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For classical gravitational systems the lapse function and the shift vector are usually determined by

imposing appropriate gauge-fixing conditions and then demanding their preservation with respect to the

dynamics generated by a canonical Hamiltonian. Effective descriptions encoding quantum geometric

effects motivated by loop quantum gravity for symmetry-reduced models are often captured by

polymerization of connection (or related) variables in gauge-fixing conditions as well as constraints.

Usually, one chooses the same form of polymerization in both cases. A pertinent question is if the

dynamical stability of the effective gauge-fixing conditions under the effective dynamics generated by

the polymerized canonical Hamiltonian is provided by the lapse function and the shift vector obtained from

the polymerization of their classical counterparts. If this is the case, then we say that gauge fixing and

polymerization commute. In this manuscript we investigate these issues and obtain consistency conditions

for the commutativity of gauge fixing and polymerization. Our analysis shows that such a commutativity

occurs in rather special situations and reveals pitfalls in making seemingly well-motivated choices which

turn out to be inconsistent with the effective dynamics. We illustrate these findings via examples of

symmetry-reduced models in the loop quantization of the Schwarzschild interior and Lemaître-Tolman-

Bondi spacetimes and report the noncommutativity of gauge fixing and polymerization and inherent

limitations of some choices made in the literature with a consistent effective dynamics.
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I. INTRODUCTION

As is well known, in order to solve canonical gravita-

tional systems, one needs to deal with the gauge freedom

encoded in the system. There exist two strategies that can

be followed. In the first, one chooses appropriate gauge-

fixing conditions which can be used to determine the

corresponding lapse and shift. Generally, requiring the

stability of the chosen gauge-fixing conditions leads to a

set of algebraic equations that can be solved for the lapse

and the shift which determines their explicit dependence on

the elementary phase space variables. Then by strongly

imposing the consistent gauge-fixing conditions, one can

work in a space where the dynamics of the physical degrees

of the freedom can be unraveled. The second approach aims

at constructing Dirac observables, which are quantities that

commute with all constraints present in gravitational

systems and which can be chosen as elementary variables

in the reduced phase space. In the relational formalism [1,2]

the construction of Dirac observables is strongly tied to a

choice of reference fields with respect to which the

dynamics of the Dirac observables is formulated [3–6].

Often these reference fields are also referred to as clocks

although the gauge-fixing conditions might not necessarily

be related to a choice of the temporal coordinate only. For

certain class of gauge-fixing conditions and choices of

reference fields these two approaches can be related to each

other (see for instance Appendix H in [7]). In literature,

there are mainly two types of gauge-fixing conditions

involving either geometric or matter degrees of freedom,

respectively. In the context of the relational formalism one

calls the first choice geometrical clocks and the latter matter

clocks. In the models where one considers matter reference

fields these fields are dynamically coupled to gravity and

the gauge invariant dynamics of the remaining degrees of

freedom is formulated with respect to these reference fields

[6–9]. Similarly, we can also choose some of the geometric

degrees of freedom as the reference fields as one does in the

case of vacuum gravity (see e.g., [10–13]).

The above gauge-fixing procedure in classical gravita-

tional systems is also required and equally important for

quantized systems where the quantum dynamics is pre-

scribed by a quantum Hamiltonian operator. Here one often

follows the approach where one performs a gauge fixing at
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the classical level yielding in general phase space depen-

dent versions of lapse and shift and then promotes these to

the corresponding operators in the quantum theory.

Another strategy is to implement the gauge fixing in the

quantum theory. If we formulate the two approaches in the

context of the relational formalism, this corresponds to

choosing either classical or quantum clocks, respectively.

Quantum clocks in the context of the relational formalism

have been discussed in various settings; see e.g., [14–18],

where a broader perspective on quantum clocks and related

results are presented than we will address in our work here.

In the quantum theory, not only lapse and shift but also the

gauge-fixing conditions are promoted to operators in the

Hilbert space. In particular, the gauge-fixing conditions

now become operator relations and the preservation of

these operator-valued relations becomes a much more

complicated problem due to the fact that we need to work

with operators instead of classical quantities. An interesting

question in this context is the way choosing gauge-fixing

conditions or clocks either at the classical or quantum level

affects the final model under consideration and under

which conditions we can see a kind of commutativity of

gauge fixing and quantization in this sense. To answer this

question in full loop quantum gravity (LQG) is a compli-

cated task; therefore, in this work we will restrict our

discussion to effective models. In those models one often

uses a polymerized version of the classical theory as an

effective theory which is assumed to capture the underlying

loop quantization.
1

In recent years, LQG techniques have been applied for

various isotropic and anisotropic spacetimes in cosmology

[19] and static and dynamical spherically symmetric space-

times in black hole physics (see e.g., [18,24–43]). Many of

these works use the effective theory (or the polymerization)

to understand Planck-scale physics from LQG. As com-

pared with the cosmological setting where on most of the

occasions only several forms of the time (for example, the

cosmic time and the conformal time) are used, in the black

hole spacetimes various gauges which correspond to

different choices of the lapse and shift can be chosen.

Unfortunately, not much attention has been paid so far to

analyze the consistency of the gauge-fixing conditions as

well as the choices of the lapse and shift in the effective

theories for black hole and spherically symmetric space-

times. Previously the choices of the lapse and shift in the

effective theories of the polymerized black hole were

usually determined by requiring the forms of the effective

constraint algebra to be the same as their classical counter-

parts or demanding the lapse and shift to act on the same

lattice as the Hamiltonian constraint, etc. In the following,

we understand in detail consistency conditions to choose

the lapse and shift in such effective theories, which allow us

on one hand to set the guidelines for constructing consistent

models in polymerized theories and on the other hand point

out problematic features with some existing models. We

consider two simple example models which share features

with several others. The first describes the loop quantiza-

tion of the Schwarzschild interior [32] and the second

inhomogeneous dust collapse in Lemaître-Tolman-Bondi

(LTB) spacetimes [39,44]. Given the similarity of tech-

niques which these models share with other works employ-

ing polymerization, it is quite possible that the conclusions

we find in this manuscript are applicable for various other

loop quantized models in black hole spacetimes.

To be specific, we aim to analyze the question of how a

gauge-fixing procedure can be applied in effective theories

in the framework of symmetry-reduced models motivated

from LQG. Although we will focus in this work on the

aspect of gauge fixings to deal with gauge degrees of

freedom of these models, this will also yield some insight

on the comparison of classical versus quantum clocks for

those cases where the gauge-fixed theory can be related

to the reduced phase space of the corresponding Dirac

observables. For these effective models one often considers

a classical gauge fixing, applies a loop quantization,

and then works with an effective theory that still has a

fingerprint of the underlying quantum model. In practical

applications this manifests in a polymerization of the

Hamiltonian constraint and the diffeomorphism constraint,

respectively, as well as the physical Hamiltonian, that

usually has been obtained for a given choice of the classical

lapse and shift. In case these also involve connection

degrees of freedom the question arises how the polymeri-

zation at the effective level affects lapse and shift. Some

important questions in this setting are the following. Do the

gauge-fixing conditions that are compatible with the

polymerized lapse and shift encode the same type of

polymerization as performed for the Hamiltonian and

diffeomorphism constraints? Is there any freedom in

changing the “angles” or “functions” of the polymerization

for different set of variables as it is sometimes performed to

simplify or enhance some features of the analysis? As we

will discuss in this article the basic guiding principle here

should be that lapse and shift at the effective level must be

consistent with the effective dynamics. That means that the

associated gauge-fixing conditions need to be preserved

under the effective dynamics. Requiring this leads to strict

conditions on the consistency of the dynamics vis-à-vis

polymerization and gauge-fixing conditions. This require-

ment is essential in the sense that it is what we need to

require if we aim at implementing the gauge-fixing con-

ditions at the quantum level.

1
A motivation for this arises from loop quantum cosmology

[19] where effective dynamics derived using coherent states can
for some models be mimicked by a simple polymerization of
connection (or related) components and is known to well
approximate the underlying quantum dynamics [20–23]. Note
the usage of the phrase “effective theories” in this setting is
different from the one generally employed in effective action
techniques.

