔 𝑗 , 2 ≤ 𝑗 ≤ 𝑚, (2d)

𝜕𝑦𝑣 𝑗 − 𝜏2
𝑗 𝜕𝑦𝑣 𝑗+1 = 0, at 𝑦 = 𝑔 𝑗 , 2 ≤ 𝑗 ≤ 𝑚, (2e)

where 𝑘 𝑗 = 𝑛 𝑗 𝑘0 = 𝑛 𝑗 (𝜔/𝑐0) is the wavenumber in layer 𝑗 (with refractive index 𝑛 𝑗 ) and

𝜏𝑗 =

{
1, for Transverse Electric (TE) polarization,
(𝑘 𝑗/𝑘 𝑗+1)2, for Transverse Magnetic (TM) polarization,

for 1 ≤ 𝑗 ≤ 𝑚 − 1.76

2.2. Numerical method: The Fresnel solver77

It is well known [23] that the most general solutions of (2a) are

𝑣 𝑗 (𝑥, 𝑦) =
(
𝑈 𝑗𝑒

𝑖𝛽 𝑗 𝑦 + 𝐷 𝑗𝑒
−𝑖𝛽 𝑗 𝑦

)
𝑒𝑖𝛼𝑥 , 𝐷1 = 𝑈𝑚 = 0,

where 𝛽 𝑗 :=
√︁
(𝑘 𝑗 )2 − 𝛼2, Im(𝛽 𝑗 ) ≥ 0, and the upward/downward propagating wave conditions78

enforce𝐷1 = 𝑈𝑚 = 0, respectively. The remaining constants {𝑈1, 𝐷2,𝑈2, . . . , 𝐷𝑚−1,𝑈𝑚−1, 𝐷𝑚}79

are determined from the boundary conditions (2b)–(2e). This results in a linear system of equations80

to be solved81

𝐴®𝑣 = ®𝑟, ®𝑣 := (𝑈1, 𝐷2,𝑈2, . . . , 𝐷𝑚−1,𝑈𝑚−1, 𝐷𝑚)𝑇 , ®𝑟 := 𝑒𝑖𝛽𝑔1 (−1, (𝑖𝛽), 0, . . . , 0)𝑇 , (3)

and 𝐴 is pentadiagonal with readily derived entries [23]. We denote the direct solution of the82

Fresnel equations, 𝐴®𝑣 = ®𝑟, as the Fresnel Solver which, we point out, can be accomplished in83

linear (in 𝑚) time via the Thomas Algorithm [24]. Of the many quantities that one can compute84

from this solution, the one of paramount importance to our current study is the reflectivity85

R = |𝑈1 |2 . (4)

We point out that the solution of these equations is the order-zero approximation produced by86

our recently developed High-Order Perturbation of Surfaces (HOPS) algorithm [25] implemented87

with a Transformed Field Expansions approach. As this methodology is designed for structures88

with corrugated interfaces the full power of this algorithm is not necessary in the current context,89

however, in a forthcoming publication we will describe the extension of our algorithm to the case90

of corrugated interfaces which will require the full HOPS methodology.91

2.3. A variational autoencoder92

Generative models in combination with neural networks, such as variational autoencoders (VAEs),93

are used to learn complex distributions underlying datasets, see e.g. [26, 27]. Described simply,94

VAEs consist of an encoder, a latent space, and a decoder (see Figure 1). VAEs presume that95

a given training sample is generated from a latent representation, which is then sampled by96

a decoder (with a prior Gaussian distribution). As a generative neural network, VAEs have97

been successfully utilized in various domains from image generation and natural language98

processing to anomaly detection and clustering tasks (see, e.g., [26] and references therein).99
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Fig. 1. Depiction of a varitational autoencoder.




































Fig. 2. Depiction of an active learning implementation.

