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Abstract. Consider the linear transport equation in 1D under an external
confining potential Φ:

∂tf + v∂xf − ∂xΦ∂vf = 0.

For Φ = x2

2
+ εx4

2
(with ε > 0 small), we prove phase mixing and quantitative

decay estimates for ∂tφ := −∆−1
∫
R ∂tf dv, with an inverse polynomial decay

rate O(⟨t⟩−2). In the proof, we develop a commuting vector field approach,

suitably adapted to this setting. We will explain why we hope this is relevant

for the nonlinear stability of the zero solution for the Vlasov–Poisson system
in 1D under the external potential Φ.

1. Introduction. Consider the linear transport equation in 1D

∂tf + v∂xf − ∂xΦ∂vf = 0, (1)

for an unknown function f : [0,∞) × Rx × Rv → R≥0 with a smooth external
confining potential Φ : R → R.

The following is the main result of this note:

Theorem 1.1. Let ε > 0 and Φ(x) = x2

2 + εx4

2 . Consider the unique solution f to
(1) with initial data f ↾t=0= f0 such that

• f0 : Rx × Rv → R≥0 is smooth, and

• there exists cs > 0 such that supp(f0) ⊆ {(x, v) : cs ≤ v2

2 +Φ(x) ≤ c−1
s }.

Then, for ε sufficiently small, there exists C > 0 depending on ε and cs such that
the following estimate holds:

sup
x∈R

|∂tφ|(t, x) ≤ C⟨t⟩−2 sup
(x,v)∈R×R

∑
|α|+|β|≤2

|∂α
x ∂

β
v f0|(x, v),

where φ is defined by

∂2
xxφ(t, x) =

∫
R
f(t, x, v) dv, φ(t, 0) = ∂xφ(t, 0) = 0. (2)

A few remarks of the theorem are in order.
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Remark 1.2 (Nonlinear Vlasov–Poisson system). The reason that we are partic-
ularly concerned with ∂tφ is that it appears to be the quantity relevant for the
stability of the zero solution for the nonlinear Vlasov–Poisson system in 1D; see
Section 2.

It should be noted that φ itself is not expect to decay to 0 (since
∫
R f dv ≥ 0

and the x-support remains bounded). Thus the decay for ∂tφ can be viewed as a
measure of the rate that φ approaches the limit limt→+∞ φ(t, x).

Remark 1.3 (Derivatives of ∂tφ). For the applications on the Vlasov–Poisson
system, one may also wish to obtain estimates for the derivatives of ∂tφ. It is easy
to extend our methods to obtain

|∂x∂tφ| ≲ ⟨t⟩−1, |∂2
x∂tφ| ≲ 1.

Notice that these decay rates, at least by themselves, do not seem sufficient for a
global nonlinear result.

Remark 1.4 (Phase mixing and the choice of Φ). The result in Theorem 1.1 can
be interpreted as a quantitative phase-mixing statement. It is well-known that for

Φ(x) =
x2

2
,

the solution to (1) does not undergo phase mixing (see chapter 3 in [8]). It is

therefore important that we added the εx4

2 term in the definition of the potential.

On the other hand, there are other choices of Φ for which analogues of Theo-
rem 1.1 hold. We expect that as long as Φ is even and satisfies the non-degeneracy
condition of [31], then a similar decay estimate holds. The particular example we
used is only chosen for concreteness.

Remark 1.5 (Method of proof). It is well-known that the linear transport equation
(1) can be written in action-angle variables, say (Q,K), in which case (1) takes the
form

∂tf − c(K)∂Qf = 0. (3)

When c′(K) is bounded away from 0, phase mixing in the sense that f converges
weakly to a limit can be obtained after solving (3) with a Fourier series in Q; see
[31]. The point here is that φ is a (weighted) integral of f over a region of phase
space that is most conveniently defined with respect to the (x, v) (as opposed to
the action-angle) variables.