GIESEL, LI, SINGH, and WEIGL PHYS. REV. D 105, 066023 (2022)

066023-2



Our results show that in general polymerization does not

necessarily commute with gauge fixing (Lemmas 1 and 2).

By this we mean that applying the same Ansatz for

polymerization in the classical Hamiltonian and diffeo-

morphism constraint as well as for the gauge-fixing

conditions, the choices of lapse and shift that are consistent

with the resulting effective dynamics do not in general

agree with just the polymerization of their classical counter-

parts. Carrying this over to a more general discussion this

implies that if we determine lapse and shift from a choice of

a classical clock and perform their quantization, this

process will result in an inconsistent quantum dynamics

if we assume that the quantum clock agrees with classical

clock in the classical limit and it is quantized in the same

way as the constraints.
2
As shown in Lemma 2 this

noncommutativity between the gauge fixing and the

polymerization generally holds for fully constrained sys-

tems under the conditions that there is at least one time-

dependent gauge-fixing condition which depends only on

one canonical pair for which at least one variable of the pair

is polymerized. Therefore, coordinate gauge fixings that

involve a temporal dependence for gravitational systems in

which part of the degrees of freedom are loop quantized do

often belong to this class of models. Removing one of the

above conditions can make gauge fixing commute with

polymerization. For example, a consistent effective lapse

and shift coincide with the polymerization of their classical

counterparts if none of the gauge-fixing conditions depends

on the temporal coordinate (Corollary 1), or the time-

dependent gauge-fixing condition only includes unpoly-

merized matter degrees of freedom (Corollary 2), or the

time-dependent gauge-fixing condition only depends on

the geometrical degrees of freedom but the polymerization

is only implemented in the matter sector.

Usually when gauge fixing does not commute with

polymerization, working with the polymerization of the

classical lapse and/or shift requires one to modify the

gauge-fixing condition appropriately to obtain a consistent

dynamical system at the effective level. The consistent

gauge-fixing conditions for the effective dynamics can be

obtained by solving a partial differential equation (PDE)

derived from the stability requirement. We show explicitly

how this is done in one of the given examples which deals

with the choice of the gauge-fixing conditions once the

lapse is known in the context of the loop quantization of the

interior of the Schwarzschild black hole [32]. In contrast,

when gauge fixing does commute with polymerization,

the lapse and shift consistent with the effective dynamics

must be chosen as the polymerization of their classical

counterparts in order for the effective system to be

dynamically consistent and to possess the correct classical

limit (Lemma 3). An example in which gauge fixing and

polymerization commute is the inhomogeneous collapse of

the dust cloud in LTB spacetime where the temporal gauge

consists matter degrees of freedom only and the gauge

fixing related with diffeomorphism constraints involves

variables from geometrical sector only and is time inde-

pendent. This exercise provides an important lesson on the

inconsistency of some choices made for the shift vector in

the literature [44] in relation to the consistency of the

effective dynamics and the corresponding physical

Hamiltonian (Lemma 3).

Furthermore, we also extend our analysis to matter

reference models or where matter clocks are chosen.

When the matter sector is not loop quantized, and if the

matter couples only via the triad variables,
3
the matter

contributions to the Hamiltonian or diffeomorphism con-

straint as well as to the physical Hamiltonian do not involve

any polymerization effects at the effective level. As a

consequence, for a set of gauge-fixing conditions that

involve only matter reference fields polymerization and

gauge fixing commute. However, if we also loop quantize

the matter sector, the gauge fixing will become non-

commutable with the polymerization again for the same

reason as choosing geometric clocks when the geometric

sector is polymerized (Lemma 2). We show this explicitly

for the Brown-Kuchař [7,46,47] and Gaussian dust model

[48,49] well as the four-scalar reference field model [50].

The paper is structured as follows. In Sec. II, we first

present a proof of Lemma 1 for generic geometrical clocks

which shows that for this type of gauge-fixing conditions

polymerization and gauge fixing will not commute as long

as at least one of the gauge-fixing conditions is time

dependent. We then extend our analysis to several other

situations when some restrictions on the assumptions for

Lemma 1 are a bit relaxed. These analyses lead to Corollary

1. With Lemma 2 we show that for a wide range of models

that use a temporal gauge-fixing condition involving

canonical variables where at least one of the elementary

variables is polymerized, gauge fixing and polymerization

do not commute. Further we analyze in Lemma 3 the

possibility of reverse engineering the set of gauge-fixing

conditions for a given lapse and shift. In Sec. III, we discuss

several models known from literature as examples to clarify

the results of our lemmas and corollaries. These models

include vacuum and dynamical black hole spacetimes in

symmetry-reduced models of LQG as well as the Brown-

Kuchař dust model. We explicitly analyze whether the

choices of the gauge-fixing conditions with the polymer-

ized lapse and/or shift in these models lead to a consistent

dynamics at the effective level. Besides, the different

properties of geometrical and matter clocks in the context

of gauge fixing in the effective theory are addressed in the

2
In effective theories this corresponds to using the same

polymerization for the gauge-fixing conditions and the constraints.

3
An exception to this can arise using gauge-covariant fluxes

result in a nonminimally coupled matter, i.e., with a coupling to
connection, even if matter is not polymerized [45].
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Brown-Kuchař dust model with a particular focus on how

the situation changes if we also apply a polymerization to

the matter sector. In the Appendix we present a similar

analysis for the Gaussian dust model and the four-scalar

field model. Finally, in Sec. IV we summarize our main

results.

II. GENERAL ANALYSIS ON THE CONSISTENCY

OF GAUGE FIXINGS IN POLYMERIZED MODELS

In this section we present some proofs which provide

insights on the process of polymerization in effective

theories of gravitational systems based on LQG and

gauge-fixing conditions. We start with the underlying

assumptions which lead us to Lemma 1 which shows that

when a gauge-fixing condition involves an explicit depend-

ence on the temporal coordinate as well as on the geometric

degrees freedom, then polymerization and gauge fixing do

not commute. This is followed by corollaries detailing

some special cases allowing for commutability of gauge

fixing and polymerization. On the other hand Lemma 2 in a

sense generalizes foregone Lemma 1 to a broader class of

gauge-fixing conditions that can for instance also involve

polymerized matter degrees of freedom and as shown

gauge fixing and polymerization do not commute in this

case. Next we discuss how in principle one could reverse

engineer the gauge-fixing conditions for given lapse and

shift. We conclude with Lemma 3 emphasizing for certain

systems the need of exactly the same polymerization in

lapse and shift as the constraints and the physical

Hamiltonian to avoid any inconsistencies in dynamics.

These lemmas are applied in the next section to models on

loop quantization of Schwarzschild interior [32] and

inhomogeneous dust collapse in LTB spacetimes [44]

highlighting various issues related to gauge fixing with

their construction. In this section, we make a brief comment

on the model in [18] which fits Corollary 1.

Since only for very specific models and choices of

gauge-fixing conditions, polymerization and gauge fixing

commute we choose a class of gauge-fixing conditions

which are not the most general ones but are sufficiently

general to cover all the examples discussed in Sec. III

and also to demonstrate the main reason why gauge fixing

and polymerization do not commute or commute in special

cases. Furthermore, because we discuss examples with

spherically symmetric as well as Kantowski-Sachs models

we perform the proof not for specific chosen models but

keep it at a more general level providing us with a better

intuition on what kind of properties are characteristic of a

given model. To formulate the effective model we will

assume that a subset of variables is replaced by their

corresponding polymerizations and all proofs in this

section apply only to those models where the correspond-

ing effective model is of this kind. These polymerizations

are motivated from the full theory where holonomies play

the role of the elementary variables and they involve

integrals of the connection along the edges of a graph

associated with a given spin network function. If there is a

relation between the full theory and the effective model,

then the polymerization parameter, denoted below by λ’s,

needs to encode detailed properties of the underlying

dynamics in the full theory. Therefore, there might exist

effective models that have a more complex structure as far

as their polymerization is considered than we will consider

here. Nevertheless, a wide range of symmetry-reduced

effective models in the literature particularly for spherically

symmetric or cosmological spacetimes can be characterized

by the type of polymerization we consider in this work here

(see also footnote 1).

