
GCoD: Graph Convolutional Network Acceleration via Dedicated

Algorithm and Accelerator Co-Design

Haoran You
∗†

, Tong Geng
∗‡

, Yongan Zhang
†
, Ang Li

‡
and Yingyan Lin

†

†
Rice University, Houston, TX

‡
Pacific Northwest National Laboratory, Richland, WA

{haoran.you, yz87, yingyan.lin}@rice.edu, {tong.geng, ang.li}@pnnl.gov

Abstract—Graph Convolutional Networks (GCNs) have
emerged as the state-of-the-art graph learning model. However,
it can be notoriously challenging to inference GCNs over large
graph datasets, limiting their application to large real-world
graphs and hindering the exploration of deeper and more
sophisticated GCN graphs. This is because real-world graphs
can be extremely large and sparse. Furthermore, the node
degree of GCNs tends to follow the power-law distribution
and therefore have highly irregular adjacency matrices, re-
sulting in prohibitive inefficiencies in both data processing
and movement and thus substantially limiting the achievable
GCN acceleration efficiency. To this end, this paper proposes a
GCN algorithm and accelerator Co-Design framework dubbed
GCoD which can largely alleviate the aforementioned GCN
irregularity and boost GCNs’ inference efficiency. Specifically,
on the algorithm level, GCoD integrates a split and conquer

GCN training strategy that polarizes the graphs to be either
denser or sparser in local neighborhoods without compromising
the model accuracy, resulting in graph adjacency matrices
that (mostly) have merely two levels of workload and enjoys
largely enhanced regularity and thus ease of acceleration.
On the hardware level, we further develop a dedicated two-
pronged accelerator with a separated engine to process each
of the aforementioned denser and sparser workloads, further
boosting the overall utilization and acceleration efficiency.
Extensive experiments and ablation studies validate that our
GCoD consistently reduces the number of off-chip accesses,
leading to speedups 15286×, 294×, 7.8×, and 2.5× as compared
to CPUs, GPUs, and prior-art GCN accelerators including
HyGCN and AWB-GCN, respectively, while maintaining or
even improving the task accuracy. Additionally, we visualize
GCoD trained graph adjacency matrices for a better un-
derstanding of its advantages. Codes are available at https:
//github.com/RICE-EIC/GCoD.

Keywords-GCNs; algorithm and accelerator co-design;

I. INTRODUCTION

The recent breakthrough achieved by deep learning has

motivated growing demands for deep learning powered

intelligence in many daily life devices featuring contrained

resources and a small form factor [26], [27]. For example,

we have recently witnessed the tremendously increased

excitement towards Graph Convolutional Networks (GCNs),

which has achieved state-of-the-art (SOTA) performance

for graph-based learning tasks. The superior performance

of GCNs largely benefits from GCNs’ irregular and unre-

stricted neighborhood connections via two primary execu-

* denotes equal contribution

tion phases: aggregation and combination, where the former

maintains most graph processing behaviors and the latter

acts more like neural networks. Specifically, during the

aggregation phase, for each node in a graph, GCNs first

aggregate all its neighbor nodes’ features, which heavily

relies on the graph structure that is inherently random

and sparse; during the combination phase, GCNs transform

the aggregated features through (hierarchical) feed-forward

propagation to update the feature of the given node. In

parallel, recent breakthroughs of GCNs have ignited an

explosive interest in investigating GCNs for numerous real-

world applications, including accurate advertisement in E-

commerce [43] and electric grid cascading failure analysis

[28]. Many of them impose stringent latency/throughput

constraints, e.g., real-time decision-making. The promising

performance and the potential exciting applications of GCNs

come with prohibitive challenges that limit their applications

to large real-world graphs and hinder the exploration of

deeper and more sophisticated GCN graphs. First, graphs

(or graph data), especially real-world ones, are often ex-

traordinarily large and irregular as exacerbated by their

intertwined complex neighbor connections, e.g., there are

a total of 232,965 nodes in the Reddit graph with each

node having about 50 neighbors [18]. One outcome is

that GCNs tend to follow the power-law distribution and

therefore have highly irregular adjacency matrices resulting

in prohibitive inefficiencies in both data processing and

movement which substantially limits the achievable GCN

acceleration efficiency. Second, the dimension of GCNs’

node feature vectors can be very high, e.g., each node in

the Citeseer graph has 3703 features, which can lead to

paramount processing costs in the combination phrase. As

an illustrative example, a 2-layer GCN requires 19G FLOPs

(FLOPs: floating-point operations) to process the Reddit

graph [33], resulting in a latency of 2.94E5 milliseconds

when executed on an Intel Xeon E5-2680 CPU platform

[13]. Such a graph inference costs 2× FLOPs and 5000×

latency of a 50-layer DNN, ResNet-50, the inference of

which on ImageNet requires only 8G FLOPs [5] and a

latency of less than 50 milliseconds [3].

To alleviate the aforementioned challenges for unleashing

many of GCNs’ exciting applications, pioneering works have

explored from either the algorithm or hardware level. From

a
rX

iv
:2

1
1
2
.1

1
5
9
4
v
2

[c

s.
A

R
]

 3
0
 M

a
r

2
0
2
2

the algorithm level, commonly used compression techniques

have been applied to GCNs, such as GCN quantization [33]

and sparsification [23]. From the hardware level, most GCN

accelerators aim to design innovative micro-architectures

and dataflows to boost the acceleration efficiency of the

irregular aggregation phase driven by the fact that the

acceleration bottleneck of the associated highly sparse and

irregular adjacency matrices. For example, AWB-GCN [13]

leverages three auto-tuning techniques to dynamically bal-

ance the workload for all processing elements (PEs) to

boost the efficiency. HyGCN [42] proposes a window sliding

method to improve the locality of non-zero elements in

GCNs’ adjacency matrices, and leverages intra-vertex/node

parallelism for aggregation and weight reuses for combina-

tion, respectively.

Despite their impressive performance, GCNs’ acceleration

efficiency is still limiting, impeding the unfolding of GCNs’

great potential in many real-world applications. In this work,

we advocate GCN algorithm and accelerator co-design, and

make the following contributions:

• We propose a GCN algorithm and accelerator Co-Design

framework dubbed GCoD which alleviate the aforemen-

tioned irregularity of GCN inference at different granu-

larities and largely resolve the bottleneck inefficiency of

GCN computing by harmonizing both algorithm and ac-

celerator innovations. To the best of our knowledge, GCoD

is the first co-design framework dedicated for efficient

GCN acceleration, opening up an exciting perspective for

exploring much more efficient GCN solutions.

• On the algorithm level, GCoD integrates a split and

conquer training strategy to polarize the graphs to be

either denser or sparser in local neighborhoods without

compromising the model accuracy, resulting in adjacency

matrices that have two levels of workload and enjoys

largely enhanced regularity and thus ease of acceleration.

In this way, GCNs still preserve large degrees of irregu-

larity (and thus high inference accuracy) while enabling

regular data accesses and processes within each workload,

favoring hardware efficiency and overall utilization.

