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We study some consequences of the loop quantization of the outermost dust shell in the Lemaitre-
Tolman-Bondi spacetime with a homogeneous dust density using different quantization strategies
motivated by loop quantum gravity. Prior work has dealt with loop quantizing this model by employing
holonomies and the triads, following the procedure in standard loop quantum cosmology. In this work we
compare this quantization with the one in which holonomies and gauge-covariant fluxes are used. While
both of the quantization schemes resolve the central singularity, they lead to different mass gaps at which a
trapped surface forms. This trapped surface which is matched to an exterior generalized Vaidya spacetime
disappears when the density of the dust cloud is in the Planck regime. We find that the quantization based
on holonomies and gauge-covariant fluxes generically results in an asymmetric evolution of the dust shell
in which the Vaidya mass associated with the white hole as seen by an external observer is 2/7 of the one
for the black hole. This effective difference in masses results from difference in the classical limits in pre-
and postbounce regimes in the two quantizations. This distinctive feature rules out formation of any black-
hole-white-hole twins in presence of gauge-covariant flux modifications, which is in contrast to the
quantization using holonomies and triads where the gravitational collapse always leads to black hole—white
hole twins. Another striking difference lies in the fact that for the quantization based on holonomies and
gauge-covariant fluxes there can be situations in which during a nonsingular collapse only a black hole

forms without a white hole.
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I. INTRODUCTION

It is generally believed that the singularity problem in
the classical gravitational collapse is a consequence of the
breakdown of the Einstein theory of general relativity in the
Planckian curvature regime and thus can be resolved by
quantum gravity. Understanding the role of quantum
gravity effects becomes manageable when the collapsing
astrophysical body is assumed to be spherically symmetric
in which case techniques from canonical quantum gravity
can be applied to explore the consequences for singularity
resolution and the fate of the spacetime beyond the central
singularity. It is expected that a rigorous understanding of
quantum gravity effects would also provide insights on
fundamental questions related to cosmic censorship con-
jecture and the black hole evaporation. But to answer these
questions, it is important to reliably understand whether the
resulting physics is tied to a particular quantization
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prescription and the way various quantization ambiguities
affect the resulting physics of the quantum spacetime and
the end state of gravitational collapse.

Loop quantum gravity (LQG) [1-3] is a nonperturbative
and background independent approach of quantum gravity
which provides a platform for investigating the resolution
of the singularities in various situations. In particular,
when symmetry reduction is performed before quantization
is carried out, loop quantization can in general lead
to tractable models which grasp the main features of
the quantum gravity corrections to the classical model.
For example, a quantization of Friedmann-Lemaitre-
Robertson-Walker (FLRW) cosmological models using
LQG techniques results in loop quantum cosmology
(LQC) [4,5], which resolves the big bang singularity by
replacing it with a big bounce at the Planck curvature scale
[6-8]. While the Hamiltonian constraint in LQC is a
difference equation, the underlying dynamics is captured
very well by an effective Hamiltonian which indicates a
generic resolution of cosmological singularities for iso-
tropic and anisotropic spacetimes [9-14]. These studies
have also been generalized to understand the way in which
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the above results are robust with respect to some underlying
quantization ambiguities such as different choices of the
Hamiltonian constraint [15].

Similar to the cosmological setting, within the frame-
work of symmetry reduced LQG, the quantization of black
hole spacetimes has been studied in various models using
effective spacetime description. For the vacuum space-
times, most studies are based on the fact that the interior of
a Schwarzschild black hole is isometric to the vacuum
Kantowski-Sachs spacetime in cosmology. Various quan-
tization schemes, based on holonomies and symmetry
reduced triads, have been proposed which result in a
generic resolution of the curvature singularity and glue
the black hole spacetime to a white hole spacetime through
a transition surface [16-26]. Moreover, studies on the
vacuum spacetimes have also be extended to include both
interior and exterior of the black hole spacetimes [27-33].
On the other hand, investigations have been carried out
beyond vacuum spacetimes to include matter such as a
massless scalar field (see for e.g., [34-39]). In the classical
theory, one of the most studied context is the dust collapse
in Lemaitre-Tolman-Bondi (LTB) spacetime [40-42], see
for instance [43] for an analysis in terms of Dirac
observables and [37,44,45] where loop quantum gravita-
tional effects have also been studied. Here the marginally
bound case has been well studied when the interior
spacetime is isometric to a spatially flat FLRW spacetime
for a homogeneous evolution of the dust cloud.! These
studies have so far focused on exploring the resolution of
central singularity using standard techniques in LQC by
incorporating quantum geometry effects via holonomies
and/or inverse triad modifications [37,45].

Despite this progress, none of the quantizations studied
so far for symmetric models has been derived from LQG.
Therefore, the robustness of physical predictions from
above symmetric models when further modifications from
LQG are included in the dynamics remains an important
open question. One prominent approach to relate these
models to LQG is via coherent states to approximate certain
sectors of LQG. But this is challenging for quantizations, as
discussed above, which are based on a fixed discretized
lattice and flux variables (for a discussion see [49-51]).
A resolution is to use gauge-covariant flux variables on a
discretized fixed lattice [52]. In this paper our goal is to test
the robustness of some of the results obtained in the context
of gravitational collapse of the dust cloud using this input
from LQG and compare with existing approach based on
using holonomies and triads by employing the j type
quantization [7], first for holonomy and triads [7], and then
holonomy and gauge-covariant fluxes. This allows us to
test some properties of gauge-covariant fluxes in a simpler
setup than full LQG where detailed investigations on

ISee also [46-48] for the bound case whose interior is
isometric to a spatially closed FLRW spacetime.

models involving gauge-covariant fluxes are still an open
question. We consider the collapse of a spherically sym-
metric dust cloud in the marginally bound case assuming
that the energy density of the dust cloud is homogeneous so
that each shell of the dust cloud collapses at the same
relative velocity. As a result, the crossing of the dust shell
would never occur during the collapse of the dust cloud and
the only relevant singularity in the classical theory is the
central singularity when the radius of the dust cloud
vanishes.

In this framework we investigate whether different
quantization schemes can affect the formation of the
trapped horizons and thus lead to distinctive phenomeno-
logical signals once the black hole forms during the
collapse of the dust cloud. From the numerical simulations
of the effective Hamilton’s equations, we find that the
central singularity is resolved and replaced by a quantum
bounce within both quantization schemes. However, there
are also distinctive features arising in the second scheme
due to the asymmetric evolution of the dust shell. For
example, there exists a small region of the parameter space
in which a black hole can form during the collapse while a
white hole in the expanding stage after the bounce cannot
form. Besides, even when both the black hole and the white
hole can form in the second scheme, their masses and the
duration of the existence of trapped surfaces show quali-
tatively different behavior from the first scheme. In
particular, for generic initial conditions the Vaidya mass
of the white hole as seen by an external observer turns out
to be 2/x of the black hole mass. We find that in both the
prescriptions there is a mass gap but its value depends on
the chosen quantization scheme. These results provide
insights on the role of the quantization prescription used
in studying the fate of the gravitational collapse using LQG
techniques. In particular our results demonstrate in a simple
setting that while the resolution of central singularity is a
robust feature, the existence of “black hole—white hole”
twins resulting from the Planck scale physics is not a
generic feature. It shows that the resulting physics of loop
quantum gravitational collapse can be much richer and
complex if further modifications from LQG, than those
considered so far, are systematically incorporated.