To start the discussion of Lemma 1, for the polymeri-

zation as well as the class of gauge-fixing conditions we

assume them to have the following properties.

(1) We only consider gauge-fixing conditions for the

Hamiltonian and diffeomorphism constraints.

(2) Furthermore, we assume that all gauge-fixing

conditions weakly commute with the Gauss con-

straints. This can for instance be achieved if we work

with gauge invariant variables with respect to the

Gauss constraint.

(3) We denote the set of gauge-fixing conditions by

fGIg with I ¼ 0;…; 3. For at least one of the gauge-

fixing conditions GI we have
∂GI

∂t
≉ 0.

(4) All gauge-fixing conditions depend on the gravita-

tional degrees of freedom only.

(5) The polymerization of the connection variables

denoted by A
j
a is performed by A

j
a ↦ h

j
aðAj

a; λ
j
aÞ

in the constraints and gauge-fixing conditions where

h
j
aðAj

a; λ
j
aÞ does not depend on partial derivatives of

A
j
a and is not the identity function. The triad

variables Ea
j are not polymerized at the effec-

tive level.

Let us briefly comment on these assumptions. The first

assumption is motivated by the fact that the Gauss con-

straint involved in formulation of general relativity in terms

of Ashtekar variables is often solved in the quantum theory

and then there exist no additional equations stemming

from a stability requirement of the gauge-fixing conditions

from the Gauss constraint. The second assumption has the

consequence that the Lagrange multiplier coming from the

Gauss constraint does not contribute to the stability

equations and this is the situation that occurs in the models

discussed in this work here. Assumption 3 ensures that we

can work with a coordinate gauge fixing that involves the

temporal coordinate and the fourth assumption restricts

the choice of gauge-fixing conditions to the class of geo-

metrical clocks. The fifth assumption allows us to consider

all polymerization functions that have been used in the

literature so far and this allows us to formulate our result

independently of the specific choice of polymerization.

Furthermore, we have considered in the assumptions a

polymerization of the spatial diffeomorphism constraint at
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the effective level as well. There exist effective models as

for instance in [38] where only the Hamiltonian constraint

is polymerized. In case we remove the polymerization of

the spatial diffeomorphism constraint in the proof, the final

conclusion that gauge fixing and polymerization will not

commute will still hold. Because an operator for the spatial

diffeomorphism constraint operator does not exist in full

LQG, the way we can obtain the form of a polymerized

spatial diffeomorphism constraint works as follows: We can

implement an operator of the classical expression qabCaCb

expressed in terms of connection and triad variables along

the lines of [47]. Then we can compute its semiclassical

expectation value leading in lowest order to a polymerized

version of this quantity from which we can read off the

polymerized form of the spatial diffeomorphism constraint.

At the effective level we assume that this agrees with the

classical spatial diffeomorphism constraint if we replace the

connection variables by their corresponding polymerized

quantities.

Now we proceed to prove the following lemma.

Lemma 1.—Given assumptions 1–5 stated above then

gauge fixing and polymerization will not commute. This

means that the lapse function and shift vector that are

consistent with the effective dynamics do not agree with the

polymerization of the classical lapse function and classical

shift vector.

Proof of Lemma 1.—Without any loss of generality

we choose G0, namely, the gauge-fixing condition for

the Hamiltonian constraint, to be the one that depends

on the temporal coordinate. In the literature so-called

coordinate gauge fixings, i.e., Gclass
I ðAðt; xÞ; Ea

j ðt; xÞ; tÞ ¼
fIðA;EÞ − τIðt; xÞ, are a popular class of gauge fixings, but
it is not much more difficult to prove the lemma for general

gauge-fixing conditions and so we restrain from using this

simplification. The elementary Poisson bracket for the

gravitational degrees of freedom is given by

fAj
aðx; tÞ; Eb

kðy; tÞg ¼ κ

2
δðx; yÞδjkδba; ð2:1Þ

where κ ¼ 16πG and G is the Newton’s constant. All the

other degrees of freedom will be labeled by fΦA; πAg,
where the index A is a multi-index such that spinor-valued

fields are allowed as well. At the classical level the stability

requirement reads

d

dt
Gclass

I ðt;xÞ¼fGclass
I ðt;xÞ;Hclass

can gþδI;0
∂G0

∂t
ðt;xÞ

≈

Z
d3yfGclass

I ðt;xÞ;ðNclassC
class

þNa
classC

class
a ÞðyÞgþδI;0

∂G0

∂t
ðt;xÞ≈0; ð2:2Þ

wherewe have denoted all classical quantities in particular the

lapse and the shift with a corresponding label and used the

second assumption that all GI’s weakly commute with the

Gauss constraint. The weak equality in the last step involves

all constraints as well as all gauge-fixing conditions. The

condition in (2.2) yields the following system of equations:

Z
d3y

Z
d3zNJ

classF
class
NJ ;I

ðx; y; zÞ − δI;0
∂G0

∂t
ðt; xÞ ≈ 0;

I ¼ 0;…; 3: ð2:3Þ

Here we have introduced the following abbreviations:

F class
NJ ;I

ðx; y; zÞ ≔ δGclass
I ðt; xÞ
δAk

bðzÞ
δCclass

J ðyÞ
δEb

kðzÞ

−
δGclass

I ðt; xÞ
δEb

kðzÞ
δCclass

J ðyÞ
δAk

bðzÞ
¼ ðF class

I;A Þb
k
ðx; zÞðF class

NJ ;Ea
j

Þk
b
ðy; zÞ

− ðF class
I;Ea

j
Þb
k
ðx; zÞðF class

NJ ;A
Þk
b
ðy; zÞ;

as well as the compact notation NJ
class ¼ ðNclass; N

a
classÞ and

Cclass
J ¼ ðCclass; Cclass

a Þ. Ifwe perform thegauge fixingdirectly

at the level of the effective dynamics, then we introduce

the effective Hamiltonian and diffeomorphism constraints

denoted by CJ ¼ ðC;CaÞ, respectively, and given by

CJ ¼ Cclass
J ðhjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πAÞ; ð2:4Þ

where Φ
A, πA denote all remaining degrees of freedom

but the gravitational ones and h
j
aðAj

a; λ
j
aÞ denotes a

generic polymerization function. Given these we replace

Hclass
can ðAj

a; E
a
j ;Φ

A; πAÞ by its effective analog given by

Hcan ≔ Hclass
can ðhjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πAÞ ð2:5Þ

and furthermore introduce the effective gauge-fixing

conditions

GI ¼ Gclass
I ðhjaðAj

a; λ
j
aÞ; Ea

j Þ; ð2:6Þ

where we have used the fact that by assumption four gauge-

fixing conditions G0
Is do depend on A, E only. The stability

requirement for the effective gauge-fixing conditions has the

form

d

dt
GIðt; xÞ ¼ fGIðt; xÞ; Hcang þ δI;0

∂G0

∂t
ðt; xÞ

≈

Z
d3yfGIðt; xÞ; ðNJCJÞðyÞg

þ δI;0
∂G0

∂t
ðt; xÞ ≈ 0; ð2:7Þ

which, similar to the situation in the classical theory, can be

rewritten as
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Z
d3y

Z
d3zNJFNJ ;Iðx; y; zÞ þ δI;0

∂G0

∂t
ðt; xÞ ≈ 0;

I ¼ 0;…; 3: ð2:8Þ

In the case of the effective theory the involved FNJ ;I are

given by

FNJ ;Iðx; y; zÞ ≔
δGIðt; xÞ
δAk

bðzÞ
δCJðyÞ
δEb

kðzÞ
−
δGIðt; xÞ
δEb

kðzÞ
δCJðyÞ
δAk

bðzÞ
:

Now in case that polymerization and gauge fixing commute in

the sense introduced above we need to have

FNJ ;0ðx;y;zÞ¼F class
NJ ;0

½hjaðAj
a;λ

j
aÞ;Ea

j ;Φ
A;πA�ðx;y;zÞ and

FNJ ;aðx;y;zÞ¼F class
NJ ;a

½hjaðAj
a;λ

j
aÞ;Ea

j ;Φ
A;πA�ðx;y;zÞHðAj

aÞ;
ð2:9Þ

since then the system of equations in (2.3) and (2.8) have

the same solution for lapse and shift (modulo polymeri-

zation). By this notation we mean that FNJ ;I agree with the

quantities we obtain by simply polymerizing the classical

F class
NJ ;I

. For the FNJ ;a we can slightly relax the condition

because the gauge-fixing conditions associated with Ga

carry no explicit time dependence and therefore we can

allow an additional generic function HðAÞ depending on

the connection variables on the right-hand side. This is

possible due to the absence of the term involving
∂G0

∂t
in the

stability equation, which allows us to factor out the term

involvingHðAÞ. We now show that under assumptions 1–5

listed above these conditions in (2.9) are never satisfied.

