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Robust Environmental Sensing Using UAVs

AHMED BOUBRIMA and EDWARD W. KNIGHTLY, Rice University, Houston, Texas

In this article, we first investigate the quality of aerial air pollution measurements and characterize the main

error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution mon-

itoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution

measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels

of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this

article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design

an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while tak-

ing into account the quality of aerial measurements. We evaluate our mission planning approach based on a

Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained

even when pollution dynamics are high.
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1 INTRODUCTION

Unmanned aerial vehicles (UAVs), commonly known as drones, are used in many environmen-

tal applications and especially air pollution monitoring, which requires high spatial resolution

sensing [4, 22]. Indeed, whether the objective is to perform a full mapping of pollution concentra-

tions or to characterize a specific pollution plume in case of a gas leak, drones offer better spatial

resolution compared to static and car-mounted sensing solutions [2]. However, due to their power

constraints, drones are limited in terms of sensing resources and require efficient mission plan-

ning in order to perform measurements at the most informative sensing locations within their

restricted flight time [7]. The performance of UAV mission planning algorithms highly depends

on the quality of aerial sensing since low-quality measurements may lead to poor predictions of

the most informative sensing locations [12].
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Evaluation of pollution aerial measurements’ quality. In this article, we first investigate

the quality of aerialmeasurements of air pollution and characterize themain error sources of drone-

mounted gas sensors. Although the quality of aerial pollution measurements has been studied

previously [8, 24], such work provides only a qualitative evaluation and does not quantify the

amount of error that is due to the main error sources, which are identified to be mainly caused

by the airflow generated from the drones’ propellers. In contrast, we conduct a comprehensive

measurement campaign of both aerial and ground data in order to quantify the multi-factor non-

homogeneous pollution sensing errors.We show that the dynamic airflow caused by drones affects

first temperature and humidity levels of the ambient air, which then affect themeasurement quality

of gas sensors.

Without loss of generality, we focus on measuring Volatile Organic Compound (VOC) pollu-

tants, which provide a strong signature of both industrial and traffic emissions. We build ASTRO+,

which is an aerial-ground air pollution monitoring platform where ground sensors provide ref-

erence measurements and drones are equipped with temperature, humidity, and wind velocity

sensors in addition to lightweight pollution sensors. We collect a comprehensive dataset of both

aerial and ground measurements and use it to characterize the impact of weather conditions on

the quality of drone-mounted pollution sensors. We show that VOC aerial measurement quality

can be inferred with more than 85% accuracy based on humidity and temperature levels of the

ambient air.

Robust UAVmission planning. In the second part of this article, we leverage these discovered

effects of weather conditions on pollution measurements’ quality in order to design a UAVmission

planning algorithm that adapts the trajectory of the drones while taking into account the quality

of aerial measurements that is inferred from weather conditions. Compared to most existing work

[3, 13, 26–28], we consider the dynamic nature of aerial sensing errors and do not rely on static

error values that are provided by manufacturers.

After a training phase prior to the flight mission in order to characterize the impact of tempera-

ture, humidity, and wind velocity on aerial measurements of pollution concentrations, our mission

planning approach operates in two phases: UAVs are first sent to uniformly distributed locations

in order to learn the spatial correlations of air pollution concentrations.Then in the second phase,

these spatial correlations are used together with the inferred aerial measurements’ quality in order

to optimize the subsequent measurement locations of the drones. We evaluate our optimization

approach based on our dataset of VOC measurements and show that our optimization approach

is robust in the sense that low-quality measurements have a minimum impact on the selection of

drones’ future measurement locations.

Related Work

Characterization of the quality of pollution aerial measurements. Due to the non-

instantaneous response time of pollution sensors [14], rotatory wing UAVs are preferred over fixed

wing drones when performing air pollution data collection. However, when propellers are spin-

ning, air pollution measurements are affected and their errors need to be properly characterized.

Existing work focuses mainly on the qualitative evaluation of these errors. For instance, some prior

work performs multiple experimental flights in an urban area and then correlates drone measure-

ments with the proximity to traffic sources [8]. This work showed the high noise level in pollution

measurements and the need of a proper characterization of measurement errors. Other prior work

proposes to characterize the airflow generated by the propellers of the drones and use the wind

velocity level as a qualitative indicator of pollution measurements’ errors [16, 18, 24]. In contrast,

we infer the measurements’ errors by co-locating drones and ground sensors and then extracting

the correlations between pollution data and wind in addition to temperature and humidity.
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UAV mission planning for environmental mapping.Mobile sensors’ mission planning for

environmental monitoring in general and air pollution mapping in particular has been extensively

studied in the literature [3, 13, 26–28]. Most existing work relies on the spatial correlation of air

pollution concentrations: that is, closer locations have higher probability of being at the same con-

centration level [5, 9, 10, 19]. Based on that, the uncertainty of pollution estimation at unmeasured

locations is formulated as a function of the spatial correlations of themeasurements. The optimized

sensing mission plan (i.e., the optimal set of sensing way-points) is then obtained by minimizing

the uncertainty of pollution estimations at unmeasured locations. In contrast, and as opposed to

our previous work [5] that is focused on static sensors rather than drones, we propose in this arti-

cle to couple the pollution spatial correlations with a fine characterization of aerial measurements’

quality in the optimization process of UAV mission planning.