This paper is organized as follows. In Sec. II, we briefly
review the classical LTB dust shell model and derive the
classical Hamilton’s equations of the outermost shell for the
marginally bound case along the lines of [53] using
Ashtekar-Barbero variables. We also discuss the criterion
for the formation of the trapped surfaces during the collapse
of a spherically symmetric object and the matching of the
interior of the trapped surface with the exterior spacetimes
at the boundary. In Sec. III, we study the effective dynamics
of the loop quantization of the dust shell model and employ
two quantization prescriptions, the first one only considers
the holonomy corrections and the second takes into account
both holonomy corrections and gauge covariant fluxes.
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With the help of the numerical analysis of the resulting
effective Hamilton’s equations, we discuss the phenomeno-
logical differences due to the quantization prescriptions.
Finally, the main results are summarized in Sec. [V. We use
Planck units for numerical simulations and set # =c =1
while keeping Newton’s constant G explicit in our formulas.

II. A BRIEF REVIEW OF THE CLASSICAL LTB
DUST SHELL MODEL

In this section we briefly review the classical LTB dust
model in the canonical framework and write necessary
equations using triad and connection variables. The LTB
model is obtained from a spherical symmetric solution of
Einstein’s equations that involve nonrotational dust as the
matter source. The metric is given by

(R')?
1+2f

where we denote the radial coordinate by x, the angular part
by dQ? = d6? + sin’0d¢p? and we have set ¢ = 1. R(x,7)
which is the areal radius of the spherical surfaces is
determined by two unknown functions F and f that depend
on the radial coordinate and are in turn determined via the
following equations

ds? = —dz® + dx? + R2dQ2, (2.1

. F

87Gpaus =y and R* = =2 (2.2)
where pg. denotes the energy density of the dust and G is
Newton’s constant. Here f(x) is the total energy of a unit
mass at x and F(x)/2G is the active gravitating mass within
a sphere with radius R(x). In the so-called marginally
bound case one chooses f = 0 leading to a simplified form
of the metric as well as the LTB equations. We consider the
marginally bound case in this work. In the Hamiltonian
framework using canonical variables in the Arnowitt-Deser-
Misner (ADM) formulation (R, Pg), the Hamiltonian con-
straints for the gravitational and dust matter sectors have the
form

F/
E?

1

2
ngav = 2G (R R)

and Hg,y = (2.3)

where R is understood as a function of the momentum P R
Considering the total Hamiltonian constraint H,,, +
H 4.« = 0 then yields the second equation in (2.2).

In order to apply LQG techniques as used in LQC in this
context we need to start with a classical LTB model
formulated in terms of Ashtekar variables (see for instance
[44]). The set of independent canonical variables is given
by (A.(x).E*(x)), (yK,(x),E?(x)) and a third pair
(n(x), P,(x)) corresponding to the gauge angle, where y
is the Barbero-Immirzi parameter [54,55]. Once the Gauss
constraint is implemented the latter pair is eliminated and

gauge invariant quantities do not depend on these variables.
The relation between the connection variables A, and the
corresponding extrinsic curvature K, in this case reads
K, = %Ax. Therefore, the elementary canonical variables

satisfy the following Poisson brackets
{K.(x).E*(y)} =2G5(x,y) and
{K,(x). E?(y)} = G&(x. y).

The metric in the marginally bound case in terms of
Ashtekar variables can be expressed as

(2.4)

E
ds? = —di + (|Ex)| dx® + |E¥|dQ2.

(2.5)

In the ADM case for spherical symmetric models one starts
with two sets of variables (R, Pg) and (A, P, ). For the LTB
marginally bound case, as can be seen in (2.1), the metric
depends only on R and its derivatives since A = R’ [43]. At
the level of Ashtekar variables this results in the following
LTB condition
1

E9(x) = 5 B (2) 2.6)
As discussed in [44] a second condition relating the two
extrinsic curvatures can be obtained by taking the LTB
condition in (2.6) as a gauge fixing condition for the
diffeomorphism constraint which then yields

K|, = K, sgn(E"). (2.7)
The Hamiltonian constraint for the gravitational sector in
terms of Ashtekar variables is given by

Hypy = — 1(\/|E_ |E"> (2.8)

where at this stage K,,, E¥ are understood as functionals of
K, E*. In order to write down H g, entirely in terms of K,
E, one can use the equations of motions for K ,, E, K, E*
to get [44]

_EXE¢> . (29

E¥ 1 /.
K, = and K, = E?
@ 2 |Ex| X /|Ex| ( 2EX

If one reinserts these into H,,,, then one obtains

(2.10)

whereas the dust contribution has again the form
Hgu = % This is consistent with the ADM result (2.3)
if one considers the usual relation R = /|E*|.
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Now we specialize the LTB model to the shell model.
Our strategy is to consider the LTB conditions at the
classical level which is sufficient to obtain a model for the
outermost shell following the work in [53]. We will briefly
summarize the main steps to obtain this model. One of the
crucial ingredients of the model is that considering the LTB
equations given by

2F'sgn(E")
872G st = =
VIET[(EY)

where the second equation can, as before, be obtained by
means of the total Hamiltonian constraint in Ashtekar
variables using (2.10). One realizes that the equation for
E only depends on F and E* but not its spatial derivatives.
As a consequence, at the classical level, once a mass
function F is chosen the individual shells decouple. The
starting point for the outermost shell model in [53] is the
Einstein-Hilbert action symmetry reduced to the LTB case
plus a boundary term. Next, one notes that the trace of the
Einstein-tensor in four dimensions yields —R(x), where R
denotes the Ricci scalar. Multiplying the trace of the
Einstein equations by a volume term then leads to

and (E)2=4F\/|E"., (2.11)

1 .
VI9IR(x) = 8mpaus. 5 sgn(E7) (E¥)' /| E¥| sin 6

1
=—F'sind, (2.12)
G
where one uses the first LTB equation in (2.11). We denote

the radial coordinate of the outermost shell by x,, then after
integrating out the angular part the bulk action has the form

Sy = é dr A ©F(x) = % / de(F(xo) — F(0))

! (E)? (x0)

= T .
16G \% |E*|(x0)

where as in [53] F(0) = 0 is chosen, meaning that the
innermost shell contains no mass. Let us introduce
the following compact notation for the quantities of the
outermost shell

