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We study some consequences of the loop quantization of the outermost dust shell in the Lemaître-

Tolman-Bondi spacetime with a homogeneous dust density using different quantization strategies

motivated by loop quantum gravity. Prior work has dealt with loop quantizing this model by employing

holonomies and the triads, following the procedure in standard loop quantum cosmology. In this work we

compare this quantization with the one in which holonomies and gauge-covariant fluxes are used. While

both of the quantization schemes resolve the central singularity, they lead to different mass gaps at which a

trapped surface forms. This trapped surface which is matched to an exterior generalized Vaidya spacetime

disappears when the density of the dust cloud is in the Planck regime. We find that the quantization based

on holonomies and gauge-covariant fluxes generically results in an asymmetric evolution of the dust shell

in which the Vaidya mass associated with the white hole as seen by an external observer is 2=π of the one

for the black hole. This effective difference in masses results from difference in the classical limits in pre-

and postbounce regimes in the two quantizations. This distinctive feature rules out formation of any black-

hole-white-hole twins in presence of gauge-covariant flux modifications, which is in contrast to the

quantization using holonomies and triads where the gravitational collapse always leads to black hole–white

hole twins. Another striking difference lies in the fact that for the quantization based on holonomies and

gauge-covariant fluxes there can be situations in which during a nonsingular collapse only a black hole

forms without a white hole.
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I. INTRODUCTION

It is generally believed that the singularity problem in

the classical gravitational collapse is a consequence of the

breakdown of the Einstein theory of general relativity in the

Planckian curvature regime and thus can be resolved by

quantum gravity. Understanding the role of quantum

gravity effects becomes manageable when the collapsing

astrophysical body is assumed to be spherically symmetric

in which case techniques from canonical quantum gravity

can be applied to explore the consequences for singularity

resolution and the fate of the spacetime beyond the central

singularity. It is expected that a rigorous understanding of

quantum gravity effects would also provide insights on

fundamental questions related to cosmic censorship con-

jecture and the black hole evaporation. But to answer these

questions, it is important to reliably understand whether the

resulting physics is tied to a particular quantization

prescription and the way various quantization ambiguities

affect the resulting physics of the quantum spacetime and

the end state of gravitational collapse.

Loop quantum gravity (LQG) [1–3] is a nonperturbative

and background independent approach of quantum gravity

which provides a platform for investigating the resolution

of the singularities in various situations. In particular,

when symmetry reduction is performed before quantization

is carried out, loop quantization can in general lead

to tractable models which grasp the main features of

the quantum gravity corrections to the classical model.

For example, a quantization of Friedmann-Lemaître-

Robertson-Walker (FLRW) cosmological models using

LQG techniques results in loop quantum cosmology

(LQC) [4,5], which resolves the big bang singularity by

replacing it with a big bounce at the Planck curvature scale

[6–8]. While the Hamiltonian constraint in LQC is a

difference equation, the underlying dynamics is captured

very well by an effective Hamiltonian which indicates a

generic resolution of cosmological singularities for iso-

tropic and anisotropic spacetimes [9–14]. These studies

have also been generalized to understand the way in which
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the above results are robust with respect to some underlying

quantization ambiguities such as different choices of the

Hamiltonian constraint [15].

Similar to the cosmological setting, within the frame-

work of symmetry reduced LQG, the quantization of black

hole spacetimes has been studied in various models using

effective spacetime description. For the vacuum space-

times, most studies are based on the fact that the interior of

a Schwarzschild black hole is isometric to the vacuum

Kantowski-Sachs spacetime in cosmology. Various quan-

tization schemes, based on holonomies and symmetry

reduced triads, have been proposed which result in a

generic resolution of the curvature singularity and glue

the black hole spacetime to a white hole spacetime through

a transition surface [16–26]. Moreover, studies on the

vacuum spacetimes have also be extended to include both

interior and exterior of the black hole spacetimes [27–33].

On the other hand, investigations have been carried out

beyond vacuum spacetimes to include matter such as a

massless scalar field (see for e.g., [34–39]). In the classical

theory, one of the most studied context is the dust collapse

in Lemaître-Tolman-Bondi (LTB) spacetime [40–42], see

for instance [43] for an analysis in terms of Dirac

observables and [37,44,45] where loop quantum gravita-

tional effects have also been studied. Here the marginally

bound case has been well studied when the interior

spacetime is isometric to a spatially flat FLRW spacetime

for a homogeneous evolution of the dust cloud.
1
These

studies have so far focused on exploring the resolution of

central singularity using standard techniques in LQC by

incorporating quantum geometry effects via holonomies

and/or inverse triad modifications [37,45].

Despite this progress, none of the quantizations studied

so far for symmetric models has been derived from LQG.

Therefore, the robustness of physical predictions from

above symmetric models when further modifications from

LQG are included in the dynamics remains an important

open question. One prominent approach to relate these

models to LQG is via coherent states to approximate certain

sectors of LQG. But this is challenging for quantizations, as

discussed above, which are based on a fixed discretized

lattice and flux variables (for a discussion see [49–51]).

A resolution is to use gauge-covariant flux variables on a

discretized fixed lattice [52]. In this paper our goal is to test

the robustness of some of the results obtained in the context

of gravitational collapse of the dust cloud using this input

from LQG and compare with existing approach based on

using holonomies and triads by employing the μ̄ type

quantization [7], first for holonomy and triads [7], and then

holonomy and gauge-covariant fluxes. This allows us to

test some properties of gauge-covariant fluxes in a simpler

setup than full LQG where detailed investigations on

models involving gauge-covariant fluxes are still an open

question. We consider the collapse of a spherically sym-

metric dust cloud in the marginally bound case assuming

that the energy density of the dust cloud is homogeneous so

that each shell of the dust cloud collapses at the same

relative velocity. As a result, the crossing of the dust shell

would never occur during the collapse of the dust cloud and

the only relevant singularity in the classical theory is the

central singularity when the radius of the dust cloud

vanishes.

In this framework we investigate whether different

quantization schemes can affect the formation of the

trapped horizons and thus lead to distinctive phenomeno-

logical signals once the black hole forms during the

collapse of the dust cloud. From the numerical simulations

of the effective Hamilton’s equations, we find that the

central singularity is resolved and replaced by a quantum

bounce within both quantization schemes. However, there

are also distinctive features arising in the second scheme

due to the asymmetric evolution of the dust shell. For

example, there exists a small region of the parameter space

in which a black hole can form during the collapse while a

white hole in the expanding stage after the bounce cannot

form. Besides, even when both the black hole and the white

hole can form in the second scheme, their masses and the

duration of the existence of trapped surfaces show quali-

tatively different behavior from the first scheme. In

particular, for generic initial conditions the Vaidya mass

of the white hole as seen by an external observer turns out

to be 2=π of the black hole mass. We find that in both the

prescriptions there is a mass gap but its value depends on

the chosen quantization scheme. These results provide

insights on the role of the quantization prescription used

in studying the fate of the gravitational collapse using LQG

techniques. In particular our results demonstrate in a simple

setting that while the resolution of central singularity is a

robust feature, the existence of “black hole–white hole”

twins resulting from the Planck scale physics is not a

generic feature. It shows that the resulting physics of loop

quantum gravitational collapse can be much richer and

complex if further modifications from LQG, than those

considered so far, are systematically incorporated.