Article Structure

This article extends our preliminary work presented in [6], and is organized as follows. In the next

section, we present our aerial-ground air pollution monitoring system ASTRO+. Then in Section

3, we present our quantitative evaluation of aerial pollution measurements quality using a dataset

collected with ASTRO+. After that, we present and evaluate our robust mission planning approach

in Sections 4 and 5, respectively. Finally, we conclude the article in Section 6.

2 ASTRO+: AERIAL-GROUND AIR POLLUTION MONITORING PLATFORM

In this section, we present ASTRO+, an environmental sensing platform that extends our ASTRO

drone networks system previously presented in [17]. Compared to [17], we deploy and evaluate the

effectiveness of lightweight drone-based pollution and weather sensors while offering low-noise

measurements.

2.1 Overview

ASTRO+ is an environmental sensing platform that includes two main sensing technologies:

ground reference sensors and aerial sensing using drones. We focus on measuring VOCs, which

provide a good signature of both traffic and industry related air pollution. For reference ground

sensing, we selected Defiant’s FROG-5000, which uses gas chromatography to measure the four

major VOC pollutants (Benzene, Toluene, Ethylbenzene, and Xylene) at the ppb level. Because ref-

erence measurement sensors such as the FROG-4000 are heavy and cannot be deployed easily on

drones, we use Photo Ionization Detection (PID) VOC sensors for aerial measurements. PID

sensors can weigh as little as 100 g and provide fast response measurements compared to other

lightweight sensing solutions such as electrochemical sensors. After careful analysis of existing

PID sensors, we selected ION Science’s miniPID2 VOC sensor, which has limited temperature and

humidity effects compared to other sensors in the market.

2.2 Architecture of ASTRO+

ASTRO+ includes three layers: sensing, data storage, and a third layer for data visualization and

user notification as shown in Figure 1. Data that is collected by both drones (PID sensors) and

ground sensors (gas chromatography in addition to PID) is sent over WiFi to an Internet-hosted

database. The database is connected to a mobile app and a web service that allow community users

to visualize both real-time measurements and historical data. In addition to raw measurements of

both ground sensors and last drone missions, the mobile app also indicates the air quality based

on EPA’s air pollution thresholds. In addition to data visualization, users can subscribe to SMS and

E-mail notifications in order to be informed in real time about pollution peak levels.
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Fig. 1. Architecture of ASTRO+.

Fig. 2. ASTRO+ UAV system.

2.3 UAV System

We build our UAV-based sensing system as an extension of our ASTRO platform [17, 21]. AS-

TRO is a UAV network platform that is Autonomous and Tetherless in the sense that drones form

an infrastructureless wireless network and don’t need a base station to make their sensing deci-

sions. Due to using carbon fiber lightweight frames, ASTRO drones allow up to 15 min flight time

and up to 1.5 kg of payload. ASTRO also uses hardware components that are widely used within

the open source community, namely, the Pixhawk flight controller to manage the avionics part

and the Raspberry Pi as a companion computer in order to manage the network communication

part.

We extend ASTRO by deploying lightweight VOC, temperature, humidity, and wind sensors

while offering low-noise measurements. This is achieved by first locating the sensors right next to

center of the drone as shown in Figure 2 in order to minimize turbulence effects that are caused by

the propellers [24]. In addition to that, we isolate the power source of the environmental sensors

from the flight controller and companion computer battery in order to maintain the stability

of the input voltage of the sensors. Gas, temperature, humidity, and wind measurements are
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Fig. 3. Experimental setup.

performed once per second due to the fast response of the selected sensors. In terms of resolution,

temperature values are reported within ±1° Celsius, relative humidity is reported within ±1%, and

VOC measurements are reported at the ppb level.

3 EVALUATION OF AERIAL SENSING ERRORS

In this section, we use the aerial and reference ground sensors of ASTRO+ to analyze the quality of

aerial measurements of VOCs. Prior work suggested that the dynamic airflow created by drones’

propellers affects the quality of the measurements. However, it is not previously known how these

dynamics affect the sensing mechanism of drone-mounted pollution sensors. Indeed, the main

lightweight gas sensing technologies (photoionization-based and electrochemical sensors) can be

easily affected by changes in weather conditions such as temperature and humidity but not nec-

essarily the airflow and wind velocity [15]. In this section, we propose a fine characterization of

these effects using an experimentally collected dataset.

3.1 Experimental Scenario

We performed multiple data collection experiments in Milby Park (Houston, Texas), a residential

neighborhood that is highly exposed to both traffic pollution (facing a highway) and industrial

pollution (located within less than 2 miles of three chemical plants). We collected in different

locations and times during February and October 2020 more than 2,000 measurements of both

ground reference data and aerial data of VOC pollution concentrations in addition to aerial data

of temperature, relative humidity, and wind velocity.

As depicted in Figure 3, each measurement was performed while having the drone hovering

at about 2.5 m and located within 4 to 5 meters of the ground sensor, which was sampling at an

altitude close to that of the drone (1.5 m). In order to reduce sensing errors during themeasurement

campaign, and as recommended by manufacturers [20, 29], both aerial and ground sensors were

properly calibrated in the field against reference gas concentrations of Isobutylene (a VOC gas that

is commonly used to calibrate PID sensors).
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Fig. 4. Ground measurements vs. aerial measurements.

