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We consider Online Minimum Bipartite Matching under the uniform metric. We show that Randomized 
Greedy achieves a competitive ratio equal to (1 + 1/n)(Hn+1 − 1), which matches the lower bound. 
Comparing with the fact that RG achieves an optimal ratio of �(lnn) for the same problem but under 
the adversarial order, we find that the weaker arrival assumption of random order doesn’t offer any extra 
algorithmic advantage for RG, or make the model strictly more tractable.
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1. Introduction

In the past decade, online-matching based models have seen 
wide applications in rideshare (e.g., matching drivers and riders in 
Uber) and crowdsourcing markets (e.g., pairing workers and task 
in Amazon Mechanical Turk). In many of these real-world applica-
tions, we often need to find a matching between two disjoint sets 
such that the total distance over all matches is minimized. A mo-
tivating example can be seen in the online food ordering platform 
like Grubhub: we often need to find a matching between work-
ers and online orders with the least total distance such that the 
total waiting time of all users is minimized (here we assume for 
simplicity that each worker can handle one order only).

Online Minimum Bipartite Matching (OMBM) was proposed 
by [5] and it has proved a powerful model in aforementioned ap-
plications. The basic setting is as follows. Let [n] = {1, 2, . . . , n} for 
any generic integer n. Suppose we have two disjoint sets of points 
L and R in a metric space with metric d(·, ·) and each set con-
sists of n points (i.e., |L| = |R| = n). Let us use i ∈ L and j ∈ R
to index points in the two respective sets, and dij

.= d(i, j) for all 
i ∈ L, j ∈ R . Points in L are known in advance while points in R
arrive sequentially in an online fashion: upon the arrival of each 
j ∈ R , we have to match it with a point i ∈ L, and it incurs a cost 
of dij . Note that each point in L can be matched only once. The 
goal is to design a matching algorithm such that the total cost is 
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minimized. Throughout this paper, we use the two terms “cost” 
and “distance” interchangeably.

Here are several variants in the metric definition and arrival 
setting. There are three common metrics studied in the literature,
line metric where all points are required to be in a line; uniform 
metric where d(·, ·) takes only binary values, and general metric
(no special requirements). As for the arrival setting, there are three 
well-studied assumptions, namely, adversarial order (AO), random 
order (RO), and known distributions (KD). For AO, both of the set 
R and the arrival order of R are fixed and unknown to the algo-
rithm. For RO, the set of R is unknown but the arrival order of R is 
required to be a random permutation over R . For KD, R is known 
in advance, and during each time a single point from R will be 
sampled (or arrive) with replacement according to a certain distri-
bution known as prior. A special case of KD is called KIID, where 
arrival distributions over all rounds are known, identical and in-
dependent. In the following, we discuss a common measurement, 
called Competitive Ratio (CR), to evaluate the performance of on-
line algorithms.

Competitive ratio (CR) Consider a given instance I = (L, R, d, A)

of OMBM where d is the metric and A specifies the arrival set-
ting. Consider an online minimization problem as studied here for 
example. Let ALG(I) = ES∼A[ALG(S)] denote the expected per-
formance (i.e., the total cost) of ALG on the input I , where the 
expectation is taken over the potential randomness in the arrival 
sequence S and that inherent in ALG. Let OPT(I) = ES∼A[OPT(S)]
denote the expected offline optimal cost, where OPT(S) refers to the 
minimum cost of a matching on the bipartite graph (L, S) after ob-
serving the full arrival sequence S from R . Then, the competitive 
ratio of ALG is defined as CR(ALG) = maxI

ALG(I)
OPT(I)

.
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Table 1
Summary of related works, where D and R denote the collections of all possible deterministic and randomized algorithms, 
respectively; DG and RG denote deterministic and randomized Greedy, respectively.

