Robust Environmental Sensing Using UAVs

AHMED BOUBRIMA and EDWARD W. KNIGHTLY, Rice University, Houston, Texas

In this article, we first investigate the quality of aerial air pollution measurements and characterize the main
error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution mon-
itoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution
measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels
of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this
article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design
an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while tak-
ing into account the quality of aerial measurements. We evaluate our mission planning approach based on a
Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained
even when pollution dynamics are high.
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1 INTRODUCTION

Unmanned aerial vehicles (UAVs), commonly known as drones, are used in many environmen-
tal applications and especially air pollution monitoring, which requires high spatial resolution
sensing [4, 22]. Indeed, whether the objective is to perform a full mapping of pollution concentra-
tions or to characterize a specific pollution plume in case of a gas leak, drones offer better spatial
resolution compared to static and car-mounted sensing solutions [2]. However, due to their power
constraints, drones are limited in terms of sensing resources and require efficient mission plan-
ning in order to perform measurements at the most informative sensing locations within their
restricted flight time [7]. The performance of UAV mission planning algorithms highly depends
on the quality of aerial sensing since low-quality measurements may lead to poor predictions of
the most informative sensing locations [12].
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Evaluation of pollution aerial measurements’ quality. In this article, we first investigate
the quality of aerial measurements of air pollution and characterize the main error sources of drone-
mounted gas sensors. Although the quality of aerial pollution measurements has been studied
previously [8, 24], such work provides only a qualitative evaluation and does not quantify the
amount of error that is due to the main error sources, which are identified to be mainly caused
by the airflow generated from the drones’ propellers. In contrast, we conduct a comprehensive
measurement campaign of both aerial and ground data in order to quantify the multi-factor non-
homogeneous pollution sensing errors. We show that the dynamic airflow caused by drones affects
first temperature and humidity levels of the ambient air, which then affect the measurement quality
of gas sensors.

Without loss of generality, we focus on measuring Volatile Organic Compound (VOC) pollu-
tants, which provide a strong signature of both industrial and traffic emissions. We build ASTRO+,
which is an aerial-ground air pollution monitoring platform where ground sensors provide ref-
erence measurements and drones are equipped with temperature, humidity, and wind velocity
sensors in addition to lightweight pollution sensors. We collect a comprehensive dataset of both
aerial and ground measurements and use it to characterize the impact of weather conditions on
the quality of drone-mounted pollution sensors. We show that VOC aerial measurement quality
can be inferred with more than 85% accuracy based on humidity and temperature levels of the
ambient air.

Robust UAV mission planning. In the second part of this article, we leverage these discovered
effects of weather conditions on pollution measurements’ quality in order to design a UAV mission
planning algorithm that adapts the trajectory of the drones while taking into account the quality
of aerial measurements that is inferred from weather conditions. Compared to most existing work
[3, 13, 26-28], we consider the dynamic nature of aerial sensing errors and do not rely on static
error values that are provided by manufacturers.

After a training phase prior to the flight mission in order to characterize the impact of tempera-
ture, humidity, and wind velocity on aerial measurements of pollution concentrations, our mission
planning approach operates in two phases: UAVs are first sent to uniformly distributed locations
in order to learn the spatial correlations of air pollution concentrations.Then in the second phase,
these spatial correlations are used together with the inferred aerial measurements’ quality in order
to optimize the subsequent measurement locations of the drones. We evaluate our optimization
approach based on our dataset of VOC measurements and show that our optimization approach
is robust in the sense that low-quality measurements have a minimum impact on the selection of
drones’ future measurement locations.

Related Work

Characterization of the quality of pollution aerial measurements. Due to the non-
instantaneous response time of pollution sensors [14], rotatory wing UAVs are preferred over fixed
wing drones when performing air pollution data collection. However, when propellers are spin-
ning, air pollution measurements are affected and their errors need to be properly characterized.
Existing work focuses mainly on the qualitative evaluation of these errors. For instance, some prior
work performs multiple experimental flights in an urban area and then correlates drone measure-
ments with the proximity to traffic sources [8]. This work showed the high noise level in pollution
measurements and the need of a proper characterization of measurement errors. Other prior work
proposes to characterize the airflow generated by the propellers of the drones and use the wind
velocity level as a qualitative indicator of pollution measurements’ errors [16, 18, 24]. In contrast,
we infer the measurements’ errors by co-locating drones and ground sensors and then extracting
the correlations between pollution data and wind in addition to temperature and humidity.
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UAV mission planning for environmental mapping. Mobile sensors’ mission planning for
environmental monitoring in general and air pollution mapping in particular has been extensively
studied in the literature [3, 13, 26-28]. Most existing work relies on the spatial correlation of air
pollution concentrations: that is, closer locations have higher probability of being at the same con-
centration level [5, 9, 10, 19]. Based on that, the uncertainty of pollution estimation at unmeasured
locations is formulated as a function of the spatial correlations of the measurements. The optimized
sensing mission plan (i.e., the optimal set of sensing way-points) is then obtained by minimizing
the uncertainty of pollution estimations at unmeasured locations. In contrast, and as opposed to
our previous work [5] that is focused on static sensors rather than drones, we propose in this arti-
cle to couple the pollution spatial correlations with a fine characterization of aerial measurements’
quality in the optimization process of UAV mission planning.