We quantify the strong convergence of φt → 0 by finding an appropriate com-
muting vector field Y that is adapted to the action-angle variables. The fact that
φ is naturally defined as an integral over v in (x, v) coordinates makes it tricky to

prove decay using this vector field. Furthermore, we are only able to prove 1/ ⟨t⟩2
decay; this is for instance in contrast to the decay of the density for the free trans-
port equation on a torus. (Notice that what limits our result to only 1/ ⟨t⟩2 decay
is that unlike for the density for the free transport equation, we can only integrate
by parts in the action variable twice because of boundary terms that arise. See
Proposition 5.7 for details.)
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1.1. Related result.

Linear phase mixing results. In the particular context of Theorem 1.1, decay
of ∂tφ, but without a quantitative rate, can be inferred from the work [31].

There are many linear phase mixing result, the simplest setting for this is the
linear free transport equation. This is well-known; see for instance notes [35] by
Villani.

One of the most influential work on phase mixing is the groundbreaking paper
[27] of Landau wherein he proposes a linear mechanism for damping for plasmas
that does not involve dispersion or change in entropy. In the case of Td, this is even
understood in a nonlinear setting; see the section on nonlinear results below. The
situation is more subtle in Rd, see [4, 22, 23, 26].

See also [5, 20, 34] for linear results on related models. In particular, we note
that [20] also rely on action-angle variables in their analysis.

Relation with other phase-mixing problems with integrable underlying
dynamics. As pointed out in [31], phase space mixing is relevant for the dynamics
of kinetic models in many physical phenomena from stellar systems and dark matter
halos to mixing of relativistic gas surrounding a black hole. See [15] for related
discussions on dark matter halos. We also refer the interested reader to [8] for
further background and discussions of phase mixing in other models, including the
stability of galaxies.

We hope that the present work would also be a model problem and aid in under-
standing more complicated systems such as those described in [31]. One particularly
interesting problem is the stability of the Schwarzschild solution to the Einstein–
Vlasov system in spherical symmetry.

Nonlinear phase mixing results. Nonlinear Landau damping for Vlasov–Poisson
on Td was first proven in analytic regularity by Mouhot–Villani in their landmark
paper [30]. Since then their work has been extended and simplified in [2] and [24].

See also other nonlinear results, e.g. in [1, 3, 12, 21, 25, 37].

Collisional problems with confining potentials. Confining potentials for ki-
netic equations have been well-studied, particularly for collisional models. Linear
stability results can be found in [9, 13, 14, 16, 17].

In this connection, it would also be of interest to understand how phase mixing
effects (studied in the present paper) interact with collisional effects (cf. [1, 12, 34]).

Commuting vector field method for kinetic models. As mentioned in Re-
mark 1.5, our proof is based on a commutating vector field method. In the context
of kinetic theory, the commutating vector field method has been most successful in
capturing dispersion, see [6, 7, 18, 19, 28, 32, 33, 36] for some results for collisionless
models and [10, 11, 29] for some results on collisional models.

Concerning phase mixing, the use of commuting vector fields to prove homoge-
nization for the density for solutions to the linear transport equation on Td seems
to be a known folklore technique. The commuting vector field method is also useful
for capturing phase mixing in a nonlinear and weakly collisional setting; see our
previous joint work with Nguyen [12].
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2. The Vlasov–Poisson system. The motivation of our result is the Vlasov–
Poisson system: {

∂tf + v∂xf − (∂xΦ+ ∂xφ)∂vf = 0,

∂2
xφ =

∫
R f dv.

(4)

Note that (4) can be rewritten as

∂tf + {H, f} = 0, (5)

where H is the Hamiltonian given by

H(x, v) =
v2

2
+ Φ(x) + φ(t, x). (6)

Notice that f ≡ 0 is a solution to (4), and the transport equation (1) is the
linearization of (4) near the zero solution.

One cannot hope that the term ∂xφ in the nonlinear term decays as t → +∞. (To
see this, first note that

∫
R f dv ≥ 0 pointwise. Moreover, due to the confinement,

one expects the x-support of f to be uniformly bounded for all t ≥ 0.) At best one
can hope that ∂xφ converges to some (non-trivial) limiting profile as t → +∞. For
f satisfying the linear equation (1), such convergence (without a quantitative rate)
has been shown in [31].