• On the hardware level, GCoD integrates a dedicated

two-pronged accelerator to leverage GCoD algorithm’s

resulting graph adjacency matrices for further boosting the

acceleration efficiency. Specifically, one branch incorpo-

rates a chunk-based micro-architecture to accelerate the

polarized denser subgraphs with regular/denser patterns

and balanced workloads; while the other branch acceler-

ates (mostly on-chip) the remaining irregular/sparser but

largely reduced sparser workloads (a small portion of non-

zeros, e.g., 30% in Cora). Results of the two branches are

then aggregated without conflicts.

• Benchmarking experiments and ablation studies on five

GCN models and six graph datasets consistently validate

the effectiveness of our GCoD framework, e.g., GCoD

leads to 15286×, 294×, 7.8×, and 2.5× speedups over

CPUs, GPUs, and the existing SOTA GCN accelerators

including HyGCN and AWB-GCN, respectively, while

maintaining the same or an even better accuracy.

II. RELATED WORKS

Graph Convolutional Networks (GCNs). GCNs have

amazed us for processing non-Euclidean and irregular data

structures [49]. Recently developed GCNs can be catego-

rized into two groups: spectral and spatial methods. Specif-

ically, spectral methods [21], [29] model the representation

in the graph Fourier transform domain based on eigen-

decomposition, which are time-consuming and usually han-

dle the whole graph simultaneously, making it difficult to

parallel or scale to large graphs [11], [38]. On the other

hand, spatial approaches [14], [32], which directly perform

the convolution in the graph domain by aggregating the

neighbor nodes’ information, have rapidly developed re-

cently. To further improve the performance of spatial GCNs,

Veličković et al. [36] introduces the attention mechanism

to select information which is relatively critical from all

inputs; Zeng et al. [48] proposes mini-batch training to

improve GCNs’ scalability of handling large graphs; and

Xu et al. [41] theoretically formalizes an upper bound for

the expressiveness of GCNs. GCoD’s innovation is general

and thus can be applied on top of different GCN algorithms

to boost their hardware acceleration efficiency.

GCN Compression. The prohibitive complexity and pow-

erful performance of GCNs have motivated growing interest

in GCN compression. For instance, Tailor et al. [33] for the

first time shows the feasibility of adopting 8-bit integer arith-

metic representation for GCN inference without sacrificing

the classification accuracy; Two concurrent pruning works

[23], [51] aim to sparsify the graph adjacency matrices; and

Ying et al. [44] proposes a DiffPool layer to reduce the size

of GCN graphs by clustering similar nodes during training

and inference. Our GCoD’s split and conquer training algo-

rithm explores from a new perspective by enforcing GCNs

to naturally present the desired patterns that are potentially

hardware friendly and efficient.

Graph Reordering. Graph processing applications are

notorious for exhibiting extreme irregularity. Prior tech-

niques on graph reordering [17], [1], [4] exploit structural

properties of real-world graphs to enhance locality, after

training the graph. Different from existing reordering works,

our GCoD algorithm is dedicated for hardware-friendly

GCN inference and integrates both pruning and reordering

during GCN training to enforce polarization and hardware-

aware sparsification. As such, the resulting GCNs enjoy a

higher degree of data locality while maintaining or even

improving the accuracy. Specifically, our GCoD algorithm

leads to a SOTA graph pruning ratio (10% edge removal

[23]) without accuracy degradation and two distinct work-

loads that are explicitly leveraged by our GCoD accelerator.

A. Preliminaries of GCNs and Graph Optimization

GCN Notation and Formulation. Let G = (V,E) repre-

sents a GCN graph, where vi ∈ V and (vi, vj) ∈ E denote

the nodes and edges, respectively; and N = ∣V ∣ and M =

∣E∣ denote the total number of nodes and edges, respec-

tively. The node degrees are denoted as d = {d1, d2,⋯, dN}
where di indicates the number of neighbors connected to the

node vi. We define D as the degree matrix whose diagonal

elements are formed using d. Given the adjacency matrix A

and the feature matrix X = {x1, x2,⋯, xN} of the graph

G, a two-layer GCN model [21] can then be formulated as:

Z = f(A,X) = softmax (Â ReLU (ÂXW0)W1) , (1)

where Â is a normalized version of A: Â = D
−

1

2AD
−

1

2 .

The whole GCN inference can be viewed as two separated

phases: Aggregation and Combination.

• Aggregation: For each node in the graph, a GCN ag-

gregates its 1-hop neighbor nodes’ feature vectors into a

unified feature vector, which corresponds to the multipli-

cation of the adjacency matrix and feature matrix ÂX .

• Combination: The aggregated feature vector will be

further transformed to another feature vector using an

MLP network (shared between nodes) for learning better

representations, which corresponds to the multiplication

between the feature matrix and weight matrix, i.e., XW .

After the feature vectors update, a softmax function

is applied in a row-wise manner, i.e., softmax(xi) =

exp(xi)/∑i exp(xi) [21]. For semi-supervised multiclass

classification, the loss function captures the cross-entropy

errors over all labeled examples:

LGCN(W) = − ∑
n∈YN

∑
f

Ynf ln(Znf), (2)

where YN is the set of node indices that have labels, Ynf is

the ground truth label matrix, and Znf denotes the predicted

possibilities of node n belonging to class f . During GCN

training, W0 and W1 are updated via gradient descents.

Graph Optimization. The goal of graph optimization is

to enforce the graph adjacency matrix for achieving desired

patterns, which usually improve the graph’s regularity so that

the GCN models can be more hardware friendly on their

target platforms. For example, graph sparsification aims to

reduce the total number of edges in graphs (i.e., the size of

the adjacency matrix). A SOTA graph optimization pipeline

[23] is to first pretrain GCNs on their full graphs, and then

optimize the graphs based on the pretrained GCNs. Note

that the weights of GCNs are not updated during graph

optimization, during which W is replaced with A in Eq. (2)

to derive the loss function LGCN(A). As such, the overall

loss function during graph optimization can be written as

[23]:

LGraph(A) = LGCN(A) + LReg(A), (3)

Hardware
Chunk 1

Subgraphs
in Class 1

...

Group 1

... Subgraphs
...

Hardware
Chunk 2

Subgraphs
in Class 2

Group 2

...

Adjacency
Matrix Subgraphs

in Class 1

Group 1 Group 2

Subgraphs
in Class 2

(a) (b)

...
Class 1

Class 2

Patch

Figure 2: Illustrating (a) GCoD’s defined group, class, and

subgraph within GCNs’ graph adjacency matrices, where

nodes with similar degrees are categorized into the same

class, each class is further divided into subgraphs with a

similar number of edges, and all the subgraphs within the

same class are evenly distributed into different groups, and

(b) each hardware chunk (i.e., sub-accelerator) handles the

same kind of classes from all the groups.

where LReg denotes the regularization term. Such a graph

optimization enables practitioners to enforce regularized pat-

terns in graphs for achieving more efficient GCN inference.

B. The Proposed GCoD Algorithm

1) GCoD: Split and Conquer Algorithm: Split and Con-

quer Chunk Design. Our GCoD algorithm alleviates the

ultra-high sparsity (e.g., 99.989% in the Pubmed dataset)

and irregularity in GCNs’ adjacency matrices by leveraging

subgraph classification to enforce regularity at both coarse-

and fine-grained granularities, and adopt group partitioning

to further boost the processing efficiency:

• Subgraph Classification: To reduce the irregularity of

GCNs’ graph adjacency matrices, we cluster nodes with

similar degrees into the same class (different classes are

denoted using dashed boxes in Fig. 2). To further achieve

a finer-grained regularity within each class, we further di-

vide each class into subgraphs with each having a similar

number of edges. Therefore, subgraphs within the same

class share balanced workloads and favor regular and

thus efficient hardware acceleration, which are processed

using one sub-accelerator (i.e., chunk) in GCoD. Sub-

accelerators have unique hardware resources dedicated

to handle the workload patterns of the corresponding

subgraphs, and can process in parallel.