(2.13)

e = E*(xp). (2.14)
Using the same boundary term as derived in [53], which in
this notation reads Sz = —% Jdz \(2)_‘, and adding the

bulk and boundary contributions finally, one obtains
the full action for the outermost shell of the dust cloud
in the LTB model, which reads

1 1 (&%)?
S=— [ drLy, :=——/d1’ ,
G/ hell Ye e

(2.15)

where as in [53] it was used that for Brown-Kuchar dust
[56] the action trivially vanishes on shell. Moreover, the
triad € and its conjugate momentum k., which corresponds
to the 1/2 of the radial component of the extrinsic
curvature, satisfy the Poisson bracket

{ke, e} =G, (2.16)
then in terms of these canonical variables, the classical

Hamiltonian of the outermost shell of the dust cloud takes
the form

H class

=28V =-m,

where M stands for the dust mass enclosed by the
outermost dust shell. The classical Hamilton’s equations
can be easily derived from the Hamiltonian with the above
Poisson bracket, which explicitly read

(2.17)

. k2
& = 4k\/|€Y, k,=——*—.
Vet

We can rewrite €* again in terms of R(xy) = Ry as |&*] =
R} where we suppress the label “0” from now on. The
above equations of motion in turn yield the following
equations which resemble the classical Friedmann and the
Raychaudhuri equations for the areal radius

(2.18)

(2.19)

EZ_&:G 6__47rG
R) ~ 37 RT3 7

Here p denotes the energy density of the dust cloud

3M

P

As is well known, the central singularity in the classical
theory is inevitable since dynamical equations (2.19) result
in the radius of the outermost dust shell to decrease to zero
in a finite period of the proper time for a generic set of the
initial conditions (R;, M), where R; denotes the initial value
of the radius. During the collapse of the dust cloud, if a
trapped surface can form, then the central singularity will
be covered by a horizon. In order to investigate the
formation of the trapped surfaces in the interior, it is
convenient to introduce two future-directed null vectors
normal to the sphere with constant radius, which are [57]

1 1 1 1
Or=—(0.4-0.), 0-=—(0.—=0.). (221
: \/§< R ) : ﬁ( R > (2:21)

In the null coordinates £ and &, the line element (2.1)
(with f = 0) becomes
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ds* = =2dETdE + R*dQ?. (2.22)
Hence, we can identify two kinds of the radial null
geodesics emerging from the sphere, namely the inward
null geodesics & = const and the outward null geodesics
&~ = const. If the radius decreases along both inward and
outward null geodesics, then a trapped surface forms at the
sphere. One can introduce the expansion parameter [57]

2
H:t - EaiR, (223)

where 0, denotes derivatives with respect to &+, respec-
tively. When the bundles of the light rays converge on both
sides of the sphere, . < 0, namely R < —1, then the
sphere becomes a future trapped surface corresponding to a
black hole. When 6,60_ =0, the sphere is marginally
trapped. On the other hand, if we reverse the directions
of the null vectors in (2.21), and then require the bundles of
the light rays to converge along these reversed null vectors,
which leads to R > 1, a past trapped surface corresponding
to a white hole can form. As a result, in both cases, the
trapped surfaces form as long as R? > 1 with the sign of R
signifying future (R < 0) or past (R > 0) directed trapped
surface.

While the simplest models of the gravitational collapse,
such as Oppenheimer-Snyder-Dutt model, can be recasted
as a cosmological model it should be noted that this
analogy is only true in the interior of the collapsing object.
For a complete picture of a gravitational collapse the
interior has to be matched with an exterior spacetime for
an external observer. In various situations, with a non-
vanishing interior pressure, including for the analysis
presented in this paper, the exterior spacetime turns out
to be the generalized Vaidya spacetime [58,59], which in
the advanced Eddington-Finkelstein coordinates takes the
form

2GM(r,,v)

ds? = — (1 - )dv2 — 2dvdr, + r:d’.
r’U

(2.24)

Here M(r,, v) is the generic mass function of the Vaidya
spacetime which stands for the mass of the black hole if a
trapped surface can form during the collapse of the dust
cloud. The interior and exterior metrics (2.1) (with f = 0)
and (2.24) can be matched at the outermost dust shell
x = r, by requiring that the first and second fundamental
forms are equal at the boundary. This leads to the following

equations:
dv = R, + rpa
dt)*  1-F/R’

(2.25)

ro(v)ls = R(ry, 1) = rya(t),

F
F(t,ry)=2M(r,,v)G, M(r,.v),G :ﬁ+ r2ad.

(2.26)

III. EFFECTIVE DYNAMICS OF THE LOOP
QUANTIZED LTB DUST SHELL MODEL

In this section, we focus on the evolution of the
outermost shell of the dust cloud when the quantum
geometric effects motivated from LQG are taken into
consideration. Using the techniques of the effective
description of the loop quantum dynamics, we loop
quantize the outermost shell of the dust cloud and present
two effective Hamiltonians resulting from two loop quan-
tizations which yield different physical results. These
effective Hamiltonians incorporate the quantum effects
at the Planckian energy density and thus successfully
resolve the central singularity encountered during the
collapse of the classical dust cloud. We then present
numerical results from quantum gravity modified dynami-
cal equations and discuss the way initial conditions
determine the formation of the trapped horizons during
the evolution of the dust shell.

A. Quantum gravity modified dynamical equations

In this subsection, we consider effective dynamics
resulting from two loop quantizations of the classical
Hamiltonian (2.17). The first is based on using holonomy
and triad variables as in standard LQC [7,60], and the
second is based on a recently studied quantization of
holonomy and gauge-covariant fluxes [49-51]. In addition
to the effective Hamiltonian and the equations of motion in
each case, we also discuss analytical solutions in the first
case and define useful variables for unravelling the dynam-
ics of the collapsing dust cloud through numerical results
when analytical solutions are not available.

1. Nonsingular evolution in holonomy and triad
quantization

The effective description of the quantum dynamics with
the holonomy corrections has been widely corroborated
with numerical simulations for both isotropic and aniso-
tropic models in the context of LQC. The modified
dynamical equations from the effective Hamiltonian turn
out to be an excellent approximation to the underlying
quantum dynamics for states which are sharply peaked in a
large macroscopic universe [61-64]. Following these inves-
tigations, we assume the validity of this approach in our
analysis. The marginally bound case corresponds to a
spatially flat spacetime in a cosmological setting for which
the Ashtekar-Barbero connection is related to extrinsic
curvature by a multiplicative constant and the holonomy
corrections can be incorporated into an effective Hamiltonian
by making the substitution k, — sin(8,k, )/, in the classical
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Hamiltonian (2.17), here §, is known as the polymerization
factor which together with k, determines the regimes where
quantum gravity effects become important. On one hand, the
quantum geometric effects are manifest in the regime
0.k, > 1 where the effective dynamics would lead to
remarkably distinct predictions as compared with the
classical theory. On the other hand, when 6.k, < 1, the
effective Hamiltonian approximates the classical one and
the classical theory is recovered in this regime. Moreover,
one needs to be careful with the way 6, depends on or is
independent of the phase space variables, otherwise one can
getinconsistent infrared regime and fake Planck scale effects.
The functional dependence of 5, on the phase space variables
is regarded as polymerization prescriptions. In the spatially
flat cosmological setting, there is a unique prescription which
is shown to be viable [65], known as improved dynamics
(also called iz scheme) [7]. The same prescription has been
shown to be a viable one for the nonmarginally bound case
too [66]. In this quantization prescription, the dependence of
o, on the triads is computed by equating the physical area
enclosed by honolomy to the minimal eigenvalue of the area
operator in LQG, which is A = 4\/5777/1[2)1 [7]. In the
following, the Barbero-Immirzi parameter y is chosen to
be 0.2375, which is fixed by the black hole thermodynamics
in LQG. To find this relationship we use the correspondence
with the cosmological model and note that