Line metric Uniform metric General metric

Adversarial order
CR(DG) = �(2n) [6] LB(D) = CR(DG) = n [6] LB(D) = 2n − 1 [8,5,4]
LB(D) = O (lnn) [9] LB(R) = CR(RG) = �(lnn) [6] LB(R) = O (ln3 n) [6]

LB(R) = τ (n),LB(R) = O (ln2 n) [1]

Random order
CR(DG) = �(n0.292) [2]. CR(RG) ∼ lnn (This paper) LB(R) ∼ 2 lnn [8].
CR(DG) = O (n) [2] LB(R) ∼ lnn (This paper)
Related work There is a long line of research on OMBM under var-
ious settings, see the summary of results in Table 1. Here are a 
few notations. Let D and R be the set of all deterministic and 
randomized algorithms. Among all algorithms in D and R, two al-
gorithms are studied most intensively: deterministic greedy (DG) 
and randomized greedy (RG). Generally, DG always try to assign 
an arrival point of j ∈ R to an unmatched point i ∈ L with the 
least cost dij . RG shares the same spirit with DG and the key dif-
ference between the two lies in the way of breaking ties when 
multiple optimal choices are available: DG breaks ties in an ar-
bitrary fixed order while RG always samples an optimal choice 
uniformly. For either D and R, let LB(D) = infALG∈D CR(ALG) and 
LB(R) = infALG∈R CR(ALG), which denote the respective compet-
itive ratios achieved by an optimal deterministic and randomized 
algorithm. For two functions f and g over n, we write f ∼ g if 
f /g → 1 when n → ∞. In other words, f and g are asymptoti-
cally equal including the constants, which is a stronger notion than 
�(·). Let Hn = ∑n

k=1 1/k ∼ lnn.
Here are elaborations on the results shown in Table 1. We 

first focus on studies under the general metric. The work of [5]
and [4] are among the first studies for AO: each independently 
gave an optimal deterministic 2n − 1-competitive algorithm. Re-
cently, Raghvendra [8] presented a primal-dual-based deterministic 
algorithm that achieves almost the same ratio (2n − 1 + o(1)) for 
AO. What’s more, they showed the same algorithm achieves an 
optimal competitive ratio of 2Hn −1 −o(1) under RO. For AO, Mey-
erson et al. [6] gave the first greedy-based randomized algorithm, 
which has a sublinear competitive ratio of O (ln3 n), which was 
then improved to O (ln2 n) by [1] who also gave a lower bound 
of O (lnn). More recently, Gupta et al. [3] gave a O ((ln ln lnn)2)-
competitive algorithm for KIID. Now we survey some results for 
the line metric. For AO, Raghvendra [9] showed that the deter-
ministic Robust Matching algorithm achieves a ratio of �(lnn). Pe-
serico and Scquizzato [7] gave a lower bound of �(

√
lnn) for any 

randomized algorithm. Gairing and Klimm [2] studied the setting 
of RO and showed that the competitive ratio of DG is O (n) and 
�(n0.292).

1.1. Main contributions

Our main contributions include a tight competitive analysis of 
the randomized greedy (RG) for OMBM under the uniform metric 
and RO and a proof of a lower bound suggesting the optimality of 
RG. We state our main theorems as follows. For a generic positive 
integer n ∈N , let τ (n) := (1 +1/n)(Hn+1 −1) with Hn+1 being the 
(n + 1)th harmonic number. Observe that τ (n) = �(lnn).

Theorem 1.1. Randomized Greedy (RG) achieves a competitive ratio 
equal to τ (n) for OMBM under the uniform metric and random order. 
Our analysis is tight.

Theorem 1.2. For OMBM under the uniform metric and random order, 
any algorithm (deterministic or randomized) will have a competitive ra-
tio at least τ (n).
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Note that Meyerson et al. [6] analyzed both DG and RG on 
the uniform metric but under AO. The main results are: (1) DG
achieves a competitive ratio of n, which is optimal among all deter-
ministic online algorithms. (2) RG achieves a competitive ratio of 
Hn ∼ �(lnn), which is optimal among all randomized algorithms. 
By comparing the result in (2) with that stated in our main theo-
rem, we see that for OMBM with the uniform metric, RG achieves 
the same competitive ratio in RO as that of AO. This suggests that 
when applying RG to OMBM with the uniform metric, the assump-
tion of RO does not offer any extra algorithmic power compared 
with that of AO.

2. Proof of the Main Theorem 1.1

We split the whole proof into the below two lemmas. Through-
out this section, we focus on OMBM under the uniform metric and 
RO. Let CR(RG) denote the competitive ratio achieved by the ran-
domized greedy.

Lemma 2.1. CR(RG) ≥ τ (n).

Lemma 2.2. CR(RG) ≤ τ (n).

2.1. Proof of Lemma 2.1

Observe that though Theorem 1.2 implies Lemma 2.1, we 
present the proof for the completeness, and we believe the proof 
below offers insights into that of Theorem 1.2 and can serve as a 
good warmup.