Article Structure

This article extends our preliminary work presented in [6], and is organized as follows. In the next
section, we present our aerial-ground air pollution monitoring system ASTRO+. Then in Section
3, we present our quantitative evaluation of aerial pollution measurements quality using a dataset
collected with ASTRO+. After that, we present and evaluate our robust mission planning approach
in Sections 4 and 5, respectively. Finally, we conclude the article in Section 6.

2 ASTRO+: AERIAL-GROUND AIR POLLUTION MONITORING PLATFORM

In this section, we present ASTRO+, an environmental sensing platform that extends our ASTRO
drone networks system previously presented in [17]. Compared to [17], we deploy and evaluate the
effectiveness of lightweight drone-based pollution and weather sensors while offering low-noise
measurements.

2.1 Overview

ASTRO+ is an environmental sensing platform that includes two main sensing technologies:
ground reference sensors and aerial sensing using drones. We focus on measuring VOCs, which
provide a good signature of both traffic and industry related air pollution. For reference ground
sensing, we selected Defiant’s FROG-5000, which uses gas chromatography to measure the four
major VOC pollutants (Benzene, Toluene, Ethylbenzene, and Xylene) at the ppb level. Because ref-
erence measurement sensors such as the FROG-4000 are heavy and cannot be deployed easily on
drones, we use Photo Ionization Detection (PID) VOC sensors for aerial measurements. PID
sensors can weigh as little as 100 g and provide fast response measurements compared to other
lightweight sensing solutions such as electrochemical sensors. After careful analysis of existing
PID sensors, we selected ION Science’s miniPID2 VOC sensor, which has limited temperature and
humidity effects compared to other sensors in the market.

2.2 Architecture of ASTRO+

ASTRO+ includes three layers: sensing, data storage, and a third layer for data visualization and
user notification as shown in Figure 1. Data that is collected by both drones (PID sensors) and
ground sensors (gas chromatography in addition to PID) is sent over WiFi to an Internet-hosted
database. The database is connected to a mobile app and a web service that allow community users
to visualize both real-time measurements and historical data. In addition to raw measurements of
both ground sensors and last drone missions, the mobile app also indicates the air quality based
on EPA’s air pollution thresholds. In addition to data visualization, users can subscribe to SMS and
E-mail notifications in order to be informed in real time about pollution peak levels.
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Fig. 2. ASTRO+ UAV system.

2.3 UAV System

We build our UAV-based sensing system as an extension of our ASTRO platform [17, 21]. AS-
TRO is a UAV network platform that is Autonomous and Tetherless in the sense that drones form
an infrastructureless wireless network and don’t need a base station to make their sensing deci-
sions. Due to using carbon fiber lightweight frames, ASTRO drones allow up to 15 min flight time
and up to 1.5 kg of payload. ASTRO also uses hardware components that are widely used within
the open source community, namely, the Pixhawk flight controller to manage the avionics part
and the Raspberry Pi as a companion computer in order to manage the network communication
part.

We extend ASTRO by deploying lightweight VOC, temperature, humidity, and wind sensors
while offering low-noise measurements. This is achieved by first locating the sensors right next to
center of the drone as shown in Figure 2 in order to minimize turbulence effects that are caused by
the propellers [24]. In addition to that, we isolate the power source of the environmental sensors
from the flight controller and companion computer battery in order to maintain the stability
of the input voltage of the sensors. Gas, temperature, humidity, and wind measurements are
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Fig. 3. Experimental setup.

performed once per second due to the fast response of the selected sensors. In terms of resolution,
temperature values are reported within +1° Celsius, relative humidity is reported within +1%, and
VOC measurements are reported at the ppb level.

3 EVALUATION OF AERIAL SENSING ERRORS

In this section, we use the aerial and reference ground sensors of ASTRO+ to analyze the quality of
aerial measurements of VOCs. Prior work suggested that the dynamic airflow created by drones’
propellers affects the quality of the measurements. However, it is not previously known how these
dynamics affect the sensing mechanism of drone-mounted pollution sensors. Indeed, the main
lightweight gas sensing technologies (photoionization-based and electrochemical sensors) can be
easily affected by changes in weather conditions such as temperature and humidity but not nec-
essarily the airflow and wind velocity [15]. In this section, we propose a fine characterization of
these effects using an experimentally collected dataset.

3.1 Experimental Scenario

We performed multiple data collection experiments in Milby Park (Houston, Texas), a residential
neighborhood that is highly exposed to both traffic pollution (facing a highway) and industrial
pollution (located within less than 2 miles of three chemical plants). We collected in different
locations and times during February and October 2020 more than 2,000 measurements of both
ground reference data and aerial data of VOC pollution concentrations in addition to aerial data
of temperature, relative humidity, and wind velocity.