3.2 First Analysis

Figure 4 depicts the obtained VOC ground measurements on the x-axis and the corresponding

aerial measurements on the y-axis. Note that even though aerial measurements may underesti-

mate the real concentrations in some few cases going down to as low as 20 ppb compared to the

lowest reference concentration of 40 ppb, the overall bias of drone data is very low and does not

exceed 1 ppb due to the proper calibration of the sensors prior to the measurement campaign.

However, the overall standard deviation of aerial sensing errors is substantial and exceeds 6% of

the full range of the measured concentrations (96 ppb). This is clearly due to the dynamic nature

of aerial measurements where drone propellers’ effects are very variable and therefore difficult to

predict.

In order to characterize the main sources of aerial measurement errors, we depict in Figure 5

the standard deviation of the error of aerial measurements with respect to ground reference data

depending, respectively, on wind velocity (generated by the drone propellers), temperature, rela-

tive humidity, and absolute humidity. We recall that all temperature, humidity, and wind sensors

all located on top of the drone and measure the ambient air that is surrounding the drone pollu-

tion sensor. The air flow speed generated by the propellers seems to have a low but still existing

correlation, which does not exceed 25%. However, temperature and relative humidity dynamics

(which are caused in part by the airflow dynamics that are due to the propellers’ wind) correlate

with aerial measurements’ quality better than wind and yield more than 60% of linear correlation

and more than 90% of polynomial third-order correlation. This is mainly due to the high sensi-

tivity of pollution sensors in general to temperature [15], and also the sensitivity of PID sensors

in particular to the level of water vapor in the air [23]. This is why water vapor (also defined as

absolute humidity and calculated based on both temperature and relative humidity) provides al-

most 90% correlation with aerial measurements quality when using just the first-order polynomial

fit.

3.3 Evaluation of Inference Models

As already highlighted, on-drone air pollution measurement errors exhibit remarkable correla-

tions with temperature and humidity. In this section, our objective is to evaluate different infer-

ence models where the output is the quality of pollution aerial measurements (i.e., error’s stan-

dard deviations) based on the data of temperature, humidity, and wind sensors. While using cross

validation and considering the mean squared error as our inference loss function, we divide our

2,000 collected measurements’ dataset into five groups. We report in Table 1 the inference accu-

racy level (R2) of (i) single linear regression, (ii)multiple linear regression (MLR) in addition to
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Fig. 5. Effects of wind, temperature, and humidity on the quality of VOC aerial measurements.

Table 1. Evaluation Results of Inference Models

R2 (%) Single linear regression MLR SVM DNN

Wind Temp. R. hum. Abs. hum.

Avg. 23% 64% 65% 87% 66% 94% 94%

Max. 25% 67% 68% 89% 70% 95% 96%

Min. 21% 58% 63% 85% 63% 93% 92%

(iii) support vector machines (SVMs), and (iv) deep neural networks (DNNs), which have

been proven in the literature as very efficient nonlinear regression solutions [1]. Note that abso-

lute humidity is not considered as an input to the MLR, SVM, and DNN inference models due to

the fact that it is a redundant inference input. Indeed, absolute humidity is not a measured value

but rather calculated based on temperature and relative humidity measurements.

The results presented in Table 1 confirm the efficiency of linear regression when using absolute

humidity values, which yields up to 89% accuracy in the five groups of the cross-validation process.

Note that this is even better than performing a multiple linear regression that uses temperature,

relative humidity, and wind raw measurements, in which case the performance accuracy does

not exceed 70%. This is because absolute humidity is—by definition—a non-linear combination

of temperature and relative humidity and hence reflects in a better way the non-linear effects

of temperature and relative humidity on pollution measurements. However, SVM regression and

DNN, which allow on average around 94% inference accuracy, better handle these non-linearities

by learning the best non-linear combination of temperature and relative humidity as opposed to

the fixed formula of absolute humidity.

Discussion. The results presented in this section show that co-locating temperature, humid-

ity, and wind sensors with air pollution sensors can help infer the quality of pollution aerial
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measurements subject to a proper training prior to environmental mapping missions. For instance,

and as shown in this section, PID measurements’ quality can be inferred to almost 90% using ab-

solute humidity data (calculated based on temperature and relative humidity measurements). For

other pollution sensors (electrochemical sensors, for instance), the predictive variables can be dif-

ferent than absolute humidity or a combination of multiple weather conditions but the correlation

should still remain high as most air pollution sensors are very sensitive to weather conditions [15].

This measurements’ quality inference fact can then be used to characterize pollution aerial sens-

ing quality at future measurement locations by first interpolating the already collected weather

data and then using the results of this interpolation to predict pollution measurements’ quality at

future sensing points.

Based on the results of this section, we propose to classify the evaluated inference models into

three groups:

(i) Accurate inference models (SVM, DNN, and single linear regression based on absolute hu-

midity), which allow an inference accuracy that is greater than 85%.