In anticipation of the nonlinear problem, it is important to understand the quan-
titative rate of convergence. Since ∂xφ does not converge to 0, it is natural to
understand the decay rate of ∂t∂xφ.

As a first step to understand (4), we look at the linearized problem (1) around
the zero solution and prove that we get integrable decay for φt in the linearized
dynamics.

Remark 2.1. Note that the Poisson’s equation above reads

∂2
xφ = ρ.

In particular, φ is only defined up to a harmonic function, i.e. a linear function a x.
In Theorem 1.1, we remove this ambiguity by setting φ(0) = (∂xφ)(0) = 0. Notice
that other normalization, e.g., φ(−∞) = (∂xφ)(−∞) = 0 would not change the
function φt = ∂tφ.

3. The action-angle variables.

3.1. First change of variables. From now on we will consider the Hamiltonian

H =
v2

2
+ Φ(x).

This is the Hamiltonian for the equations (1), which is also (6) without the φ (the
self-interaction term). As an intermediate step to getting the action-angle variables
we use the change of coordinates

(t, x, v) 7→ (t, χ,H) when x > 0

(t, x, v) 7→ (t, π − χ,H) when x ≤ 0,

where χ := arcsin
(

v√
2H

)
. (Note that this map is a diffeomorphism [0,∞)t×(R2

x,v \
{(0, 0)}) → [0,∞)t × S1χ × (0,∞)H , where we have identified S1 = R/(2πZ).)
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First we calculate the Jacobian for x > 0:

J =

 ∂tt ∂xt ∂vt
∂tH ∂xH ∂vH
∂tχ ∂xχ ∂vχ

 =

1 0 0
0 Φx v

0 − v
2H · Φx√

2Φ

√
2Φ
H

 .

As a result,

det(J) =
Φx√
2Φ

(Φ + v2/2)

H
=

Φx√
2Φ

.

Similarly, for x ≤ 0,

det(J) = − Φx√
2Φ

.

Hence,

det(J) = signx
Φx√
2Φ

.

Next by chain rule and using that H is independent of t, we get

∂x = signx∂xχ∂χ + ∂xH∂H

= − signx
v

2H
· Φx√

2Φ
∂χ +Φx∂H ,

∂v = signx∂vχ∂χ + ∂vH∂H

= signx

√
2Φ

H
∂χ + v∂H .

Plugging this in (5), we get the equation

∂tf − signx
Φx√
2Φ

∂χf = 0. (7)

3.2. Second change of variables. The coefficient in front of ∂χf in (7) depends
on both χ and H. To take care of this, we reparametrize χ (in a manner depending
on H). More precisely, for a fixed H, we define Q(χ,H) such that

dQ

dχ
=

c(H)

a(χ,H)
, Q(0, H) = 0,

where a(χ,H) = signx Φx(x)√
2Φ(x)

such that x = x(χ,H). To fix c(H), we require that

for every H,

2π =

∫ 2π

0

dQ = c(H)

∫ 2π

0

1

a(χ,H)
dχ. (8)

Now we define the change of variables, (χ,H) 7→ (Q,K) where K = H. Then note,

a(χ,H)∂χ = c(H)∂Q

and

∂H = ∂K +
∂Q

∂H
∂Q.

Thus in these coordinates, we can rewrite (7) as

∂tf − c(K)∂Qf = 0. (9)
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Further, the Jacobian is(
∂HK ∂χK
∂HQ ∂χQ

)
=

(
1 0

∂HQ c(H)
a(χ,H)

)
.

Note that the determinant is c(H)
a(χ,H) . Further, since

a(χ,H) = signx
Φx(x)√
2Φ(x)

=
1 + 2εx2

√
1 + εx2

,

we have that a(χ,H) ≈ 1 when x is in a compact subset of R. As a result the
determinant is bounded away from zero. For more details see Lemma 4.3.

4. The commuting vector field. We first define the vector field

Y = tc′(H)∂Q − ∂K .