c 3\ 1/3 3\2/3
=—|— = — . 1
K 2y (471') ’ e=r (471') (3.1)

This sets 6, = 2yA/+/e" with 2 = /A, here we have taken
the positive orientation of the triad. As a result, the effective
Hamiltonian from the holonomy corrections takes the form

Hhol —

)32 2yk
( )2 ZSiIl2< A x) =-M, (32)
2GA7y Ver

where k,/+/€" is proportional to the relative velocity R/R of
the dust shell in the classical limit. From the effective
Hamiltonian (3.2), it is straightforward to show that the
equations of motion are

L& sin (4/1ka>
& =— ,
iz N

Lk (Ayk)\ 3VE L (2yk,
k, = ——sin ———5sin . (34
20 \ Ve ) 47 Ve

From the equation of motion (3.3), one can find the following
dynamical equation:

R\?> 8zG p
=] == P\ |
R 3 Pmax

(3.3)

(3.5)

where p = 2 and i, = 3/(87GA?y?*) denotes the maxi-

mum energy density enclosed by the outermost dust shell that
is allowed in this model. We see that the quantum geometric
effects modify the classical term 87Gp/3 with an additional
factor which vanishes when the density of the dust cloud
becomes equal to ploL . Hence, the radius of the dust shell
attains its minimum value at the highest energy density and
consequently the singularity encountered at R =0 is
avoided. Note that the above modified Friedmann equation
results in the classical Friedmann equation (2.19) at macro-
scopic scales both in the prebounce and postbounce phases.

Besides, using the Hamilton’s equations (3.3)—(3.4), it is
straightforward to show that the energy conservation law in
terms of the energy density p takes the form

) R
p+3Rp—O. (3.6)
Note that the pressure is defined via P = —0H,,,/Ov (with v
denoting the volume of the dust cloud) identically vanishes
for the effective Hamiltonian (3.2) since H,, = M is a
constant.

Similar analysis can be carried out for the iy inner
shell of the dust cloud which is labeled by its comoving
radius x;. For such a dust shell, its physical radius is given
by R; =a(t)x;, correspondingly when deriving its
Hamiltonian, we only need to integrate along the radial
direction from the center of the dust cloud to the comoving
radius x;, resulting in the effective Hamiltonian

‘ )32 2yak,. Mx3}
H = L )2 2s.in2< 4 ) =25 (3.7)
2GA7y i

& Xouter

where &% = R3, k., is the conjugate momentum of &* and
Xouter 18 the comoving radius of the outermost shell. Now
starting from the effective Hamiltonian (3.7), one can
derive the Hamilton’s equations for the iy inner shell in
the same way as we did for the outermost shell. It turns out
that one can obtain a dynamical equation for the iy, shell
which has the same form as (3.5) as long as R is replaced
with the physical radius of the iy shell R;. The energy
density is still given by p = 4%3 which is consistent with a
homogeneous evolution of the dust cloud. Moreover, since
the matter Hamiltonian in (3.7) is a constant for any iy,
inner shell with a fixed comoving radius x;, the pressure
defined by p = —0H,,,/0v; (with v; denoting the physical
volume enclosed by the iy, inner shell) identically vanishes
again and the energy conservation law takes the same form
as Eq. (3.6) with R replaced by R, Note the energy
conservation law (3.6) does not refer to any particular dust
shell since R/R = @/a, which is the same for all of the
inner shells, therefore any iy, dust shell satisfies the same
energy conservation law. From the above analysis for the iy,
inner shell, we conclude that the pressure vanishes iden-
tically for any i, dust shell, including the outermost shell of
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the dust cloud. As a result, even after loop quantizations,
there is still no interactions between neighboring dust
shells and we can treat each shell independently from
one another.

The quantum gravitational modification in (3.5) can be
understood in terms of an “effective energy density” by
writing its right-hand side in the same form as in the
classical theory. Before going into any details, we want to
clarify that quotation marks on “effective energy density,”
“effective mass” and “effective pressure” in the following
are used to emphasize that these effective quantities are not
the energy density, mass and pressure from the effective
Hamiltonian of the dust shell model but are the quantities
which show up in the classical energy momentum tensor
when we recast the quantum theory into the form of the
classical Einstein’s equations. By defining the ‘“effective
energy density”

o P
p=o(1-00) (8)
Pmax
the dynamical equation (3.5) becomes
R\? 812G
R :T/)eff' (3.9)

Using this “effective energy density”” one can also define an
“effective mass”

A
hol ,_ 3 hol
M = —R’pejy -

. (3.10)

The physical meaning of this “effective mass” M2 can be
interpreted as follows. Note the Vaidya mass M(r,, v) is
matched with the mass function at the outermost shell of the
dust cloud as given in (2.26), namely, F = 2GM(r,, v).
With F = R?R, one can easily find from (3.9) and (3.10)
that FF = 2GM.g. As a result, when the trapped surface
forms during the collapse of the dust cloud, the “effective
mass” is exactly the mass of the black hole observed by an
outside spectator. Same arguments can also be applied to
the case in which a white hole forms in the expanding phase
of the dust cloud after the bounce. There, the “effective
mass” stands for the mass of the white hole as detected by
the exterior observer. Finally, the “effective energy density”
obeys a conservation law

, R
Pt + 3% (Wl + pef) = 0. (3.11)
with an “effective pressure”
Mhol
hol _4;;1;ng' (3.12)

Note although the above “effective pressure” is defined at
the boundary, one can analyze the “effective pressure”
of the inner shells in a similar way. For the iy, inner shell
with the comoving radius x;, we can define the “effective
energy density” of the inner shell same as pgg’f' in (3.8) due
to the homogeneous energy density and the corresponding
“effective pressure” turns out to be

_ Méff

péff = (3.13)

with My == 42 R3phtl denoting the “effective mass™ of the
ig, shell. Now the key observation is that p’; does not
depend on the comoving radius X;,,.,- As a result, it is the
same for all the shells of the dust cloud, including the
outermost shell. Besides, this “effective pressure” is
defined according to the “effective energy density” which
in turn is defined based on the classical Friedmann
equation, any deviations from the classical theory would
thus yield a nonzero “effective pressure.” However, it
should be noted that, in quantum theory, the pressure
defined from the effective Hamiltonian (3.7) is still zero for
any dust shells. The nonzero “effective pressure” implies a
modification of the gravitational sector due to quantum
gravity can be compensated by a corresponding modifica-
tion in the matter sector.