This paper is organized as follows. In Sec. II, we briefly

review the classical LTB dust shell model and derive the

classical Hamilton’s equations of the outermost shell for the

marginally bound case along the lines of [53] using

Ashtekar-Barbero variables. We also discuss the criterion

for the formation of the trapped surfaces during the collapse

of a spherically symmetric object and the matching of the

interior of the trapped surface with the exterior spacetimes

at the boundary. In Sec. III, we study the effective dynamics

of the loop quantization of the dust shell model and employ

two quantization prescriptions, the first one only considers

the holonomy corrections and the second takes into account

both holonomy corrections and gauge covariant fluxes.

1
See also [46–48] for the bound case whose interior is

isometric to a spatially closed FLRW spacetime.
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With the help of the numerical analysis of the resulting

effective Hamilton’s equations, we discuss the phenomeno-

logical differences due to the quantization prescriptions.

Finally, the main results are summarized in Sec. IV. We use

Planck units for numerical simulations and set ℏ ¼ c ¼ 1

while keeping Newton’s constantG explicit in our formulas.

II. A BRIEF REVIEW OF THE CLASSICAL LTB

DUST SHELL MODEL

In this section we briefly review the classical LTB dust

model in the canonical framework and write necessary

equations using triad and connection variables. The LTB

model is obtained from a spherical symmetric solution of

Einstein’s equations that involve nonrotational dust as the

matter source. The metric is given by

ds2 ¼ −dτ2 þ ðR0Þ2
1þ 2f

dx2 þ R2dΩ2; ð2:1Þ

where we denote the radial coordinate by x, the angular part

by dΩ2 ¼ dθ2 þ sin2θdϕ2 and we have set c ¼ 1. Rðx; τÞ
which is the areal radius of the spherical surfaces is

determined by two unknown functions F and f that depend

on the radial coordinate and are in turn determined via the

following equations

8πGρdust ¼
F0

R2R0 and _R2 ¼ F

R
þ 2f; ð2:2Þ

where ρdust denotes the energy density of the dust and G is

Newton’s constant. Here fðxÞ is the total energy of a unit

mass at x and FðxÞ=2G is the active gravitating mass within

a sphere with radius RðxÞ. In the so-called marginally

bound case one chooses f ¼ 0 leading to a simplified form

of the metric as well as the LTB equations. We consider the

marginally bound case in this work. In the Hamiltonian

framework using canonical variables in the Arnowitt-Deser-

Misner (ADM) formulation ðR;PRÞ, the Hamiltonian con-

straints for the gravitational and dust matter sectors have the

form

Hgrav ¼ −
1

2G
ð _R2RÞ0 and Hdust ¼

F0

2G
; ð2:3Þ

where _R is understood as a function of the momentum PR.

Considering the total Hamiltonian constraint Hgrav þ
Hdust ¼ 0 then yields the second equation in (2.2).

In order to apply LQG techniques as used in LQC in this

context we need to start with a classical LTB model

formulated in terms of Ashtekar variables (see for instance

[44]). The set of independent canonical variables is given

by ðAxðxÞ; ExðxÞÞ, ðγKφðxÞ; EφðxÞÞ and a third pair

ðηðxÞ; PηðxÞÞ corresponding to the gauge angle, where γ

is the Barbero-Immirzi parameter [54,55]. Once the Gauss

constraint is implemented the latter pair is eliminated and

gauge invariant quantities do not depend on these variables.

The relation between the connection variables Ax and the

corresponding extrinsic curvature Kx in this case reads

Kx ¼ 1

γ
Ax. Therefore, the elementary canonical variables

satisfy the following Poisson brackets

fKxðxÞ; ExðyÞg ¼ 2Gδðx; yÞ and

fKφðxÞ; EφðyÞg ¼ Gδðx; yÞ: ð2:4Þ

The metric in the marginally bound case in terms of

Ashtekar variables can be expressed as

ds2 ¼ −dτ2 þ ðEφÞ2
jExj dx2 þ jExjdΩ2: ð2:5Þ

In the ADM case for spherical symmetric models one starts

with two sets of variables ðR;PRÞ and ðΛ; PΛÞ. For the LTB
marginally bound case, as can be seen in (2.1), the metric

depends only on R and its derivatives since Λ ¼ R0 [43]. At
the level of Ashtekar variables this results in the following

LTB condition

EφðxÞ ¼ 1

2
jExj0ðxÞ: ð2:6Þ

As discussed in [44] a second condition relating the two

extrinsic curvatures can be obtained by taking the LTB

condition in (2.6) as a gauge fixing condition for the

diffeomorphism constraint which then yields

K0
φ ¼ KxsgnðExÞ: ð2:7Þ

The Hamiltonian constraint for the gravitational sector in

terms of Ashtekar variables is given by

Hgrav ¼ −
1

2G

�

K2
φE

φ

ffiffiffiffiffiffiffiffi

jExj
p þ 2KφKx

ffiffiffiffiffiffiffiffi

jExj
p

�

; ð2:8Þ

where at this stage Kφ, E
φ are understood as functionals of

Kx, E
x. In order to write downHgrav entirely in terms ofKx,

Ex one can use the equations of motions for Kφ, E
φ, Kx, E

x

to get [44]

Kφ ¼
_Ex

2
ffiffiffiffiffiffiffiffi

jExj
p and Kx ¼

1
ffiffiffiffiffiffiffiffi

jExj
p

�

_Eφ
−

_ExEφ

2Ex

�

: ð2:9Þ

If one reinserts these into Hgrav, then one obtains

Hgrav ¼ −
1

2G

� ð _ExÞ2
4

ffiffiffiffiffiffiffiffi

jExj
p

�0
; ð2:10Þ

whereas the dust contribution has again the form

Hdust ¼ F0

2G
. This is consistent with the ADM result (2.3)

if one considers the usual relation R ¼
ffiffiffiffiffiffiffiffi

jExj
p

.
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Now we specialize the LTB model to the shell model.

Our strategy is to consider the LTB conditions at the

classical level which is sufficient to obtain a model for the

outermost shell following the work in [53]. We will briefly

summarize the main steps to obtain this model. One of the

crucial ingredients of the model is that considering the LTB

equations given by

8πGρdust ¼
2F0sgnðExÞ
ffiffiffiffiffiffiffiffi

jExj
p

ðExÞ0
and ð _ExÞ2¼ 4F

ffiffiffiffiffiffiffiffi

jExj
p

; ð2:11Þ

where the second equation can, as before, be obtained by

means of the total Hamiltonian constraint in Ashtekar

variables using (2.10). One realizes that the equation for
_Ex only depends on F and Ex but not its spatial derivatives.

As a consequence, at the classical level, once a mass

function F is chosen the individual shells decouple. The

starting point for the outermost shell model in [53] is the

Einstein-Hilbert action symmetry reduced to the LTB case

plus a boundary term. Next, one notes that the trace of the

Einstein-tensor in four dimensions yields −RðxÞ, where R
denotes the Ricci scalar. Multiplying the trace of the

Einstein equations by a volume term then leads to

ffiffiffiffiffi

jgj
p

RðxÞ ¼ 8πρdust
1

2
sgnðExÞðExÞ0

ffiffiffiffiffiffiffiffi

jExj
p

sin θ

¼ 1

G
F0 sin θ; ð2:12Þ

where one uses the first LTB equation in (2.11). We denote

the radial coordinate of the outermost shell by x0, then after
integrating out the angular part the bulk action has the form