• Group Partitioning: We uniformly distribute subgraphs

within the same class into different groups. Such group

partitioning reduces the boundary connections to enforce

the sparser patterns. Therefore, we can treat all of the

sparser patterns as one unique workload (w.r.t. a sub-

accelerator), which simplifies hardware designs and the

communication among different sub-accelerators.

training. To reduce its training overhead, we propose to first

identify the winning subnetworks from the origin GCN net-

works at the very early training stages (e.g., 10∼20 epochs

over a total of 400 training epochs) following [45], [46],

resulting in much improved training efficiency in both Step 1

(via early-stopping) and Steps 2-3 (via only retraining GCN

subnetworks) without compromising the final accuracy. In

this way, our GCoD algorithm only requires a comparable

or even a lower training cost (0.7× ∼ 1.1×) than the standard

GCN training. In particular, GCoD training algorithm leads

to at most 10% training overhead when evaluated on SOTA

five models and six datasets. The three steps in GCoD

training algorithm account for about 5%/50%/45% of the

total training cost, respectively, where the dominated steps

2-3 require to retrain the GCN subnetworks from scratch.

V. THE PROPOSED GCOD ACCELERATOR

A. Motivation for GCoD Accelerator

Opportunity. Our proposed GCoD algorithm exhibits a

great potential in alleviating the irregularity in GCNs’ graph

adjacency matrices. However, this potential cannot be fully

exploited by existing GCN accelerators [42], [13] due to (1)

the resulting two distinct workloads from GCoD algorithm,

i.e., the sparser and denser branches as shown in Fig. 1; and

(2) the lack of opportunities in existing GCN accelerators

to dedicate for different classes (w.r.t. similar node degrees

and balanced workloads within each of them) in the denser

branch, and to fully leverage the reduced workloads and

enforced structural sparsity in the sparser branch. As such,

GCoD accelerator is motivated to take advantages of the

new opportunities resulting from GCoD algorithm to further

boost the acceleration efficiency.

Design Exploration. Here we first discuss the two typical

designs in existing GCN accelerators for accelerating the

aggregation phase, i.e., the performance bottleneck of GCN

processing, and elaborate their advantages and disadvan-

tages. To handle the dominant aggregation phase, SOTA

GCN accelerators either adopt gathered aggregation or dis-

tributed aggregation. In particular, gathered aggregation

(see Fig. 5 (a)) executes nodes in a sequential manner, where

the neighbor features of each node are gathered in parallel

for aggregation. The advantage is that it requires only a

small buffer for handling the aggregation results thanks to

the good reuses of the intermediate aggregation outputs.

However, such gathered aggregation causes irregular and

frequent (off-chip) accesses of the weights and features,

which is often too large to be stored on-chip, due to the

sparse and random distribution of non-zeros in the adjacent

matrix. For example, HyGCN [42] adopts such gathered

aggregation. On the other hand, the latter, i.e., distributed

aggregation (see Fig. 5 (b)), executes nodes distributively

in a parallel manner, where the neighbor features of each

node are gathered sequentially for aggregation. Its advantage

is that the weight features can be fully reused, because it

X

X

X

X

X

X

X

X

X

X
X

X =

1
2
3
4
5
6

1 2 3 4 5 6

X

X

X

X

X

X

X

X

X

X
X

X =

1
2
3
4
5
6

1 2 3 4 5 6

Input Feature Weight Output
(a) Gathered Aggregation

Te
m

po
ra

l o
r S

pa
tia

l X

X

X

X

X

X

X

X

X

X
X

X =

1
2
3
4
5
6

X

X

X

X

X

X

X

X

X

X
X

X =

1
2
3
4
5
6

1 2 3 4 5 6

Input Feature Weight Output
(b) Distributed Aggregation

1 2 3 4 5 6

Te
m

po
ra

l o
r S

pa
tia

l

Figure 5: Illustrating the gathered and distributed aggrega-

tions.

processes the non-zero elements of the adjacent matrix in

a column-wise manner and thus allows the rows of the

weight matrix to be reused by all the elements of the

same column in the adjacent matrix. This advantage yet

comes at a cost of requiring a large buffer to hold the

intermediate aggregation results, which is often too large

to be stored on-chip and thus leads to frequent off-chip

accesses. Furthermore, with the often varying number of

neighbors for different nodes, the required off-chip memory

accesses can be rather irregular and thus leads to further

workload imbalance and inefficiency. For example, AWB-

GCN [13] adopts such distributed aggregation.

In general, the gathered aggregation needs more off-

chip bandwidth to access weights and features while the

distributed aggregation needs more on-chip storage to hold

the aggregation results. Given that bandwidth is more limited

when processing GCNs which have a poor data locality and

extreme irregularity, the distributed aggregation better favors

GCN acceleration efficiency as compared to the gathered

aggregation, as verified by the much improved performance

offered by AWB-GCN (distributed) over HyGCN (gathered).

As such, GCoD considers the distributed aggregation design,

and strives to further alleviate the associated workload im-

balance problem and to reduce on-chip storage requirements

for much boosted GCN inference efficiency. In particular,

GCoD algorithm training enforces two distinct workloads for

the aggregation phase without compromising the accuracy.

Each of the resulting two workloads is now better suited

for overcoming distributed aggregation’s disadvantages. We

next present the detailed micro-architecture design in Sec.

V-B.

B. GCoD Accelerator’s Micro-architecture

Architecture Overview. Fig. 6 illustrates the overall

micro-architecture of the GCoD accelerator. For better pro-

cessing elements (PEs) utilization and reduced off-chip

memory access during the performance dominant aggre-

gation phase, GCoD accelerator consists of two separate

computing branches with each dedicated to process the

denser workload and sparser workload of GCoD algorithm’s

resulting adjacency matrices, respectively. As shown in the

upper part of Fig. 6, the Denser Branch processes the

on-chip buffer, thanks to the drastically reduced adjacency

matrices’ density and CSC’s smaller storage overhead as

compared with the COO format. To be compatible with

the CSC format and the subsequent weight forwarding

technique, GCoD accelerator adopts the distributed aggre-

gation design (see Fig. 5 (b)), which consumes column(s)

of the inputs every clock cycle.