(ii) Average inference models (linear regression based on either temperature, humidity, or both),

which allow an inference accuracy that is between 50% and 70%.

(iii) Poor inference models (single linear regression based on wind velocity measurements),

where the inference accuracy is less than 30%.

We compare later in Section 5 the impact of using these different inference models on the overall

performance of UAV mission planning.

4 ROBUST MISSION PLANNING FOR AIR POLLUTION MAPPING

4.1 Overview

The experimental study presented in the previous section confirms that pollution aerial measure-

ments’ quality is dynamic and non-homogeneous with respect to the measurement context (tem-

perature, humidity, andwind levels of the ambient air). These dynamics should have a direct impact

on the performance of UAV mission planning algorithms since low-quality measurements may

lead to a poor estimation of the drones’ mission plans. Based on that fact, we design in this section a

UAV mission planning approach while relying on a fine characterization of aerial measurementsâ..

quality in addition to the inherent pollution spatial correlations. Given an input region to be

monitored and a set of pollution-sensing UAVs with limited flight time, we aim at (i) determining a

selection of points that should be sampled by the UAV network so that the obtained measurements

yield a low-error estimated pollution map; and (ii) determining for each UAV the locations that

should be visited so that the covered points of interest are visited by at least one drone. Here, the es-

timated pollution map is obtained by interpolating the data collected at the optimal measurement

locations.

The proposed mission planning approach operates as follows: after a training phase prior to

the flight mission in order to quantify the impact of temperature, humidity, and wind velocity

on aerial measurements of pollution concentrations, UAVs are first sent to uniformly distributed

locations in order to characterize the spatial correlations of air pollution concentrations. Then,

these spatial correlations are used together with the inferred aerial measurements’ quality in or-

der to optimize the following measurement locations of the drones. The optimal measurement

locations of each drone are obtained by minimizing the overall variance of the interpolated con-

centrations’ errors while taking into account the aerial sensing constraints (the dynamic sensing

error and the response time of pollution sensors, the speed of the drone, and the drone’s battery

capacity).
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Table 2. Main Notations Used in our Approach

Description Dimension

p Space points l × 1

д Unknown ground truth vector l × 1

z Measurements’ vector n × 1

c Interpolated concentrations’ vector l × 1

H Measurements-to-Space mapping matrix n × l

θ Vector of random sensing errors n × 1

B Correlation matrix of pollution concentrations l × l

R Covariance matrix of sensing errors n × n

F Covariance matrix of interpolation errors l × l

W Interpolation weights’ matrix l × n

4.2 Air Pollution Mapping

Before getting into the details of our UAV mission planning process, we first present the mathe-

matical formulation that allows us to estimate pollution concentrations at unmeasured locations

given a set of space locations with a limited number of measurements. We focus on the optimal

linear interpolation method, which is the most used air pollution data interpolation technique in

the literature [25]. Without loss of generality, and due to the relatively short flight time of drones,

we focus on the case of pollution concentrations that change only in space and not in time. The

main notations used in this section are summarized in Table 2.

Let p be a vector of l discrete points approximating the space in 2D or 3D, i.e., p = [p1,p2, . . . ,

pl ]
T where pi = (xi ,yi , zi ). We use g ∈ Rl to denote the unknown ground truth timely static

pollution concentrations at the l points of space. i.e., g = [д1,д2, . . . ,дl ]
T where дi is the pollution

concentration at point i . Let z ∈ Rn be a set of measurements performed at n different locations in

spacep, i.e.,z = [z1, z2, . . . , zn]
T where zi is measurement number i . In order tomapmeasurements

to space locations, we define a matrixH ∈ Rn×l where each matrix element hi j is a Boolean set to 1

if measurement number i is performed at point j. Let θi be the error of measurement zi with respect

to ground truthдi . We denote the variance of sensing error θi using ri , which can be inferred based

on co-located measurements of temperature, humidity, and wind velocity as demonstrated in the

previous section of this article. In addition, we assume that θi has a zero mean as this is usually the

case when pollution sensors are properly calibrated. We also assume that pollution measurement

errors are uncorrelated because they mainly depend on the electronics of the sensing mechanism.

Hence, the covariance matrix of sensing errors, R ∈ Rn×n , is a diagonal matrix.

Air pollution concentrations дi are inherently correlated in space [25]. We denote the spatial

correlation matrix of pollution concentrations by B ∈ Rl×l . Each matrix element bi j reflects for

space locations i and j the probability of being at the same concentration level.

Using themeasurement vector z and thematrixH definingmeasurement locations, our objective

is to obtain an estimation vector c ∈ Rl by interpolating pollution concentrations at unmeasured

locations. In the case of optimal linear interpolation [11], c is defined in matrix form as

c =W z

such that c is a linear combination of the collected measurements. The interpolation weights are

defined by the matrixW , which is calculated as in [11],

W = BHT (R + HBHT )−1, (1)
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and is a function of sensing quality defined by matrix R in addition to the spatial correlation matrix

of pollution concentrations B. Let ηi denote the interpolated concentrations’ errors with respect

to the unknown ground truth value at each point i (i.e., η = c − д). The covariance matrix of η

(denoted F ) is calculated as in [11],

F = (Il − BH
T (R + HBHT )−1H )B, (2)

where Il is the identity matrix. Based on F , we define the overall mapping error of a given inter-

polated map c corresponding to a given measurements’ vector z as
∑

i ∈[1,l ]

cαi × fii ,

where α is a parameter used to emphasize the interpolation error at polluted locations compared

to the slightly polluted ones. Indeed, the higher the value of the α parameter, the higher is the

contribution of the polluted locations (locations i where ci is high) in the sum of the optimization

function.