VAEs are regularized autoencoders which also feature an encoder and decoder. The encoder100

maps high-dimensional data to low-dimensional latent vectors that capture principal features,101

then the decoder maps the latent vector back to the high-dimensional space. While there are102

many applications of autoencoders (such as dimensionality reduction, anomaly detection, and103

noise removal) they are not generally adequate as generative models [28]. Indeed, once the104

autoencoder is trained there is no opportunity to produce any new content with both encoder105

and decoder. By contrast, a VAE regularizes the encoding distribution to ensure that its latent106

space has good properties to generate a new dataset. More precisely, the encoder in the VAE107

maps input data points not to the latent space but to the distribution of the latent space. Then,108

the encoder produces the mean and covariance matrix values that are a function of the input109

data. The decoder exploits the latent space distribution as an input to generate distributions of110

data. In the VAE, the loss function consists of reconstruction loss and regularization loss. The111

reconstruction loss is identical to that used by autoencoders, while the regularization loss is the112

Kullback-Leibler (KL) divergence between the Gaussian distribution from the encoder and a113



standard Gaussian distribution [29].114

For the optical system we consider here the input vector 𝑥 consists of a collection of refractive
indices and layer thicknesses. The VAE architecture aims to learn a stochastic mapping between
the observed data space 𝑥 and a latent space 𝑧 which can be interpreted as a directed model with a
joint distribution 𝑝𝜃 (𝑥, 𝑧) such that 𝑝𝜃 (𝑥, 𝑧) = 𝑝𝜃 (𝑥 |𝑧)𝑝𝜃 (𝑧), where 𝜃 is a learnable parameter
and 𝑝𝜃 (𝑧) is the prior distribution of the latent variable. The conditioned distribution 𝑝𝜃 (𝑥 |𝑧)
can be parameterized by a decoder but the distribution is generally intractable. To resolve this
issue a VAE introduces another deep neural network (encoder) to map 𝑥 back to the latent vector
𝑧 by approximating the posterior distribution (see Figure 1). With the encoder and decoder
networks, the likelihood function for the training has a tractable representation and can be derived
by the evidence lower bound (ELBO):

Loss = E𝑞 (𝑧 |𝑥) [log(𝑝(𝑥 |𝑧))] − D𝐾𝐿 [𝑞(𝑧 |𝑥) | |𝑝(𝑧)],

where D𝐾𝐿 stands for the KL divergence. In this paper, we employ a conditional variational115

autoencoder (CVAE), which is an extension of the VAE suitable for incorporating a control on a116

specified condition [27]. The CVAE is believed to insert label information in the latent space to117

force a deterministic, constrained, representation of the learned data. In contrast to a VAE, a118

CVAE has control on the data generation process so, by changing the conditional variable (which119

refers to the reflectivity in our model), inputs of an optical system for a specified reflectivity can120

be generated.
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(a) Histogram of the original dataset.
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(b) Histogram of the CVAE augmented dataset.

Fig. 3. Histogram of the (a.) original and (b.) CVAE augmented data sets.

121

2.4. Active learning122

Active learning is a machine learning strategy which interactively queries a user to generate new123

data points with desirable properties. These queries are usually in the form of unlabeled data and,124

to improve the underlying machine learning model, it is crucial for the system to propose records125

for interactive labelling effectively. Active learning is often called optimal experimental design126

(OED) in the engineering literature (see, e.g., [30, 31]) as it finds the most uncertain points and127

adds them into the training set in an iterative way [32]. In this paper we develop surrogate models128

using deep learning techniques (implemented by a multilayer perceptron (MLP)) to identify129

efficient device designs. However, in order to improve these designs, additional training of the130

surrogate model becomes increasingly expensive.131

We aim to obtain a better model by adding minimal additional training data, and, for this132

purpose, we adopt an active learning strategy that selects only training points which enhance the133

accuracy of the MLP surrogate model. To produce such training samples, the CVAE is used to134



generate an optimal system design which hopefully gives small reflectivity (see Figure 2). To be135

more precise, let 𝐿 be the number of training set data points initially generated by the Fresnel136

solver, and, with these 𝐿 points, we train our CVAE model to generate 𝐾 many optical systems137

(which hopefully possess small reflectivity) by imposing the smallness of the reflectivity as the138

condition on the CVAE. Few (say 𝑃 many) of these 𝐾 optical systems generated by the CVAE139

produce the reflectivity expected by the condition enforced since the randomly generated training140

set does not contain sufficient data close to our target. However, they are sufficiently close that141

they merit further investigation with our (relatively expensive) Fresnel solver and we add them142

to our training set; this is then repeated 𝑀 times. This algorithm is depicted in Figure 2. The143

initial reflectivity histogram of randomly generated data (the “initial training set”) is plotted in144

Figure 3a while the augmented dataset generated by our CVAE and active learning process is145

shown in Figure 3b. The second figure is, naturally, nearly identical to the first figure as all of the146

original data is retained while only “desirable” (i.e., small reflectivity) configurations are added.147