• Query-based Weight Forwarding: Because the denser and

sparser branches operate in parallel, when the sparser

branch is working on certain columns of the input data,

it is likely that some chunks in the denser branch is

working on the same columns but different rows, thus

sharing the same needed rows of weights as the sparser

branch. Therefore, for the weights needed during the

sparser branch, instead of loading them from the off-

chip memory, the sub-accelerator in the sparser branch

will query the weight buffers of the corresponding chunks

in the denser branch for accessing the already loaded

weights. Specifically, the weight forwarding is performed

on the demand of the sparser branch. The sparser branch

sub-accelerator first determines which of the other sub-

accelerators to query based on the queried weights’ row

indices which are also the adjacency matrix’s column

indices. By checking the predefined location of the queried

sub-accelerator’s index buffer, the sparser branch sub-

accelerator will acquire the range of the weight data

currently stored in the weight buffer. If the queried data

falls in the range, its address within the weight buffer will

be calculated based on the known range. Then, the sparser

branch sub-accelerator will access that specific address for

the queried weight data. Overall, for the sparser branch’s

weight, about 63% of the data will be accessed through the

query-based weight forwarding. In particular, the sparser

branch sub-accelerator works on multiple columns across

different classes, simultaneously. The sparser branch sub-

accelerator is able to finish the computation at the similar

pace to all the parallel sub-accelerators in the denser

branches, because of the increased sparsity and predefined

resource allocation. The overall matched pace ensures

the decent amount of likelihood of weight forwarding.

However, because of the further temporal tiling of each

class i.e., the buffer may not fit all the weights belonging

to the specific class and the denser and sparser branches

will not be synchronized until the end of aggregation,

weight forwarding conditions will not always be satisfied.

For these cases, weights will be instead loaded from the

off-chip memory.

Our GCoD accelerator adopts a similar architecture design

and workload allocation for processing the sparser work-

loads of the sparser branch as that of the denser branch, but

with only one sub-accelerator. For larger graphs scaling to

billion-edge levels under which the on-chip storage cannot

handle the sparser workloads, our GCoD accelerator will

consider fine-grained pipelines as described in Sec. V-B to

separate the workloads and continue maintaining the less

off-chip memory accesses benefits as compared to vanilla

graphs. In addition, the additional structural sparisty (up

to 10%) of GCoD algorithm’s adjacency matrices leads to

more columns to be entirely skipped and thus facilitates the

accumulation of partial results from two branches.

Sub-accelerator Architecture. As shown in Fig. 6, to

support different layer dimensions and the special opera-

tions from various GCN structures, the sub-accelerators are

equipped with multiple functional units:

• Dedicated Buffers to favor local reuse opportunities, with

sizes decided in the above resource allocation stage. The

buffers are implemented in either block RAM or look-

up tables depending on their sizes and required parallel

read/write ports.

• Sparse/Dense Matrix Multiplication Engine (SpMM)

which supports both dense and sparse matrix multiplica-

tion. Specifically, in the dense format, it takes vectors of

inputs and weights and performs either inner products or

element-wise multiplications between inputs and weights,

as shown in Fig. 6 (b). When sparsity is considered, thanks

to the adopted COO input format or the CSC input format

(in distributed aggregation mode), only non-zero elements

of the inputs and their indices are loaded for calculation.

Specifically, when handling the sparse matrix multiplica-

tion in the denser branch or combination phase, we use

the COO format for the adjacency/feature matrix storage

and the dense format for the weight storage. As such, by

nature we can access only the non-zero adjacency/feature

matrix’ values and their location indices to support the

sparsity. The loaded elements will be piped to the PEs in

Fig. 6 (b) for result calculations. On the other hand, when

handling the sparse matrix multiplication in the sparser

branch, we use the CSC format for the adjacency matrix

for a smaller storage overhead and the dense format for the

transformed (combined) features. Column(s) of the non-

zero adjacency matrix elements will be loaded at the same

time. With the dataflow restricted to the distributed fashion

as in Fig. 5 (b), we can produce the rows of outputs only

corresponding to the non-zero elements in each adjacency

matrix’s column at a time to fully leverage the sparsity.

• Element-wise Activation Units for the non-linear activa-

tion operations. Specifically, we use gating modules for

the ReLU and lookup tables to estimate other non-linear

activation functions.

• Sampling Units to schedule the node sampling. Specif-

ically, we implement a linear shift register to randomly

pick from non-zero elements from the adjacency matrices’

columns.

The overall micro-architecture is reused for GCN aggre-

gation and combination, as both involve mostly matrix

multiplications. The sub-accelerator in the sparser branch

has an additional output synchronization module to combine

its outputs with the denser branch’s outputs. To support large

Hardware
Parameters

Controller

Runtime

CompilerParser

Aggregation,
Combination,
Partition, FC,
N, M, F, H, O

GCN Conv
Linear

GCoD Accelerator

Figure 8: The software-hardware interface pipeline for

GCoD.

of C/Verilog based code templates are developed to form

the overall hardware architectures with parameterizeable

attributes, e.g., number of chunks, PEs, and buffers’ sizes.

After that, the given GCN will be passed through a network

parser to feed the hardware compiler with layer dimensions,

e.g., feature size, as illustrated in Fig. 8. The hardware com-

piler will fill in the parameterized attributes in the previous

code templates. The configured hardware architecture will be

sent to the platform software, e.g., Vivado [40], to generate

the bitstream for on board deployment. The reconfigurable

process cost is amortized across the entire lifetime of each

task.

VI. EXPERIMENT RESULTS

In this section, we present a thorough evaluation of the

proposed GCoD framework, including the overall bench-

mark with CPUs/GPUs and SOTA GCN accelerators in Sec.

VI-B, and the evaluation and ablation studies of GCoD

algorithm and accelerator in Sec. VI-C and Sec. VI-D,

respectively.

A. Experiment Settings

Models, Datasets, and Training Settings. Our evaluation

considers five GCN algorithms, including three represen-

tative full-batch training GCN algorithms (i.e., GCN [21],

GAT [35], and GIN [41]), one mini-batch training GCN

algorithm (i.e., GraphSAGE [14]), and one deep ResGCN

[22], and six graph datasets, including three citation graph

datasets (Cora, CiteSeer, and Pumbed) [30], the one knowl-

edge graph (NELL) [6], and the two large scale datasets

(Obgn-ArXiv from Open Graph Benchmark (OGB) [16] and

Reddit post dataset [14]), respectively. The specifications of

the aforementioned five GCN models are summarized in Tab.

IV, from which we can see that the adopted GCNs and GINs

consist of 16 hidden units for the three citation graphs and

64 hidden units for the NELL and Reddit graphs, following

a SOTA GCN accelerator [13]; the GAT models consist

of 8 hidden units and 8 heads; the GraphSAGE models

adopt two layers and the same hidden dimensions as GCNs,

with a neighborhood sample size of 25 and 10, respectively,

following the basic settings in [9], [14]; and deep ResGCNs

adopt 28 layers with 128 hidden units, following the settings

in [22]. We train all the above GCN models for 400 epochs

using an Adam optimizer [19] with a learning rate of 0.01.

The statistics of these six datasets are summarized in Tab.

Table III: A summary of the adopted graph dataset statistics.

Dataset Nodes Edges Features Classes Storage

Cora 2,708 5,429 1,433 7 15 MB
Citeseer 3,312 4,372 3,703 6 47MB
Pubmed 19,717 44,338 500 3 38MB
NELL 65,755 266,144 5,414 210 1.3GB
Ogbn-ArXiv 169,343 1,166,243 128 40 103MB
Reddit 232,965 114,615,892 602 41 1.8GB

Table IV: A summary of the GCN model specifications.
Model Layers Hidden Dim. Aggregation Others/Details

GCN 2 16/64 Mean
16 for Cora/CiteS./Pub.;
64 for NELL/Reddit

GIN 3 16/64 Add
GraphSAGE 2 16/64 Mean

GAT 2 8 Attention 8 heads
ResGCN 28 128 Max -

III. We follow the same dataset splits as described in [21],

[14], [16].