SM ¼ 1

4G

Z

dτ

Z

x0

0

F0ðxÞ ¼ 1

4G

Z

dτðFðx0Þ − Fð0ÞÞ

¼ 1

16G

Z

dτ
ð _ExÞ2ðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jExjðx0Þ
p ; ð2:13Þ

where as in [53] Fð0Þ ¼ 0 is chosen, meaning that the

innermost shell contains no mass. Let us introduce

the following compact notation for the quantities of the

outermost shell

εx ≔ Exðx0Þ: ð2:14Þ

Using the same boundary term as derived in [53], which in

this notation reads SB ¼ −
3

16G

R

dτ
ð_εxÞ2
ffiffiffiffiffi

jεxj
p , and adding the

bulk and boundary contributions finally, one obtains

the full action for the outermost shell of the dust cloud

in the LTB model, which reads

S ¼ 1

G

Z

dτLshell ≔ −
1

8G

Z

dτ
ð_εxÞ2
ffiffiffiffiffiffiffi

jεxj
p ; ð2:15Þ

where as in [53] it was used that for Brown-Kuchař dust

[56] the action trivially vanishes on shell. Moreover, the

triad εx and its conjugate momentum kx, which corresponds
to the 1=2 of the radial component of the extrinsic

curvature, satisfy the Poisson bracket

fkx; εxg ¼ G; ð2:16Þ

then in terms of these canonical variables, the classical

Hamiltonian of the outermost shell of the dust cloud takes

the form

Hclass ¼ −
2

G
k2x

ffiffiffiffiffiffiffi

jεxj
p

¼ −M; ð2:17Þ

where M stands for the dust mass enclosed by the

outermost dust shell. The classical Hamilton’s equations

can be easily derived from the Hamiltonian with the above

Poisson bracket, which explicitly read

_εx ¼ 4kx
ffiffiffiffiffiffiffi

jεxj
p

; _kx ¼ −
k2x
ffiffiffiffiffiffiffi

jεxj
p : ð2:18Þ

We can rewrite εx again in terms of Rðx0Þ ¼ R0 as jεxj ¼
R2

0
where we suppress the label “0” from now on. The

above equations of motion in turn yield the following

equations which resemble the classical Friedmann and the

Raychaudhuri equations for the areal radius

�

_R

R

�

2

¼ 8πG

3
ρ;

R̈

R
¼ −

4πG

3
ρ: ð2:19Þ

Here ρ denotes the energy density of the dust cloud

ρ ¼ 3M

4πR3
: ð2:20Þ

As is well known, the central singularity in the classical

theory is inevitable since dynamical equations (2.19) result

in the radius of the outermost dust shell to decrease to zero

in a finite period of the proper time for a generic set of the

initial conditions ðRi;MÞ, where Ri denotes the initial value

of the radius. During the collapse of the dust cloud, if a

trapped surface can form, then the central singularity will

be covered by a horizon. In order to investigate the

formation of the trapped surfaces in the interior, it is

convenient to introduce two future-directed null vectors

normal to the sphere with constant radius, which are [57]

∂ξþ ¼
1
ffiffiffi

2
p

�

∂τþ
1

R0∂x

�

; ∂ξ− ¼
1
ffiffiffi

2
p

�

∂τ−
1

R0∂x

�

: ð2:21Þ

In the null coordinates ξþ and ξ−, the line element (2.1)

(with f ¼ 0) becomes
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ds2 ¼ −2dξþdξ− þ R2dΩ2: ð2:22Þ

Hence, we can identify two kinds of the radial null

geodesics emerging from the sphere, namely the inward

null geodesics ξþ ¼ const and the outward null geodesics

ξ− ¼ const. If the radius decreases along both inward and

outward null geodesics, then a trapped surface forms at the

sphere. One can introduce the expansion parameter [57]

θ� ¼ 2

R
∂�R; ð2:23Þ

where ∂� denotes derivatives with respect to ξ�, respec-
tively. When the bundles of the light rays converge on both

sides of the sphere, θ� < 0, namely _R < −1, then the

sphere becomes a future trapped surface corresponding to a

black hole. When θþθ− ¼ 0, the sphere is marginally

trapped. On the other hand, if we reverse the directions

of the null vectors in (2.21), and then require the bundles of

the light rays to converge along these reversed null vectors,

which leads to _R > 1, a past trapped surface corresponding

to a white hole can form. As a result, in both cases, the

trapped surfaces form as long as _R2 > 1 with the sign of _R

signifying future ( _R < 0) or past ( _R > 0) directed trapped

surface.

While the simplest models of the gravitational collapse,

such as Oppenheimer-Snyder-Dutt model, can be recasted

as a cosmological model it should be noted that this

analogy is only true in the interior of the collapsing object.

For a complete picture of a gravitational collapse the

interior has to be matched with an exterior spacetime for

an external observer. In various situations, with a non-

vanishing interior pressure, including for the analysis

presented in this paper, the exterior spacetime turns out

to be the generalized Vaidya spacetime [58,59], which in

the advanced Eddington-Finkelstein coordinates takes the

form

ds2þ ¼ −

�

1 −
2GMðrv; vÞ

rv

�

dv2 − 2dvdrv þ r2vdΩ
2:

ð2:24Þ

Here Mðrv; vÞ is the generic mass function of the Vaidya

spacetime which stands for the mass of the black hole if a

trapped surface can form during the collapse of the dust

cloud. The interior and exterior metrics (2.1) (with f ¼ 0)

and (2.24) can be matched at the outermost dust shell

x ¼ rb by requiring that the first and second fundamental

forms are equal at the boundary. This leads to the following

equations:

rvðvÞjΣ ¼ Rðrb; tÞ ¼ rbaðtÞ;
�

dv

dt

�

j
Σ
¼ R;x þ rb _a

1 − F=R
;

ð2:25Þ

Fðt;rbÞ¼ 2Mðrv;vÞG; Mðrv;vÞ;rvG¼ F

2R
þ r2baä:

ð2:26Þ

III. EFFECTIVE DYNAMICS OF THE LOOP

QUANTIZED LTB DUST SHELL MODEL

In this section, we focus on the evolution of the

outermost shell of the dust cloud when the quantum

geometric effects motivated from LQG are taken into

consideration. Using the techniques of the effective

description of the loop quantum dynamics, we loop

quantize the outermost shell of the dust cloud and present

two effective Hamiltonians resulting from two loop quan-

tizations which yield different physical results. These

effective Hamiltonians incorporate the quantum effects

at the Planckian energy density and thus successfully

resolve the central singularity encountered during the

collapse of the classical dust cloud. We then present

numerical results from quantum gravity modified dynami-

cal equations and discuss the way initial conditions

determine the formation of the trapped horizons during

the evolution of the dust shell.

A. Quantum gravity modified dynamical equations

In this subsection, we consider effective dynamics

resulting from two loop quantizations of the classical

Hamiltonian (2.17). The first is based on using holonomy

and triad variables as in standard LQC [7,60], and the

second is based on a recently studied quantization of

holonomy and gauge-covariant fluxes [49–51]. In addition

to the effective Hamiltonian and the equations of motion in

each case, we also discuss analytical solutions in the first

case and define useful variables for unravelling the dynam-

ics of the collapsing dust cloud through numerical results

when analytical solutions are not available.

1. Nonsingular evolution in holonomy and triad

quantization

The effective description of the quantum dynamics with

the holonomy corrections has been widely corroborated

with numerical simulations for both isotropic and aniso-

tropic models in the context of LQC. The modified

dynamical equations from the effective Hamiltonian turn

out to be an excellent approximation to the underlying

quantum dynamics for states which are sharply peaked in a

large macroscopic universe [61–64]. Following these inves-

tigations, we assume the validity of this approach in our

analysis. The marginally bound case corresponds to a

spatially flat spacetime in a cosmological setting for which

the Ashtekar-Barbero connection is related to extrinsic

curvature by a multiplicative constant and the holonomy

corrections can be incorporated into an effectiveHamiltonian

bymaking the substitutionkx → sinðδxkxÞ=δx in the classical
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Hamiltonian (2.17), here δx is known as the polymerization

factor which together with kx determines the regimes where

quantum gravity effects become important. On one hand, the

quantum geometric effects are manifest in the regime

δxkx ≫ 1 where the effective dynamics would lead to

remarkably distinct predictions as compared with the

classical theory. On the other hand, when δxkx ≪ 1, the

effective Hamiltonian approximates the classical one and

the classical theory is recovered in this regime. Moreover,

one needs to be careful with the way δx depends on or is

independent of the phase space variables, otherwise one can

get inconsistent infrared regime and fakePlanck scale effects.