3. Numerical experiments148

As we described above, the CVAE architecture consists of an encoder and decoder network. The149

encoder network can be described as150

INPUT → FC → sigmoid → FC → BN → sigmoid → FC → sigmoid → FC → OUTPUT,

while the decoder architecture is given by151

INPUT → FC → RELU → FC → BN → RELU → FC → RELU → FC → OUTPUT,

where “FC” stands for a fully connected layer and “BN” denotes batch normalization. In more152

detail:153

• The input of the encoder consists of refractive indices and thickness for each layer with154

reflectivity as a condition.155

• The dimension of the output of the encoder is 4 × 2, which is the same as the dimension of156

the latent space.157

• In the encoder the output sizes of the FCs are 384, 384, 128, and 4, respectively.158

• The input of the decoder consists of samples of the four latent variables (for which we have159

four means and four variances).160

• In the decoder the output sizes of the FCs are 128, 384, 384, and 6, respectively.161

• The BN has momentum = 0.1 and stability constant 𝜀 = 10−5.162

We applied our algorithm to the design of an anti-reflection (AR) coating for a silicon solar163

cell consisting of three layers of dielectrics [3]. This thin-film stack was designed to minimize the164

average reflection at an air-silicon interface over the incident illumination angle range [0, 𝜋/3] and165

wavelength range [400, 1100] nm in TM polarization as in (1). As a benchmark, we compared166

our results with those from [3] which provides a guaranteed global optimum solution using a167

parallel branch-and-bound method. Their algorithm required extensive searching through the full168

design space and utilized more than two weeks of CPU time to solve for the global optimum.169

To be consistent with [3] we generated an 𝐿 = 50, 000 member training set from our Fresnel170

solver whose refractive indices and layer thicknesses were randomly selected from the intervals171

[1.09, 2.60] and [5, 200] nm, respectively. Here we supplemented with active learning using172

𝐾 = 5000 at each of 𝑀 = 3 iterations resulting in 𝑃 = 2000 additional datapoints. A histogram173



of the resulting reflectivities are given in Figure 4 which shows that the optimized devices174

generated from our CVAE and deep active learning algorithms have average reflectivities from175

approximately 1.5% to 3%, which is quite a small range of values compared to a randomly176

generated set. A fraction of the suggested devices were near the global optimum, and the best177

device had an efficiency of 1.52 %. This best device had layer thicknesses178

151.722nm, 91.258nm, 61.637nm,

and refractive indices179

1.187, 1.771, 2.717,
from top layer to bottom. The total computing time that our CVAE and deep active learning
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Fig. 4. Histogram of reflectivities generated by our CVAE and deep active learning
algorithm.

180

algorithm required for training was less than 30 minutes with a single GPU (NVIDA RTX-3090).181

All of the devices sampled from our algorithm were near the global optimum, showing the182

ability of the generative network to produce a narrow distribution of devices. Another feature183

of such biased data generation is the construction an accurate regression model using the MLP.184

Figures 5a–5d show that the MLP model trained by the augmented data set (generated by the185

active learning algorithm) gives a better result than the model trained by the original (normally186

distributed) dataset. The reflectivity map of the best device (with efficiency 1.52 %) is depicted in187

Figure 6a with the full set of incidence angles, and in Figure 6b for three choices of the angle. We188

remark that the data-driven design under consideration can be generalized to an arbitrary number189

of layers, and the machine learning procedure becomes more effective since the computational190

cost is very expensive in this case.191

4. Conclusions192

In this paper we introduced a deep learning aided optimization algorithm for thin-film multilayer193

optical systems. We constructed a deep generative neural network, based on a variational194

autoencoder, to perform optimization of photonic devices. The incorporation of the variational195

autoencoder helps to improve our search for the optimal grating design. Benchmark calculations196

of our algorithm for the problem of designing anti-reflection coatings show that the generative197

model is effective in searching for global optima, is computationally efficient, and outperforms a198

number of alternative design algorithms.199
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(a) Regression using deep learning with the original
dataset. This plot shows reflectivities which range
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(b) Regression using deep learning with the original
dataset. This plot shows only reflectivities which range
from 2 % to 7 %.
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(c) Regression using deep active learning with the
augmented dataset. This plot shows reflectivities which
range from 2 % to 50 %.
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Fig. 5. Regression model comparison with the original and augmented datasets. Clearly,
the relative 𝐿2-errors of the regression model with the augmented datasets are lower
than the original regression model.
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Fig. 6. Optimal grating reflectivity versus incident angle and wavelength.
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