For this purpose we aim at expressing FNJ ;I in terms of

F class
NJ ;I

. Using the explicit form of the effective gauge-fixing

conditions and constraints from (2.6) and (2.4), respec-

tively, we obtain

δGIðt; xÞ
δAk

bðzÞ
¼

Z
d3z0

δGIðt; xÞ
δhlcðz0Þ

δhlcðz0Þ
δAk

bðzÞ
¼

Z
d3z0

δGclass
I

δAl
cðz0Þ

½hlcðAl
c ; λ

l
cÞ; Ea

j �ðt; xÞ
δhlcðz0Þ
δAk

bðzÞ
;

δCJðt; yÞ
δAk

bðzÞ
¼

Z
d3z0

δCJðt; yÞ
δhlcðz0Þ

δhlcðz0Þ
δAk

bðzÞ
¼

Z
d3z0

δCclass
J

δAl
cðz0Þ

½hlcðAl
c ; λ

l
cÞ; Ea

j ;Φ
A; πA�ðt; yÞ

δhlcðz0Þ
δAk

bðzÞ
: ð2:10Þ

The notation in the last in each equation means that

we take the functional derivative of the classical gauge-

fixing conditions, take the result and replace all the

remaining connection variables by their polymerized

counterparts and we have used the fifth assumption on

the polymerization here. If we further take into account

that

δGIðt; xÞ
δEb

kðzÞ
¼ δGclass

I

δEb
kðzÞ

½hjaðAj
a; λ

j
aÞ; Ea

j �ðt; xÞ;

δCJðt; yÞ
δEb

kðzÞ
¼ δCclass

J

δEb
kðzÞ

½hjaðAj
a; λ

j
aÞ; Ea

j ;Φ
A; πA�ðyÞ; ð2:11Þ

then we obtain

FNJ ;I ¼
Z

d3z0½ðF class
I;A Þc

l
½hjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πA�ðx; z0ÞðF class

NJ ;E
Þk
b
½hjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πA�ðz; yÞ

− ðF class
I;E Þk

b
½hjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πA�ðx; zÞðF class

NJ ;A
Þc
l
½hjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πA�ðz0; yÞ�

δhlcðz0Þ
δAk

bðzÞ
¼ ½ðF class

I;A Þc
l
½hjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πA�ðx; zÞðF class

NJ ;E
Þk
b
½hjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πA�ðz; yÞ

− ðF class
I;E Þk

b
½hjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πA�ðx; zÞðF class

NJ ;A
Þc
l
½hjaðAj

a; λ
j
aÞ; Ea

j ;Φ
A; πA�ðz; yÞ�Hlb

ck ðAÞ: ð2:12Þ

Here in the final step we have used assumption 5, namely,

that h
j
aðAj

a; λ
j
aÞ does not depend on the derivatives of Aj

a and

hence the functional derivative that is factored out in the

one before the last step involves δðz0; zÞ linearly. Further we
introduce the following notation:

δhlcðz0Þ
δAk

bðzÞ
¼ Hlb

ck ðAÞδðz0; zÞ: ð2:13Þ

Since by assumption 5 the polymerization function

h
j
aðAj

a; λ
j
aÞ cannot be the identity map the most simple

form the function Hlb
ck ðAÞ can have is

Hlb
ck ðAÞ ¼ HðAc

l
Þδcbδkl; H ≠ id: ð2:14Þ

If we reconsider the condition written in (2.9), we realize

that although it is satisfied for FNJ ;aðx; y; zÞ it can never be
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satisfied for FNJ ;0ðx; y; zÞ unlessHðAc
l
Þ is the identity map

which is excluded by our assumption. Hence, we have

shown that for the class of gauge-fixing conditions that

satisfy assumptions 1–5 polymerization and gauge fixing

will not commute. ▪

Before discussing some specific examples in the next

section,wewant to extend this analysis to some other classes

of gauge-fixed models that are present in the literature. As

we will see, we can extensively use the calculations of the

foregoing lemma to prove the following corollaries. First we

consider the stationary slicings of the spacetimemanifold. In

other words we will consider models which have no

temporal dependence in the gauge-fixing conditions.

Otherwise assuming the noncontradicting properties left

that were stated before, we can prove that gauge fixing and

polymerization commute for such models.

Corollary 1.—Given assumptions 1–5 stated beforehand

where assumption 3 is replaced by

(3) For all gauge-fixing conditions we have ∂GI

∂t
≈ 0 and

the polymerization is of type (2.14),

then gauge fixing and polymerization will commute.

Proof of Corollary 1.—Using the connection of the

functions FNJ ;I to the ones of the classical theory given in

Eq. (2.12) and further requiring the polymerization to be of

the simple form defined in Eq. (2.14), we compute

d

dt
GIðt; xÞ ¼

Z
d3y

Z
d3zNJFNJ ;Iðx; y; zÞ

¼
Z

d3y

Z
d3zðNJF class

NJ ;I
½hjaðAj

a; λ
j
aÞ;

Ea
j ;Φ

A; πA�ðx; y; zÞÞHðAc
l
Þ

≈ 0: ð2:15Þ

We can see that the polymerization function HðAc
l
Þ can be

factored out and the remaining set of equations are exactly

of the same form as in the classical theory. This concludes

the proof. ▪

We can find in [18] a model that falls in the class of

such gauge fixings. The authors use the areal gauge

G1 ¼ Ea − gðxÞ (we have adapted the expressions to the

notation used in Sec. III B). The second gauge condition is

G0 ¼ b − hðxÞ. A quick computation shows that for this

model gauge fixing and polymerization commute. Note the

similarities of this model to the LTB model discussed in

Sec. III B; in particular, one can see this in the result for the

shift vectors of the two models, which modulo the lapse

function coincide.

The second class we want to consider are so-called

matter clocks. This means we will use an additional matter

field to write a coordinate gauge. The most common form

used in literature is G0 ¼ T − t, but in the following

corollary we can generalize to G0 ≔ G0ðΦA; πA; tÞ, where
Φ

A are additional matter fields with canonical momenta πA.

The other gauge-fixing conditions remain “geometrical,”

i.e., only depend on the gravitational degrees of freedom.

Then the following corollary holds.

Corollary 2.—Given assumptions 1–5 stated beforehand

where we replace assumptions 3 and 4 by

(3) Only gauge-fixing condition G0 has a weakly non-

vanishing dependence on the temporal coordinate and

further matter degrees of freedom; thus, we can write

G0 ≔ G0ðΦA; πA; tÞ. The remaining gauge-fixing

conditions are functions of the gravitational degrees

of freedom and the polymerization is of type (2.14),

then gauge fixing and polymerization will commute.