The functional dependence of δx on the phase spacevariables

is regarded as polymerization prescriptions. In the spatially

flat cosmological setting, there is a unique prescriptionwhich

is shown to be viable [65], known as improved dynamics

(also called μ̄ scheme) [7]. The same prescription has been

shown to be a viable one for the nonmarginally bound case

too [66]. In this quantization prescription, the dependence of

δx on the triads is computed by equating the physical area

enclosed by honolomy to the minimal eigenvalue of the area

operator in LQG, which is Δ ¼ 4
ffiffiffi

3
p

πγl2pl [7]. In the

following, the Barbero-Immirzi parameter γ is chosen to

be 0.2375, which is fixed by the black hole thermodynamics

in LQG. To find this relationship we use the correspondence

with the cosmological model and note that

kx ¼
c

2γ

�

3

4π

�

1=3

; εx ¼ p

�

3

4π

�

2=3

: ð3:1Þ

This sets δx ¼ 2γλ=
ffiffiffiffi

εx
p

with λ ¼
ffiffiffiffi

Δ
p

, here we have taken

the positive orientation of the triad. As a result, the effective

Hamiltonian from the holonomy corrections takes the form

Hhol ¼ −
ðεxÞ3=2
2Gλ2γ2

sin2
�

2γλkx
ffiffiffiffi

εx
p

�

¼ −M; ð3:2Þ

where kx=
ffiffiffiffi

εx
p

is proportional to the relative velocity _R=R of

the dust shell in the classical limit. From the effective

Hamiltonian (3.2), it is straightforward to show that the

equations of motion are

_εx ¼ εx

γλ
sin

�

4λγkx
ffiffiffiffi

εx
p

�

; ð3:3Þ

_kx ¼
kx

2λγ
sin

�

4λγkx
ffiffiffiffi

εx
p

�

−
3

ffiffiffiffi

εx
p

4γ2λ2
sin2

�

2λγkx
ffiffiffiffi

εx
p

�

: ð3:4Þ

From the equation ofmotion (3.3), one can find the following

dynamical equation:

�

_R

R

�

2

¼ 8πG

3
ρ

�

1 −
ρ

ρholmax

�

; ð3:5Þ

where ρ ¼ 3M
4πR3 and ρ

hol
max ¼ 3=ð8πGλ2γ2Þ denotes the maxi-

mumenergydensity enclosed by the outermost dust shell that

is allowed in this model. We see that the quantum geometric

effects modify the classical term 8πGρ=3 with an additional
factor which vanishes when the density of the dust cloud

becomes equal to ρholmax. Hence, the radius of the dust shell

attains its minimum value at the highest energy density and

consequently the singularity encountered at R ¼ 0 is

avoided. Note that the above modified Friedmann equation

results in the classical Friedmann equation (2.19) at macro-

scopic scales both in the prebounce and postbounce phases.

Besides, using the Hamilton’s equations (3.3)–(3.4), it is

straightforward to show that the energy conservation law in

terms of the energy density ρ takes the form

_ρþ 3
_R

R
ρ ¼ 0: ð3:6Þ

Note that the pressure is defined via P ¼ −∂Hm=∂v (with v
denoting the volume of the dust cloud) identically vanishes

for the effective Hamiltonian (3.2) since Hm ¼ M is a

constant.

Similar analysis can be carried out for the ith inner

shell of the dust cloud which is labeled by its comoving

radius xi. For such a dust shell, its physical radius is given

by Ri ¼ aðtÞxi, correspondingly when deriving its

Hamiltonian, we only need to integrate along the radial

direction from the center of the dust cloud to the comoving

radius xi, resulting in the effective Hamiltonian

Hi ¼ −
ðεxiÞ3=2
2Gλ2γ2

sin2
�

2γλkxi
ffiffiffiffiffi

εxi
p

�

¼ −
Mx3i
x3outer

; ð3:7Þ

where εxi ¼ R2
i , kxi is the conjugate momentum of εxi and

xouter is the comoving radius of the outermost shell. Now

starting from the effective Hamiltonian (3.7), one can

derive the Hamilton’s equations for the ith inner shell in

the same way as we did for the outermost shell. It turns out

that one can obtain a dynamical equation for the ith shell

which has the same form as (3.5) as long as R is replaced

with the physical radius of the ith shell Ri. The energy

density is still given by ρ ¼ 3M
4πR3 which is consistent with a

homogeneous evolution of the dust cloud. Moreover, since

the matter Hamiltonian in (3.7) is a constant for any ith
inner shell with a fixed comoving radius xi, the pressure

defined by p ¼ −∂Hm=∂vi (with vi denoting the physical

volume enclosed by the ith inner shell) identically vanishes

again and the energy conservation law takes the same form

as Eq. (3.6) with R replaced by Ri. Note the energy

conservation law (3.6) does not refer to any particular dust

shell since _R=R ¼ _a=a, which is the same for all of the

inner shells, therefore any ith dust shell satisfies the same

energy conservation law. From the above analysis for the ith
inner shell, we conclude that the pressure vanishes iden-

tically for any ith dust shell, including the outermost shell of
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the dust cloud. As a result, even after loop quantizations,

there is still no interactions between neighboring dust

shells and we can treat each shell independently from

one another.

The quantum gravitational modification in (3.5) can be

understood in terms of an “effective energy density” by

writing its right-hand side in the same form as in the

classical theory. Before going into any details, we want to

clarify that quotation marks on “effective energy density,”

“effective mass” and “effective pressure” in the following

are used to emphasize that these effective quantities are not

the energy density, mass and pressure from the effective

Hamiltonian of the dust shell model but are the quantities

which show up in the classical energy momentum tensor

when we recast the quantum theory into the form of the

classical Einstein’s equations. By defining the “effective

energy density”

ρholeff ≔ ρ

�

1 −
ρ

ρholmax

�

; ð3:8Þ

the dynamical equation (3.5) becomes

�

_R

R

�

2

¼ 8πG

3
ρholeff : ð3:9Þ

Using this “effective energy density” one can also define an

“effective mass”

