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FALCON: a Networked Drone System for Sensing,

Localizing, and Approaching RF targets
Zhambyl Shaikhanov, Ahmed Boubrima, and Edward W. Knightly

Abstract—We present FALCON, a novel autonomous drone
network system for sensing, localizing, and approaching RF
targets/sources such as smartphone devices. Potential applications
of our system include disaster relief missions in which networked
drones sense the Wi-Fi signal emitted from a victim’s smartphone
and dynamically navigate to accurately localize and quickly
approach the victim, for instance, to deliver the time-critical
first-aid kits. For that, we exploit Wi-Fi’s recent Fine Time
Measurement (FTM) protocol to realize the first on-drone FTM
sensor network that enables accurate and dynamic ranging of
targets in a mission. We propose a flight planning strategy that
adapts the trajectory of the drones to concurrently favor local-
izing and approaching the target. Namely, our approach jointly
optimizes the drones’ diversity of observations and the target
approaching process, while flexibly trading off the intensities of
the potentially conflicting objectives. We implement FALCON
via a custom-designed multi-drone platform and demonstrate
up to 2× localization accuracy compared to a baseline flocking
approach, while spending 30% less time localizing targets.

Index Terms—Fine Time Measurement sensor network, au-
tonomous flight planning, networked drone system, localization
and approaching

I. INTRODUCTION

In this paper, we design, implement and experimentally

evaluate FALCON. Prior work in drone-network localization

has employed on-drone antenna arrays to sense angle of

arrival (AoA) from a target. Unfortunately, antenna arrays have

large physical size, e.g., nearly a meter scale [2], and require

significant time to compute AoA, e.g., 45 sec per observation

[3]. Likewise, prior on-drone methods employing a single

antenna per drone sensed RSSI to localize targets, e.g., [4].

However, as RSSI is only coarsely related to distance, [4] had

localization errors as high as 10 meters. In contrast, we design

FALCON as a single-antenna system with nearly an order of

magnitude better accuracy than [4] and with computational

times in the msec scale.

In addition, in time-critical drone missions such as disaster

relief and emergency scenarios, approaching is of great value

as it enables important services such as fast delivery of life-

saving first-aid kits and immediate close-in inspection of the

situation for an effective rescue plan. Moreover, approach-

ing targets is beneficial as measurement fidelity is typically

improved at a closer range and faster data exchange can

be achieved when the drones need to communicate with
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the target. Unfortunately, prior work has decoupled the ap-

proaching problem from localizing. For example, e.g., [5]

mimics the flocking behavior to approach a target whereas

[6] considers optimal sensor placement to localize a target. In

contrast, because approaching and localizing can be conflicting

objectives, we incorporate both, which we will show has a

profound effect on system dynamics and performance.

To realize FALCON, we make the following three contri-

butions. First, leveraging the ubiquity of Wi-Fi [7]–[10], we

realize on-drone target-to-drone ranging estimates via Wi-Fi

Fine Time Measurement (FTM) and integrate this capability

with networked sensing and mission planning. Standardized

in 2016 [11], FTM measures the time of flight (ToF) of Wi-

Fi signal traveling from a client to a Wi-Fi access point.

Prior work has employed the protocol to self-position a client,

with the client performing multi-lateration to localize itself

in the indoor environment with many stationary access points

distributed in space, e.g., [12]. In contrast, we, for the first

time, use FTM as a mechanism to actively sense target-

to-drone range estimates, which we employ to dynamically

navigate a network of drones in a mission.

Second, we propose a flight planning strategy to simulta-

neously approach, localize, and track targets. We tackle these

objectives concurrently by jointly exploiting drones’ diversity

of observation and dynamics of approaching in a mission.

We provide a tunable parameter λ that allows modification of

flight patterns to weight the mission-planner’s objectives for

localization accuracy and approaching dynamics. This enables

FALCON drones to be flexible and adjust to a range of

behaviors in a mission in addition to improving measurement

resolution and realizing approaching-critical tasks. Likewise,

our flight strategy is agnostic to sensing technology and can

be generalized to fit different range sensing mechanisms.

Third, we implement FALCON on a custom-designed multi-

drone platform and perform an extensive experimental evalu-

ation. We begin with a controlled experiment in which we

analyze target-to-drone ranging error by performing on-drone

distance estimation from predefined locations. The results

indicate that a 95-percentile error is approximately ±2m.