Example 2.1. Consider the following instance. Recall that |L| =
|R| = n and dij = d(i, j). Set dij = 0 iff i = j ∈ [n − 1] and dij = 1
otherwise. In other words, the first n − 1 points in L colocate with 
the first n − 1 points in R , and there are essentially only n + 1
points in L ∪ R .

From the nature of RG, we see that on the above example: (1) 
during each time when j = n arrives, we will uniformly sample 
one available i ∈ L since all costs are 1; (2) during each time when 
some j < n arrives, we first check if i = j is free. If so, then match 
it; otherwise uniformly sample one available i ∈ L. Observe that 
offline optimal is OPT = 1. Let F (n) be the expected cost of RG on 
Example 2.1.

Lemma 2.3. F (n) = τ (n).

Proof. First, we can verify that F (1) = 1. When n = 1, we have es-
sentially one point each in L and R with a distance 1. Thus, the 
expected cost of RG is 1. Now we try to devise a recursive for-
mula on F (n). Consider the case when j = n arrives at some time 
t ∈ [n − 1]. Note that in our instance, di,n = 1 for all i ∈ L. We 
observe that (1) the current total cost for RG is 0 so far before 
matching j = n; (2) if we match j = n to i = n, then the total fi-
nal cost of RG will be 1; (3) if we match j = n to some available 
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i∗ ∈ L with i∗ < n, then the total cost should be 1 + F (n − t). In 
this scenario the remaining case can be reduced to the exact same 
problem with size n − t where j = i∗ will play the role of j = n
before (we are sure j = i∗ never arrives before j = n otherwise i∗
will not be available). Thus, summarizing the above analysis, we 
have that

F (n) = 1+ 1

n

n−1∑
t=1

(
1− 1

n − t + 1

)
F (n − t)

Together with the initial value F (1) = 1, we can solve that F (n) =
(1 + 1/n) 

∑n
t=1

1
t+1 = τ (n). �

Proof of Lemma 2.1

Proof. Note that on Example 2.1, the offline optimal OPT = 1 and 
RG has an expected total cost of F (n). This suggests that the com-
petitive ratio of RG on Example 2.1 is equal to F (n). By definition 
of the competitive ratio, we claim CR(RG) ≥ F (n) = τ (n). �
2.2. Proof of Lemma 2.2

Consider a general instance of OMBM with |L| = |R| = n. Sup-
pose the offline optimal is OPT = n −k with k ≤ n. Since the offline 
optimal is n −k, it suggests that there are at least k zero-cost pairs 
of points in L × R . WLOG assume that dij = 0 for all i = j ∈ [k]
and all the rest dij = 1. Let F (k, n) be the expected cost returned 
by RG. According to the nature of RG, we have the following two 
cases.

• With probability k/n, some j ∈ [k] will arrive first. In this case, 
we will match j with i = j with cost zero and the remaining 
case is reduced to F (k − 1, n − 1).

• With probability 1 − k/n, some k + 1 ≤ j ≤ n will arrive first. 
In this case, we will have a unit matching cost for j. If we 
match j with some i ≤ k, then the resulting case is reduced 
to F (k − 1, n − 1) (occurring with probability k/n); otherwise, 
the resulting case is reduced to F (k, n − 1) (occurring with 
probability 1 − k/n).

Summarizing the above analysis, we have that

F (k,n) = k

n
F (k − 1,n − 1)

+
(
1− k

n

)(
1+ k

n
F (k − 1,n − 1)

)

+
(
1− k

n

)((
1− k

n

)
F (k,n − 1)

)

Simplifying the above expression, we have F (k, n) = (1 − k/n) +
A(k, n) + B(k, n), where

A(k,n) =
(
1− k

n

)2
F (k,n − 1) (1)

B(k,n) = k

n

(
2− k

n

)
F (k − 1,n − 1) (2)

Lemma 2.4.