In this section we prove that this vector field commutes with the transport operator
as in (9) and that |c′(H)| > 0.

4.1. Commutation property. The following commutation formula is an easy
computation and thus we leave out the details.

Lemma 4.1. Let Y = tc′(H)∂Q − ∂K . Then

[∂t − c(H)∂Q, Y ] = 0.

The following is an easy consequence of Lemma 4.1:

Lemma 4.2. Let f be a solution to (9) with initial data satisfying assumptions of
Theorem 1.1. Then

sup
(t,Q,K)∈[0,∞)×T1×[cs,c

−1
s ]

∑
ℓ≤2

|Y ℓf |(t, Q,K) ≲ sup
(x,v)∈R×R

∑
|α|+|β|≤2

|∂α
x ∂

β
v f0|(x, v).

Proof. By Lemma 4.1, we have that Y ℓf satisfies the transport equation (9) for any
ℓ ∈ N ∩ {0}. Hence we get the estimate

sup
(t,Q,K)∈[0,∞)×T1×[cs,c

−1
s ]

∑
ℓ≤2

|Y ℓf |(t, Q,K) ≲ sup
(Q,K)∈T1×[cs,c

−1
s ]

∑
ℓ≤2

|∂ℓ
Kf0|(Q,K).

Since the change of variables (Q,K) → (x, v) is well-defined and bounded away
from zero, we get the required result.

4.2. Positivity of |c′(K)|. We prove that |c′(K)| is uniformly bounded below on
the support of f . This plays a key role in the next section ensuring phase mixing.

Lemma 4.3. For every cs < +∞, there exists ε0 > 0 such that whenever ε ∈ (0, ε0],
there is a small constant δ > 0 (depending on cs and ε) such that

inf
K∈[cs,c

−1
s ]

|c′(K)| = inf
H∈[cs,c

−1
s ]

|c′(H)| ≥ δ.
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Proof. By definition of c(H), we have

2π

c(H)
=

∫ 2π

0

∣∣∣∣∣
√
2Φ

Φ′

∣∣∣∣∣ dχ,
so that using Φ = x2

2 + ε
2x

4, we obtain

2π

c(H)
=

∫ 2π

0

√
1 + εx2

(1 + 2εx2)
dχ.

Notice that for H ∈ [cs, c
−1
s ], |x| is bounded. It follows that c(H) ≈ 1. Therefore,

to prove strict positivity of |c′(H)|, it suffices to prove positivity of
∣∣∣ c′(H)
c2(H)

∣∣∣ . Note

that

−2πc′(H)

c2(H)
=

∫ 2π

0

∂H

(√
1 + εx2

1 + 2εx2

)
dχ

=

∫ 2π

0

∂Hx

[
εx√

1 + εx2(1 + 2εx2)
− 4εx

√
1 + εx2

(1 + 2εx2)2

]
dχ

=

∫ 2π

0

∂Hx

[
−3εx− 2ε2x3

√
1 + εx2(1 + 2εx2)2

]
dχ.

(10)

Now we calculate ∂Hx. First we use the equation, H = v2

2 + Φ(x). Precisely, we
have

1 = v∂Hv +Φ′(x)∂Hx.

Thus

∂Hx =
1− v∂Hv

Φ′ . (11)

Next we use that v√
2H

= sinχ,

0 =
∂Hv√
2H

− v

(2H)
3
2

.

Thus ∂Hv = v
2H . Plugging this into (11), we get that

∂Hx =
1− v2

2H

Φ′ =
cos2 χ

Φ′(x)
=

cos2 χ

x+ 2εx3
, (12)

where in the last equality we used Φ = x2+εx4

2 .
Plugging (12) back into (10), we get that

−2πc′(H)

c2(H)
=

∫ 2π

0

cos2 χ

x(1 + 2εx2)

[
−x(3ε+ 2ε2x2)√
1 + εx2(1 + 2εx2)2

]
dχ

= −
∫ 2π

0

cos2 χ

[
(3ε+ 2ε2x2)√

1 + εx2(1 + 2εx2)3

]
dχ.