Moreover, errors are consistent for different ranges due to

the dominant line-of-sight (LoS) property of air-to-ground

channels and the linear relationship of ToF measurements

and distances. To understand the impact of λ on the trade-

offs between accuracy gains due to diverse observations from

angular spread vs. increased travel distance to reach a target,

we perform missions with a known target position and differ-

ent λ values. As a baseline, we consider a flocking scheme

that navigates drones to flock and move directly towards the
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Fig. 1: Flight planning following (a) the sensors positioning strategy, (b) the flocking scheme and (c) FALCON

latest estimated target location. We find that, with two drones

in the network and λ = 2, FALCON can increase average

angular spread by 2.2× at the expense of only 27% additional

average travel distance when compared to the flocking scheme.

Moreover, as λ increases beyond fourteen, FALCON mimics

the flocking scheme by heavily focusing on approaching.

Next, we perform missions where two drones actively

sense and continually reposition to localize and approach an

unknown target. Our findings reveal that, compared to the

flocking scheme, FALCON consistently and rapidly acquires

information about the target position because of its diverse

observation feature. Consequently, FALCON localizes a tar-

get 2× more accurately and in 30% less time. Likewise,

we show that even a single FALCON drone can exploit

diverse observations throughout a mission, achieving 2.3m

mean localization accuracy and spending only around a minute

localizing a non-mobile target. To understand the contribution

of additional drones on localization accuracy and localization

time, we perform missions with up to four networked drones

and demonstrate that the flocking approach needs more drones

to improve accuracy whereas FALCON exploits informative

locations to achieve better results with fewer drones.

The remainder of this paper is organized as follows. In

Section II, we present the FALCON framework, analyze one-

shot sensor positioning and, building on that, describe our

flight planning strategy. In Section III, we present the design

of the on-drone FTM sensing mechanism and describe our

multi-drone platform. In Section IV, we present the key results

from our experimental evaluation of FALCON as well as

the benchmarking baselines. In Section V, we provide an

overview of the related work. Finally, we provide a discussion

of potential extensions in Section VI and conclude the paper

in Section VII.

II. FALCON FRAMEWORK

In this section, we first provide an overview of the FALCON

design. Next, we analyze one-shot positioning of sensors, and

building on that foundation, we then present the FALCON

flight planning strategy.

A. Design Overview

On-drone Sensing: In the design of FALCON, first, we

realize target-to-drone range sensing for networked drones.

Unlike existing on-drone sensing systems that either require

bulky antenna arrays and perform time-consuming AoA com-

putation or employ RSSI which is only coarsely related to

distance, drones in FALCON accurately and quickly range

targets by sensing ToF of Wi-Fi signals via FTM. We discuss

our on-drone target-to-drone ranging mechanism in Section

III-B.

Flight Planning: Next, we design a flight planning strategy

that navigates networked drones to approach, localize, and

track targets in a mission. For the first time, we consider

these objectives concurrently so that drones can improve

measurement resolution and realize approaching-critical tasks

in addition to localization and tracking. For that, we propose

to jointly exploit diverse observation of drones and their

dynamics of approaching targets.

To illustrate FALCON’s design principles, Fig. 1 shows a

simplified example of FALCON compared to two fundamen-

tal classes of prior approaches. We consider that networked

drones launch a mission from nearly co-located positions, from

the bottom-left side of the search area in this example. The

drones could have been transported to the area as a group,

for instance, on a first responder vehicle, or they might have

already been positioned there, possibly at a charging station.

We consider that the drones perform a mission as a team,

cooperating and coordinating.

In the sensor positioning strategy shown in Fig. 1(a), drones

spread out around the target, to different sides of the area.

Spreading enables drones to view the target from diverse

locations and collect statistically independent samples, which

is favorable for localization accuracy. However, the problem

with this approach is the extra distance travelled for severely

battery-constrained drones. Even worse, since this extra dis-

tance increases with search area, such an approach increasingly

risks mission failure (inability to approach, localize, and track)

in larger areas. On the other hand, drones realizing a flocking

scheme, shown in Fig. 1(b), fly directly to the latest estimated

target position in the formation of a flock. In the best-case

scenario, when drones sense the target precisely throughout

a mission, the scheme helps to get to the target quickly.