Mhol
eff ≔

4π

3
R3ρholeff : ð3:10Þ

The physical meaning of this “effective mass” Mhol
eff can be

interpreted as follows. Note the Vaidya mass Mðrv; vÞ is

matched with the mass function at the outermost shell of the

dust cloud as given in (2.26), namely, F ¼ 2GMðrv; vÞ.
With F ¼ _R2R, one can easily find from (3.9) and (3.10)

that F ¼ 2GMeff . As a result, when the trapped surface

forms during the collapse of the dust cloud, the “effective

mass” is exactly the mass of the black hole observed by an

outside spectator. Same arguments can also be applied to

the case in which a white hole forms in the expanding phase

of the dust cloud after the bounce. There, the “effective

mass” stands for the mass of the white hole as detected by

the exterior observer. Finally, the “effective energy density”

obeys a conservation law

_ρholeff þ 3
_R

R
ðρholeff þ phol

eff Þ ¼ 0: ð3:11Þ

with an “effective pressure”

phol
eff ¼ −

_Mhol
eff

4πR2 _R
: ð3:12Þ

Note although the above “effective pressure” is defined at

the boundary, one can analyze the “effective pressure”

of the inner shells in a similar way. For the ith inner shell

with the comoving radius xi, we can define the “effective

energy density” of the inner shell same as ρholeff in (3.8) due

to the homogeneous energy density and the corresponding

“effective pressure” turns out to be

pi
eff ¼ −

_Mi
eff

4πR2
i
_Ri

ð3:13Þ

with Mi
eff ≔

4π
3
R3
i ρ

hol
eff denoting the “effective mass” of the

ith shell. Now the key observation is that pi
eff does not

depend on the comoving radius xinner. As a result, it is the
same for all the shells of the dust cloud, including the

outermost shell. Besides, this “effective pressure” is

defined according to the “effective energy density” which

in turn is defined based on the classical Friedmann

equation, any deviations from the classical theory would

thus yield a nonzero “effective pressure.” However, it

should be noted that, in quantum theory, the pressure

defined from the effective Hamiltonian (3.7) is still zero for

any dust shells. The nonzero “effective pressure” implies a

modification of the gravitational sector due to quantum

gravity can be compensated by a corresponding modifica-

tion in the matter sector.

The formation of the trapped surface depends on the

magnitude of _R2 during the collapse of the dust cloud.

Specifically, the trapped surface would form if and only if

the magnitude of _R2 becomes greater than unity. This

results in a threshold value of the dust mass M� below

which trapped surface does not form. Only whenM > M�,
a trapped surface would form. On the other hand, if

M < M�, no trapped region forms during the collapse of

the dust shell.

For the physical Hamiltonian (3.2), one can analytically

find the exact expression of M�. First, from (3.5), it is

straightforward to show that

_R2 ¼ 8πGM2=3ρ1=3

ð48π2Þ1=3
�

1 −
ρ

ρholmax

�

: ð3:14Þ

Therefore, at ρ ¼ ρholmax=4, _R2 attains its maximum value

which turns out to be

_R2
max ¼

3

4

�

GM

λγ

�

2=3

: ð3:15Þ

Requiring _R2
max ¼ 1 yields the threshold value of the dust

mass, which is

M� ¼ 8λγ

3
ffiffiffi

3
p

G
≈ 0.831; ð3:16Þ
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with γ ¼ 0.2375 and λ ≈ 2.2736 in Planck units. Moreover,

since _R2 given by (3.14) only depends on the dust mass

and the energy density of the dust cloud, the energy

density at which the trapped surface forms or vanishes

also only depends on the dust mass. In particular, the initial

volume does not play any role in determining whether the

trapped surface would form during the collapse of the

dust cloud.

In addition to the threshold value of the dust mass for the

formation of the trapped surface, one can also analytically

obtain the time at which the trapped surface forms.

Integrating (3.8) leads to

R ¼ ½2MGλ2γ2 þ ðατ þ βÞ2�1=3; ð3:17Þ

where

α ¼ −3

ffiffiffiffiffiffiffiffiffiffiffiffiffi

GM=2
p

; β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R3
i − 2MGλ2γ2

q

; ð3:18Þ

and Ri denotes the initial value of the radius R with the

initial time chosen at τi ¼ 0. Thus, the bounce happens at
_R ¼ 0 when

τB ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R3
i − 2MGλ2

p

3
ffiffiffiffiffiffiffiffiffiffiffi

2GM
p : ð3:19Þ

More features of the dust cloud collapse with holonomy

corrections will be discussed through the numerical sol-

utions in the next subsection.

Before moving onto the second quantization ansatz, we

would like to emphasize that the quantization of the

homogeneous evolution of the dust cloud in this subsection

is carried out based on the classical Hamiltonian constraint

(2.17) which comes from applying the classical LTB

conditions to the gravitational sector of the Hamiltonian

constraint given by (2.8) in the spherically symmetric phase

space. Consequently, the classical LTB conditions are also

implicitly satisfied for the effective dynamics prescribed by

the effective Hamiltonian constraint (3.2). At a first sight,

this seems contradictory to the results given in [44] in

which the authors showed explicitly the modifications to

the classical LTB conditions due to the quantum gravity

effects. However, it should be noted that those modifica-

tions are also due to an inhomogeneous evolution of the

dust cloud. Here we note that a recent work in [25] loop

quantizes the spherically symmetry reduced phase space

starting from the classical gravitational Hamiltonian (2.8).

In [25], the authors derived a full set of the equations of

motion for Eφ, Ex and their conjugate momenta by using

the effective dynamics which constitute a closed set of

partial differential equations [see Eqs. (4.1)–(4.4) in [25]].

It can be shown that for the homogeneous evolution of

the dust cloud, equations of motion in [25] are consistent

with the classical LTB conditions and result in the

Eqs. (3.3) and (3.4). As a result, solutions discussed in

this subsection agree with those obtained from the homo-

geneous reduction of the full set of the equations of motion

without assuming the homogeneity of the interior space-

time. One can regard our model as the simplest case which

only focuses on the quantum geometrical effects on the

resolution of the classical singularity and and the formation

of the trapped surfaces. In particular, no interactions

between the neighboring shells of the dust cloud are taken

into account. To consider more complicated situations, one

needs to refer to the full set of the equations of motion

(4.1)–(4.4) in [25] where an inhomogeneous evolution of

the dust cloud is certainly expected to incorporate the

interactions between the shells and thus change the

dynamics of the outermost shell.

2. Nonsingular evolution in holonomy and

gauge-covariant flux quantization

So far we have considered loop quantum gravity effects

using holonomies of the connection and symmetry

reduced triads. The usage of triads, instead of fluxes, is

possible because of symmetry reduction. While this

strategy works for the loop quantization of symmetry

reduced models, one needs to go beyond this approach if

one wishes to obtain an effective Hamiltonian with loop

quantum modifications from loop quantum gravity using

suitable coherent states. A possibility in this direction

requires an introduction of gauge-covariant fluxes, first

introduced by Thiemann [52], which have been recently

implemented in loop quantization of cosmological space-

times [49–51]. It turns out that the corresponding quantum

effects can be incorporated into the effective Hamiltonian

by making the substitution
ffiffiffiffi

εx
p

→

ffiffiffiffi

εx
p

sincðδxkx=2Þ in the
classical Hamiltonian (2.17), which, together with the

holonomy corrections in kx, gives rise to the following

effective Hamiltonian:

Hg:c: ¼−
ðεxÞ3=2
2Gγ2λ2

sin2
�

2λγkx
ffiffiffiffi

εx
p

�

sinc

�

γλkx
ffiffiffiffi

εx
p

�

¼−M: ð3:20Þ

To distinguish this effective Hamiltonian from the one

where only holonomy modifications were incorporated,

we label it with superscript “g.c.” for inclusion of gauge-

covariant flux modifications in addition to holonomy

modifications.

Correspondingly, the equations of motion in this case are

given by

_εx ¼ ðεxÞ3=2
2λ2γ2kx

sin

�

2γλkx
ffiffiffiffi

εx
p

�

sin

�

λγkx
ffiffiffiffi

εx
p

�

×

�

1þ5cos

�

2γλkx
ffiffiffiffi

εx
p

�

−

ffiffiffiffi

εx
p

γλkx
sin

�

2γλkx
ffiffiffiffi

εx
p

��

; ð3:21Þ
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_kx ¼
ffiffiffiffi

εx
p

4λ2γ2
sin

�

2γλkx
ffiffiffiffi

εx
p

�

sin

�

γλkx
ffiffiffiffi

εx
p

�

×

�

1þ5cos

�

2γλkx
ffiffiffiffi

εx
p

�

−4

ffiffiffiffi

εx
p

λγkx
sin

�

2γλkx
ffiffiffiffi

εx
p

��

: ð3:22Þ

The classical equations of motion (2.18) can be recovered

from the above equations in the limit when kx=
ffiffiffiffi

εx
p

≪ 1.