The formation of the trapped surface depends on the
magnitude of R? during the collapse of the dust cloud.
Specifically, the trapped surface would form if and only if
the magnitude of R’> becomes greater than unity. This
results in a threshold value of the dust mass M* below
which trapped surface does not form. Only when M > M*,
a trapped surface would form. On the other hand, if
M < M*, no trapped region forms during the collapse of
the dust shell.

For the physical Hamiltonian (3.2), one can analytically
find the exact expression of M*. First, from (3.5), it is
straightforward to show that

RZ - 87[GM2/3pl/3 ~ p
- (487[2)1/3 hol |*

pmax

(3.14)

Therefore, at p = plol /4, R? attains its maximum value

which turns out to be

w2 3 (GM\?A
max — 4 A,J/ .

Requiring ernax = 1 yields the threshold value of the dust
mass, which is

(3.15)

8y
3V3G

*

~0.831, (3.16)
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with y = 0.2375 and 4 = 2.2736 in Planck units. Moreover,
since R* given by (3.14) only depends on the dust mass
and the energy density of the dust cloud, the energy
density at which the trapped surface forms or vanishes
also only depends on the dust mass. In particular, the initial
volume does not play any role in determining whether the
trapped surface would form during the collapse of the
dust cloud.

In addition to the threshold value of the dust mass for the
formation of the trapped surface, one can also analytically
obtain the time at which the trapped surface forms.
Integrating (3.8) leads to

R = 2MG2*y? + (az + B)?)'/3, (3.17)
where
a=-3/GM/2,  p=+/R}-2MG?*¥*, (3.18)

and R; denotes the initial value of the radius R with the
initial time chosen at 7; = 0. Thus, the bounce happens at
R = 0 when

2+/R3 —2MGA?
rp=Y L7 3.19
b 3V2GM (3.19)

More features of the dust cloud collapse with holonomy
corrections will be discussed through the numerical sol-
utions in the next subsection.

Before moving onto the second quantization ansatz, we
would like to emphasize that the quantization of the
homogeneous evolution of the dust cloud in this subsection
is carried out based on the classical Hamiltonian constraint
(2.17) which comes from applying the classical LTB
conditions to the gravitational sector of the Hamiltonian
constraint given by (2.8) in the spherically symmetric phase
space. Consequently, the classical LTB conditions are also
implicitly satisfied for the effective dynamics prescribed by
the effective Hamiltonian constraint (3.2). At a first sight,
this seems contradictory to the results given in [44] in
which the authors showed explicitly the modifications to
the classical LTB conditions due to the quantum gravity
effects. However, it should be noted that those modifica-
tions are also due to an inhomogeneous evolution of the
dust cloud. Here we note that a recent work in [25] loop
quantizes the spherically symmetry reduced phase space
starting from the classical gravitational Hamiltonian (2.8).
In [25], the authors derived a full set of the equations of
motion for E?, E* and their conjugate momenta by using
the effective dynamics which constitute a closed set of
partial differential equations [see Egs. (4.1)—(4.4) in [25]].
It can be shown that for the homogeneous evolution of
the dust cloud, equations of motion in [25] are consistent
with the classical LTB conditions and result in the

Egs. (3.3) and (3.4). As a result, solutions discussed in
this subsection agree with those obtained from the homo-
geneous reduction of the full set of the equations of motion
without assuming the homogeneity of the interior space-
time. One can regard our model as the simplest case which
only focuses on the quantum geometrical effects on the
resolution of the classical singularity and and the formation
of the trapped surfaces. In particular, no interactions
between the neighboring shells of the dust cloud are taken
into account. To consider more complicated situations, one
needs to refer to the full set of the equations of motion
(4.1)—(4.4) in [25] where an inhomogeneous evolution of
the dust cloud is certainly expected to incorporate the
interactions between the shells and thus change the
dynamics of the outermost shell.

2. Nonsingular evolution in holonomy and
gauge-covariant flux quantization

So far we have considered loop quantum gravity effects
using holonomies of the connection and symmetry
reduced triads. The usage of triads, instead of fluxes, is
possible because of symmetry reduction. While this
strategy works for the loop quantization of symmetry
reduced models, one needs to go beyond this approach if
one wishes to obtain an effective Hamiltonian with loop
quantum modifications from loop quantum gravity using
suitable coherent states. A possibility in this direction
requires an introduction of gauge-covariant fluxes, first
introduced by Thiemann [52], which have been recently
implemented in loop quantization of cosmological space-
times [49-51]. It turns out that the corresponding quantum
effects can be incorporated into the effective Hamiltonian
by making the substitution v/e* — v/e*sinc(8,k,/2) in the
classical Hamiltonian (2.17), which, together with the
holonomy corrections in k,, gives rise to the following
effective Hamiltonian:

£9)3/? 2yk Ak
He&C = — ( )2 5sin? < ! x) sinc <y X> =-M.
2Gy* Ve Ve

To distinguish this effective Hamiltonian from the one
where only holonomy modifications were incorporated,
we label it with superscript “g.c.” for inclusion of gauge-
covariant flux modifications in addition to holonomy
modifications.

Correspondingly, the equations of motion in this case are
given by

&= (e9)*2 sin 2y ks sin Arky
- 22%7%k, Ver Ver

270k, Ve <2y/1kx> }
X< 145cos - sin , 3.21
{reseos () (T (320)

(3.20)
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e 29k . (vAk,
k.= sin sin
e () ()
x {1 +5cos (Mk") Y <2Mk"> } (3.22)
Vet ) ke \ Ve
The classical equations of motion (2.18) can be recovered
from the above equations in the limit when k,/ve* < 1.
While the above dynamical equations result in a non-
singular bounce as in standard LQC, there are some key
differences in the evolution. In particular, in presence of
gauge-covariant fluxes matter acts nonminimally coupled
and the bounce turns out to be generically asymmet-
ric [50,51].