Baselines and Evaluation Metrics. To benchmark our

GCoD with SOTA GCN acceleration works, we consider a

total of nine baselines: PyTorch Geometric (PyG) [9] and

Deep Graph Library (DGL) [37] on a Linux workstation

with Intel Xeon E5-2680 v3 CPUs and NVIDIA RTX 8000

GPUs, respectively, and SOTA GCN accelerators HyGCN

[42], AWB-GCN [13], and Deepburning-GL on three FPGA

platforms (i.e., ZC706, KCU1500, and Alveo U50) [24]. The

system configurations of the baselines and our GCoD are

summarized in Tab. V. We evaluate all above platforms in

terms of acceleration latency speedups, energy consumption,

and required off-chip memory bandwidth and accesses.

In addition, we compare the achieved accuracy of GCoD

algorithm with SOTA GCN compression baselines, including

RP [10], SGCN [23], QAT [8], and Degree-Quant [34].

Hardware Experiment Setup. To evaluate GCoD ac-

celerator, we consider the standard FPGA evaluation and

implementation flows in Vivado 2018.3 [40]. Specifically,

we adopt a Xilinx VCU128 FPGA board [39], which is

equipped with 9024 DSPs, 42MB on-chip memory, and 460

GB/s HBM off-chip memory, where the off-chip memory

bandwidth is proportionally distributed across GCoD’s sub-

accelerators based on their assigned workloads/resources.

For a fair comparison with AWB-GCN [13], GCoD accel-

erator is clocked at 330MHz and adopts 4096 PEs with

a 32-bit fixed point precision. In addition, we discuss a

GCoD variant that supports the quantized GCNs and termed

as GCoD (8-bit). Quantization largely reduces the off-chip

memory bandwidth requirement and thus enable GCoD (8-

bit) to afford 10240 on-chip PEs (≈ 5200 DSPs).

B. Overall Performance

We first evaluate GCoD against both the general platforms

(PyG/DGL-CPU and PyG/DGL-GPU) and SOTA GCN ac-

celerators in terms of speedup, off-chip memory bandwidth

requirement, and the number of off-chip memory accesses.

GCoD over CPU/GPU Platforms. Figs. 9 & 10 show

the overall performance of our GCoD and the baselines.

We can see that GCoD on-average achieves 15286×, 294×,

4 5 20 60 60 43
2

11 14 633 1 3 4 2 143 4 19 10 10 8335
1

87 42
7

1,
85

5

70
3

1,
21

4

24
8

72 701,
06

3

91
3

46
6

3 4 2 944 65 20 8746 78 25 11
52,

03
1

1,
76

3

97
0

2,
58

2

2,
47

2

1,
44

2

39
5

34
9

18
8 11

,0
64

9,
60

3

5,
28

2

4,
37

3

3,
45

9

1,
93

1

5,
47

7

4,
96

7

3,
15

2

76
9

76
4

37
9 23

,4
49

20
,4

23

11
,6

19

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05
Py

G-
GP

U
DG

L-
CP

U
DG

L-
GP

U
Hy

GC
N

AW
B-

GC
N

ZC
70

6
KC

U1
50

0
Al

ve
o

U5
0

GC
oD

GC
oD

 (8
-b

it)
Py

G-
GP

U
DG

L-
CP

U
DG

L-
GP

U
Hy

GC
N

AW
B-

GC
N

GC
oD

GC
oD

 (8
-b

it)
Py

G-
GP

U
DG

L-
CP

U
DG

L-
GP

U
Hy

GC
N

AW
B-

GC
N

ZC
70

6
KC

U1
50

0
Al

ve
o

U5
0

GC
oD

GC
oD

 (8
-b

it)
Py

G-
GP

U
Hy

GC
N

GC
oD

GC
oD

 (8
-b

it)
Py

G-
GP

U
Hy

GC
N

GC
oD

GC
oD

 (8
-b

it)
Py

G-
GP

U
Hy

GC
N

GC
oD

GC
oD

 (8
-b

it)
DG

L-
CP

U
DG

L-
GP

U
GC

oD
GC

oD
 (8

-b
it)

DG
L-

CP
U

DG
L-

GP
U

GC
oD

GC
oD

 (8
-b

it)
DG

L-
CP

U
DG

L-
GP

U
GC

oD
GC

oD
 (8

-b
it)

Py
G-

GP
U

Hy
GC

N
ZC

70
6

KC
U1

50
0

Al
ve

o
U5

0
GC

oD
GC

oD
 (8

-b
it)

Py
G-

GP
U

Hy
GC

N
GC

oD
GC

oD
 (8

-b
it)

Py
G-

GP
U

Hy
GC

N
ZC

70
6

KC
U1

50
0

Al
ve

o
U5

0
GC

oD
GC

oD
 (8

-b
it)

Cora CiteSeer Pubmed Cora CiteSeer Pubmed Cora CiteSeer Pubmed Cora CiteSeer Pubmed

GCN GIN GAT GraphSAGE

Sp
ee

du
ps

 (x
)

PyG-GPU DGL-CPU DGL-GPU HyGCN AWB-GCN ZC706 KCU1500 Alveo U50 GCoD GCoD (8-bit)

Figure 9: The normalized inference speedups (w.r.t. PyG-CPU) achieved by our GCoD framework over nine SOTA baselines

on four variant GCN models and three representative citation graph datasets.

25 12
7

14 34831,
72

1

24
,1

70

9
(o

ut
lie

r)

1,
42

5

9,
24

2
9 17

0 1,
96

0

45
9

2,
25

9

2,
45

9

44
,8

27

2,
74

6

51
,7

62

4,
17

5

23
,5

01

13
,3

96

12
4,

72
3

54
,5

47

4,
91

5

90
,3

01

5,
98

7

10
0,

83
8

9,
11

0

51
,9

97

29
,1

56

25
4,

77
5

12
6,

50
1

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06

Py
G-

GP
U

AW
B-

GC
N

GC
oD

GC
oD

 (8
-b

it)
Hy

GC
N

AW
B-

GC
N

ZC
70

6
KC

U1
50

0
Al

ve
o

U5
0

GC
oD

GC
oD

 (8
-b

it)
GC

oD
GC

oD
 (8

-b
it)

Hy
GC

N
GC

oD
GC

oD
 (8

-b
it)

GC
oD

GC
oD

 (8
-b

it)
DG

L-
CP

U
DG

L-
GP

U
GC

oD
GC

oD
 (8

-b
it)

GC
oD

GC
oD

 (8
-b

it)
Py

G-
GP

U
DG

L-
CP

U
Hy

GC
N

KC
U1

50
0

Al
ve

o
U5

0
GC

oD
GC

oD
 (8

-b
it)

GC
oD

GC
oD

 (8
-b

it)
NELL Reddit NELL Reddit NELL Reddit NELL Reddit ArXiv

GCN GIN GAT GraphSAGE ResGCNs

Sp
ee

du
ps

 (x
)

Figure 10: The normalized inference speedups (w.r.t. PyG-

CPU) comparisons on large GCN models and graph

datasets.