While the above dynamical equations result in a non-

singular bounce as in standard LQC, there are some key

differences in the evolution. In particular, in presence of

gauge-covariant fluxes matter acts nonminimally coupled

and the bounce turns out to be generically asymmet-

ric [50,51].

In the case with the gauge covariant fluxes, a closed form

of the modified Friedmann equation analogous to (3.8) is

not available. As a result, an analytical analysis of the

threshold value of the dust mass for the formation of the

trapped horizon is not possible. However, one can use

the numerical simulations to understand the dynamics of

the collapse of the dust cloud in this model by using the

criteria for the formation of a trapped surface which is still

given by _R2
≥ 1. Besides, the asymptotic form of the

Friedmann equation can be obtained from the large volume

approximation as what has been done for a massless scalar

field in [50]. Due to the nonminimal coupling of the matter

sector with gravity, the asymptotic form of the Friedmann

equation also changes with the equation of state of the

matter content. For the dust field, following the similar

calculations in [50], it is straightforward to show that in the

collapsing phase of the dust cloud, the asymptotic form of

the Friedmann equation assumes

H2jcollapse ¼
8πG

3
ρþOðρ2Þ; ð3:23Þ

while the asymptotic form of the Friedmann equation in the

expanding phase of the dust cloud reads

H2jexpanding ¼
8παG

3
ρþOðρ3=2Þ; ð3:24Þ

with α ¼ 2=π.
2
The origin of this α in holonomy-gauge-

covariant flux modifications is tied to the “sinc” term in the

Hamiltonian. Note that in both quantizations, the post-

bounce classical branch corresponds to j2γkx=
ffiffiffiffi

εx
p

j reach-
ing π=λ. In standard quantization based on holonomies and

triads this is indistinguishable from the prebounce classical

branch 2γkx=
ffiffiffiffi

εx
p

≈ 0. The prebounce and postbounce

branches in this quantization are thus identical in the

classical limit. However, the sinc term in the presence of

gauge covariant flux modifications results in different

classical limits in the prebounce and postbounce epochs.

These branches though still correspond to Friedmann

dynamics, they have difference due to above α scaling,

which is the cause of asymmetry in the “effective mass” of

the white hole as seen by an external observer.

Now following (3.9), one can define the same “effective

energy density” and the “effective mass,” namely,

ρeff ≔
3

8πG

_R2

R2
; Meff ≔

4π

3
R3ρeff : ð3:25Þ

The “effective energy density” ρeff determines the relative

collapsing (expanding) speed of the dust outermost shell,

while the effective mass Meff which is the same as the

Vaidya mass determines the mass of the black hole (during

the collapsing phase) or the white hole (during the

expanding phase) if trapped surfaces are formed. When

the volume is macroscopic and energy density is far below

the Planck scale, using (3.23), we find during the collapse

of the dust cloud

Meff jcollapse ¼
R3

2G
H2jcollapse ≈

4π

3
R3ρ ¼ M: ð3:26Þ

Therefore, initially the “effective mass” is equal to the mass

of the dust cloud. On the other hand, after the bounce, when

the dust cloud expands to a low energy density ρð≪ ρplÞ,
using (3.24), one can easily find

Meff jexpanding ¼
R3

2G
H2jexpanding ≈

4πα

3
R3ρ ¼ αM; ð3:27Þ

which implies that, after the bounce, the “effective mass” of

the dust cloud is just a fractional of the initial mass from the

perspective of an outside observer. The same argument also

applies to the case when the trapped surface forms, leading

to a black hole and white hole asymmetry. Accompanied

with the “effective energy density,” one can also define an

“effective pressure” via

peff ¼ −

_Meff

4πR2 _R
; ð3:28Þ

which satisfies

_ρeff þ 3
_R

R
ðρeff þ peffÞ ¼ 0: ð3:29Þ

Note that in the classical theory, Meff equals M and thus

peff ¼ 0 which is consistent with the fact that the matter

content only consists of dust. However, in a model with

quantum corrections, whether originating from just holon-

omies or holonomies and gauge-covariant fluxes,Meff is in

general time dependent and peff becomes nonzero. For this

reason it is necessary to match the interior quantum

modified spacetime with a generalized Vaidya spacetime.

2
This additional factor α can also be absorbed into the

Newton’s constant, yielding a rescaled Newton’s constant

G̃ ¼ αG.

NONSINGULAR QUANTUM GRAVITATIONAL DYNAMICS OF AN … PHYS. REV. D 104, 106017 (2021)

106017-9



Finally, it is important to note that the different

“effective masses” in the collapsing and expanding phases

does not imply the violation of the energy conservation

law. The change in the “effective mass” is completely due

to the quantum modifications in the gravitational sector

of the Hamiltonian constraint. The matter sector of the

Hamiltonian constraint remains untouched as can be seen

by comparing the classical Hamiltonian (2.17) and the

effective Hamiltonian (3.20). As a result, the energy density

of the dust cloud still evolves according to ρ ¼ 3M
4πR3 in both

collapsing and expanding phases and the conservation law

_ρþ 3Hρ ¼ 0 always holds. Moreover, even in terms of the

“effective energy density” and the “effective pressure,” the

energy conservation law (3.29) holds for both branches.

B. Numerical results of the effective dynamics

We now present numerical results for the effective

dynamics of the loop quantized dust outermost shell in

the marginally bound case and compare the distinctive

features resulting from the Hamiltonians (3.2) and (3.20).

For convenience, the first model with only holonomy

corrections is called model A and the second model, which

is quantized by employing both holonomies and gauge

covariant fluxes, is called model B. Without any loss of

generality, we set the initial time at τ ¼ 0. The parameter

space consists of the initial values of the radius Ri and the

dust mass M. We find that for a generic set of the initial

conditions ðRi;MÞ, the singularity point at R ¼ 0 is

replaced by a bounce in both models, but with important

differences in the physics of the bounce and postbounce

dynamics. Before the bounce, the dust cloud collapses in a

contracting phase, and after the bounce the dust cloud

keeps expanding toward infinity.

In Fig. 1, we show a representative case with Ri ¼ 50

and M ¼ 10 (in Planck units). The left panel depicts the

evolution of the radius R of the shell in the classical theory

(black dashed curve), in model A with holonomy correc-

tions (red solid curve) and in model B with both holon-

omies and gauge covariant fluxes (blue dotted curve). In the

classical theory, the radius becomes zero at a finite proper

time while in models A and B, the radius of the shell

experiences a bounce at the maximum energy density and

the dust shell enters into an expanding phase afterwards.

The bounce in both models takes place at around τ ≈ 52.70

(in Planck units). The difference between two loop quan-

tized models mainly lies in the expanding phase and they

also have different maximum energy densities. In model A,

the evolution is symmetric with respect to the bounce

while in model B, we observe an asymmetric bounce due to

the gauge covariant fluxes. Starting with the same initial

conditions, the expansion rate of the dust cloud in

model B is smaller than that in model A. Besides, the

maximum energy density in model A is ρholmax ≈ 0.409, while

in model B the maximum energy density is ρ
g:c:
max ≈ 0.370 in

Planck units.