Finally note that since |x| is bounded on the region of interest, after choosing ε0
sufficiently small, we have

(3ε+ 2ε2x2)√
1 + εx2(1 + 2εx2)3

≈ ε,

and thus |c′(H)| > δ.
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5. Decay for φt. In this section, we finally prove the decay for φt (recall Theo-
rem 1.1).

Lemma 5.1. For f satisfying the assumptions of Theorem 1.1, and φ defined as
in (2), we have the following formula

−φt(t, x
′) =

∫ x′

0

∫
R
v[f(t, x, v)− f(t, 0, v)] dv dx.

Proof. By the continuity equation (following directly from (1)), we have that

ρt = −
∫
R
v∂xf dv.

Thus

∂2
xφt = ρt = −

∫
R
v∂xf dv.

Solving the Laplace’s equation (with boundary conditions (2)), we get

−φt(t, x
′) =

∫ x′

0

∫ y

0

∫
R
v∂xf(t, z, v) dv dz dy.

Integrating by parts in z, we get

−φt(t, x
′) =

∫ x′

0

∫
R
v[f(t, y, v)− f(t, 0, v)] dv dy.

Relabelling y as x yields the desired result.

In view of Lemma 5.1, it suffices to bound
∫ x′

0

∫
R vf(t, 0, v) dv dy and∫ x′

0

∫
R vf(t, x, v) dv dx, which will be achieved in the next two subsections respec-

tively.

5.1. Decay for the term involving f(0, v). We first prove decay for
∫
R vf(t, 0, v)

dv. Before proving the main estimate in Proposition 5.3, we first prove a lemma.

Lemma 5.2. The level set {x = 0} corresponds to the level sets {Q = π
2 } ∩ {Q =

−π
2 } ∪ {(x, v) = (0, 0)}.

Proof. First note that level set {x = 0} corresponds to the level sets {χ = π
2 }∩{χ =

−π
2 }∪{(x, v) = (0, 0)}. This is because when x = 0, Φ(x) = 0, and thus by definition

(when v ̸= 0) χ := arcsin
(

v√
2H

)
= arcsin(±1) = ±π

2 .

It thus remains to show that

χ = ±π

2
⇐⇒ Q = ±π

2
. (13)

Fix H. Since a(χ,H) = | Φx√
Φ
| is independent of v, it is in particular even in v.

Hence, we have

c(H)

∫ π

0

1

a(χ,H)
dχ = c(H)

∫ 2π

π

1

a(χ,H)
dχ.

Further, by the evenness of Φ, we have

c(H)

∫ π/2

0

1

a(χ,H)
dχ = c(H)

∫ π

π/2

1

a(χ,H)
dχ.
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Finally, since we have by construction,

c(H)

∫ 2π

0

1

a(χ,H)
dχ = 2π,

we have that

Q(χ = π/2, H) = c(H)

∫ π/2

0

1

a(χ,H)
dχ = π/2.

Similarly, Q(χ = −π/2, H) = −π/2. Combining these, we obtain (13).

Proposition 5.3. For f satisfying the assumptions of Theorem 1.1, we have the
following estimate:∣∣∣ ∫

R
vf(t, 0, v) dv

∣∣∣ ≲ ⟨t⟩−2 sup
(x,v)∈R×R

∑
|α|+|β|≤2

|∂α
x ∂

β
v f0|(x, v).

Proof. The transport equation preserves L∞ bounds so that by the support prop-
erties, we obviously have∣∣∣ ∫

R
vf(t, 0, v) dv

∣∣∣ ≲ sup
(x,v)∈R×R

|f0|(x, v).

In other words, it suffices to prove the desired bound with t−2 instead of ⟨t⟩−2.
Now note that∫

R
vf(t, 0, v) dv =

∫ ∞

0

v[f(t, 0, v)− f(t, 0,−v)] dv.

For clarity of notation, we let

f̄(t, Q,K) = f(t, x, v).