Table V: System configurations of the baselines and GCoD.

Design/Platform Compute Unit On-Chip Memory
Off-Chip

Memory

Die Area

(mm
2

)

Power

(W)

PyG/DGL-
CPU

2.5GHz
@24 cores

L1d/L1i: 24 x 32KB
L2: 3MB
L3: 30MB

1365.5 GB/s
DDR4

- 150

PyG/DGL-

GPU

1.35GHz
@4352 cores

L1: 68 x 64KB
L2: 5.5MB

616 GB/s
GDDR6

754
(12nm)

250

HyGCN
1GHz@32 SIMD
& 8 systolic array

Input: 128KB;
Edge: 2MB;
Weight: 2MB;
Output: 4MB;
Aggregation: 16MB

256 GB/s
HBM∼1.0

7.8
(12nm)

6.7

AWB-GCN
330MHz@Intel
D5005 FPGA

4096 PEs
244 Mb Scratchpad

76.8 GB/s
DDR4

- 215

ZC706
220MHz@900
DSPs

19.2MB
12.8GB/s
DDR3

-

KCU1500 5520 DSPs 75.9MB
76.8GB/s
DDR4

-

Alveo U50 5952 DSPs 227.3MB
316GB/s
HBM∼2.0

- 50

GCoD
330MHz@
VCU128

4096 PEs
9MB BRAM
33MB URAM

460GB/s
HBM

- 180

*GCoD (8-bit) uses 10240 PEs as 8-bit saves required bandwidth.

1057×, and 460× speedups over PyG-CPU, PyG-GPU,

DGL-CPU, and DGL-GPU, respectively, while GCoD (8-

bit) more aggressively achieves 32158×, 607×, 2213×, and

962× speedups over PyG-CPU, PyG-GPU, DGL-CPU, and

DGL-GPU, respectively. The superior GCoD improvements

validate the effectiveness of GCoD’s dedicated algorithm

and accelerator innovations: (1) GCoD’s split and conquer

training algorithm largely alleviates the irregularity of the

graph adjacency matrices, leading to more consecutive ad-

dress accesses of off-chip memory; and (2) GCoD accelera-

tor enables more balanced workloads and higher utilization

for each sub-accelerator, and allows more data reuses and

lower on-chip storage demand.

Table VI: Speedup breakdown of GCoD accelerator w/ or

w/o sparsification (SP.) and quantization (Quant.).

Methods

Speedups over PyG-CPU
Cora CiteSeer Pubmed NELL Reddit

AWB-GCN 1063× 913× 466× 1425× 9242×
GCoD Accele. 1824× 1692× 901× 2294× 39881×
GCoD Accele. w/ SP. 2031× 1763× 970× 2459× 44827×
GCoD Accele. w/ SP. & Quant. 4373× 3459× 1931× 4915× 90301×

GCoD over SOTA GCN Accelerators. We further com-

pare GCoD with SOTA GCN accelerators: HyGCN [42],

AWB-GCN [13], and Deepburning-GL on three FPGA plat-

forms (ZC706, KCU1500, and Alveo U50) [24]. We follow

most of these baselines to report the relative speedups over

PyG-CPU on an Intel Xeon E5-2680 v3 CPU, and analyze

the achieved improvements, as elaborated below.

(1) Speedup. As shown in Fig. 9 & 10, GCoD on-average

achieves 7.8×, 2.5×, 2532×, 165×, and 115× speedups over

HyGCN (without considering HyGCN’s outlier when eval-

uated GraphSAGE), AWB-GCN, and Deepburning-GL on

three FPGA platforms (ZC706, KCU1500, and Alveo U50),

respectively. GCoD benefits are attributable to the dedicated

algorithm and accelerator co-design. Specifically, HyGCN

adopts coarse-grained block-wise scheduling while GCoD

adopts fine-grained, adaptive row/column-wise pipeline;

AWB-GCN realizes workload balance via on-the-fly auto-

tuning while GCoD leverages a split and conquer algorithm

to achieve naturally balanced workload; We further provide

the improvement breakdown in Tab. VI, from which we can

see that the improvement is mostly attributed to GCoD’s

two-pronged accelerator that leads to on-average 2.29×

speedup over AWB-GCN [13], while sparsification further

provides 1.09× speedups. Meanwhile, the GCoD (8-bit)

variant offers an additional 2.02× on-average speedup.

(2) Memory Bandwidth Consumption and Accesses. Fig.

11 (a) shows the evaluation results in terms of off-chip

memory bandwidth consumption. We can see that GCoD and

GCoD (8-bit) only require on-average 48% and 26% off-chip

memory bandwidth as compared to HyGCN, respectively.

The high bandwidth of HyGCN is attributed to the required

high-degree parallelism, whereas GCoD accelerator’s fine-

grained pipelines enable more frequent data reuses, largely

alleviating the off-chip bandwidth requirement. Fig. 11 (b)

(a) (b)

Figure 11: (a) Bandwidth requirement of GCoD and HyGCN and (b) normalized data access of GCoD, HyGCN, and

AWB-GCN. Note that we record the peak bandwidth in (a), so the relative scale of (a) and (b) are slightly different.

Table VII: Comparison between GCoD with SOTA GCN

compression methods, including Random Pruning (RP) [10],

SGCN [23], QAT [8], and Degree-Quant [34].

Models Methods

Accuracy (%)

Cora CiteSeer Pubmed NELL Reddit

GCN

Vanilla 81.1±1.2 70.2±0.8 79.1±0.6 65.6±0.7 92.2±1.1
RP 79.6±0.8 70.4±0.5 78.4±0.6 63.5±2.3 91.2±2.2
SGCN 80.2±0.7 70.4±0.7 79.1±0.1 64.2±1.2 91.3±1.3
QAT 81.0±0.7 71.3±1.0 79.0±0.2 65.1±1.4 92.4±0.9
Degree-Quant 81.7±0.7 71.0±0.9 79.1±0.1 65.2±0.8 92.6±1.5
GCoD 81.9±0.8 71.7±0.5 79.5±0.3 66.3±0.5 93.4±0.9
GCoD (8-bit) 81.0±0.9 70.6±0.3 79.5±0.2 66.0±0.3 93.2±1.3

GCoD Improv. ↑0.2% ∼ ↑2.8%

GAT

Vanilla 83.1±0.4 72.2±0.7 78.8±0.3 66.6±0.3 94.2±0.3
RP 80.9±0.6 69.8±0.8 78.2±0.1 64.5±1.2 93.1±1.2
SGCN 81.9±0.3 71.9±0.2 78.4±0.1 64.9±1.0 93.4±0.9
QAT 81.9±0.7 71.2±1.0 78.3±0.5 65.1±0.8 93.8±0.5
Degree-Quant 82.7±0.7 71.6±1.0 78.6±0.3 65.9±0.6 94.0±0.7
GCoD 83.2±0.3 72.2±0.4 79.0±0.1 66.7±0.4 94.5±0.2
GCoD (8-bit) 82.6±0.2 71.8±0.1 78.8±0.2 66.5±0.2 94.5±0.4