In the case with the gauge covariant fluxes, a closed form
of the modified Friedmann equation analogous to (3.8) is
not available. As a result, an analytical analysis of the
threshold value of the dust mass for the formation of the
trapped horizon is not possible. However, one can use
the numerical simulations to understand the dynamics of
the collapse of the dust cloud in this model by using the
criteria for the formation of a trapped surface which is still
given by R”>> 1. Besides, the asymptotic form of the
Friedmann equation can be obtained from the large volume
approximation as what has been done for a massless scalar
field in [50]. Due to the nonminimal coupling of the matter
sector with gravity, the asymptotic form of the Friedmann
equation also changes with the equation of state of the
matter content. For the dust field, following the similar
calculations in [50], it is straightforward to show that in the
collapsing phase of the dust cloud, the asymptotic form of
the Friedmann equation assumes

872G
H2|collapse = Tp + O(pz)’

(3.23)
while the asymptotic form of the Friedmann equation in the
expanding phase of the dust cloud reads

8raG
P

Hz'expanding = T + O(p3/2)’ (324)

with a =2/ x.* The origin of this a in holonomy-gauge-
covariant flux modifications is tied to the “sinc” term in the
Hamiltonian. Note that in both quantizations, the post-
bounce classical branch corresponds to |2yk,/+/e| reach-
ing z/A. In standard quantization based on holonomies and
triads this is indistinguishable from the prebounce classical
branch 2yk,/v/€*~0. The prebounce and postbounce
branches in this quantization are thus identical in the
classical limit. However, the sinc term in the presence of
gauge covariant flux modifications results in different

This additional factor @ can also be absorbed into the
Newton’s constant, yielding a rescaled Newton’s constant

G = aG.

classical limits in the prebounce and postbounce epochs.
These branches though still correspond to Friedmann
dynamics, they have difference due to above a scaling,
which is the cause of asymmetry in the “effective mass” of
the white hole as seen by an external observer.

Now following (3.9), one can define the same “effective
energy density” and the “effective mass,” namely,

3 R? 4r

Petf *= SIG R’ eff = ?RSPeff' (3.25)
The “effective energy density” p.s determines the relative
collapsing (expanding) speed of the dust outermost shell,
while the effective mass M.y which is the same as the
Vaidya mass determines the mass of the black hole (during
the collapsing phase) or the white hole (during the
expanding phase) if trapped surfaces are formed. When
the volume is macroscopic and energy density is far below
the Planck scale, using (3.23), we find during the collapse
of the dust cloud

R’ 4r
Meff|collapse = % H? |c011apse R R3p =M.

. (3.26)

Therefore, initially the “effective mass” is equal to the mass
of the dust cloud. On the other hand, after the bounce, when
the dust cloud expands to a low energy density p(< pp),
using (3.24), one can easily find

R} 4ra
Meff|expanding = EHzlexpanding ~ TR%:O =aM, (327)

which implies that, after the bounce, the “effective mass” of
the dust cloud is just a fractional of the initial mass from the
perspective of an outside observer. The same argument also
applies to the case when the trapped surface forms, leading
to a black hole and white hole asymmetry. Accompanied
with the “effective energy density,” one can also define an
“effective pressure” via

Meff
= _ —, 3.28
Pett AZRR ( )
which satisfies
. R
Peti +3 R (Pefr + Pesr) = 0. (3.29)

Note that in the classical theory, M equals M and thus
Peit = 0 which is consistent with the fact that the matter
content only consists of dust. However, in a model with
quantum corrections, whether originating from just holon-
omies or holonomies and gauge-covariant fluxes, M is in
general time dependent and p. becomes nonzero. For this
reason it iS necessary to match the interior quantum
modified spacetime with a generalized Vaidya spacetime.
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With the initial conditions R; = 50, M = 10, the classical trajectory of R (black dashed) is compared with those from the

effective dynamics prescribed by holonomy-triad quantization (3.2) (red solid) and holonomy-gauge-covariant flux quantization (3.20)
(blue dotted) in the left panel. In the inset plot, it can be seen that the classical trajectory (black dashed curve) ends at the singularity point
when R = 0, while in the other two trajectories a bounce occurs at nonzero radius. In the right panel, we can find the difference in the
energy densities of two loop quantized models mainly in the expanding branch. The inset plot shows the difference of the maximum

energy densities in the two models. All values are in Planck units.

Finally, it is important to note that the different
“effective masses” in the collapsing and expanding phases
does not imply the violation of the energy conservation
law. The change in the “effective mass” is completely due
to the quantum modifications in the gravitational sector
of the Hamiltonian constraint. The matter sector of the
Hamiltonian constraint remains untouched as can be seen
by comparing the classical Hamiltonian (2.17) and the
effective Hamiltonian (3.20). As a result, the energy density
of the dust cloud still evolves according to p = 43["1?3 in both
collapsing and expanding phases and the conservation law
p + 3Hp = 0 always holds. Moreover, even in terms of the
“effective energy density” and the “effective pressure,” the
energy conservation law (3.29) holds for both branches.

B. Numerical results of the effective dynamics

We now present numerical results for the effective
dynamics of the loop quantized dust outermost shell in
the marginally bound case and compare the distinctive
features resulting from the Hamiltonians (3.2) and (3.20).
For convenience, the first model with only holonomy
corrections is called model A and the second model, which
is quantized by employing both holonomies and gauge
covariant fluxes, is called model B. Without any loss of
generality, we set the initial time at 7 = 0. The parameter
space consists of the initial values of the radius R; and the
dust mass M. We find that for a generic set of the initial
conditions (R;, M), the singularity point at R =0 is
replaced by a bounce in both models, but with important
differences in the physics of the bounce and postbounce
dynamics. Before the bounce, the dust cloud collapses in a
contracting phase, and after the bounce the dust cloud
keeps expanding toward infinity.

In Fig. 1, we show a representative case with R; = 50
and M = 10 (in Planck units). The left panel depicts the

evolution of the radius R of the shell in the classical theory
(black dashed curve), in model A with holonomy correc-
tions (red solid curve) and in model B with both holon-
omies and gauge covariant fluxes (blue dotted curve). In the
classical theory, the radius becomes zero at a finite proper
time while in models A and B, the radius of the shell
experiences a bounce at the maximum energy density and
the dust shell enters into an expanding phase afterwards.
The bounce in both models takes place at around 7 =~ 52.70
(in Planck units). The difference between two loop quan-
tized models mainly lies in the expanding phase and they
also have different maximum energy densities. In model A,
the evolution is symmetric with respect to the bounce
while in model B, we observe an asymmetric bounce due to
the gauge covariant fluxes. Starting with the same initial
conditions, the expansion rate of the dust cloud in
model B is smaller than that in model A. Besides, the
maximum energy density in model A is p1%, ~ 0.409, while
in model B the maximum energy density is pfa; ~ 0.370 in
Planck units.