However, we will show that flocking drones often navigate in

the wrong direction due to imperfect sensor measurements and

thus the entire flock goes off course. In FALCON, we design
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(a) Observing a target from similar locations

(b) Observing a target from diverse locations

Fig. 2: Two target-to-drone range sensing drones

a flight strategy in which drones dynamically spread out and

approach while they actively sense the target. As shown in Fig.

1(c), spreading out ensures accurate localization as it provides

spatially independent samples, while approaching enables fast

advancement to the target. In addition, we provide flexibility

to configure the intensity of spreading and approaching which

allows drones to adjust to different mission requirements and

conditions.

In addition to multiple drones, we will show that FALCON

can perform a mission even with a single drone, provided

the drone speed is sufficiently greater than the target’s speed.

Namely, during the flight, even a single drone is collecting

ranging samples at different spatial locations. With the proper

flight pattern to collect sufficiently independent samples, these

single-drone measurements can be used for multi-lateration.

B. One-shot Positioning of Sensors For a Known Source

Diversity of observation is a critical aspect of FALCON

flight planning. To characterize and quantify it, we first analyze

one-shot positioning of sensors for a known source [6]. With

this foundation, we develop a strategy to address our problem

of unknown target location and mobile drones.

To demonstrate the significance of diverse observation,

consider Fig. 2 in which two drones range a target and then

fuse their measurements to gain information about the target

location. The averages of the measurements are depicted as

dotted lines, while standard deviations are shown as blue

and brown segment areas for the respective drones. Once

information is fused, the red area indicates the most likely

location of the target. We designate it as the confusion area.

Notice that as drones get close to each other, as in Fig.

2(a), the confusion area expands, indicating poor observation

diversity and hence limited information about target location.

On the other hand, spreading out and observing the target

from different views, as in Fig. 2(b), provides a more focused

estimate of the target location, demonstrated as a shrinking

confusion area.

Before characterizing the confusion area, we first introduce

some notation. For ease of exposition, we consider a search

area P in 2D which is discretized into a grid such that

algorithms can perform operations on it. N sensors (drones

in the context of flight planning) and a source are positioned

in that area. We denote the location of sensor i as Si = (xi, yi)
and the location of the source as U = (xu, yu). Each sensor i
ranges the source as di = ri + εi where ri = ||Si −U || and ε
is a standard Gaussian noise with zero mean and σ2

i variance.

Then, sensors can share their data, forming vectors of ranges

d = [d1, ..., dN ] and r = [r1, ..., rN ] as well as a covariance

matrix, which we denote by Σ .

To characterize the confusion area, likelihood information

of finding the source can be retrieved from d and expressed

as

Ld =
1

(2π)N/2|Σ|1/2
e−

1
2
(d−r)TΣ

−1(d−r) , (1)

where |Σ| is the determinant of Σ. When Ld is flat, there is less

information about the source location, whereas an abundance

of information is characterized by Ld being sharply peaked.

Therefore, to quantify the source location information con-

tained in the confusion area, a common method is to measure

sharpness of the likelihood via Fisher Information Matrix [6]

as

F = E{(∇U logLd)(∇U logLd)
T } , (2)

where ∇U logLd is the gradient of the log likelihood function

with respect to the source location. The matrix F can be

interpreted as the curvature of the log-likelihood function and

indicates how well U can be estimated from d. In our example,

F can also be expanded as [13]

F =
N
∑

i=1





(xu−xi)
2

σ2
i
r2
i

(xu−xi)(yu−yi)
σ2
i
r2
i

(xu−xi)(yu−yi)
σ2
i
r2
i

(yu−yi)
2

σ2
i
r2
i



 . (3)

Applying trigonometric substitution, it can then be simplified

to

F =

N
∑

i=1





sin2(φ(Si))
σ2
i

sin(2φ(Si))
σ2
i

sin(2φ(Si))
σ2
i

cos2(φ(Si))
σ2
i



 , (4)

where φ(Si) = tan−1( yi−yu

xi−xu
) and denotes the angle between

Si and U with reference to the global X coordinate. Observe

that in Eq. (3), the confusion area is a function of the locations

of the sensors, and it is further expressed by the angular

placement of the sensors in Eq. (4). To quantify the source

location information with a single scalar value, we use the

determinant of F , which can be computed as

D =

N
∑

i=1

N
∑

j>i

sin2(φ(Si)− φ(Sj))

σ2
i σ

2
j

. (5)

We refer to D as total information as it quantifies the source

location information contained in the confusion area, with a

smaller confusion area indicating greater total information.