Now writing in the (K,Q) variables, and using Lemma 5.2 together with the fact

that K = H = v2

2 when x = 0, we have∫
R
vf(t, 0, v) dv =

∫ ∞

0

v[f(t, 0, v)− f(t, 0,−v)] dv

=

∫ ∞

0

[f̄(t, π/2,K)− f̄(t,−π/2,K)] dK.

By the fundamental theorem of calculus, we have∫ ∞

0

[f̄(t, π/2,K)− f̄(t,−π/2,K)] dK =

∫ π/2

−π/2

∫ ∞

0

∂Qf̄(t, Q,K) dK dQ.

Next, the Cauchy–Schwarz inequality implies∫ π/2

−π/2

∫ ∞

0

∂Qf̄(t, Q,K) dK dQ =
√
π

(∫ π/2

−π/2

(∫ ∞

0

∂Qf̄(t, Q,K) dK

)2

dQ

) 1
2

≲

(∫ 2π

0

(∫ ∞

0

∂Qf̄(t, Q,K) dK

)2

dQ

) 1
2

.

Now using Poincare’s inequality we get that for any ℓ ≥ 2(∫ 2π

0

(∫ ∞

0

∂Qf̄(t, Q,K) dK

)2

dQ

) 1
2

≲

(∫ 2π

0

(∫ ∞

0

∂ℓ
Qf̄(t, Q,K) dK

)2

dQ

) 1
2

.

(14)



412 SANCHIT CHATURVEDI AND JONATHAN LUK

Now take ℓ = 2. We write ∂Q = 1
c′(K)t (Y + ∂K) so that(∫ 2π

0

(∫ ∞

0

∂2
Qf̄(t, Q,K) dK

)2

dQ

) 1
2

=

(∫ 2π

0

(∫ ∞

0

1

|c′(K)|2t2
(Y 2f̄ + 2∂KY f̄ + ∂2

K f̄)(t, Q,K) dK

)2

dQ

) 1
2

≲
1

t2

∫ 2π

0

(∫ ∞

0

(
2∑

k=0

|Y kf̄ |)(t, Q,K) dK

)2

dQ

 1
2

.

where in the last step we have integrated by parts in K and bounded 1
|c′(K)| ,

|c′′(K)|
|c′(K)| ,

etc. using Lemma 4.3 and the smoothness of c.
Finally, since f(t, Q,K) is non-zero for cs ≤ K ≤ c−1

s and Q ∈ [0, 2π], we can
take supremum in K and Q followed by Lemma 4.2 to get the required result.

Remark 5.4. Notice that since we can take any ℓ ≥ 2 in (14), we can write each
∂Q = 1

c′(H)t (Y +∂K) and integrate by parts in K many times to show that the term

in Proposition 5.3 in fact decays faster than any inverse polynomial (depending on
smoothness of f)!

In other words, the decay rate that we obtain in Theorem 1.1 is instead limited
by the term treated in Proposition 5.7 below.

5.2. Decay for the term involving f(y, v). We now turn to the other term in
Lemma 5.1. Before we obtain the main estimate in Proposition 5.7, we first prove
two simple lemmas.

Lemma 5.5. Under the change of variables (x, v) 7→ (Q,K) as in Section 3, the
volume form transforms as follows:

dv dx = c(K) dQ dK.

Proof. The Jacobian determinant for the change of variables (x, v) 7→ (χ,H) is
a(χ,H) = | Φx√

Φ
|. Further the Jacobian determinant for the change of variables

(χ,H) → (Q,K) is c(H)
a(χ,H) and hence the Jacobian determinant for (x, v) → (Q,K)

is c(H) = c(K).

Lemma 5.6. Let f̄(Q,K) = f(x, v) as above. There exists a function ḡ(Q,K) such
that

∂2
Qḡ = ∂Qf̄ (15)

and
max
ℓ≤2

sup
K

∥Y ℓḡ∥L2
Q
≲ max

ℓ≤2
sup
Q,K

|Y ℓf̄ |. (16)

Proof. We use the Fourier series of f in Q to get that

f̄(Q,K) =
k=∞∑
k=−∞

̂̄fk(K)eikQ.