We find for both models, the formation of a trapped
surface does not depend on the initial values of the radius
which would only affect the bounce time. The only
parameter that affects the formation of the trapped surface
is the dust mass M. Moreover, we observe different patterns
in two loop quantized models which are summarized in
Fig. 2. In the figure, we present the R? plot for both models.
The left panel is for model A and the right panel is for
model B. As discussed in the last subsection, in the
contracting phase when the dust cloud collapses, the black

hole forms in the period when R?> > 1. On the other hand, a
white hole would form if R?> becomes larger than unity
again in the expanding phase after the bounce. In model A
(left panel), the peaks of R? are symmetric with respect to
the bounce. This shows that if the contracting branch
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FIG. 2. With the fixed initial radius R; = 50, we change the dust mass M in both of the models to show the effects of the dust mass on
the formation of the trapped surfaces corresponding to black hole (white hole) before (after) the bounce point. In the left panel, the dust
mass is set to M = 1.0 (red solid) and M = 0.7 (magenta dotted) in the first model with only holonomy corrections. In the right panel,
the dust mass from left to right is set, respectively, to M = 1.4 (blue dotted), M = 1.0 (purple solid) and M = 0.8 (dashed) in the second
model which also considers the gauge covariant flux. The trapped horizon forms when R> > 1.

produces a black hole then the expanding branch produces
its twin white hole. There is a threshold value of the dust
mass which determines whether black hole or white hole
would form. Its analytic value M* ~ 0.831 given in (3.16)
exactly matches with our numerical results. In particular,
our numerical investigations for masses below this thresh-
old did not find formation of a trapped surface. In the
figure, we show two cases with M = 1.0 and M = 0.7. In
the former case, a black (white) hole forms near the bounce,
while, in the latter case, neither a black hole nor a white
hole would form during the entire evolution. Finally, once
the dust mass is fixed, from Eq. (3.14) one can deduce at
what energy density the trapped surfaces would form or
vanish. In the case of M = 1.0, we find that during the
collapse of the dust cloud, the black hole forms at p =
0.041 and evaporates at p = 0.188. Owing to the symmetric
bounce, when the dust cloud enters into the expanding
phase after the bounce, the white hole would form at p =
0.188 and vanish at p = 0.041. Increasing the dust mass
would decrease/increase the energy densities at which the
trapped surfaces form/vanish during the collapsing phase of
the dust cloud. For example, when M = 2000, the black
hole would form at p = 7.460 x 10~ and then evaporate at
p =0.408. As R? changes monotonically with the dust
mass in (3.14), the energy density at which the trapped
surfaces form or vanish also changes monotonically with
the dust mass.

The situation becomes richer for model B (right panel in
Fig. 2) where we find that R? is asymmetric with respect to
the bounce point. As a result, there are two characteristic
dust masses M; = 0.880 and M, = 1.184. When the dust
mass M < M, there would be no black hole or white hole
as depicted by the rightmost dashed curve in the right panel.
When M, < M < M,, only the black hole can form during
the collapse of the dust cloud, there would be no white hole
in the expanding phase. This case corresponds to the one

depicted by the middle purple solid curve in the right panel.
Lastly, if M > M,, then both a black hole and a white hole
can form as depicted by the blue dot-dashed curve. Since
the closed forms of the dynamical equations which yield an
analytical value of mass threshold are not available for this
model, the above threshold values of the dust mass for the
formation of the black hole and white hole are determined
numerically. We have checked with various different initial
radii and find the same threshold values of the dust mass.
Moreover, given a specific dust mass, one can only find the
energy densities at which the black hole and the white hole
would form and vanish through the numerical solutions. In
the case mentioned in the right panel of Fig. 2, we find for
M = 1.4, the black hole would form at p = 0.0126 and
evaporate at p = 0.154. Correspondingly, the white hole
would form at p = 0.130 and vanish at p = 0.0364. One
can also increase the dust mass and find the similar patterns
as in model A with only holonomy corrections. For
example, when M = 2000, the black hole would form at
p = 2.98 x 1078 and evaporate at p = 0.368534 while the
corresponding white hole would form at p ~ 0.368517 and
vanish at p = 1.16 x 10~7. We find that the formation of
trapped surfaces does not depend on the initial radius. Note
that there also exists an asymmetry in the energy densities
for the formation or the evaporation of the black hole and
the white hole in model B. Thus we find a key difference
between the physics of model A and B. Contrary to the
model where triads and holonomies are used, in presence of
gauge-covariant flux modifications a black hole—white hole
twin system is not possible and there can be situations
where only a black hole forms.

In addition, we also find the difference in the “effective
masses” between two models. In Fig. 3, we choose the
initial conditions R; = 2500, M = 1000 (in Planck units)
so that both black hole and the white hole will form in the
two considered models. From the figure, one can find
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FIG. 3. With the initial conditions R; = 2500, M = 1000, the

“effective mass” in two models are compared near the bounce.
The difference between two models exhibits itself in the
expanding phase where the red dashed curve returns to its initial
value quickly after the bounce while the blue dotted curve can
only return to 2/x of its original value.

initially when the quantum gravity effects can be ignored,
the “effective mass” is equal to the dust mass in both cases.
As the dust cloud continues to collapse, the ‘“effective
mass” drops slowly initially. It is only near the bounce that
the “effective mass” starts to change drastically. Right at
the bounce, the “effective mass” vanishes, which implies,
for an exterior observer, that the spacetime reduces to the
flat Minkowski spacetime at the bounce. The remarkable
difference between two models takes place in the expand-
ing phase. In model A (red dashed curve), the dust cloud
can return to its initial configuration with a reversed
velocity, as the quantum gravity effects disappear, the
“effective mass” also returns to its initial value.
However, in model B with modifications from the gauge
covariant fluxes, the “effective mass” can only at most
return to about aM =~ 636.62, which is exactly given by our
analytical predictions in (3.27). Finally, since the M is
asymmetric with respect to the bounce in model B, the
masses of the black hole and the white hole also evolve
asymmetrically with respect to the bounce.

As the “effective mass” M ¢ equals the mass of the black
hole and white hole once the trapped surface is formed, one
can also track the formation of the trapped surface using the
(R — 2M ) plot. We give such an example in Fig. 4 with
the initial conditions R; = 50, M = 10. The black hole and
the white hole are formed when R < 2M ;. The central
maximum at around ¢ & 52.70 in the plot corresponds to the
bounce point. From the figure, we can clearly see when the
trapped surface forms and disappears in both of the models.
When the dust cloud is in the collapsing phase, the radius
decreases faster than the “effective mass.” The trapped
surface forms in the regime 39.39 < t < 52.58 for which
R < 2M s and disappears in the interval 52.58 <t <
58.84 when R > 2M . Right at the bounce ¢~ 52.70,
M 4 vanishes and (R — 2M ;) attains its local maximum.
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FIG. 4. With the initial conditions R; = 50, M = 10, we show
explicitly the evolution of the trapped horizon near the bounce.
The bounce takes place at the peak in the middle of the plot. The
red dashed curve is for model A with only the holonomy
corrections while the blue dotted curve is for model B, which
also considers gauge covariant fluxes.