We find for both models, the formation of a trapped

surface does not depend on the initial values of the radius

which would only affect the bounce time. The only

parameter that affects the formation of the trapped surface

is the dust massM. Moreover, we observe different patterns

in two loop quantized models which are summarized in

Fig. 2. In the figure, we present the _R2 plot for both models.

The left panel is for model A and the right panel is for

model B. As discussed in the last subsection, in the

contracting phase when the dust cloud collapses, the black

hole forms in the period when _R2 > 1. On the other hand, a

white hole would form if _R2 becomes larger than unity

again in the expanding phase after the bounce. In model A

(left panel), the peaks of _R2 are symmetric with respect to

the bounce. This shows that if the contracting branch

FIG. 1. With the initial conditions Ri ¼ 50, M ¼ 10, the classical trajectory of R (black dashed) is compared with those from the

effective dynamics prescribed by holonomy-triad quantization (3.2) (red solid) and holonomy-gauge-covariant flux quantization (3.20)

(blue dotted) in the left panel. In the inset plot, it can be seen that the classical trajectory (black dashed curve) ends at the singularity point

when R ¼ 0, while in the other two trajectories a bounce occurs at nonzero radius. In the right panel, we can find the difference in the

energy densities of two loop quantized models mainly in the expanding branch. The inset plot shows the difference of the maximum

energy densities in the two models. All values are in Planck units.
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produces a black hole then the expanding branch produces

its twin white hole. There is a threshold value of the dust

mass which determines whether black hole or white hole

would form. Its analytic value M� ≈ 0.831 given in (3.16)

exactly matches with our numerical results. In particular,

our numerical investigations for masses below this thresh-

old did not find formation of a trapped surface. In the

figure, we show two cases with M ¼ 1.0 and M ¼ 0.7. In

the former case, a black (white) hole forms near the bounce,

while, in the latter case, neither a black hole nor a white

hole would form during the entire evolution. Finally, once

the dust mass is fixed, from Eq. (3.14) one can deduce at

what energy density the trapped surfaces would form or

vanish. In the case of M ¼ 1.0, we find that during the

collapse of the dust cloud, the black hole forms at ρ ¼
0.041 and evaporates at ρ ¼ 0.188. Owing to the symmetric

bounce, when the dust cloud enters into the expanding

phase after the bounce, the white hole would form at ρ ¼
0.188 and vanish at ρ ¼ 0.041. Increasing the dust mass

would decrease/increase the energy densities at which the

trapped surfaces form/vanish during the collapsing phase of

the dust cloud. For example, when M ¼ 2000, the black

hole would form at ρ ¼ 7.460 × 10−9 and then evaporate at

ρ ¼ 0.408. As _R2 changes monotonically with the dust

mass in (3.14), the energy density at which the trapped

surfaces form or vanish also changes monotonically with

the dust mass.

The situation becomes richer for model B (right panel in

Fig. 2) where we find that _R2 is asymmetric with respect to

the bounce point. As a result, there are two characteristic

dust masses M1 ¼ 0.880 and M2 ¼ 1.184. When the dust

mass M < M1, there would be no black hole or white hole

as depicted by the rightmost dashed curve in the right panel.

WhenM1 < M < M2, only the black hole can form during

the collapse of the dust cloud, there would be no white hole

in the expanding phase. This case corresponds to the one

depicted by the middle purple solid curve in the right panel.

Lastly, if M > M2, then both a black hole and a white hole

can form as depicted by the blue dot-dashed curve. Since

the closed forms of the dynamical equations which yield an

analytical value of mass threshold are not available for this

model, the above threshold values of the dust mass for the

formation of the black hole and white hole are determined

numerically. We have checked with various different initial

radii and find the same threshold values of the dust mass.

Moreover, given a specific dust mass, one can only find the

energy densities at which the black hole and the white hole

would form and vanish through the numerical solutions. In

the case mentioned in the right panel of Fig. 2, we find for

M ¼ 1.4, the black hole would form at ρ ¼ 0.0126 and

evaporate at ρ ¼ 0.154. Correspondingly, the white hole

would form at ρ ¼ 0.130 and vanish at ρ ¼ 0.0364. One

can also increase the dust mass and find the similar patterns

as in model A with only holonomy corrections. For

example, when M ¼ 2000, the black hole would form at

ρ ¼ 2.98 × 10−8 and evaporate at ρ ¼ 0.368534 while the

corresponding white hole would form at ρ ≈ 0.368517 and

vanish at ρ ¼ 1.16 × 10−7. We find that the formation of

trapped surfaces does not depend on the initial radius. Note

that there also exists an asymmetry in the energy densities

for the formation or the evaporation of the black hole and

the white hole in model B. Thus we find a key difference

between the physics of model A and B. Contrary to the

model where triads and holonomies are used, in presence of

gauge-covariant flux modifications a black hole–white hole

twin system is not possible and there can be situations

where only a black hole forms.

In addition, we also find the difference in the “effective

masses” between two models. In Fig. 3, we choose the

initial conditions Ri ¼ 2500, M ¼ 1000 (in Planck units)

so that both black hole and the white hole will form in the

two considered models. From the figure, one can find

FIG. 2. With the fixed initial radius Ri ¼ 50, we change the dust massM in both of the models to show the effects of the dust mass on

the formation of the trapped surfaces corresponding to black hole (white hole) before (after) the bounce point. In the left panel, the dust

mass is set to M ¼ 1.0 (red solid) and M ¼ 0.7 (magenta dotted) in the first model with only holonomy corrections. In the right panel,

the dust mass from left to right is set, respectively, toM ¼ 1.4 (blue dotted),M ¼ 1.0 (purple solid) andM ¼ 0.8 (dashed) in the second

model which also considers the gauge covariant flux. The trapped horizon forms when _R2
≥ 1.
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initially when the quantum gravity effects can be ignored,

the “effective mass” is equal to the dust mass in both cases.

As the dust cloud continues to collapse, the “effective

mass” drops slowly initially. It is only near the bounce that

the “effective mass” starts to change drastically. Right at

the bounce, the “effective mass” vanishes, which implies,

for an exterior observer, that the spacetime reduces to the

flat Minkowski spacetime at the bounce. The remarkable

difference between two models takes place in the expand-

ing phase. In model A (red dashed curve), the dust cloud

can return to its initial configuration with a reversed

velocity, as the quantum gravity effects disappear, the

“effective mass” also returns to its initial value.

However, in model B with modifications from the gauge

covariant fluxes, the “effective mass” can only at most

return to about αM ≈ 636.62, which is exactly given by our

analytical predictions in (3.27). Finally, since the Meff is

asymmetric with respect to the bounce in model B, the

masses of the black hole and the white hole also evolve

asymmetrically with respect to the bounce.

As the “effective mass”Meff equals the mass of the black

hole and white hole once the trapped surface is formed, one

can also track the formation of the trapped surface using the

ðR − 2MeffÞ plot. We give such an example in Fig. 4 with

the initial conditions Ri ¼ 50,M ¼ 10. The black hole and

the white hole are formed when R < 2Meff . The central

maximum at around t ≈ 52.70 in the plot corresponds to the

bounce point. From the figure, we can clearly see when the

trapped surface forms and disappears in both of the models.

When the dust cloud is in the collapsing phase, the radius

decreases faster than the “effective mass.” The trapped

surface forms in the regime 39.39 < t < 52.58 for which

R < 2Meff and disappears in the interval 52.58 < t <
58.84 when R > 2Meff . Right at the bounce t ≈ 52.70,

Meff vanishes and ðR − 2MeffÞ attains its local maximum.