First, notice that with one sensor and N = 1, D in Eq. (5)

equals zero for any source location; therefore, at least N ≥ 2
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sensors are required for the technique. Next, observe that the

total information is described by the angular spread between

neighboring sensors, sin2(φ(Si) − φ(Sj)). For given sensor

range measurements, the sensor placement technique aims to

achieve the highest possible D by maximizing angular spread

between all neighboring sensors in the network. Considering

Fig. 2 with range measurements of equal mean and the same

variances, positioning drones 90◦ with respect to the target

results in the maximum total information. When more than two

sensors are involved in positioning a target, the technique takes

into account the angular spread of all two-pair combinations

of the sensors.

C. Flight Planning

In contrast to the one-shot framework above, here we

remove the assumption of a known target; instead, a network of

drones actively sense and autonomously navigate to localize,

approach, and track a target. To do so, each drone estimates

a range to target. Next, the drones share their estimates

along with their current GPS coordinates, each of which

represents a different perspective on the target position. The

drones then update their target estimation by fusing their

own range estimate with the newly received information from

other drones along with past information. Subsequently, each

drone computes its next waypoint to best enable both accurate

localization and fast advancement to the target, by flying to

the most informative waypoint for the mission objective. To

consistently improve the accuracy of the target estimation as

well as approach it at the same time, the networked drones

continually execute these steps as they progress in a mission.

We extend the notation from Section II-B to incorporate

temporal information such that Si,t = (xi,t, yi,t) denotes the

location of drone i at a discrete time t as observed via GPS

while Ûi,t = (xû,t, yû,t) represents the latest estimated loca-

tion of the target at time t. For ease of exposition, we consider

a search area P of rectangular shape that has (xmin, ymin) and

(xmax, ymax) waypoints, fixed drones velocity v, and fixed

update frequency f for exchanging range estimates and GPS

data and updating their reposition waypoint decisions. To avoid

collision, drones keep a minimum distance cth between each

other and ath designates the desired target-approach threshold

as specified by the mission. It can be set to zero to indicate

that the drones should get as close to the target as possible

without colliding.

Then, the problem of flight planning is to compute mission

waypoints Sk,t+1 for all networked drone ∀k ∈ N for the

duration of the mission, as long as drones have sufficient

energy to operate.

Challenges: The first challenge is a reciprocal effect in

which flight planning impacts target estimation while target

estimation influences flight planning decisions. Specifically,

networked drones account for their current location at t to

estimate the target location Ût, while Ût, on its turn, defines

the drones next reposition waypoints. This suggests that drones

should consistently reposition to informative waypoints in

order to enable accurate target estimation and approaching.

Second, the drones have constrained initial position which

may be nearly co-located starting location in a mission. This

condition is highly unfavorable for target localization as it

initially yields extremely inaccurate target estimation due to

poor observation diversity. Consequently, drones should start

realizing diverse observations as soon as the mission begins.

Optimization: In FALCON, we propose a distributed and

real-time flight planning strategy where each networked drone

k computes its next reposition waypoint Sk,t+1 by performing

the following optimization:

Sk,t+1 = argmax
{Si,t+1}

i=N

i=1

N
∑

i=1

N
∑

j>i

sin2(φ̂t(Si,t+1)− φ̂t(Sj,t+1))

σ2
i σ

2
j d̂t(Si,t+1)

λ
d̂t(Sj,t+1)

λ

(6a)

subject to if k = i (or k = j), then (6b)

Sk,t+1 = (xk,t+1, yk,t+1) (6c)

xmin ≤ xk,t+1 ≤ xmax (6d)

ymin ≤ yk,t+1 ≤ ymax (6e)

||Sk,t+1 − Sk,t|| ≤ v/f (6f)

otherwise (6g)

Si,t+1 = Si,t (6h)

In other words, at each epoch, each drone k considers its speed

v, update frequency f , and current position Sk,t to obtain a

set of candidate reposition waypoints in P indicated in Eq.