After the bounce, in order to form a trapped surface during
the expanding phase, 2M .+ which equals zero at the bounce
has to increase more quickly than R so that (R — 2M )
becomes negative again at some instant of time (in the
current case, this time is ¢ ~ 58.84 for both models). In this
expanding branch, the difference between the two models
exhibits itself in terms of the duration of the trapped
surfaces. To be specific, in model A (red dashed curve)
which includes only holonomy corrections, the trapped
surface forms at around ¢ ~ 58.84 and disappears at around
t ~ 66.02 while in model B (blue dotted curve), which
includes quantum effects from holonomy corrections and
the gauge covariant fluxes, the trapped surface lasts from
t~58.84 to t ~ 61.19. As a result, in model A, the black
hole and white hole have the same “lifetime” in terms of the
proper time 7, while in model B, the black hole outlives the
white hole in the proper time 7.

While there are qualitative differences between the two
models, the behavior of the “effective energy density” and
the violation of the weak energy conditions when measured
with respect to “effective energy densities” in the two
models is similar. In Fig. 5, we present a typical evolution
of the “effective energy density” in both models with the
initial conditions R; = 50, M = 10. One can find two
models share the similar behavior: as the dust cloud
collapses, the “effective energy density” initially increases
until its maximum value before the bounce then it decreases
rapidly. At the bounce, the “effective energy density”
vanishes which implies that an outside observer can only
see an asymptotic flat Minkowski spacetime at the bounce.
Afterwards, the “effective energy densities” increases again
to its maximum as the dust cloud starts to expand. This
results in the formation of the white hole in the expanding
phase when R < 2M . As the radius keeps increasing, the
“effective energy density” would finally decrease. Finally,
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FIG.5. With the initial conditions R; = 50, M = 10, apart from some quantitative differences, the “effective energy density” in model
A (red dashed curves) and model B (blue dotted curves) have the similar behavior. In particular, the “effective energy densities” vanish at
the bounce and the weak energy condition is violated in a neighborhood of the bounce.

in the right panel, we can find near the bounce between
7~ 52.32 and 7% 53.09, the weak energy condition in
terms of the effective density and pressure is violated in
both models.

It is important to note that the above qualitative
differences and similarities between the two models are
robust with respect to the change in the dust mass and the
initial radius of the dust cloud. In particular, the symmetric
bounce in model A and asymmetric bounce in model B, the
threshold values of the dust mass for the formation of the
trapped surfaces in both models, as well as the black hole
and white hole symmetry (asymmetry) in model A (B) are
the properties of models independent of the specific choices
of the initial conditions and were found to hold for a large
range of values of mass parameter.

IV. CONCLUSIONS

In this paper, we have studied and compared the
dynamical consequences of two loop quantizations of
the dust shell model. The first quantization uses the
holonomies and triads while the second quantization
employs the holonomies and the gauge covariant fluxes.
Note that in standard LQC the use of triads follows because
of the symmetry reduction and homogeneity. On the other
hand the motivation to use gauge-covariant fluxes arises
from treating holonomies and fluxes at a similar level
during quantization in LQG [52] and to obtain the effective
Hamiltonian in LQC as an expectation value of the scalar
constraint operator using suitable coherent states in LQG.
In the classical dust shell model, we assume the LTB dust
spacetime with marginally bound condition so that the
initial dust velocity at spatial infinity vanishes. Moreover,
we also assume a homogeneous dust density so that all
shells of the dust cloud collapse and expand at the same
rate. In this way, there is no shell crossing singularity and
all of the shells reach the central singularity at R =0
simultaneously. In both of the loop quantized models, the
said central singularity is resolved for a generic set of the

initial conditions for the collapsing dust cloud. The dust
shell bounces back after some period of collapse when the
maximum energy density allowed in each model is reached.
Afterwards, the dust cloud keeps expanding until all the
matter is radiated to infinity.

Besides the generic resolution of the central singularity,
in both models, the formation of the trapped surfaces only
depends on the dust mass M. However, there are important
qualitative distinctions in the dynamics of two loop
quantized models. In the first model with only holonomy
corrections, the evolution of the radius, the velocity of the
dust shell, the “effective mass” and the “effective energy
density” is symmetric with respect to the bounce point,
while in the second model with both holonomy corrections
and modifications from the gauge covariant fluxes, the
evolution of the corresponding variables become asym-
metric with respect to the bounce. The symmetric/
asymmetric bounce results in the following physical
consequences. In the first model, we find a threshold value
of the dust mass M* below which no trapped surface would
form during the entire evolution of the dust cloud. It is only
when the dust mass is larger than M* that the trapped
surfaces could then form on both sides of the bounce. The
trapped surface which forms during the collapse of the dust
cloud corresponds to a dynamical black hole while the
trapped surface which forms during the expansion of
the dust cloud after the bounce is a dynamical white hole.
The black hole and the white hole lie symmetrically on both
sides of the bounce point. Between them is an asymptotic
flat Minkowski spacetime, owing to the vanishing “effec-
tive mass” (“effective energy density”) at the bounce point.

On the other hand, in the second model which includes
gauge-covariant flux modifications, we find a much richer
situation. In contrast to the first model, the formation of the
black hole in the collapsing phase does not guarantee the
formation of the white hole in the expanding phase. There
actually exist two characteristic dust masses M; and M,
(M| < M,). When the mass of shell is less than M, neither
black hole nor white hole would form during the collapse or
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the expansion of the dust cloud. When the dust mass lies
between M; and M,, only the black hole can form during
the collapse of the dust cloud. Finally, when the dust mass
is larger than M,, both a black hole and a white hole can
form on different sides of the bounce point. For the last
case, unlike in the first model, the evolution of the black
and the white hole is not symmetric with respect to the
bounce point.

Another remarkable difference between two loop quan-
tized models lies in the behavior of the “effective mass” and
the duration of the trapped surfaces in two models. In the
first model with only holonomy corrections, the “effective
mass” evolves symmetrically with respect to the bounce. It
tends to the same dust mass on both sides of the bounce
when the dust energy density approaches zero. However, in
the second model, the asymptotic value of the “effective
mass” of the dust cloud in the expanding phase is only 2/z
of its initial value in the collapsing phase. As the “effective
mass” remains almost constant in most of the times of the
evolution and it only changes drastically near the bounce,
this asymmetry can also be interpreted as the asymmetry in
the masses of the black hole and white hole formed during

the collapse and the expanding phases, respectively.
Moreover, in the first model, the black hole and the white
hole have the same lifetime in terms of the proper time =
while, in the second model, the black hole outlives the
white hole as a consequence of the asymmetric bounce
which is a unique feature of the second model. In summary,
our results show that various aspects of the black hole—
white hole symmetry which exists in models based on
holonomy modifications are nonexistent when one also
includes gauge-covariant flux modifications motivated by
loop quantum gravity. Further, our analysis shows that even
for the simplest situation of the marginally bound case
different quantization prescriptions can result in qualita-
tively different physics for the white hole spacetime.
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