GCoD Improv. ↑0.1% ∼ ↑2.2%

GIN

Vanilla 78.6±0.9 67.5±1.5 78.5±0.2 65.2±0.2 92.8±2.2
RP 74.6±0.4 64.5±0.5 76.9±0.6 64.2±0.5 92.0±0.5
SGCN 78.0±0.1 67.0±0.1 77.2±1.1 64.8±0.4 92.3±0.9
QAT 75.6±1.2 63.0±2.6 77.5±0.2 64.7±0.3 92.9±0.4
Degree-Quant 78.7±1.4 67.5±1.4 78.1±0.5 65.2±0.3 93.1±0.6
GCoD 78.9±0.5 68.6±0.8 78.5±0.3 65.8±0.2 93.3±0.9
GCoD (8-bit) 78.4±0.2 68.7±1.3 78.3±0.2 65.6±0.4 93.3±1.1

GCoD Improv. ↑0.3% ∼ ↑4.2%

GraphSAGE

Vanilla 81.2±0.2 71.1±0.3 78.7±0.2 66.2±0.4 93.8±2.9
RP 77.7±0.7 66.1±2.2 76.0±0.3 65.5±0.4 90.7±1.8
SGCN 79.2±0.5 70.9±0.3 78.5±0.1 66.1±0.3 93.9±0.9
GCoD 81.4±0.6 71.3±0.3 79.0±0.4 66.7±0.6 94.5±1.2
GCoD (8-bit) 80.8±0.4 71.3±0.1 78.8±0.1 66.4±0.8 94.3±1.5

GCoD Improv. ↑0.2% ∼ ↑3.8%

reports the measured off-chip memory accesses comparison

for processing GCNs with GCoD, HyGCN, and AWB-GCN.

Note that we count the number of off-chip accesses assuming

that the input features and adjacency matrices are stored in

the off-chip memory before processing. In practice, these

matrices can be partially or entirely stored on-chip to reduce

the data accesses and bandwidth requirements [13].

C. Evaluation of the GCoD Algorithm

GCoD over SOTA Compression Baselines. Table VII

compares the accuracy of GCoD with SOTA compression

methods to evaluate the effectiveness of GCoD algorithm.

We can see that GCoD consistently achieves a comparable

or even better accuracy (↑0.2% ∼ ↑4.2%) over the vanilla

GCNs and all compression baselines, while offering a 5%

∼ 15% structural sparsity ratio (and thus more balanced

workload).

Ablation Studies of the Design Hyper-Parameters.

0%
20%
40%
60%
80%

100%

Co
ra

Ci
te

S.

Pu
b.

NE
LL

Re
dd

it

Co
ra

Ci
te

S.

Pu
b.

NE
LL

Re
dd

it

Co
ra

Ci
te

S.

Pu
b.

NE
LL

Re
dd

it

Co
ra

Ci
te

S.

Pu
b.

NE
LL

Re
dd

it

GCN GraphSAGE GIN GAT

Computation (Comb.) On-chip Read/Write (Comb.)
Off-chip Read/Write (Comb.) Computation (Agg.)
On-chip Read/Write (Agg.) Off-chip Read/Write (Agg.)

Figure 12: The energy breakdown of the GCoD framework

when evaluated on the four GCN models and five graph

datasets.

Our GCoD algorithm has two hyper-parameters: the total

number of classes C (i.e., sub-accelerators) and subgraphs

S. To validate sensitivity of GCoD benefits, we measure

the speedups and off-chip memory bandwidth requirements

across a wide range of the design hyper-parameters C ∈

{1, 2, 3, 4} and S ∈ {8, 12, 16, 20}, and find that GCoD

consistently achieves 1.8× ∼ 2.8× speedups over AWB-

GCN and reduces the off-chip memory bandwidth by 26% ∼

53%, validating GCoD’s general effectivenss and robustness.

D. Evaluation of the GCoD Accelerator

Energy Breakdown. Fig. 12 shows GCoD accelerator’s

energy breakdown in terms of computations and off-chip

memory accesses in both the combination and aggregation

phases. We can see that (1) the combination phase consumes

most of the energy than the aggregation phase, thanks to

GCoD acceleration (vs. PyG-CPU on which aggregation

occupies 80% ∼ 99% [42]), indicating the effectiveness of

GCoD in alleviating the performance bottleneck due to the

aggregation phase, and (2) the energy cost of accessing

HBM remains reasonable as graph size increases, validating

GCoD’s scalability.

Resource-aware vs. Efficiency-aware Pipeline. As dis-

cussed in Sec. V-B, GCoD adopts efficiency-aware pipeline

for small/medium graphs to achieve more data reuses at a

cost of storing aggregation outputs on-chip. When process-

ing large graphs, e.g., Reddit the outputs of which require

36MB storage and cannot be fully stored on-chip, GCoD

uses resource-aware pipeline for better balancing the data

reuses and on-chip storage requirement. The relatively more

off-chip memory accesses when processing Reddit (see Fig.

11 (b)) is resulting from the less data resues for reduced

on-chip storage.

VII. CONCLUSION

We propose, develop, and validate GCoD, an algorithm

and accelerator co-design framework. On the algorithm

level, GCoD integrates a split and conquer GCN train-

ing strategy to polarize the graphs to be either denser or

sparser in local neighborhoods without compromising the

model accuracy, resulting in graph adjacency matrices that

have merely two levels of balanced workload and thus

enjoy largely enhanced regularity. On the hardware level,

GCoD integrates a dedicated two-pronged accelerator with

a dedicated engine to process each of the aforementioned

workloads, further boosting the overall utilization and ac-

celeration efficiency. Extensive experiments and ablation

studies validate the advantages of GCoD.

ACKNOWLEDGMENT

We would like to acknowledge the funding support from

the NSF RTML program (Award number: 1937592) and

the NSF NeTS program (Award number: 1801865) for this

project. The authors also thank our colleague Mr. Cheng

Wan at Rice University for his help and discussion in the

graph reordering algorithm.

REFERENCES

[1] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwa-
mura, “Rabbit order: Just-in-time parallel reordering for fast
graph analysis,” in 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2016,
pp. 22–31.

[2] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration
of graph neural networks,” in 57th ACM/IEEE Design Au-
tomation Conference (DAC). IEEE, 2020.

[3] A. A. Awan, H. Subramoni, and D. K. Panda, “An in-
depth performance characterization of cpu- and gpu-based
dnn training on modern architectures,” in Proceedings of the
Machine Learning on HPC Environments, ser. MLHPC’17.
Association for Computing Machinery, 2017.

[4] A. Azad, M. Jacquelin, A. Buluç, and E. G. Ng, “The
reverse cuthill-mckee algorithm in distributed-memory,” in
2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2017.

[5] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of
deep neural network models for practical applications,” arXiv
preprint arXiv:1605.07678, 2016.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka,
and T. Mitchell, “Toward an architecture for never-ending
language learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 24, no. 1, 2010.

[7] X. Chen, Y. Wang, X. Xie, X. Hu, A. Basak, L. Liang,
M. Yan, L. Deng, Y. Ding, Z. Du et al., “Rubik: A hierarchi-
cal architecture for efficient graph learning,” arXiv preprint
arXiv:2009.12495, 2020.

[8] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Je-
gou, and A. Joulin, “Training with quantization noise for
extreme model compression,” in ICLR, 2021.

[9] M. Fey and J. E. Lenssen, “Fast graph representation learning
with PyTorch Geometric,” in ICLR Workshop on Representa-
tion Learning on Graphs and Manifolds, 2019.