F (k,n) ≤ (n − k)
(
1+ 1

n

)
(Hn+1 − 1) (3)

Note that Lemma 2.4 immediately implies Lemma 2.2 since the 
offline optimal is equal to n − k and the instance is arbitrarily se-
lected. We prove Lemma 2.4 by induction on n.
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Proof. Consider the basic case n = 1. We can verify that F (0, 1) =
1 and F (1, 1) = 0, which satisfies Inequality (3). Assume the in-
equality is valid for all k ≤ n ≤ N for some integer N . Now we 
show the case of N + 1. Consider any given k ≤ n ≤ N + 1. If 
k = n, we have that F (k, n) = 0, then we are done. Now assume 
k < n ≤ N + 1. Recall that F (k, n) = (1 −k/n) + A(k, n) + B(k, n). By 
inductive assumptions, we have

A(k,n) ≤
(
1− k

n

)2
(n − k − 1)

(
1+ 1

n − 1

)
(Hn − 1)

B(k,n) ≤ k

n

(
2− k

n

)
(n − k)

(
1+ 1

n − 1

)
(Hn − 1)

Plugging the above two inequalities to F (k, n) = (1 − k/n) +
A(k, n) + B(k, n), we have

F (k,n) ≤
(
1− k

n

)
+ (n − k)(n2 − n + k)

n(n − 1)
(Hn − 1)

.= G(k,n)

Notice that

G(k,n) ≤ (n − k)
(
1+ 1

n

)
(Hn+1 − 1)

⇔
(
1− k

n

)
+ (n − k)(n2 − n + k)

n(n − 1)
(Hn − 1)

≤ (n − k)
(
1+ 1

n

)
(Hn+1 − 1)

⇔ 1

n
+ (n2 − n + k)

n(n − 1)
(Hn − 1) ≤

(
1+ 1

n

)
(Hn+1 − 1)

⇔ 1

n
+ (n2 − n + k)

n(n − 1)
(Hn − 1) ≤

(
1+ 1

n

)
(Hn − 1) + 1

n

⇔ Hn − 1

n(n − 1)

(
n2 − n + k − (n − 1)(n + 1)

) ≤ 0

⇔ −(n − k − 1) ≤ 0

Now, we have proved that for any k ≤ n ≤ N + 1,

F (k,n) ≤ G(k,n) ≤ (n − k)
(
1+ 1

n

)
(Hn+1 − 1). �

3. Proof of the Main Theorem 1.2

In this section, we describe an approach to show that any 
randomized algorithm has a competitive ratio of at least τ (n) =
(1 +1/n) 

∑n
t=1 1/(t+1) for OMBM under the random order arrival. 

The high-level idea is as follows. We construct a family of instances 
F and a probability distribution p over these instances. We show 
that any deterministic online algorithm D has an expected cost of 
τ (n) for an instance f chosen randomly from F using p and then 
choosing a random arrival order σ of the vertices on the randomly 
chosen instance f . In other words E f ∼pF [Eσ [D( f , σ)]] ≥ τ (n). 
Formally, we have the lemma below.

Lemma 3.1. There exists a family of instances F of OMBM and a distri-
bution p such that any deterministic online algorithm D has an expected 
cost of τ (n), where the expectation is taken over both the distribution of 
p and the random arrival order of vertices.

We first show how the above lemma implies Theorem 1.2.

Proof. Assuming that (F , p) satisfies the property stated in 
Lemma 3.1 for any deterministic algorithm. First, note that for any 
given n, the number of deterministic algorithms is a finite number. 
Indeed, there are at most n rounds, and in each round the deter-
ministic algorithm can choose to try and match an arriving vertex 



S.V.S. Duppala, K.A. Sankararaman and P. Xu Operations Research Letters 50 (2022) 45–49
to one of the U vertices by processing them in some fixed order for 
this round. Thus, for each arrival there are n! different number of 
deterministic possible sequences in which the vertices in U can be 
processed. In other words, a deterministic algorithm is a map from 
the index of the round and the vertex in V to the sequence with 
which the vertices in U will be processed. This implies that the 
total number of deterministic algorithms is upper-bounded by the 
quantity K := n2 · n!. Let D = {D1, D2, . . . , DK } be the collection of 
all deterministic algorithms. Let Dk( f , σ) denote the cost incurred
when running Dk on a given instance f ∈ F and a given arrival 
order σ of the RHS vertices of f . By the property in Lemma 3.1, 
we see that

E f ∼pF,σ

[
Dk( f ,σ )

] ≥ τ (n),∀Dk ∈ D.

This suggests that for any vector α = (α1, α2, . . . , αK ) ∈ [0, 1]K
with 

∑K
k=1 αk = 1,

E f ∼pF,σ

[ K∑
k=1

αk · Dk( f ,σ )
] ≥ τ (n). (4)

Note that for any online randomized algorithm R , there exists a 
unique vector αR = [0, 1]K with 

∑K
k=1 αR

k = 1 such that R can be 
viewed as running the deterministic algorithm Dk with probabil-
ity αk for k = 1, 2, . . . , K . Thus, Inequality (4) implies that for any 
randomized algorithm R ,

E f ∼pF,σ

[
ER [R( f ,σ )]] ≥ τ (n).