Proof of Corollary 2.—Note that the stability equation

of G0 at the effective level is the same equation that one

obtains at the classical level up to that Nclass, N
a
class are

replaced by N;Na since

d

dt
G0ðt; xÞ ¼ fG0; Hcang þ

∂G0

∂t

¼ fGclass
0 ; Hclass

mat g þ
∂

∂t
Gclass

0 ≈ 0; ð2:16Þ

where Hclass
mat denotes the matter contribution to Hclass

can and

by construction the classical expression does not involve

any polymerized variables. The reason why only Hclass
can

contributes to the above equation is that the matter

contribution depends on the densitized triads and matter

degrees of freedom only. Considering the remaining gauge-

fixing conditions we can make the same computation as in

Lemma 1. We see after factoring out the polymerization

factor HðAc
l
Þ in the stability equations, the equations are

the same as the classical ones. ▪

From the previous lemma and corollaries we learn that

the temporal dependence in the gauge-fixing conditions

plays a pivotal role in answering the question whether

gauge fixing and polymerization commute. Lemma 1 and

Corollary 1 show that when using a suitable type of

polymerization additional contributions in the gauge-fixing

conditions that do not carry any temporal dependence can

be completely factored out. Hence, these stability equations

associated with these nontemporal gauge-fixing conditions

are equivalent to their classical counterparts up to polymer-

izations of the involved variables in the solutions of lapse

and shift. As a consequence, discussed in Corollary 1,

if none of the gauge-fixing conditions depends on the

temporal coordinate, gauge fixing and polymerization

commute. As can be seen from Lemma 1 and Corollary 2

whether gauge fixing and polymerization commute if at

least one of the gauge-fixing conditions has a temporal

dependence depends on the fact whether the variables

involved in the gauge-fixing conditions belong to pairs of

canonical variables for which at least one of the variables is

polymerized. Since Lemma 1 and Corollary 2 focus on

geometrical clocks and matter clocks, respectively, we can

generalize our analysis to more generic gauge-fixing

conditions and constrained systems and show that if variables

are involved in a temporal gauge-fixing condition that are
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polymerized or that are not polymerized but whose conjugate

variable is polymerized, this generally breaks the commuta-

tivity of polymerization and gauge fixing. In the case that we

restrict to temporal gauge-fixing conditions that depend at

most on one canonical pair we can prove the following result.

Lemma 2.—

(1) Given a fully constrained classical system with cano-

nical variables ðQAðt;xÞ;PAðt;xÞÞ with A¼0;…;K,

that is the canonical Hamiltonian of the system can be

written asHcan ¼
R
d3xNIðxÞCIðxÞ for some suitable

finite range of the index I and a set of gauge-fixing

conditions fGIðt; xÞg whose dynamically stability

yields solutions NI
classðt; xÞ.

(2) The set of gauge-fixing conditions is such that at least

one gauge-fixing condition has a temporal depend-

ence that is not weakly vanishing, i.e., ∂GI

∂t
≉ 0.

(3) At least one gauge-fixing condition for which ∂GI

∂t
≉ 0

does further at most depend on one canonical

pair only denoted with loss of generality by

ðQ0ðt; xÞ; P0ðt; xÞÞ.

(4) The polymerization is performed according to

Q0
↦ hQ0ðQ0; λQ0Þ; P0 ↦ hP0

ðP0; λP0
Þ, where

hQ0ðQ0; λQ0Þ and hP0
ðP0; λP0

Þ do not depend on

partial derivatives of Q0 and P0, respectively, at

least one of the polymerization functions is

not the identity function and we have
R
d3z

�
∂h

Q0 ðz0Þ
∂Q0ðzÞ

��
∂hP0 ðz

00Þ
∂P0ðzÞ

�
≉ δð3Þðz0; z00Þ.

(5) All remaining variables ðQA; PAÞ with A ¼ 1;…; K

can be polymerized according to QA
↦ hQAðQA;

λQAÞ; PA ↦ hPA
ðPA; λPA

Þ, where each of poly-

merization functions can be chosen to be the identity

function and no further restrictions apply to them.

For a system satisfying assumptions 1–5 listed above gauge

fixing and polymerization do not commute.

Proof of Lemma 2.—Without loss of generality let G0

be the specified gauge-fixing condition in the lemma. Then

we can compute its temporal derivative in the effective

theory

d

dt
G0ðt; xÞ ¼ fG0ðt; xÞ; Hcang þ

∂G0

∂t
ðt; xÞ

¼
Z

d3z00
Z

d3z0
Z

d3z

Z
d3y

�
∂hQ0ðz0Þ
∂Q0ðzÞ

��
∂hP0

ðz00Þ
∂P0ðzÞ

�
NIðyÞ

�
δG0ðt; xÞ
δhQ0ðz0Þ

δCIðyÞ
δhP0

ðz00Þ −
δG0ðt; xÞ
δhP0

ðz00Þ
δCIðyÞ
δhQ0ðz0Þ

�
þ ∂G0ðt; xÞ

∂t
; ð2:17Þ

where we have used assumption 3 after the last line. Considering assumptions 4 and 5 we have that
∂G0

∂t
ðt; xÞ as well as�

δG0ðt;xÞ
δh

Q0 ðz0Þ
δCIðyÞ
δhP0 ðz

00Þ −
δG0ðt;xÞ
δhP0 ðz

00Þ
δCIðyÞ
δh

Q0 ðz0Þ

�
coincide with their polymerized classical counterparts. Since by assumption 1 the classical

solutions for the Lagrange multipliers NI
class exist, we can reinsert the polymerized classical solution denoted by NI

classðhÞ
into the above result and obtain

Z
d3z00

Z
d3z0

Z
d3z

Z
d3y

�
∂hQ0ðz0Þ
∂Q0ðzÞ

��
∂hP0

ðz00Þ
∂P0ðzÞ

�
NIðyÞ

�
δG0ðt;xÞ
δhQ0ðz0Þ

δCIðyÞ
δhP0

ðz00Þ−
δG0ðt;xÞ
δhP0

ðz00Þ
δCIðyÞ
δhQ0ðz0Þ

�
þ∂G0ðt;xÞ

∂t

≈

Z
d3z00

Z
d3z0

�Z
d3z

�
∂hQ0ðz0Þ
∂Q0ðzÞ

��
∂hP0

ðz00Þ
∂P0ðzÞ

�
−δð3Þðz0;z00Þ

�Z
d3yNI

classðhÞðyÞ
�
δG0ðt;xÞ
δhQ0ðz0Þ

δCIðyÞ
δhP0

ðz00Þ−
δG0ðt;xÞ
δhP0

ðz00Þ
δCIðyÞ
δhQ0ðz0Þ

�
:

ð2:18Þ

This expression cannot weakly vanish because on the one

hand using assumption 3 we have that at most one

polymerization function can be the identity function and

moreover we have
R
d3z

�
∂h

Q0 ðz0Þ
∂Q0ðzÞ

��
∂hP0 ðz

00Þ
∂P0ðzÞ

�
≉ δð3Þðz0; z00Þ.

On the other hand due to assumption 1, the last integral on

the rhs in the above equation cannot weakly vanish because

then already in the classical theory the dynamical stability

of the gauge-fixing condition cannot be satisfied as we have

a nonvanishing ∂GI

∂t
≉ 0 required in assumption 2. ▪

Note that we have considered the case of the field theory

here. For models with a finite number of degrees of

freedom the same result holds and the proof works

similarly in this simpler setup. This is the reason why

we have focused on field theory here.
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A. Reverse engineering gauge-fixing conditions

for given lapse and shift

In this subsectionwewant to discuss the questionwhether

one can take the point of view that for a given choice of a

polymerization of lapse and shift one can always reverse

engineer a set of gauge-fixing conditions that are consistent

with the effective dynamics and the polymerized lapse and

shift. An applicationwhere this question becomes relevant is

if elementary variables involved on the one side in the

constraints and on the other side in lapse and shift are

polymerized differently where both ways of polymerizing

still have the correct classical limit. One of the main reasons

why a different polymerization for the shift vector is chosen

is that it yields a quantization where the shift vector operator

acts on the same lattice points as the Hamiltonian constraint;

see e.g., the discussion in [18]. A further independent

argument for this choice is discussed in [39], where such

a definition of the shift vector is favored to allow the algebra

of the effective Hamiltonian constraints and the classical

ones exactly agree. Although it is desirable to have no

anomalies in this algebra, the first requirement that needs to

be satisfied here is to choose a dynamically consistent shift

vector. If there are ambiguities left, these could be used to

obtain an anomaly-free algebra but as we will see below for

themodel in [18,39,51] a dynamically consistent shift vector

needs to have the same polymerization as the Hamiltonian

and diffeomorphism constraint or the physical Hamiltonian,

respectively. Because allowing one to adopt the gauge-

fixing conditions to a given set of lapse and shift brings some

additional freedom and thus ambiguity with it, it is rather

difficult to provide a general proof that is based on very

general assumptions. Therefore, what we will present in our

discussion below is a lemma that demonstrates that for a

certain class of models available in the literature [18,44,51]

such a kind of reverse engineering is not possible. As a

consequence, this means that the polymerization chosen for

the constraints and thus the physical Hamiltonian needs also

to be chosen for lapse and shift if one wants to have a

consistent dynamical system. At the end of this subsection

we will comment on possible drawbacks that can occur if

one follows the route of first choosing a polymerization for

lapse and shift and then aims at reverse engineering the

corresponding consistent gauge-fixing conditions.