Now we define

ḡ(Q,K) :=
∑

k∈Z\{0}

1

ik
̂̄fk(K)eikQ.
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Then we see that ∂2
Qḡ = ∂Qf̄ .

Using Plancherel’s theorem and the above formulae, we can easily see that

max
ℓ≤2

sup
K

∥Y ℓḡ∥L2
Q
≲ max

ℓ≤2
sup
K

∥Y ℓf̄∥L2
Q
.

Finally, the result follows by taking supremum in Q and noting that the Q-range is
bounded by 2π.

Proposition 5.7. For f satisfying the assumptions of Theorem 1.1, we have the
following estimate:∣∣∣ ∫ x′

0

∫
R
vf(t, x, v) dv dx

∣∣∣ ≲ ⟨t⟩−2
sup

(x,v)∈R×R

∑
|α|+|β|≤2

|∂α
x ∂

β
v f0|(x, v).

Proof. As in the proof of Proposition 5.3, boundedness is obvious and thus it suffices
to prove an estimate with ⟨t⟩−2 replaced by t−2.

We first note that∫ x′

0

∫
R
vf(x, v) dv dx =

∫ x′

0

∫ ∞

0

v[f(t, x, v)− f(t, x,−v)] dv dx.

Again let

f̄(t, Q,K) = f(t, x, v).

Next we use the change of variables (x, v) 7→ (Q,K), that v =
√
2H sinχ and

Lemma 5.5 followed by the fundamental theorem of calculus to obtain∫ x′

0

∫ ∞

0

v[f(t, x, v)− f(t, x,−v)] dv dx

=

∫ Φ(x′)

0

∫ π/2

0

c(K)
√
2KS(Q,K)[f̄(t, Q,K)− f̄(t,−Q,K)] dQ dK

+

∫ ∞

Φ(x′)

∫ π/2

QK

c(K)
√
2KS(Q,K)[f̄(t, Q,K)− f̄(t,−Q,K)] dQ dK

=

∫ Φ(x′)

0

∫ π/2

0

∫ Q

−Q

c(K)
√
2KS(Q,K)∂Qf̄(t, Q

′,K) dQ′ dQ dK

+

∫ ∞

Φ(x′)

∫ π/2

QK

∫ Q

−Q

c(K)
√
2KS(Q,K)∂Qf̄(t, Q

′,K) dQ′ dQ dK

=: T1 + T2,

where we have defined

• S(Q,K) := sinχ, and
• QK to be the angle in (Q,K) coordinates which corresponds to the angle

arccos

(√
Φ(x′)
H

)
in (χ,H) coordinates.

The reason that we split the integrals into T1 and T2 is as follows. Notice that

{(x, v) : x ∈ [0, x′], v ∈ [0,∞)} = {(χ,H) :
√
H cosχ ≤

√
Φ(x′), χ ∈ [0,

π

2
]}.

Hence, if K = H ≤ Φ(x′), we integrate in the full range χ ∈ [0, π
2 ] (equivalently,

Q ∈ [0, π
2 ]), while if K = H > Φ(x′), then we restrict to χ ∈

[
arccos

(√
Φ(x′)
H

)
, π
2

]
(equivalently, Q ∈ [QK , π

2 ]).
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Now using Fubini’s theorem, we have

T1 =

∫ π/2

−π/2

∫ Φ(x′)

0

(∫ π/2

|Q′|
S(Q,K) dQ

)
c(K)

√
2K∂Qf̄(t, Q

′,K) dK dQ′

and

T2 =

∫ π/2

−π/2

∫ HQ′

Φ(x′)

(∫ π/2

|Q′|
S(Q,K) dQ

)
c(K)

√
2K∂Qf̄(t, Q

′,K) dK dQ′

+

∫ π/2

−π/2

∫ ∞

HQ′

(∫ π/2

QK

S(Q,K) dQ

)
c(K)

√
2K∂Qf̄(t, Q

′,K) dK dQ′,

where HQ′ is such that
(
arccos

(√
Φ(x′)
HQ′

)
,HQ′

)
in (χ,H) coordinates gets mapped

to (|Q′|,HQ′) in (Q,K) coordinates (such an HQ′ exists because χ = arccos

(√
Φ(x′)
H

)
increases asH does andQ is monotone1 in χ.) In the application of Fubini’s theorem
above, we split T2 into two terms. This is because on the domain of integration for
T2, we have Q ≥ max{|Q′|,QK}. We thus need to handle max{|Q′|,QK} = |Q′|
and max{|Q′|,QK} = QK separately.