Therefore, we claim the existence of an instance f̂ such that 
ER,σ [R( f̂ , σ)] ≥ τ (n) for all R . �
3.1. Proof of Lemma 3.1

Now we show how to construct the family F and the distribu-
tion p such that any deterministic algorithm incurs a regret of at 
least τ (n).

We have a complete bipartite graph (U , V , E) with U =
{u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. Let instance Iπ denote 
the following instance. Choose a random permutation π over U . 
For all edges of the form (π(ui), vi) with i ∈ [n − 1] we add an 
edge of cost 0. All other edges have a cost 1. The distribution p is 
the uniform distribution.

We will now make an observation which will simplify the de-
scription of the proof. We have that for every instance in the family 
F and arrival sequence, any deterministic algorithm D̃ that ignores 
a 0-cost neighbor, when available, is dominated by another deter-
ministic algorithm D that chooses the 0-cost neighbor at that step. 
This implies that it suffices to consider only those deterministic al-
gorithms D which chooses the 0-cost neighbor when available and 
uses a fixed ordering of vertices in U to break the ties among the 
1-cost edges.

Now we will prove that any deterministic algorithm incurs an 
expected cost of at least τ (n). Consider a deterministic algorithm 
D . This algorithm can be viewed as a n × n matrix MD where 
the ith row represents the order in which the algorithm chooses 
a neighbor for vertex vi . Note from the observation above we con-
sider only those matrices where in the first n − 1 rows we have 
that the first element is the 0-cost neighbor. Consider the sequence 
of arrivals σ . Since the matrix is fixed, on a random input from 
this family ( f , σ) the action of this algorithm is equivalent to the 
following randomized algorithm on the instance where the 0-cost 
edges are between the pairs (u1, v1), (u2, v2), . . . , (un−1, vn−1). 
The algorithm chooses a permutation π over the labels of the ver-
tices in U . For each vertex vi , the randomized algorithm checks 
48
the vertices in π according to the order MD(i). We will now prove 
via induction that the expected cost incurred by this algorithm is 
given by the recurrence,

F (n) = 1+ 1

n

n−1∑
t=1

(
1− 1

n − t + 1

)
F (n − t),

with a base case of F (1) = 1.
This evaluates to the expression F (n) = τ (n) and therefore 

shows that D incurs an expected cost of at least τ (n).
We prove the following inductive hypothesis, which will com-

plete the proof.
Inductive Hypothesis. For every graph with n ≥ 2 and every 

probing order ψ1, ψ2, . . . , ψn over the random permutation for 
vertices v1, v2, . . . , vn respectively, the performance is given by the 
recurrence above.

The base case is when n = 2. In this case note that both v1
and v2 have a unique probing order over the 1-cost edges. We can 
verify that the performance is given by the above recurrence in 
this case.

Now suppose for a given k, we have proved the induc-
tive hypothesis for all 2 ≤ n ≤ k − 1 and all probing sequences 
ψ1, ψ2, . . . , ψn . Consider the case when n = k and an arbitrary 
probing sequences ψ1, ψ2, . . . , ψn . Consider some 1 ≤ t ≤ n − 1
when the vertex vn comes. In the randomized algorithm, the 
probability that vn chooses a the “blocking” neighbor is given by 
1 − 1

n−t+1 . Also note that only the n − t vertices in V have their 
relative ordering in π fixed. Therefore the reduced instance is now 
on the n − t vertices with the relative ordering of *none* of the 
vertices in π fixed. Since we have proved by induction that for 
a graph of size 2, 3, . . . , n − 1 and any arbitrary order of prob-
ing ψ1, ψ2, . . . , ψn−1, the recurrence holds, therefore the reduced 
instance has a performance F (n − t).

Note that this above proof implies that after choosing a permu-
tation π , we can wlog assume that every vertex vi chooses the 
tie-breaking in the same order according to π , for this instance.

4. Conclusion

We study the randomized greedy for OMBM problem under the 
uniform metric and RO. In particular, we give an exact formula for 
the competitive ratio achieved by RG and prove its optimality. We 
find that when applying RG to OMBM with the uniform metric, 
the assumption of RO does not offer any extra algorithmic power 
compared with that of AO.
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