4.3 Mission Planning Process

We consider a mobile sensing system consisting ofm drones that are equipped with air pollution

sensors that are used to collect measurements z within the monitoring region p. In order to quan-

tify the covariance matrix of pollution measurements’ errors R, drones are also equipped with

temperature, humidity, and wind sensors. This allows us to infer on-the-fly ri , the error variance

of each already collected measurement zi in addition to inferring the measurement error variance

at future mission locations by interpolating the already collected temperature, humidity, and wind

data. The measurement error inference is obtained based on a training phase that is performed

prior to the pollution mapping mission by co-locating drones and reference sensors as shown in

Section 3.

Because of the response time of pollution sensors, drones need to hover for a time Thover in

order to obtain a pollution measurement at a given space point [15]. In addition to the hover time

constraint, we assume that drones travel at a constant speed v . Based on that, we calculate the

travel times between each pair of points (i, j ) that we denote by Ttravel (i, j ). In addition, let Tf l iдht
be the maximum flight time of each drone, which mainly depends on the weight of the drone, the

capacity of the battery, and the drone speed v .

In terms of communication, we assume that drones remain connected to the base station when

traveling within the monitoring region p. This is usually the case in urban environments and

industrial areas. In addition, we assume that the communication delay between the drones and the

base station is minimal compared to the measurement hover time of the drones, which can be as

high as 30 s [15].

Our mission planning approach operates in two phases: a learning phase and an optimization

phase. The objective of the first phase is to learn the spatial correlation matrix of pollution con-

centrations B. In the second phase, we define and solve an optimization model while relying on

spatial correlations B and non-homogeneous measurements’ quality R in order to guide the drones

to the locations that allow us to obtain a vector c of estimated concentrations with a corresponding

covariance matrix F where the mapping quality defined in the previous section (
∑

i ∈[1,l ] c
α
i × fii )

is minimized.

Phase 1: Initialization phase. Our objective in phase 1 is to characterize the spatial corre-

lations of pollution concentrations by estimating the matrix B. To that end, we perform n0 mea-

surements that are uniformly distributed in the monitoring region. We first divide the monitoring

region intom sub-regions having the same surface area. Each drone is then sent to one of these
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sub-regions and performs n0/m uniformly distributed measurements. Note that n0 is a parameter

that should be chosen carefully depending on the size of themonitoring region. At the end of phase

1, the obtained pollution measurements, denoted by z0, in addition to the inferred measurements’

quality matrix R, are sent over to the base station. Based on that data, the base station performs the

characterization of the spatial correlations as explained later in Section 4.4 and mission planning

decisions as explained in Section 4.5.

Phase 2: Optimization phase.Our objective in phase 2 is to use the obtained B matrix in order

to find the best way-points where drones should perform their measurements while taking into

account flight time constraints. The optimization algorithm is run at the base station at the end

of the initialization phase. As a result, each drone obtains the optimal mission plan with respect

to the current characterization of pollution spatial correlations. Each drone follows then the pro-

vided mission plan and each performed measurement is sent right away to the base station. The

latter uses the new data in order to refine the characterization of pollution spatial correlations at

a specific rate. The new characterization of spatial correlations is then used to refine the optimal

mission plans of the drones and this process continues until no more data can be performed. At the

end, the base station uses the full set of the obtained measurements combined with the inferred

sensing quality and the final characterization of pollution spatial correlations in order to calculate

the final interpolated concentrations c .

4.4 Robust Spatial Correlation Characterization

Given a set of already collected measurements z0 ∈ Rn0 in addition to online inferred measure-
ments’ quality R, our aim is to estimate the pollution spatial correlations B. We recall that each
matrix element bi j corresponds to the correlation between the unknown ground truth concentra-
tions дi and дj . In order to estimate the pollution spatial correlation between each pair of locations
i and j, we first define as D (i, j ) the set of sampled location pairs that are within a Euclidean dis-
tance close to the distance between locations i and j. Mathematically, the set D (i, j ) can be written
as

D (i, j ) = {(a,b) | za , zb ∈ z
0 & ‖pa − pb ‖ = ‖pi − pj ‖ ± ∆}.

Based on D (i, j ), we estimate the bi j spatial correlation as

bi j = corr

�����
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

za1
ra1+rb1
...

za |D |
ra |D |+rb |D |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zb1
ra1+rb1
...

zb |D |
ra |D |+rb |D |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

�����



. (3)

This provides a robust estimation of corr (дi ,дj ) while taking into account measurement errors

by normalizing the measurements within each pair of points (a,b) using their respective error’s

variance ra and rb . The outcome of this normalization process is that low-quality measurements

(i.e., pairs (a,b) where either ra or rb is high) become less involved in the final estimated correla-

tions bi j , whereas high-quality measurements (i.e., pairs (a,b) where both ra and rb are low) are

emphasized.