The class of models that we want to consider satisfy the

following assumptions.

(a) The gauge-fixing condition associated with the

Hamiltonian constraint denoted by G0 depends only

on the matter degrees of freedom denoted by Φ
A, πA

and we have ∂

∂t
G0ðΦA; πA; tÞ ≉ 0.

(b) The matter degrees of freedom Φ
A, πA are not

polymerized at the level of the effective dynamics.

(c) The gauge-fixing conditions associated with the spa-

tial diffeomorphism constraint Ga do only depend on

the gravitational triad variables and ∂

∂t
GaðEa

j Þ ≈ 0.

(d) The polymerization of the connection variables

denoted by A
j
a in the constraints is performed by

A
j
a ↦ hðAa

j ; λÞ, where hðAa
j ; λÞ does not depend on

partial derivatives of A
j
a and is not the identity

function. The triad variables Ea
j are not polymerized

at the effective level.

The above assumptions are for instance satisfied in the

models considered in [44,51]. Ifwewish to reverse engineer the

gauge-fixing conditions for a given lapse and shift, then in

general this will also include the freedom to add an extra

polymerized contribution in the gauge-fixing condition that

vanishes in the classical limit or multiply quantities in the

gauge-fixing conditionwith polymerized quantities that tend to

one in the classical limit. With the chosen conditions for the

polymerization in (d) we want to exclude these ambiguities

here. Below we will discuss the situation when these assump-

tions are relaxed and particularly emphasize what kind of

drawbacks can occur if one follows this route. Given this set of

assumptions we can prove the following lemma.

Lemma 3.—Given assumptions (a)–(d) listed above, then

the gravitational degrees involved in lapse and shift need to

be polymerized in exactly the same way as chosen for the

constraints and the physical Hamiltonian, respectively.

Modifying the gauge-fixing condition to allow different

polymerization for lapse and/or shift is not possible if we

require the effective system to be dynamically consistent

and to possess the correct classical limit.

Proof of Lemma 3.—First we realize that assumptions

(a)–(d) are a special case of the assumptions stated in

Corollary 2. Hence, by applying Corollary 2 we can

conclude that under these assumptions gauge fixing and

polymerization commute. Next, by assumptions (a) and

(c) we know that all gauge-fixing conditions are not affected

by the polymerization and we have at the effective level

G0 ¼ Gclass
0 ðΦA; πA; tÞ and Ga ¼ Gclass

a ðEa
j Þ: ð2:19Þ

We use the same notation as in the former proofs; then the

stability condition reads

Z
d3y

Z
d3zNJFNJ ;Iðx; y; zÞ − δI;0

∂G0

∂t
ðt; xÞ ≈ 0;

I; J ¼ 0;…; 3; ð2:20Þ

where we have used assumption (c) so far and considered

further assumptions (a), (b) and (d). The explicit form of

FNJ ;Iðx; y; zÞ for this class of models is given by

FNJ ;0ðx;y;zÞ¼F class
NJ ;0

½ΦA;πA�ðx;y;zÞ and

FNJ ;aðx;y;zÞ¼F class
NJ ;a

½hjaðAj
a;λ

j
aÞ;Ea

j ;Φ
A;πA�ðx;y;zÞHðAj

aÞ;
ð2:21Þ

with

CONSISTENT GAUGE-FIXING CONDITIONS IN POLYMERIZED … PHYS. REV. D 105, 066023 (2022)

066023-9



F class
NJ ;0

½ΦA; πA�ðx; y; zÞ ¼
δG0ðt; xÞ
δΦAðzÞ

δCclass
J;matðyÞ
δπAðzÞ

−
δG0ðt; xÞ
δπAðzÞ

δCclass
J;matðyÞ

δΦAðzÞ ; ð2:22Þ

F class
NJ ;a

½hjaðAj
a; λ

j
aÞ; Ea

j ;Φ
A; πA�ðx; y; zÞ

¼ −
δGaðt; xÞ
δEb

kðzÞ
δCclass

J;geoðyÞ
δAk

bðzÞ

����
A
j
a→h

j
aðAj

a;λ
j
aÞ
; ð2:23Þ

where Cclass
J;mat and Cclass

J;geo denote the matter and geometrical

contribution to Cclass
J , respectively, and we further used that

gauge fixing and polymerization commute for this class of

models and computed the analog of (2.9) in Lemma 1 for the

models considered here. HðAj
aÞ is as before a generic

function that depends on the connection variables and its

explicit form will depend on the chosen polymerization.

Using (2.21) we obtain the following equation that deter-

mines the effective lapse N:

Z
d3y

Z
d3zNF class

N;0 ðΦA; πAÞðx; y; zÞ ≈ −

Z
d3y

Z
d3zNaF class

Na;0ðΦA; πAÞðx; y; zÞ þ δI;0
δG0

δt
ðt; xÞ: ð2:24Þ

This agrees exactly with the equation we obtain at the classical level up to the fact that instead of the classical shift vector

Na
class, the effective one N

a is involved. Therefore, we can conclude that for the models considered here, we always have the

lapse function of the effective theory given by N ¼ NclassðΦA; πA; N
aÞ and polymerized variables involved in N can only

come from Na. Substituting this into the three remaining equations that determine the effective lapse function this yields for

a ¼ 1; 2; 3

Z
d3y

Z
d3zNbF class

Nb;a
ðhjaðAj

a;λ
j
aÞ;Ea

j ;Φ
A;πAÞðx;y;zÞ≈−

Z
d3y

Z
d3zNclassðqA;PA;N

aÞF class
N;a ðhjaðAj

a;λ
j
aÞ;Ea

j ;Φ
A;πAÞðx;y;zÞ:

ð2:25Þ

Since by assumptions (b) and (c) the gauge-fixing con-

ditions do not involve any polymerized variables, it follows

that the polymerization encoded in F class
Nb;a

and F class
N;a is

completely determined by the kind of polymerization

chosen for the Hamiltonian and spatial diffeomorphism

constraints. Moreover, the polymerized variables involved

in the lapse function can only come from the contribution

of Na and therefore any involved polymerized variables in

the system of equations that determine the effective lapse

and shift are contributions from the polymerized variables

involved in the effective constraints. Since the effective

physical Hamiltonian in these kind of models will always

be a phase space function that involves contributions of the

effective constraints from the gravitational degrees of

freedom and some matter degrees of freedom, the latter

contribution depending on the explicit form of the chosen

G0, the polymerization chosen for the gravitational part

of the constraints carries over to the effective physical

Hamiltonian as well. Now due to the weak equality in the

system of equations that determine lapse and shift at the

effective level, we can use the constraints at the effective

level to for instance replace certain matter variables by

geometrical ones that are polymerized at the effective level.