As depicted in Figure 3, each measurement was performed while having the drone hovering
at about 2.5 m and located within 4 to 5 meters of the ground sensor, which was sampling at an
altitude close to that of the drone (1.5 m). In order to reduce sensing errors during the measurement
campaign, and as recommended by manufacturers [20, 29], both aerial and ground sensors were
properly calibrated in the field against reference gas concentrations of Isobutylene (a VOC gas that
is commonly used to calibrate PID sensors).
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Fig. 4. Ground measurements vs. aerial measurements.

3.2 First Analysis

Figure 4 depicts the obtained VOC ground measurements on the x-axis and the corresponding
aerial measurements on the y-axis. Note that even though aerial measurements may underesti-
mate the real concentrations in some few cases going down to as low as 20 ppb compared to the
lowest reference concentration of 40 ppb, the overall bias of drone data is very low and does not
exceed 1 ppb due to the proper calibration of the sensors prior to the measurement campaign.
However, the overall standard deviation of aerial sensing errors is substantial and exceeds 6% of
the full range of the measured concentrations (96 ppb). This is clearly due to the dynamic nature
of aerial measurements where drone propellers’ effects are very variable and therefore difficult to
predict.

In order to characterize the main sources of aerial measurement errors, we depict in Figure 5
the standard deviation of the error of aerial measurements with respect to ground reference data
depending, respectively, on wind velocity (generated by the drone propellers), temperature, rela-
tive humidity, and absolute humidity. We recall that all temperature, humidity, and wind sensors
all located on top of the drone and measure the ambient air that is surrounding the drone pollu-
tion sensor. The air flow speed generated by the propellers seems to have a low but still existing
correlation, which does not exceed 25%. However, temperature and relative humidity dynamics
(which are caused in part by the airflow dynamics that are due to the propellers’ wind) correlate
with aerial measurements’ quality better than wind and yield more than 60% of linear correlation
and more than 90% of polynomial third-order correlation. This is mainly due to the high sensi-
tivity of pollution sensors in general to temperature [15], and also the sensitivity of PID sensors
in particular to the level of water vapor in the air [23]. This is why water vapor (also defined as
absolute humidity and calculated based on both temperature and relative humidity) provides al-

most 90% correlation with aerial measurements quality when using just the first-order polynomial
fit.

3.3 Evaluation of Inference Models

As already highlighted, on-drone air pollution measurement errors exhibit remarkable correla-
tions with temperature and humidity. In this section, our objective is to evaluate different infer-
ence models where the output is the quality of pollution aerial measurements (i.e., error’s stan-
dard deviations) based on the data of temperature, humidity, and wind sensors. While using cross
validation and considering the mean squared error as our inference loss function, we divide our
2,000 collected measurements’ dataset into five groups. We report in Table 1 the inference accu-
racy level (R?) of (i) single linear regression, (ii) multiple linear regression (MLR) in addition to
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Fig. 5. Effects of wind, temperature, and humidity on the quality of VOC aerial measurements.

Table 1. Evaluation Results of Inference Models

R? (%) Single linear regression MLR | SVM | DNN
Wind ‘ Temp. ‘ R. hum. ‘ Abs. hum.

Avg. 23% 64% 65% 87% 66% | 94% 94%

Max. 25% 67% 68% 89% 70% | 95% 96%

Min. 21% 58% 63% 85% 63% | 93% | 92%

(iii) support vector machines (SVMs), and (iv) deep neural networks (DNNs), which have
been proven in the literature as very efficient nonlinear regression solutions [1]. Note that abso-
lute humidity is not considered as an input to the MLR, SVM, and DNN inference models due to
the fact that it is a redundant inference input. Indeed, absolute humidity is not a measured value
but rather calculated based on temperature and relative humidity measurements.

The results presented in Table 1 confirm the efficiency of linear regression when using absolute
humidity values, which yields up to 89% accuracy in the five groups of the cross-validation process.
Note that this is even better than performing a multiple linear regression that uses temperature,
relative humidity, and wind raw measurements, in which case the performance accuracy does
not exceed 70%. This is because absolute humidity is—by definition—a non-linear combination
of temperature and relative humidity and hence reflects in a better way the non-linear effects
of temperature and relative humidity on pollution measurements. However, SVM regression and
DNN, which allow on average around 94% inference accuracy, better handle these non-linearities
by learning the best non-linear combination of temperature and relative humidity as opposed to
the fixed formula of absolute humidity.

Discussion. The results presented in this section show that co-locating temperature, humid-
ity, and wind sensors with air pollution sensors can help infer the quality of pollution aerial
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measurements subject to a proper training prior to environmental mapping missions. For instance,
and as shown in this section, PID measurements’ quality can be inferred to almost 90% using ab-
solute humidity data (calculated based on temperature and relative humidity measurements). For
other pollution sensors (electrochemical sensors, for instance), the predictive variables can be dif-
ferent than absolute humidity or a combination of multiple weather conditions but the correlation
should still remain high as most air pollution sensors are very sensitive to weather conditions [15].
This measurements’ quality inference fact can then be used to characterize pollution aerial sens-
ing quality at future measurement locations by first interpolating the already collected weather
data and then using the results of this interpolation to predict pollution measurements’ quality at
future sensing points.