(6b-6f). Taking into account neighboring networked drones

and their recent GPS coordinates in Eq. (6g-6h), the drone

computes its next best reposition waypoint by maximizing

angular spread sin2(φ̂t(Si,t+1)− φ̂t(Sj,t+1)) between drones,

while also minimizing the distance, d̂t(Si,t+1) to the target in

the objective function in Eq. (6a). We describe the algorithm’s

key aspects as follows.

1) Unknown Target Location: In FALCON, drones estimate

the location of the target and continually improve those

estimations as a mission progresses. To do so, at each epoch,

each drone k for ∀k ∈ N first shares its individual target-

to-drone range estimate dk,t and current GPS coordinate Sk,t

with other drones in the network. Then, they use all the data

to estimate the target Ût.

Initially, when networked drones start a mission and no prior

target estimation is available, they employ a least-squares filter

to develop an initial estimate of the target’s location, thereby

minimizing estimation error in a least-squares sense. As they

progress in a mission and obtain more diverse observations,

the drones employ both the new and previous target location

estimates. For that, we implement an Extended Kalman Filter,

a well-known approach for many analogous problems, e.g.,

[14]–[16]. Following the predict and update phases of the

filter, drones revise their estimate of the location of the target

leveraging both the current and past range estimates of all

drones. Hence, the flight planning strategy combined with

filter-based measurement fusing enables accurate target local-

ization. As more drones are involved in a mission, FALCON

further improves the localization accuracy and localization

convergence time by taking advantage of an increasing number

of measurements in a given epoch.
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to compute their next best reposition waypoints on our UP-

Board companion computer.

Finding: FALCON’s computation complexity increases only

linearly with the number of drones. In the experiments, the

drones need only few milliseconds to compute the next repo-

sition waypoints.

V. RELATED WORK

Flocking Approach: Cooperative behavior of animals has

inspired numerous navigation strategies, e.g., [5], [24]–[26].

One of the most well-known and well-understood flocking

approaches, [5], was motivated by flocking behaviors of birds;

this approach has been employed by many multi-robot systems

for target tracking, e.g., [27]–[29]. In such work, robots follow

three simple rules for repositioning: cohesion rule to stay

close to nearby robots, separation rule to avoid a collision

between robots, and alignment rule to match velocity and

heading of robots. The flocking approach also adheres to

leader-follower hierarchy [30], [31]; a more experienced bird

(or more advanced robot) takes the lead while other members

join as followers. Unlike the flocking approach, FALCON

navigates drones to simultaneously to localize, approach, and

track a target by jointly optimizing for diverse of observation

and dynamic approaching. While the leader-follower hierarchy

and simple rules of the flocking approach can potentially

enable better scaling to swarms of 100’s, FALCON allows

for more advanced on-board processing with drones of equal

standing.

Fine Time Measurement (FTM): Existing implementa-

tions of the protocol mainly focus on self-positioning the

client in an indoor environment, e.g., self-localizing a person

with a smartphone inside a building [12]. For that, the client

usually performs multilateration in an environment that has

multiple distributed APs deployed. Recently, [32] proposed

to complement existing GPS and odometry systems by jointly

fusing Wi-Fi FTM, GPS, and odometry information in vehicle

self-positioning. It has shown to achieve lane-level positioning

accuracy in urban canyons. Unlike any prior work, FALCON

is the first system to realize on-drone target-to-drone range

sensing mechanism via FTM and to propose a flight planning

strategy to autonomously navigate a network of drones via

FTM range measurements to localize targets.

Recently, the usage of Wi-Fi FTM has been increasing in

different applications as many works adapt it in their design

[33]–[40]. For instance, [33] integrates FTM for mmWave

network beam search strategy and adapts it for handover pro-

cedure while Google provides an example application [34] for

Wi-Fi Aware services. Moreover, recent work has investigated

the security features of the protocol [41], [42]. In particular,

[41] analyzes security guarantees of the protocol across the

logical and physical layer meanwhile [42] employs FTM as

a metric to discriminate a neighbor from an attacker in IoT

devices. To further improve the achievable accuracy of the

FTM measurements, machine learning approaches have also

been proposed in the prior work [43]–[45].

Experimental Multi-Drone Systems: While there are many

algorithmic prior works, relatively few design a multi-drone

system and perform field experiments, e.g., [4], [46]–[49].