4.5 Robust Mission Planning Optimization

Using the obtained characterization of spatial correlationsB and the inferredmeasurements quality
matrix R, our objective is to find the best locations that offer the best interpolation of pollution
concentrations. In addition, we ensure that the selected locations can be sampledwith them drones
subject to their remaining flight time Tf l iдht . We determine for each drone the best ordered set of
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sampling points by solving the following optimization model:

Minimize
∑

i ∈[1,l ]

cαi × fii

Subject to Eq. (1), Eq. (2), and flight constraints

The objective function ensures theminimization of the overall variance of estimated concentration

errors fii , i ∈ [1, l] while emphasizing the interpolation error at polluted locations compared to the

slightly polluted ones. The minimization of the interpolation error’s variance is performed with

respect to thematrixH , which is themain decision variable in the optimization process and defines

the best aerial sensing locations. In order to take into account the aerial sensing requirements,

we constrain the sensing locations so that they are ordered in a way that takes into account the

necessary sampling hover time in addition to drone travel times when moving from one location

to another.

We solve our mission planning optimization model using commercial optimization solvers (IBM

CPLEX) in the case of small monitoring regions. In order to scale our approach to large regions,

we propose to solve the optimization model to obtain only a partial mission plan for each drone

and then update the mission plans as the drones are flying.

5 EXPERIMENTAL EVALUATION OF ROBUST MISSION PLANNING

In this section, we first use a real-world dataset in order to validate the efficiency of our robust

mission planning, which leverages the use of co-located weather sensors to infer the aerial sens-

ing quality of pollution concentrations and guide the drones to the most accurate measurement

locations. We show that we reach a high performance even with average sensing inference mod-

els. Then, in the second part of this section, we use a numerically generated dataset in order to

explore the impact of the dynamics of both pollution concentrations and aerial sensing quality on

the overall performance of our mission planning approach. We conclude that the efficiency of our

optimization approach remains high even in the presence of heterogeneous pollution fields and

sensing qualities.

5.1 Experimental Setup

Dataset.We evaluate our mission planning approach using a set of 30 pollution maps of aerial

and ground measurements of VOC pollutants collected in February and October 2020 using our

sensing platform ASTRO+. We also use as input the collected weather data (temperature, humidity,

and wind) in order to infer online VOC sensing errors. By default, we consider the application of

the linear sensing inference model that is based on absolute humidity since the latter is highly

correlated with aerial pollution measurement qualities as shown in Section 3. Each collected data

map corresponds to a grid of 34 data points (l = 34) within theMilby Park residential neighborhood

(Houston, Texas). Figure 6 illustrates an example of the spatial distribution of the main input maps

(respectively, an aerial VOCmap collected by the drone, a VOC groundmap collected by a reference

sensor, and aerial absolute humidity data).

Flight constraints. We assume that drones fly high enough to avoid obstacles and that their

flight speed is fixed at 2 m/s for safety reasons. We set the hover time of each drone to 10 s since

we are focusing on VOC sensors, which have an acceptable response time that is usually within

few seconds. We consider flight times of up to 40 min where the first 10 min are reserved to the

initialization phase of our mission planning approach. This allows us to perform six uniformly

distributed initial measurements (n0 = 6), which is necessary for an initial characterization of

pollution spatial correlations matrix B.
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Fig. 6. Mission planning evaluation dataset (one map example).

Performance metric.We simulate our mission planning approach while using the aerial data

maps each time a drone sample is performed. Then we evaluate the quality of the output of each

simulation by comparing the final interpolated map of aerial data to the corresponding reference

ground map. We use the relative RMSE as a performance metric to evaluate the percentage of

interpolation error of each environmental sensing mission.

Performance benchmarks. We compare the results of our robust mission planning to the

following baselines:

—Omniscient planning: this is the optimal trajectory that can be followed to get the best inter-

polation results, and can be obtained while relying on the exact error of aerial measurements

(assumed to be hypothetically known). Given a number of sampling locations to optimize,

we perform an exhaustive search to find the best combination of measurement locations that

minimize the RMSE evaluation metric.

— Traditional mission planning: in this case, the measurement error’s variance is assumed ho-

mogeneous and provided by the manufacturer as in most prior work. To evaluate this case,

we simulate our optimization approach while setting the measurement error’s variance ri of

each point i to the overall sensing errors’ variance (36 ppb2 in our VOC dataset).
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Fig. 7. Robust mission planning performance compared to baselines.

—Random uniform: this corresponds to flying the drone to random sensing locations following

the uniform distribution.

5.2 Validation Results

Figure 7 depicts the results obtained while considering a single drone with an overall flight time

of up to 40 min, which allows the drone to sample on average up to 25 locations including the

measurements collected during the 10 min of the initialization phase.

The results show that due to the dynamic and non-homogeneous nature of aerial sensing qual-

ity, traditional mission planning fails to send the drones to the most informative locations and

selects instead measurement locations that are almost uniformly distributed in the monitoring

region. This is due to the optimization objective function of traditional mission planning which

only depends on spatial correlations since the variance of sensing errors is assumed homogeneous.