But if this is done, the polymerization involved in the final

result for lapse and shift is again completely determined by

the polymerization chosen for the constraints. This shows

that starting with a given gauge-fixing condition that is

consistent with assumptions (a)–(d) the polymerization of

lapse and shift is determined by the polymerization chosen

for the constraints and cannot be chosen independently of

this choice if we require dynamical consistency. Moreover,

in these models we do also not have the freedom to modify

the gauge-fixing condition consistently to allow a different

polymerization for lapse and shift than chosen for the

constraints for the following reason: by assumptions (b)

and (d) neither the triads nor the matter variables experience

any polymerization. For this reason for models satisfying

assumptions (a)–(d) it is not possible to modify the set of

gauge-fixing conditions in a way that they on the one hand

lead to a solution of the stability requirement that allows a

different polymerization for lapse and/or shift—and are

thus dynamically consistent—and on the other hand still

have the correct classical limit. ▪

To close this subsection we want to look at a more

general case. This means we will drop most of the

assumptions of Lemma 3 and consider an effective system

where the components of the connection in the constraints

were polymerized according to A
j
a ↦ h

j
aðAj

a; λ
j
aÞ. The triad

variables Ea
j as well as the matter degrees of freedom Φ

A,

πA are not polymerized. Given a choice of lapse and shift

we want to reverse engineer the corresponding gauge-

fixing conditions GIðAj
a; E

b
i ;Φ

A; πA; t; x; λ
j
aÞ. In order to do

that we have to consider the dynamical stability of the

gauge-fixing conditions with respect to the canonical

Hamiltonian. Using the notation of foregone proofs this

system of equations takes the form
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Z
d3y

Z
d3zNJðyÞ

�
δGIðt; xÞ
QαðzÞ

δCJðyÞ
δPαðzÞ

−
δGIðt; xÞ
δPαðzÞ

δCJðyÞ
δQαðzÞ

�

−
∂GI

∂t
ðt; xÞ ≈ 0; ð2:26Þ

whereQα ¼ ðAj
a;Φ

AÞ denotes all configuration variables of
the phase space and Pα ¼ ðEa

j ; πAÞ the respective canoni-

cally conjugate momenta. Additional factors of the Poisson

algebra were in the above equation absorbed in the

constraints. We can see that in general this is a very

complicated system of equations. Further we only have a

weak equality, meaning we are allowed to set the con-

straints on the left-hand side to zero. A common strategy to

find solutions is to make an Ansatz for the gauge-fixing

conditions. Typically we want to restrict the dependence on

the canonical variables or on the temporal variable. We

use such a strategy in the first example of the following

Sec. III A. Note that we can already see in this example that

in general there is no unique solution for the gauge-fixing

conditions.

Assuming we have found a solution to the above system

of equations Gsol
I , then we want to formulate in the

following various sets of criteria the solution has to meet

and discuss their implications. First we require the solution

for the gauge-fixing conditions to have the correct classical

limit and obey the polymerization that was already used

in the constraints (in the following we refer to such a

polymerization as standard). In our case the latter criterion

means that there exists a function fGIðQα; Pα; t; xÞ such

that

fGIðhjaðAj
a;λ

j
aÞ;Eb

i ;Φ
A;πA;t;xÞ¼Gsol

I ðAj
a;E

b
i ;Φ

A;πA;t;x;λ
j
aÞ:

ð2:27Þ

This is the simplest case, since we have a consistent

system where the effective physical Hamiltonian is equal

to the standard polymerization of the classical physical

Hamiltonian. Practically we can directly check whether

such a solution exists for a given system by plugging in the

standard polymerized classical gauge-fixing conditions as

well as our choice for lapse and shift in the stability

equations and check if they weakly vanish.

Secondly we can relax the criterion for the standard

polymerization and solely demand the solution for gauge-

fixing conditions to have the correct classical limit. Note

that the model discussed in Sec. III A falls into this

category. For this class of solutions we have to be careful

when formulating the effective physical Hamiltonian.

Instead of using the standard polymerized gauge-fixing

conditions we have to use our solution and the choice of

lapse and shift to construct the physical Hamiltonian from

the polymerized canonical Hamiltonian Hcan. Note that

although the classical limit of such a physical Hamiltonian

is correct, it is not given by the standard polymerization of

the classical physical Hamiltonian. The price to pay for

this approach is that we need to allow any possible

quantization ambiguity in the gauge-fixing conditions

to obtain consistent solutions. Since such an ambiguity

is considered for the quantization of the gauge-fixing

condition only, the question remains why the gauge-fixing

conditions are quantized differently from all other

functions.

The third category of solutions is defined by having a

classical limit that does not agree with the classical gauge-

fixing condition of the original classical model. As a

consequence, the physical Hamiltonian will also have a

different classical limit. This means that these effective

gauge-fixing conditions correspond to a different classical

system than the one we originally wanted to construct an

effective theory thereof. In a sense different choices of

gauge-fixing conditions do not change fundamentally the

physics of the theory but rather the perspective from

which we describe it, for example a rescaling of the

temporal coordinate. Still, if we want to have a system for

which the effective theory is a direct extension of the

classical one, we need to replace the classical theory by

the system constructed from the classical limit of the

gauge-fixing conditions and take into account that the

effective theory corresponds to a classical theory with a

different chosen gauge condition than we originally

started with at the classical level. Such a perspective

could be followed if one takes the quantum theory and its

corresponding effective model as fundamental and not as

the quantization of a given classical model because the

latter is problematic if we cannot rediscover such classical

theory in the classical limit. Depending on whether the

polymerization of the gauge-fixing conditions is standard

or not we would obtain models which fit in the first or

second category.

As our results show, from a physical perspective if we

choose lapse and shift and then reverse engineer consistent

gauge-fixing conditions, a wide range of the choices for

lapse and shift are suboptimal in the following sense. In

models where polymerization and gauge fixing do not

commute, in general in order to work with a consistent

model we need to rely on quantization ambiguities (second

category) and work with polymerized gauge-fixing con-

ditions whose classical limit does not agree with the

classical gauge-fixing condition one originally has started

with (third category).

III. EXAMPLES FROM LOOP QUANTUM

BLACK HOLES AND SPHERICALLY

SYMMETRIC SPACETIMES

To illustrate the consistency requirements of gauge-

fixing conditions with respect to the polymerized gravita-

tional dynamics we consider three specific examples.

We first discuss the case of the loop quantization of the

Schwarzschild interior using the quantization proposed
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in [32].
4
In this quantization all of the assumptions for

Lemma 1 in the previous section are satisfied. We find that

polymerization and gauge fixing do not commute. Then,

we move on to our second example where the gravitational

collapse of an inhomogeneous dust cloud in the LTB

spacetime is considered. In this example, which satisfies

the assumptions of Corollary 2, one works with two gauge-

fixing conditions, one of them being a temporal gauge fixed

by a reference field. We illustrate the conditions under

which gauge fixing and polymerization commute and point

out issues with considering different polymerization for the

shift vector as considered in [44] which is not consistent

with stability of gauge-fixing conditions. In our third

example we discuss the case of matter clocks when

polymerization of matter fields is taken into account.

Lemma 2 shows in this case that polymerization and gauge

fixing do not commute.

A. The Schwarzschild interior

Our first example concerns the interior of the

Schwarzschild black hole which is isometric to the homo-

geneous and anisotropic Kantowski-Sachs spacetime. Due

to the underlying symmetries this can be understood as a

special case of our proof where we consider a system with

finitely many degrees of freedom and where the diffeo-

morphism constraint is trivially satisfied such that one deals

with only one gauge-fixing condition. In this model the

spacetime metric is given by

ds2 ¼ −NclassðtÞ2dt2 þ fðtÞd2xþ gðtÞd2Ω; ð3:1Þ

where Nclass denotes the lapse function, x is the radial

coordinate and d2Ω ¼ dθ2 þ sin2ðθÞdϕ2 represents the

angular part of the metric. For the Schwarzschild interior,

Nclass ¼
1

2m=t − 1
; f ¼ N2ðtÞ; gðtÞ ¼ t2; ð3:2Þ

where m ¼ GM and M is the mass of the black hole.

The coordinates can take any values in the range

t ∈ ½0; 2mÞ; x ∈ R; θ ∈ ½0; π�;ϕ ∈ ½0; 2π�.
In the following we first discuss the case of the classical

theory which is followed by its polymerized version.