Putting the above together we get,

T1 + T2 =

∫ π/2

−π/2

∫ HQ′

0

(∫ π/2

|Q′|
S(Q,K) dQ

)
c(K)

√
2K∂Qf̄(t, Q

′,K) dK dQ′

+

∫ π/2

−π/2

∫ ∞

HQ′

(∫ π/2

QK

S(Q,K) dQ

)
c(K)

√
2K∂Qf̄(t, Q

′,K) dK dQ′.

Now we use (15) from Lemma 5.6 and that ∂Q = 1
c′(K)t (Y + ∂K) to get that

T1 + T2

=
1

t

∫ π
2

−π
2

∫ HQ′

0

1

c′(K)

(∫ π
2

|Q′|
S(Q,K) dQ

)
c(K)

√
2K(Y + ∂K)∂Qḡ(t, Q

′,K) dK dQ′

+
1

t

∫ π
2

−π
2

∫ ∞

HQ′

1

c′(K)

(∫ π
2

QK

S(Q,K) dQ

)
c(K)

√
2K(Y + ∂K)∂Qḡ(t, Q

′,K) dK dQ′.

Next we integrate by parts in K. Since QHQ′ = |Q′|, we see that the boundary
terms exactly cancel! Hence,

1

t

∫ π
2

−π
2

∫ HQ′

0

1

c′(K)

(∫ π
2

|Q′|
S(Q,K) dQ

)
c(K)

√
2K∂K∂Qḡ(t, Q

′,K) dK dQ′

+
1

t

∫ π
2

−π
2

∫ ∞

HQ′

1

c′(K)

(∫ π
2

QK

S(Q,K) dQ

)
c(K)

√
2K∂K∂Qḡ(t, Q

′,K) dK dQ′

=− 1

t

∫ π
2

−π
2

∫ HQ′

0

∂K

(
1

c′(K)

(∫ π
2

|Q′|
S(Q,K) dQ

)
c(K)

√
2K

)
∂Qḡ(t, Q

′,K) dK dQ′

− 1

t

∫ π
2

−π
2

∫ ∞

HQ′

∂K

(
1

c′(K)

(∫ π
2

QK

S(Q,K) dQ

)
c(K)

√
2K

)
∂Qḡ(t, Q

′,K) dK dQ′.

Since there is no boundary term we can integrate by parts after writing ∂Q =
1

c′(K)t (Y + ∂K) once more. Next note that that ḡ(Q,K) is nonzero only for K ∈

1Since a(χ,H) > 0, we have that Q is monotonically increasing as a function of χ and vice-versa.
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[cs, c
−1
s ] and that derivatives of c(K)

c′(K) are bounded as |c′(K)| ≥ δ by Lemma 4.3.

Futher, S(Q,K) = sinχ is smooth as a function of K. Thus∑
ℓ≤2

∂ℓ
K

(
1

c′(K)

(∫ π/2

|Q′|
S(Q,K) dQ

)
c(K)

√
2K

)
≲ 1.

(Notice that the second integration by parts generate boundary terms which no
longer cancel, and we can no longer integrate by parts further.)

By Cauchy–Schwarz in Q′ and K, we get that

T1 + T2 ≲
∑
ℓ≤2

sup
K

∥Y ℓḡ∥L2
Q
.

Finally, an application of (16) from Lemma 5.6 followed by Lemma 4.2 gives us the
required bound.

Proof of Theorem 1.1. The proof follows by using Lemma 5.1 and combining the
estimates from Proposition 5.3 and Proposition 5.7.

Acknowledgments. We thank the referees for their careful reading and helpful
comments.
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