Based on the results of this section, we propose to classify the evaluated inference models into
three groups:

(i) Accurate inference models (SVM, DNN, and single linear regression based on absolute hu-
midity), which allow an inference accuracy that is greater than 85%.
(if) Average inference models (linear regression based on either temperature, humidity, or both),
which allow an inference accuracy that is between 50% and 70%.
(iii) Poor inference models (single linear regression based on wind velocity measurements),
where the inference accuracy is less than 30%.

We compare later in Section 5 the impact of using these different inference models on the overall
performance of UAV mission planning.

4 ROBUST MISSION PLANNING FOR AIR POLLUTION MAPPING
4.1 Overview

The experimental study presented in the previous section confirms that pollution aerial measure-
ments’ quality is dynamic and non-homogeneous with respect to the measurement context (tem-
perature, humidity, and wind levels of the ambient air). These dynamics should have a direct impact
on the performance of UAV mission planning algorithms since low-quality measurements may
lead to a poor estimation of the drones’ mission plans. Based on that fact, we design in this section a
UAV mission planning approach while relying on a fine characterization of aerial measurementsa..
quality in addition to the inherent pollution spatial correlations. Given an input region to be
monitored and a set of pollution-sensing UAVs with limited flight time, we aim at (i) determining a
selection of points that should be sampled by the UAV network so that the obtained measurements
yield a low-error estimated pollution map; and (ii) determining for each UAV the locations that
should be visited so that the covered points of interest are visited by at least one drone. Here, the es-
timated pollution map is obtained by interpolating the data collected at the optimal measurement
locations.

The proposed mission planning approach operates as follows: after a training phase prior to
the flight mission in order to quantify the impact of temperature, humidity, and wind velocity
on aerial measurements of pollution concentrations, UAVs are first sent to uniformly distributed
locations in order to characterize the spatial correlations of air pollution concentrations. Then,
these spatial correlations are used together with the inferred aerial measurements’ quality in or-
der to optimize the following measurement locations of the drones. The optimal measurement
locations of each drone are obtained by minimizing the overall variance of the interpolated con-
centrations’ errors while taking into account the aerial sensing constraints (the dynamic sensing
error and the response time of pollution sensors, the speed of the drone, and the drone’s battery
capacity).
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Table 2. Main Notations Used in our Approach

Description ‘ Dimension
P Space points Ix1
g Unknown ground truth vector Ix1
z Measurements’ vector nxl1
c Interpolated concentrations’ vector Ix1
H Measurements-to-Space mapping matrix nxl
0 Vector of random sensing errors nx1
B | Correlation matrix of pollution concentrations Ixl
R Covariance matrix of sensing errors nxn
F Covariance matrix of interpolation errors Ixl
w Interpolation weights’ matrix Ixn

4.2 Air Pollution Mapping

Before getting into the details of our UAV mission planning process, we first present the mathe-
matical formulation that allows us to estimate pollution concentrations at unmeasured locations
given a set of space locations with a limited number of measurements. We focus on the optimal
linear interpolation method, which is the most used air pollution data interpolation technique in
the literature [25]. Without loss of generality, and due to the relatively short flight time of drones,
we focus on the case of pollution concentrations that change only in space and not in time. The
main notations used in this section are summarized in Table 2.

Let p be a vector of [ discrete points approximating the space in 2D or 3D, i.e., p = [p1,p2,- - -,
p1]T where p; = (x;,y;,2;). We use g € R to denote the unknown ground truth timely static
pollution concentrations at the [ points of space. i.e., g = [g1, 2, . . ., 91]7 Where g; is the pollution
concentration at point i. Let z € R” be a set of measurements performed at n different locations in
space p,ie.,z = 21,2, ...,2,]! where z; is measurement number i. In order to map measurements
to space locations, we define a matrix H € R™! where each matrix element h;jis a Boolean set to 1
if measurement number i is performed at point j. Let 6; be the error of measurement z; with respect
to ground truth g;. We denote the variance of sensing error 0; using r;, which can be inferred based
on co-located measurements of temperature, humidity, and wind velocity as demonstrated in the
previous section of this article. In addition, we assume that 6; has a zero mean as this is usually the
case when pollution sensors are properly calibrated. We also assume that pollution measurement
errors are uncorrelated because they mainly depend on the electronics of the sensing mechanism.
Hence, the covariance matrix of sensing errors, R € R™", is a diagonal matrix.

Air pollution concentrations g; are inherently correlated in space [25]. We denote the spatial
correlation matrix of pollution concentrations by B € R*!. Each matrix element b; ; reflects for
space locations i and j the probability of being at the same concentration level.