[10] J. Frankle and M. Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” in International
Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=rJl-b3RcF7

[11] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graphnas:
Graph neural architecture search with reinforcement learn-
ing,” arXiv preprint arXiv:1904.09981, 2019.

[12] R. Garg, E. Qin, F. M. Martı́nez, R. Guirado, A. Jain,
S. Abadal, J. L. Abellán, M. E. Acacio, E. Alarcón, S. Raja-
manickam et al., “A taxonomy for classification and com-
parison of dataflows for gnn accelerators,” arXiv preprint
arXiv:2103.07977, 2021.

[13] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi,
A. Tumeo, S. Che, S. Reinhardt et al., “Awb-gcn: A
graph convolutional network accelerator with runtime work-
load rebalancing,” in 53rd IEEE/ACM Int. Symp. Microar-
chit.(MICRO), 2020, pp. 1–15.

[14] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” in Advances in neural
information processing systems, 2017, pp. 1024–1034.

[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in
neural information processing systems, 2015, pp. 1135–1143.

[16] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu,
M. Catasta, and J. Leskovec, “Open graph benchmark:
Datasets for machine learning on graphs,” arXiv preprint
arXiv:2005.00687, 2020.

[17] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

[18] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and
M. Neumann, “Benchmark data sets for graph kernels,” 2020,
http://graphkernels.cs.tu-dortmund.de.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[20] K. Kiningham, C. Re, and P. Levis, “Grip: A graph
neural network acceleratorarchitecture,” arXiv preprint
arXiv:2007.13828, 2020.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in International Confer-
ence on Learning Representations (ICLR), 2017.

[22] G. Li, C. Xiong, A. Thabet, and B. Ghanem, “Deep-
ergcn: All you need to train deeper gcns,” arXiv preprint
arXiv:2006.07739, 2020.

[23] J. Li, T. Zhang, H. Tian, S. Jin, M. Fardad, and R. Zafarani,
“Sgcn: A graph sparsifier based on graph convolutional net-
works,” in Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 2020, pp. 275–287.

[24] S. Liang, C. Liu, Y. Wang, H. Li, and X. Li, “Deepburning-gl:
an automated framework for generating graph neural network
accelerators,” in 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[25] S. Liang, Y. Wang, C. Liu, L. He, L. Huawei, D. Xu, and
X. Li, “Engn: A high-throughput and energy-efficient accel-
erator for large graph neural networks,” IEEE Transactions
on Computers, 2020.

[26] Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag, “Predictivenet: An
energy-efficient convolutional neural network via zero predic-
tion,” in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS), 2017, pp. 1–4.

[27] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du,
“On-demand deep model compression for mobile devices:
A usage-driven model selection framework,” in Proceedings
of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’18. New
York, NY, USA: Association for Computing Machinery,
2018, p. 389–400. [Online]. Available: https://doi.org/10.
1145/3210240.3210337

[28] Y. Liu, N. Zhang, D. Wu, A. Botterud, R. Yao, and C. Kang,
“Guiding cascading failure search with interpretable graph
convolutional network,” arXiv preprint arXiv:2001.11553,
2020.

[29] W. Peng, X. Hong, H. Chen, and G. Zhao, “Learning
graph convolutional network for skeleton-based human action
recognition by neural searching.” in AAAI, 2020, pp. 2669–
2676.

[30] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and
T. Eliassi-Rad, “Collective classification in network data,” AI
magazine, vol. 29, no. 3, pp. 93–93, 2008.

[31] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn
accelerator efficiency through resource partitioning,” in 2017
ACM/IEEE 44th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, 2017, pp. 535–547.

[32] M. Simonovsky and N. Komodakis, “Dynamic edge-
conditioned filters in convolutional neural networks on
graphs,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017.

[33] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-
quant: Quantization-aware training for graph neural net-
works,” arXiv preprint arXiv:2008.05000, 2020.

[34] ——, “Degree-quant: Quantization-aware training for graph
neural networks,” in ICLR, 2021. [Online]. Available:
https://openreview.net/forum?id=NSBrFgJAHg

[35] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[36] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph attention networks,” in International
Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=rJXMpikCZ

[37] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song,
J. Zhou, C. Ma, L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis,
J. Li, and Z. Zhang, “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv
preprint arXiv:1909.01315, 2019.

[38] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip,
“A comprehensive survey on graph neural networks,” IEEE
Transactions on Neural Networks and Learning Systems,
2020.

[39] Xilinx Inc., “Virtex ultrascale+ hbm vcu128 fpga evalu-
ation kit,” https://www.xilinx.com/products/boards-and-kits/
vcu128.html, (Accessed on 09/30/2020).

[40] ——, “Vivado Design Suite - HLx Editions,” https://www.
xilinx.com/products/design-tools/vivado.html, accessed 2019-
09-16.

[41] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful
are graph neural networks?” in International Conference
on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=ryGs6iA5Km

[42] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang,
D. Fan, and Y. Xie, “Hygcn: A gcn accelerator with hybrid
architecture,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2020,
pp. 15–29.

[43] H. Yang, “Aligraph: A comprehensive graph neural network
platform,” in Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
2019, pp. 3165–3166.

[44] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and
J. Leskovec, “Hierarchical graph representation learning with
differentiable pooling,” in Advances in neural information
processing systems, 2018.

[45] H. You, C. Li, P. Xu, Y. Fu, Y. Wang, X. Chen,
R. G. Baraniuk, Z. Wang, and Y. Lin, “Drawing early-
bird tickets: Toward more efficient training of deep
networks,” in ICLR, 2020. [Online]. Available: https:
//openreview.net/forum?id=BJxsrgStvr

[46] H. You, Z. Lu, Z. Zhou, and Y. Lin, “GEBT: Drawing early-
bird tickets in graph convolutional network training,” arXiv
preprint arXiv:2103.00794.

[47] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn
training on cpu-fpga heterogeneous platforms,” in The
2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2020, pp. 255–265.

[48] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“Accurate, efficient and scalable graph embedding,” in 2019
IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE, 2019.

[49] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end
deep learning architecture for graph classification,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[50] Y. Zhang, H. You, Y. Fu, T. Geng, A. Li, and Y. Lin,
“G-CoS: Gnn-accelerator co-search towards both better
accuracy and efficiency,” CoRR, vol. abs/2109.08983, 2021.
[Online]. Available: https://arxiv.org/abs/2109.08983

[51] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu,
H. Chen, and W. Wang, “Robust graph representation learning
via neural sparsification.”

	I Introduction
	II Related Works
	III GCoD: Motivation & Overview
	IV The Proposed GCoD Algorithm
	IV-A Preliminaries of GCNs and Graph Optimization
	IV-B The Proposed GCoD Algorithm
	IV-B1 GCoD: Split and Conquer Algorithm
	IV-B2 Efficient Training Pipeline via Early-stopping

	V The Proposed GCoD Accelerator
	V-A Motivation for GCoD Accelerator
	V-B GCoD Accelerator's Micro-architecture

	VI Experiment Results
	VI-A Experiment Settings
	VI-B Overall Performance
	VI-C Evaluation of the GCoD Algorithm
	VI-D Evaluation of the GCoD Accelerator

	VII Conclusion
	References