Compared to that, and due to taking into account the heterogeneous nature of aerial sensing er-

rors, our approach adjusts the spatial density of selected measurement locations depending on the

sensing quality. This helps first better characterize the spatial correlations of pollution concentra-

tions and then improve the interpolation performance by using the most accurate aerial data. As a

result, our robust mission planning outperforms traditional solutions by up to 2.5× improvement

factor (calculated with respect to the omniscient planning).

Note that our performance improvement decreases as the drone’s flight time is extended. This

is due to the small size of the monitoring region (500 m × 500 m), where a 30 min flight time in the

second phase (40 min including phase 1) allows a single drone to sample more than half of the grid

points and as a result obtain a good interpolation quality even with uniformly distributed mea-

surement locations. However, our approach, being efficient even with limited sensing resources

(2.5× improvement factor with just 10% of sensing resources), allows us to efficiently monitor large

deployment regions.

The efficiency of our robust planning both in terms of achievable performance improvement

factor and required sensing resources may depend on three main parameters: (i) the accuracy of

sensing inference models, which—if not good enough—may invalidate the accuracy of our mission

plans; (ii) the dynamics of pollution concentrations; and (iii) the spatial dynamics of sensing er-

rors, which may lead to low correlations between measurement locations and therefore reduce the
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Fig. 8. Impact of the accuracy of sensing inference models.

performance of the interpolation process. We explore these three performance parameters in the

following of this section.

5.3 Impact of the Accuracy of Sensing Inference Models

We focus in this section on how the performance of our robust mission planning scales with the

accuracy of the inference model that is used to predict the quality of aerial measurements of pollu-

tion concentrations. We recall that in Section 3, we identified three inference model groups where

the inference accuracy is either greater than 85% (accurate), between 50% and 70% (average), or

less than 30% (poor). Figure 8 depicts the average performance results of our mission planning

depending on sensing resources while considering accurate, average, and poor inference models

compared to traditional planning. For comparison purposes, we also plot in Figure 8 the results

obtained with our planning approach when considering random uniform sensing inference.

We first observe that even with an average inference model, our mission planning outperforms

traditional solutions and allows up to 2× improvement factor. Most importantly, dropping the sens-

ing inference quality from 95% (using SVMs) to 65% (using temperature-based linear regression)

involves a performance drop that is less than the accuracy ratio of those two inference models. In

addition, the performance improvement when using average sensing inference follows the same

convex pattern of robust planning that is based on accurate sensing inference. Indeed, in the mis-

sion planning optimization process, the most important thing is to identify inaccurate measure-

ment locations and not necessarily estimate the exact quality of the aerial measurements.

The comparison between the impact of accurate and average inference models also shows that

the importance of the sensing inference model is higher in the early stage of the mission planning

process: as the drones fly and more data is collected, the quality of the inference model becomes

less important as there are less locations to select (smaller search space).

Figure 8 also shows that using a poor inference model (such as a wind-based linear regression

or even random inference) yields similar performance compared to traditional planning but not

worse. The reason behind that is that although poor inferencemodels assignwrong sensing quality

to aerial measurements, the range of the sensing errors is preserved, and as a result, poor inference

models are close to estimating that sensing errors are homogeneous as in the case of traditional

planning.
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Table 3. Default Simulation Parameters

Parameter Notation Value

Number of space points l 100

Mean of pollution concentrations μ2д 50 ppb

Variance of pollution concentrations σ 2
д 152

Mean of humidity levels μ2a 50%

Variance of humidity levels σ 2
a 52

5.4 Impact of the Dynamics of Pollution Concentrations and Sensing Quality

As already highlighted, the robustness of our mission planning approach is dependent upon the dy-

namics of pollution concentrations and the spatial dynamics of sensing errors, which have a direct

impact on the performance of the interpolation process. Since these dynamics cannot be controlled

in our experimental dataset, we explore their effects using numerically generated environmental

data inputs (pollution concentrations and weather data) while considering different heterogeneity

levels. We first present our numerical scenario using the same notations as in Section 4 and then

discuss the obtained numerical results.

5.4.1 Numerical Scenario. We consider a 2D space with an area of (500 m × 500 m) associated

with a uniform grid p of 100 space points (l = 100). We simulate pollution ground truth concentra-

tions and weather data as Gaussian processes, which is a very common simulation approach for

environmental data [13]. For simplification purposes, we assume that the mean and the variance

of the pollution field д are stationary. That is,

д ∼ N
(

μд1l ,σ
2
дB
)

,

where μд and σ 2
д are, respectively, the stationary mean and variance of the ground truth pollution

field, 1l ∈ R
l is a vector with all elements set to 1, and B is the spatial correlationmatrix of pollution

concentrations.

In order to isolate the main input parameters that we are investigating in this section, we derive

the B matrix using a distance-decay exponential function and assume that it is perfectly known

during the mission planning process without a required initialization phase.

In addition to the pollution ground field д, we simulate weather data (mainly humidity levels

a ∈ Rl ) as

ai ∼ N
(

μa ,σ
2
a

)

∀i ∈ [1, l] i .i .d .,

where μa and σ 2
a are, respectively, the mean and the variance of the humidity distribution.