Using the measurement vector z and the matrix H defining measurement locations, our objective
is to obtain an estimation vector ¢ € R! by interpolating pollution concentrations at unmeasured
locations. In the case of optimal linear interpolation [11], ¢ is defined in matrix form as

c=Wz

such that c is a linear combination of the collected measurements. The interpolation weights are
defined by the matrix W, which is calculated as in [11],

W =BHT(R+HBH")™!, (1)
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and is a function of sensing quality defined by matrix R in addition to the spatial correlation matrix
of pollution concentrations B. Let n; denote the interpolated concentrations’ errors with respect
to the unknown ground truth value at each point i (i.e., p = ¢ — g). The covariance matrix of
(denoted F) is calculated as in [11],

F=(l; - BH"(R+ HBH")™'H)B, (2)

where I; is the identity matrix. Based on F, we define the overall mapping error of a given inter-
polated map ¢ corresponding to a given measurements’ vector z as

Z C? Xfii’

ie[1,1]

where « is a parameter used to emphasize the interpolation error at polluted locations compared
to the slightly polluted ones. Indeed, the higher the value of the o parameter, the higher is the
contribution of the polluted locations (locations i where c; is high) in the sum of the optimization
function.

4.3 Mission Planning Process

We consider a mobile sensing system consisting of m drones that are equipped with air pollution
sensors that are used to collect measurements z within the monitoring region p. In order to quan-
tify the covariance matrix of pollution measurements’ errors R, drones are also equipped with
temperature, humidity, and wind sensors. This allows us to infer on-the-fly r;, the error variance
of each already collected measurement z; in addition to inferring the measurement error variance
at future mission locations by interpolating the already collected temperature, humidity, and wind
data. The measurement error inference is obtained based on a training phase that is performed
prior to the pollution mapping mission by co-locating drones and reference sensors as shown in
Section 3.

Because of the response time of pollution sensors, drones need to hover for a time 7,y in
order to obtain a pollution measurement at a given space point [15]. In addition to the hover time
constraint, we assume that drones travel at a constant speed v. Based on that, we calculate the
travel times between each pair of points (i, j) that we denote by 7;40e1(i, /). In addition, let T7;gn,
be the maximum flight time of each drone, which mainly depends on the weight of the drone, the
capacity of the battery, and the drone speed v.

In terms of communication, we assume that drones remain connected to the base station when
traveling within the monitoring region p. This is usually the case in urban environments and
industrial areas. In addition, we assume that the communication delay between the drones and the
base station is minimal compared to the measurement hover time of the drones, which can be as
high as 30 s [15].

Our mission planning approach operates in two phases: a learning phase and an optimization
phase. The objective of the first phase is to learn the spatial correlation matrix of pollution con-
centrations B. In the second phase, we define and solve an optimization model while relying on
spatial correlations B and non-homogeneous measurements’ quality R in order to guide the drones
to the locations that allow us to obtain a vector c of estimated concentrations with a corresponding
covariance matrix F where the mapping quality defined in the previous section (X;epy, 17 ¢f X fii)
is minimized.

Phase 1: Initialization phase. Our objective in phase 1 is to characterize the spatial corre-
lations of pollution concentrations by estimating the matrix B. To that end, we perform n, mea-
surements that are uniformly distributed in the monitoring region. We first divide the monitoring
region into m sub-regions having the same surface area. Each drone is then sent to one of these
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sub-regions and performs ny/m uniformly distributed measurements. Note that n is a parameter
that should be chosen carefully depending on the size of the monitoring region. At the end of phase
1, the obtained pollution measurements, denoted by z°, in addition to the inferred measurements’
quality matrix R, are sent over to the base station. Based on that data, the base station performs the
characterization of the spatial correlations as explained later in Section 4.4 and mission planning
decisions as explained in Section 4.5.

Phase 2: Optimization phase. Our objective in phase 2 is to use the obtained B matrix in order
to find the best way-points where drones should perform their measurements while taking into
account flight time constraints. The optimization algorithm is run at the base station at the end
of the initialization phase. As a result, each drone obtains the optimal mission plan with respect
to the current characterization of pollution spatial correlations. Each drone follows then the pro-
vided mission plan and each performed measurement is sent right away to the base station. The
latter uses the new data in order to refine the characterization of pollution spatial correlations at
a specific rate. The new characterization of spatial correlations is then used to refine the optimal
mission plans of the drones and this process continues until no more data can be performed. At the
end, the base station uses the full set of the obtained measurements combined with the inferred
sensing quality and the final characterization of pollution spatial correlations in order to calculate
the final interpolated concentrations c.

4.4 Robust Spatial Correlation Characterization

Given a set of already collected measurements z° € R™ in addition to online inferred measure-

ments’ quality R, our aim is to estimate the pollution spatial correlations B. We recall that each
matrix element b;; corresponds to the correlation between the unknown ground truth concentra-
tions g; and g;. In order to estimate the pollution spatial correlation between each pair of locations
i and j, we first define as D(i, j) the set of sampled location pairs that are within a Euclidean dis-
tance close to the distance between locations i and j. Mathematically, the set D(i, j) can be written
as

0

D(i,j) ={(a,b) | za,zp € 27 & llpa = ppll = lpi = pjll = A}.

Based on D(i, j), we estimate the b;; spatial correlation as

Za1 Zbl
ral +rh1 r“l +rb1
bij = corr : N : . (3)
Zap| Zbip
Ta;p| TTp Taip| T p

This provides a robust estimation of corr(g;, g;) while taking into account measurement errors
by normalizing the measurements within each pair of points (a, b) using their respective error’s
variance r, and r,. The outcome of this normalization process is that low-quality measurements
(i.e., pairs (a, b) where either r, or r; is high) become less involved in the final estimated correla-
tions b;;, whereas high-quality measurements (i.e., pairs (a, b) where both r, and r;, are low) are
emphasized.