After the bounce, in order to form a trapped surface during

the expanding phase, 2Meff which equals zero at the bounce

has to increase more quickly than R so that ðR − 2MeffÞ
becomes negative again at some instant of time (in the

current case, this time is t ≈ 58.84 for both models). In this

expanding branch, the difference between the two models

exhibits itself in terms of the duration of the trapped

surfaces. To be specific, in model A (red dashed curve)

which includes only holonomy corrections, the trapped

surface forms at around t ≈ 58.84 and disappears at around

t ≈ 66.02 while in model B (blue dotted curve), which

includes quantum effects from holonomy corrections and

the gauge covariant fluxes, the trapped surface lasts from

t ≈ 58.84 to t ≈ 61.19. As a result, in model A, the black

hole and white hole have the same “lifetime” in terms of the

proper time τ, while in model B, the black hole outlives the

white hole in the proper time τ.

While there are qualitative differences between the two

models, the behavior of the “effective energy density” and

the violation of the weak energy conditions when measured

with respect to “effective energy densities” in the two

models is similar. In Fig. 5, we present a typical evolution

of the “effective energy density” in both models with the

initial conditions Ri ¼ 50, M ¼ 10. One can find two

models share the similar behavior: as the dust cloud

collapses, the “effective energy density” initially increases

until its maximum value before the bounce then it decreases

rapidly. At the bounce, the “effective energy density”

vanishes which implies that an outside observer can only

see an asymptotic flat Minkowski spacetime at the bounce.

Afterwards, the “effective energy densities” increases again

to its maximum as the dust cloud starts to expand. This

results in the formation of the white hole in the expanding

phase when R < 2Meff . As the radius keeps increasing, the

“effective energy density” would finally decrease. Finally,

FIG. 3. With the initial conditions Ri ¼ 2500, M ¼ 1000, the

“effective mass” in two models are compared near the bounce.

The difference between two models exhibits itself in the

expanding phase where the red dashed curve returns to its initial

value quickly after the bounce while the blue dotted curve can

only return to 2=π of its original value.

FIG. 4. With the initial conditions Ri ¼ 50, M ¼ 10, we show

explicitly the evolution of the trapped horizon near the bounce.

The bounce takes place at the peak in the middle of the plot. The

red dashed curve is for model A with only the holonomy

corrections while the blue dotted curve is for model B, which

also considers gauge covariant fluxes.
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in the right panel, we can find near the bounce between

τ ≈ 52.32 and τ ≈ 53.09, the weak energy condition in

terms of the effective density and pressure is violated in

both models.

It is important to note that the above qualitative

differences and similarities between the two models are

robust with respect to the change in the dust mass and the

initial radius of the dust cloud. In particular, the symmetric

bounce in model A and asymmetric bounce in model B, the

threshold values of the dust mass for the formation of the

trapped surfaces in both models, as well as the black hole

and white hole symmetry (asymmetry) in model A (B) are

the properties of models independent of the specific choices

of the initial conditions and were found to hold for a large

range of values of mass parameter.

IV. CONCLUSIONS

In this paper, we have studied and compared the

dynamical consequences of two loop quantizations of

the dust shell model. The first quantization uses the

holonomies and triads while the second quantization

employs the holonomies and the gauge covariant fluxes.

Note that in standard LQC the use of triads follows because

of the symmetry reduction and homogeneity. On the other

hand the motivation to use gauge-covariant fluxes arises

from treating holonomies and fluxes at a similar level

during quantization in LQG [52] and to obtain the effective

Hamiltonian in LQC as an expectation value of the scalar

constraint operator using suitable coherent states in LQG.

In the classical dust shell model, we assume the LTB dust

spacetime with marginally bound condition so that the

initial dust velocity at spatial infinity vanishes. Moreover,

we also assume a homogeneous dust density so that all

shells of the dust cloud collapse and expand at the same

rate. In this way, there is no shell crossing singularity and

all of the shells reach the central singularity at R ¼ 0

simultaneously. In both of the loop quantized models, the

said central singularity is resolved for a generic set of the

initial conditions for the collapsing dust cloud. The dust

shell bounces back after some period of collapse when the

maximum energy density allowed in each model is reached.

Afterwards, the dust cloud keeps expanding until all the

matter is radiated to infinity.

Besides the generic resolution of the central singularity,

in both models, the formation of the trapped surfaces only

depends on the dust mass M. However, there are important

qualitative distinctions in the dynamics of two loop

quantized models. In the first model with only holonomy

corrections, the evolution of the radius, the velocity of the

dust shell, the “effective mass” and the “effective energy

density” is symmetric with respect to the bounce point,

while in the second model with both holonomy corrections

and modifications from the gauge covariant fluxes, the

evolution of the corresponding variables become asym-

metric with respect to the bounce. The symmetric/

asymmetric bounce results in the following physical

consequences. In the first model, we find a threshold value

of the dust massM� below which no trapped surface would

form during the entire evolution of the dust cloud. It is only

when the dust mass is larger than M� that the trapped

surfaces could then form on both sides of the bounce. The

trapped surface which forms during the collapse of the dust

cloud corresponds to a dynamical black hole while the

trapped surface which forms during the expansion of

the dust cloud after the bounce is a dynamical white hole.

The black hole and the white hole lie symmetrically on both

sides of the bounce point. Between them is an asymptotic

flat Minkowski spacetime, owing to the vanishing “effec-

tive mass” (“effective energy density”) at the bounce point.

On the other hand, in the second model which includes

gauge-covariant flux modifications, we find a much richer

situation. In contrast to the first model, the formation of the

black hole in the collapsing phase does not guarantee the

formation of the white hole in the expanding phase. There

actually exist two characteristic dust masses M1 and M2

(M1 < M2). When the mass of shell is less thanM1, neither

black hole nor white hole would form during the collapse or

FIG. 5. With the initial conditions Ri ¼ 50,M ¼ 10, apart from some quantitative differences, the “effective energy density” in model

A (red dashed curves) and model B (blue dotted curves) have the similar behavior. In particular, the “effective energy densities” vanish at

the bounce and the weak energy condition is violated in a neighborhood of the bounce.
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the expansion of the dust cloud. When the dust mass lies

between M1 and M2, only the black hole can form during

the collapse of the dust cloud. Finally, when the dust mass

is larger than M2, both a black hole and a white hole can

form on different sides of the bounce point. For the last

case, unlike in the first model, the evolution of the black

and the white hole is not symmetric with respect to the

bounce point.

Another remarkable difference between two loop quan-

tized models lies in the behavior of the “effective mass” and

the duration of the trapped surfaces in two models. In the

first model with only holonomy corrections, the “effective

mass” evolves symmetrically with respect to the bounce. It

tends to the same dust mass on both sides of the bounce

when the dust energy density approaches zero. However, in

the second model, the asymptotic value of the “effective

mass” of the dust cloud in the expanding phase is only 2=π
of its initial value in the collapsing phase. As the “effective

mass” remains almost constant in most of the times of the

evolution and it only changes drastically near the bounce,

this asymmetry can also be interpreted as the asymmetry in

the masses of the black hole and white hole formed during

the collapse and the expanding phases, respectively.

Moreover, in the first model, the black hole and the white

hole have the same lifetime in terms of the proper time τ

while, in the second model, the black hole outlives the

white hole as a consequence of the asymmetric bounce

which is a unique feature of the second model. In summary,

our results show that various aspects of the black hole–

white hole symmetry which exists in models based on

holonomy modifications are nonexistent when one also

includes gauge-covariant flux modifications motivated by

loop quantum gravity. Further, our analysis shows that even

for the simplest situation of the marginally bound case

different quantization prescriptions can result in qualita-

tively different physics for the white hole spacetime.
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