Moreover, most existing systems are designed with different

goals than FALCON. For instance, [48] proposes a multi-

quadrotor framework that navigates quadrotors to defend an

object from an attacker. Similarly, [47] presents a multi-

drone system and a communication scheme for scanning the

maritime area and transmitting telemetry images and data.

Recently, [49] proposed a software-defined control frame-

work and presented a prototype of fully reconfigurable drone

network. The most relevant work to FALCON [46] aims

to localize VHF radio collared animals via multiple drones

equipped with yagi antennas, capturing bearing information

about the target. For that, drones divide the search space into

disks of equal radius and travel to pre-defined sample locations

that are based on vertices of an equilateral triangle inscribed

in the disk. In contrast to [46], FALCON takes advantage

of ubiquitous Wi-Fi for ranging a target and dynamically

navigates drones in a mission. Leveraging the infrastructure

of [4], FALCON integrates Wi-Fi FTM feature on a multi-

drone platform, implements a novel flight planning strategy,

and proposes an end-to-end system to approach, localize, and

track RF targets.

VI. DISCUSSION

In this paper, we demonstrate the principles of FALCON,

presenting its design, implementation, and experimental eval-

uation. Yet, there are opportunities for extending the system,

and in this section, we discuss potential future research direc-

tions.

In addition to a single target scenario, FALCON can be ex-

tended to missions with multiple targets. For that, the proposed

target-to-drone range sensing mechanism can be modified to

associate different targets based on their unique MAC address

accessible via FTM. The challenge is to dynamically reposition

N drones to service M targets. The flight strategy could

be adapted in divide-and-conquer fashion, assigning different

drones to different targets, or it could also be formulated as a

joint optimization problem, exploiting cumulative informative

locations in a mission. Then, there are potential issues of

unreachable targets due to N < M and communication among

networked drones and multiple targets, thereby generating new

research questions.

For ease of demonstrating the key contributions, we pre-

sented FALCON in the context of 2D, and also evaluated with

drones flying at a fixed altitude. The flight planning strategy

can be extended to incorporate an additional dimension, for-

mulating Eq. (4) as a 3 × 3 matrix and adjusting Eq. (6a-

6h) to accommodate 3D navigation. This will provide the

networked drones an additional degree of freedom to exploit

diverse observations and spread out in 3D. On the other hand,

as drones decrease their altitude and fly closer to the ground,

a multipath effect from the ground will have an impact on the

sensing measurements as signals reach the receiver antenna

in multiple paths. Thus, there will be trade-offs between the

additional spreading gain due to the elevation and potential

sensory measurement degradation due to multipath. Also,

modifying the flight planning for 3D navigation will increase
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the number of reposition candidate waypoints W at each

epoch; however, it will still have a linear impact on the

computational complexity of the system.

Moreover, we remark that, in complex environments such

as urban areas that have many obstacles (tall building) and

limited/degraded GPS coverage, drones might need to build

a map of the environment to be able to accurately self-

position and perform a mission in that environment. In such

cases, FALCON can be implemented along with Simultaneous

Localization and Mapping (SLAM) methods in robotics [50].

In that case, SLAM can focus on building the map of the

environment and self-positioning the drones while FALCON

can focus on the mission objective, with the two systems

complementing each other.

Lastly, note that Falcon assumes that the target drones have

Wi-Fi communication, and a result its usage may be limited

to certain types of drones (such as entertaining small-sized

or medium-sized drones as opposed to some industrial drones

that may fly out of the Wi-Fi range).

VII. CONCLUSION

In this paper, we propose FALCON, an end-to-end system

to autonomously approach, localize, and track RF targets via

drone networks. We realize the first range sensing drones

that leverage Wi-Fi’s recent FTM technology to dynamically

range targets. Moreover, we propose a novel flight planning

strategy that enables drones to simultaneously localize and

approach the targets by jointly optimizing the drones’ di-

versity of observation and the dynamics of approaching. We

implement FALCON on a multi-drone platform and perform

an extensive set of missions for experimental evaluation. We

show that, compared to a baseline bio-inspired scheme, FAL-

CON achieves up to twice localization accuracy and requires

30% less flight time. The performance improvements can be

realized by deploying fewer drones, having faster missions,

achieving higher localization accuracy, or any combination of

these features.
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