4.5 Robust Mission Planning Optimization

Using the obtained characterization of spatial correlations B and the inferred measurements quality
matrix R, our objective is to find the best locations that offer the best interpolation of pollution
concentrations. In addition, we ensure that the selected locations can be sampled with the m drones
subject to their remaining flight time 77;44;. We determine for each drone the best ordered set of
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sampling points by solving the following optimization model:

Minimize Z ¢ X fii
i€[1,1]
Subjectto  Eq. (1), Eq. (2), and flight constraints

The objective function ensures the minimization of the overall variance of estimated concentration
errors fj;, i € [1,1] while emphasizing the interpolation error at polluted locations compared to the
slightly polluted ones. The minimization of the interpolation error’s variance is performed with
respect to the matrix H, which is the main decision variable in the optimization process and defines
the best aerial sensing locations. In order to take into account the aerial sensing requirements,
we constrain the sensing locations so that they are ordered in a way that takes into account the
necessary sampling hover time in addition to drone travel times when moving from one location
to another.

We solve our mission planning optimization model using commercial optimization solvers (IBM
CPLEX) in the case of small monitoring regions. In order to scale our approach to large regions,
we propose to solve the optimization model to obtain only a partial mission plan for each drone
and then update the mission plans as the drones are flying.

5 EXPERIMENTAL EVALUATION OF ROBUST MISSION PLANNING

In this section, we first use a real-world dataset in order to validate the efficiency of our robust
mission planning, which leverages the use of co-located weather sensors to infer the aerial sens-
ing quality of pollution concentrations and guide the drones to the most accurate measurement
locations. We show that we reach a high performance even with average sensing inference mod-
els. Then, in the second part of this section, we use a numerically generated dataset in order to
explore the impact of the dynamics of both pollution concentrations and aerial sensing quality on
the overall performance of our mission planning approach. We conclude that the efficiency of our
optimization approach remains high even in the presence of heterogeneous pollution fields and
sensing qualities.

5.1 Experimental Setup

Dataset. We evaluate our mission planning approach using a set of 30 pollution maps of aerial
and ground measurements of VOC pollutants collected in February and October 2020 using our
sensing platform ASTRO+. We also use as input the collected weather data (temperature, humidity,
and wind) in order to infer online VOC sensing errors. By default, we consider the application of
the linear sensing inference model that is based on absolute humidity since the latter is highly
correlated with aerial pollution measurement qualities as shown in Section 3. Each collected data
map corresponds to a grid of 34 data points (I = 34) within the Milby Park residential neighborhood
(Houston, Texas). Figure 6 illustrates an example of the spatial distribution of the main input maps
(respectively, an aerial VOC map collected by the drone, a VOC ground map collected by a reference
sensor, and aerial absolute humidity data).

Flight constraints. We assume that drones fly high enough to avoid obstacles and that their
flight speed is fixed at 2 m/s for safety reasons. We set the hover time of each drone to 10 s since
we are focusing on VOC sensors, which have an acceptable response time that is usually within
few seconds. We consider flight times of up to 40 min where the first 10 min are reserved to the
initialization phase of our mission planning approach. This allows us to perform six uniformly
distributed initial measurements (ny = 6), which is necessary for an initial characterization of
pollution spatial correlations matrix B.
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Fig. 6. Mission planning evaluation dataset (one map example).

Performance metric. We simulate our mission planning approach while using the aerial data
maps each time a drone sample is performed. Then we evaluate the quality of the output of each
simulation by comparing the final interpolated map of aerial data to the corresponding reference
ground map. We use the relative RMSE as a performance metric to evaluate the percentage of
interpolation error of each environmental sensing mission.

Performance benchmarks. We compare the results of our robust mission planning to the
following baselines:

— Omuniscient planning: this is the optimal trajectory that can be followed to get the best inter-
polation results, and can be obtained while relying on the exact error of aerial measurements
(assumed to be hypothetically known). Given a number of sampling locations to optimize,
we perform an exhaustive search to find the best combination of measurement locations that
minimize the RMSE evaluation metric.

— Traditional mission planning: in this case, the measurement error’s variance is assumed ho-
mogeneous and provided by the manufacturer as in most prior work. To evaluate this case,
we simulate our optimization approach while setting the measurement error’s variance r; of
each point i to the overall sensing errors’ variance (36 ppb? in our VOC dataset).
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Fig. 7. Robust mission planning performance compared to baselines.

— Random uniform: this corresponds to flying the drone to random sensing locations following
the uniform distribution.

5.2 Validation Results

Figure 7 depicts the results obtained while considering a single drone with an overall flight time
of up to 40 min, which allows the drone to sample on average up to 25 locations including the
measurements collected during the 10 min of the initialization phase.