We recall that the aerial sensing error at a point i is denoted using θi . We assume that θi variables

are independent and defined as

θi ∼ N (0, ri ),

where ri is the variance of θi and is assumed to be a perfect linear function of the humidity level

at point i; i.e., ri = u (ai ). Therefore, we simulate the aerial sensing errors θi based on humidity

levels ai as

θi ∼

u (ai )
∑

1

N (0, 1).

We explore in the following of this section the impact of the dynamics of pollution concentra-

tions and sensing errors by varying mainly σ 2
д and σ 2

a . The default parameters of the simulation

process are summarized in Table 3.
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Fig. 9. Impact of the spatial dynamics of pollution concentrations.

5.4.2 Evaluation of the Impact of the Dynamics of Pollution Concentrations. In order to explore

the effects of the heterogeneity level of ground pollution concentrations on the performance of

robust planning, we vary the variance of the Gaussian field д while considering three configu-

rations: (i) low spatial dynamics with σд = 5, (ii) average spatial dynamics with σд = 15, and

(iii) high spatial dynamics with σд = 25.

We run both our robust mission planning and the traditional optimization approach (100 sim-

ulation runs) and report in Figure 9 the average improvement factor at three different stages of

the environmental missions (at the early stage where only 20% of the measurement locations have

been sampled, in the middle of the mission, and at the final stage where 80% of the measurement

locations have been sampled).

We first observe in Figure 9 that the overall improvement factor is at its highest value and

exceeds 2.5× when the pollution dynamics are low. This is because the most important mission

planning criterion in this case is the quality of aerial measurements, which are well inferred in our

optimization approach.

We also observe that increasing the pollution dynamics does not involve decreasing the per-

formance improvement with the same scale: the performance improvement remains at almost 2×

even when pollution dynamics are high. The reason behind that is that selecting the best measure-

ment locations has the same importance level as spatially distributing the measurements starting

from a given threshold. It is noteworthy that however, the stage at which the highest performance

is achieved changes depending on pollution dynamics and is reached only at the final stage in

case of high pollution heterogeneity. Indeed, in this case, a higher number of measurements is

necessary in order to achieve an efficient interpolation.

5.4.3 Evaluation of the Impact of Aerial Sensing Quality. We now focus on how the mission

planning process is affected by the distribution of the aerial sensing errors. We recall that in our

simulation process, the aerial sensing qualities are mainly derived from the distribution of humid-

ity levels: the higher the humidity level, the lower the aerial sensing quality of pollution concen-

trations. Based on that, we vary in this simulation scenario the variance of humidity levels σ 2
a

and consider three sensing configurations: (i) low pollution aerial sensing errors when σa = 1,

(ii) average pollution aerial sensing errors when σa = 5, and (iii) high pollution aerial sensing

errors when σa = 10.

Since the sensing errors are well inferred in the robust mission planning, the obtained perfor-

mance level is similar in our proposed approach. However, the performance of traditional planning

highly varies in between the three aerial sensing scenarios that are considered in this evaluation

ACM Transactions on Internet of Things, Vol. 2, No. 4, Article 25. Publication date: July 2021.



25:18 A. Boubrima and E. W. Knightly

Fig. 10. Impact of aerial sensing quality on traditional planning.

test. In order to explore these variations, we report in Figure 10 the obtained relative RMSE of tra-

ditional planning while varying the available sensing resources (percentage of sampled locations).

The results in Figure 10 show that in all three sensing configurations, the relative RMSE of

the interpolated pollution maps is reduced with increased sampled locations before converging

to a plateau level, which happens when every other location is sampled and hence the sampled

locations are already dense enough to provide an efficient interpolation. However, the curvature

of the three different graphs in Figure 10 is highly dependent upon the dynamics of aerial sensing

errors. Indeed, we observe that the performance curve of traditional planning tends to a concave

form as the aerial sensing errors become higher and more dynamic. The reason behind that is that

as the dynamics of aerial sensing errors increase, there is a higher probability of selecting sensing

locations with inaccurate measurements if these errors are assumed to be homogeneous as in the

case of traditional mission planning. As a result, in practice, the performance improvement of our

mission planning process with respect to traditional planning is expected to increase with sensors

aging as they become less accurate over time [23]. This means that our proposed mission planning

approach also extends the overall lifetime of the aerial sensing system.

6 CONCLUSION

In this article, we propose a robust mission planning approach that adapts the trajectory of the

drones while taking into account the quality of aerial measurements that is inferred from weather

conditions. Compared to existing mission planning algorithms, we propose in our work to couple

the pollution spatial correlations with a fine characterization of aerial measurementsâ.. quality

in the optimization process of UAV mission planning. After a training phase prior to the flight

mission in order to quantify the impact of temperature, humidity, and wind velocity on aerial

measurements of pollution concentrations, our mission planning approach operates in two phases:

a spatial-correlation-learning phase and a trajectory optimization phase. We evaluate our mission

planning approach based on both experimental and numerically generated pollution datasets and

show a high-performance improvement that is due to the fine characterization of the measurement

errors. In terms of perspectives, we plan to extend the proposed mission planning approach to a

distributed scenario in which the sensing locations of drones are optimized in a collaborative way.
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