The results show that due to the dynamic and non-homogeneous nature of aerial sensing qual-
ity, traditional mission planning fails to send the drones to the most informative locations and
selects instead measurement locations that are almost uniformly distributed in the monitoring
region. This is due to the optimization objective function of traditional mission planning which
only depends on spatial correlations since the variance of sensing errors is assumed homogeneous.
Compared to that, and due to taking into account the heterogeneous nature of aerial sensing er-
rors, our approach adjusts the spatial density of selected measurement locations depending on the
sensing quality. This helps first better characterize the spatial correlations of pollution concentra-
tions and then improve the interpolation performance by using the most accurate aerial data. As a
result, our robust mission planning outperforms traditional solutions by up to 2.5X improvement
factor (calculated with respect to the omniscient planning).

Note that our performance improvement decreases as the drone’s flight time is extended. This
is due to the small size of the monitoring region (500 m X 500 m), where a 30 min flight time in the
second phase (40 min including phase 1) allows a single drone to sample more than half of the grid
points and as a result obtain a good interpolation quality even with uniformly distributed mea-
surement locations. However, our approach, being efficient even with limited sensing resources
(2.5 improvement factor with just 10% of sensing resources), allows us to efficiently monitor large
deployment regions.

The efficiency of our robust planning both in terms of achievable performance improvement
factor and required sensing resources may depend on three main parameters: (i) the accuracy of
sensing inference models, which—if not good enough—may invalidate the accuracy of our mission
plans; (ii) the dynamics of pollution concentrations; and (iii) the spatial dynamics of sensing er-
rors, which may lead to low correlations between measurement locations and therefore reduce the
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Fig. 8. Impact of the accuracy of sensing inference models.

performance of the interpolation process. We explore these three performance parameters in the
following of this section.

5.3 Impact of the Accuracy of Sensing Inference Models

We focus in this section on how the performance of our robust mission planning scales with the
accuracy of the inference model that is used to predict the quality of aerial measurements of pollu-
tion concentrations. We recall that in Section 3, we identified three inference model groups where
the inference accuracy is either greater than 85% (accurate), between 50% and 70% (average), or
less than 30% (poor). Figure 8 depicts the average performance results of our mission planning
depending on sensing resources while considering accurate, average, and poor inference models
compared to traditional planning. For comparison purposes, we also plot in Figure 8 the results
obtained with our planning approach when considering random uniform sensing inference.

We first observe that even with an average inference model, our mission planning outperforms
traditional solutions and allows up to 2X improvement factor. Most importantly, dropping the sens-
ing inference quality from 95% (using SVMs) to 65% (using temperature-based linear regression)
involves a performance drop that is less than the accuracy ratio of those two inference models. In
addition, the performance improvement when using average sensing inference follows the same
convex pattern of robust planning that is based on accurate sensing inference. Indeed, in the mis-
sion planning optimization process, the most important thing is to identify inaccurate measure-
ment locations and not necessarily estimate the exact quality of the aerial measurements.

The comparison between the impact of accurate and average inference models also shows that
the importance of the sensing inference model is higher in the early stage of the mission planning
process: as the drones fly and more data is collected, the quality of the inference model becomes
less important as there are less locations to select (smaller search space).

Figure 8 also shows that using a poor inference model (such as a wind-based linear regression
or even random inference) yields similar performance compared to traditional planning but not
worse. The reason behind that is that although poor inference models assign wrong sensing quality
to aerial measurements, the range of the sensing errors is preserved, and as a result, poor inference
models are close to estimating that sensing errors are homogeneous as in the case of traditional
planning.
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Table 3. Default Simulation Parameters

Parameter Notation | Value
Number of space points 1 100
Mean of pollution concentrations p; 50 ppb
Variance of pollution concentrations o, 15°
Mean of humidity levels ue 50%
Variance of humidity levels a2 52

5.4 Impact of the Dynamics of Pollution Concentrations and Sensing Quality

As already highlighted, the robustness of our mission planning approach is dependent upon the dy-
namics of pollution concentrations and the spatial dynamics of sensing errors, which have a direct
impact on the performance of the interpolation process. Since these dynamics cannot be controlled
in our experimental dataset, we explore their effects using numerically generated environmental
data inputs (pollution concentrations and weather data) while considering different heterogeneity
levels. We first present our numerical scenario using the same notations as in Section 4 and then
discuss the obtained numerical results.

5.4.1 Numerical Scenario. We consider a 2D space with an area of (500 m X 500 m) associated
with a uniform grid p of 100 space points (I = 100). We simulate pollution ground truth concentra-
tions and weather data as Gaussian processes, which is a very common simulation approach for
environmental data [13]. For simplification purposes, we assume that the mean and the variance
of the pollution field g are stationary. That is,

g~N (,ugll, O';B) ,
where y1; and ag are, respectively, the stationary mean and variance of the ground truth pollution
field, 1; € R is a vector with all elements set to 1, and B is the spatial correlation matrix of pollution
concentrations.

In order to isolate the main input parameters that we are investigating in this section, we derive
the B matrix using a distance-decay exponential function and assume that it is perfectly known
during the mission planning process without a required initialization phase.

In addition to the pollution ground field g, we simulate weather data (mainly humidity levels
acRl)as

a; ~ N (par02) Vi€ [1.1] iid.,

where p1, and o2 are, respectively, the mean and the variance of the humidity distribution.
We recall that the aerial sensing error at a point i is denoted using 6;. We assume that 0; variables
are independent and defined as
0i ~ N (0,r;),

where r; is the variance of 0; and is assumed to be a perfect linear function of the humidity level
at point i; i.e, r; = u(a;). Therefore, we simulate the aerial sensing errors 6; based on humidity
levels a; as
u(a;)
0~ > N(©,1).
1

We explore in the following of this section the impact of the dynamics of pollution concentra-
tions and sensing errors by varying mainly crg and oZ. The default parameters of the simulation
process are summarized in Table 3.
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Fig. 9. Impact of the spatial dynamics of pollution concentrations.

5.4.2  Evaluation of the Impact of the Dynamics of Pollution Concentrations. In order to explore
the effects of the heterogeneity level of ground pollution concentrations on the performance of
robust planning, we vary the variance of the Gaussian field g while considering three configu-
rations: (i) low spatial dynamics with o4 = 5, (ii) average spatial dynamics with o, = 15, and
(iii) high spatial dynamics with o4 = 25.

We run both our robust mission planning and the traditional optimization approach (100 sim-
ulation runs) and report in Figure 9 the average improvement factor at three different stages of
the environmental missions (at the early stage where only 20% of the measurement locations have
been sampled, in the middle of the mission, and at the final stage where 80% of the measurement
locations have been sampled).

We first observe in Figure 9 that the overall improvement factor is at its highest value and
exceeds 2.5X when the pollution dynamics are low. This is because the most important mission
planning criterion in this case is the quality of aerial measurements, which are well inferred in our
optimization approach.

We also observe that increasing the pollution dynamics does not involve decreasing the per-
formance improvement with the same scale: the performance improvement remains at almost 2x
even when pollution dynamics are high. The reason behind that is that selecting the best measure-
ment locations has the same importance level as spatially distributing the measurements starting
from a given threshold. It is noteworthy that however, the stage at which the highest performance
is achieved changes depending on pollution dynamics and is reached only at the final stage in
case of high pollution heterogeneity. Indeed, in this case, a higher number of measurements is
necessary in order to achieve an efficient interpolation.

5.4.3 Evaluation of the Impact of Aerial Sensing Quality. We now focus on how the mission
planning process is affected by the distribution of the aerial sensing errors. We recall that in our
simulation process, the aerial sensing qualities are mainly derived from the distribution of humid-
ity levels: the higher the humidity level, the lower the aerial sensing quality of pollution concen-
trations. Based on that, we vary in this simulation scenario the variance of humidity levels o
and consider three sensing configurations: (i) low pollution aerial sensing errors when o, = 1,
(ii) average pollution aerial sensing errors when o, = 5, and (iii) high pollution aerial sensing
errors when o, = 10.

Since the sensing errors are well inferred in the robust mission planning, the obtained perfor-
mance level is similar in our proposed approach. However, the performance of traditional planning
highly varies in between the three aerial sensing scenarios that are considered in this evaluation
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Fig. 10. Impact of aerial sensing quality on traditional planning.

test. In order to explore these variations, we report in Figure 10 the obtained relative RMSE of tra-
ditional planning while varying the available sensing resources (percentage of sampled locations).

The results in Figure 10 show that in all three sensing configurations, the relative RMSE of
the interpolated pollution maps is reduced with increased sampled locations before converging
to a plateau level, which happens when every other location is sampled and hence the sampled
locations are already dense enough to provide an efficient interpolation. However, the curvature
of the three different graphs in Figure 10 is highly dependent upon the dynamics of aerial sensing
errors. Indeed, we observe that the performance curve of traditional planning tends to a concave
form as the aerial sensing errors become higher and more dynamic. The reason behind that is that
as the dynamics of aerial sensing errors increase, there is a higher probability of selecting sensing
locations with inaccurate measurements if these errors are assumed to be homogeneous as in the
case of traditional mission planning. As a result, in practice, the performance improvement of our
mission planning process with respect to traditional planning is expected to increase with sensors
aging as they become less accurate over time [23]. This means that our proposed mission planning
approach also extends the overall lifetime of the aerial sensing system.

6 CONCLUSION

In this article, we propose a robust mission planning approach that adapts the trajectory of the
drones while taking into account the quality of aerial measurements that is inferred from weather
conditions. Compared to existing mission planning algorithms, we propose in our work to couple
the pollution spatial correlations with a fine characterization of aerial measurementsa.. quality
in the optimization process of UAV mission planning. After a training phase prior to the flight
mission in order to quantify the impact of temperature, humidity, and wind velocity on aerial
measurements of pollution concentrations, our mission planning approach operates in two phases:
a spatial-correlation-learning phase and a trajectory optimization phase. We evaluate our mission
planning approach based on both experimental and numerically generated pollution datasets and
show a high-performance improvement that is due to the fine characterization of the measurement
errors. In terms of perspectives, we plan to extend the proposed mission planning approach to a
distributed scenario in which the sensing locations of drones are optimized in a collaborative way.
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