1. The gauge-fixing conditions in the classical

Schwarzschild interior

It can be shown that in the Kantowski-Sachs spacetime,

after imposing the Gauss constraint, the Ashtekar con-

nection and the densitized triads only depend on two pairs

of symmetry-reduced canonical variables, namely, ðb; pbÞ
and ðc; pcÞ [24]. These phase space variables satisfy the

following nonvanishing Poisson brackets:

fb; pbg ¼ Gγ; fc; pcg ¼ 2Gγ: ð3:3Þ

The corresponding classical Hamiltonian for the

Schwarzschild interior in terms of canonical pairs

ðb; pbÞ and ðc; pcÞ takes the form

Hclass
can ¼ −

Nclass

2Gγ2

�
ðb2 þ γ2Þ pbffiffiffiffi

p
p

c

þ 2bc
ffiffiffiffi
p

p
c

�
: ð3:4Þ

Interestingly, the lapse Nclass can be chosen in such a way

that the resulting Hamilton’s equations can be readily

solved and the physical interpretations of the solutions

are transparent [24,32]. In particular, when

Nclass ¼ γ
ffiffiffiffi
p

p
c=b; ð3:5Þ

the equations of motion of ðb; pbÞ decouple from those of

ðc; pcÞ,5 it is then straightforward to obtain the general

solutions [32]

pb ¼ p
ð0Þ
b et

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−t − 1

p
; pc ¼ p

ð0Þ
c e2t;

b ¼ �γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−t − 1

p
; c ¼ c0e

−2t; ð3:6Þ

where the coordinate t should be regarded as tailored to the

lapse (3.5). Since the diffeomorphism constraint is already

fixed in obtaining this model, a generic form of the gauge-

fixing condition which leads to the above particular lapse

function must explicitly depend on the time coordinate.

We consider the following Ansatz for the gauge-fixing

condition:

Gclass
0 ¼ f0ðc; pc; b; pbÞ − t: ð3:7Þ

Here f0 is a function of the canonical variables which does
not depend explicitly on the coordinate time. By requiring

the preservation of the gauge-fixing condition (3.7) with

respect to the Hamiltonian (3.4), namely,

d

dt
Gclass

0 ¼ ff0; Hclass
can g − 1 ≈ 0; ð3:8Þ4

While there exist more recent loop quantizations of the
Kruskal spacetime such as [35,36] which not only resolve the
central singularity but are also free from some undesirable
features such as large mass asymmetry between black hole
and white hole spacetimes across the bounce, we consider this
quantization due to its simplicity and some features which are
shared by others [33,35–37].

5
It can be shown that multiplying the classical lapse (3.5) by a

function of b or c would lead to the Hamilton’s equations which
still admit analytical solutions; the additional function which is
multiplied to (3.5) amounts to a redefinition of time.
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one can readily obtain a PDE for f0. For the lapse in (3.5),

one gets

−

�
b2 þ γ2

2b

�
∂f0

∂b
þ
�
pb −

b2 þ γ2

2b

�
∂f0

∂pb

− 2c
∂f0

∂c
þ 2pc

∂f0

∂pc

¼ 1: ð3:9Þ

Note that every solution of the above PDE results in the

same lapse function given in (3.5). Thus, there does not

exist a one to one correspondence between the lapse and the

gauge-fixing conditions, and, in general, there can be

different choices of the gauge-fixing conditions which

correspond to a particular lapse.

Some simple solutions of (3.9) can be found easily. For

example, when f0 only depends on one of the canonical

variables b, c, pc we get the following cases.
6

Case A.—When f0 only depends on c, one can find that

the corresponding solution of PDE (3.9) leads to the gauge-

fixing condition

GA;class
0 ¼ −

1

2
ln

�
c

c0

�
− t ¼ 0: ð3:10Þ

As a result, when imposing the gauge-fixing condition

GA;class
0 ¼ 0, we recover c ¼ c0e

−2t which is one of the

solutions in (3.6) derived from the Hamilton’s equations for

the lapse (3.5).

Case B.—When f0 depends only on pc, we find the

corresponding solution results in the gauge-fixing condition

GB;class
0 ¼ −

1

2
ln

�
pc

p0
c

�
− t ¼ 0: ð3:11Þ

In this case, imposing the gauge-fixing conditionGB;class
0 ¼ 0

leads to the solution forpc, namely, pc ¼ p0
ce

2t which is also

given in (3.6).

Case C.—When f0 only depends on b, solving the PDE

(3.9) of f0 leads to the gauge-fixing condition

GC;class
0 ¼ − ln

�
b2 þ γ2

γ2

�
− t ¼ 0: ð3:12Þ

In this case, imposing the gauge-fixing conditionGC;class
0 ¼ 0

leads to the solution for b, namely, b ¼ �γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−t − 1

p
in (3.6).

Note that we have adjusted the integration constant in

each case appropriately so that the corresponding gauge-

fixing conditions are exactly equivalent to the classical

solutions in (3.6). In principle, any two gauge-fixing

conditions which differ by a constant will lead to the same

lapse function. Hence, without any loss of generality, one

can always properly choose this integration constant to

make the form of the gauge-fixing conditions consistent

with the analytical solutions.

2. The gauge-fixing conditions in the polymerized

Schwarzschild interior

The loop quantization of the Schwarzschild interior

has been extensively studied in the literature

[24–26,32,33,35,36] (see also [31] for Schwarzschild–de

Sitter, Schwarzschild–anti–de Sitter and higher genus black

holes). In the following, we consider the polymerization in

[32] as an example to show that the gauge-fixing conditions

and the polymerizations do not commute according to

Lemmas 1 and 2. Following [32], the effective Hamiltonian

of the loop quantized Schwarzschild interior is given by

Hcan ¼ −
N

2Gγ2

��
sin2ðδbbÞ

δ2b
þ γ2

�
pbffiffiffiffi
p

p
c

þ 2

ffiffiffiffi
p

p
c
sin ðδbbÞ sin ðδccÞ

δbδc

�
; ð3:13Þ

where two polymerization factors δb and δc are constants

which do not depend on the phase space variables. When

these two polymerization factors approach zero, the effec-

tive Hamiltonian (3.13) tends to its classical counterpart in

(3.4). Similar to the classical case discussed in the last

subsection, one can then choose a particular lapse

N ¼ Npoly ¼ γδb
ffiffiffiffi
p

p
c

sin ðδbbÞ
; ð3:14Þ

which decouples the ðb; pbÞ sector from the ðc; pcÞ at the
level of effective dynamics. Note that the lapse (3.14) is

exactly the polymerization of the classical lapse in (3.5).

The corresponding Hamilton’s equations admit analytical

solutions which are given explicitly by [32]

c ¼ 2

δc
arctan

�
δc

2
c0e

−2t

�
; b ¼ � 1

δb
arccos

�
b0 tanh

�
1

2
b0tþ tanh−1ð1=b0Þ

��
;

pc ¼ 4m2ðe2t þ c20δ
2
ce

−2tÞ; pb ¼ −2
sinðδccÞ

δc

sinðδbbÞ
δb

pc

sin2ðδbbÞ
δ2
b

þ γ2
; ð3:15Þ

6
Given the PDE (3.9) there is no case when f0 depends only on pb.
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where c0 is an integration constant and b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2δ2b

q
.

When δb and δc approach zero, these solutions from

the effective dynamics tend to their classical limits given

in (3.6).

In order to obtain the gauge-fixing conditions corre-

sponding to the polymerized lapse (3.14), one can follow

the procedure in the classical case where we assume that a

general gauge-fixing condition takes the form (3.7) and

then demand it be preserved during the time evolution of

the effective dynamics generated by the Hamiltonian (3.13)

with the lapse (3.14). In doing so, we obtain another PDE

for f0 which turns out to be

−
1

2

�
sinðδbbÞ

δb
þ γ2δb

sinðδbbÞ

�
∂f0

∂b
þ α

∂f0

∂pb

− 2
sinðδccÞ

δc

∂f0

∂c
þ 2pc cosðδccÞ

∂f0

∂pc

¼ 1; ð3:16Þ

with α ¼ ðpb cos ðδbbÞ þ δbpc cosðδbbÞ sinðδccÞ
sinðδccÞδc Þ. Any gauge-

fixing conditions in the analogous form of (3.7) which

are compatible with the effective Hamiltonian (3.13)

together with the polymerized lapse (3.14) must satisfy

the above PDE. We can obtain the following particular

solutions for the gauge-fixing conditions from the above

PDE for cases when f0 depends only on b, c and pc.

Case A.—When f0 only depends on the connection c,
the solution to (3.16) results in the gauge-fixing condition

GA
0 ¼ −

1

2
ln

�
tanðδcc

2
Þ

δcc0
2

�
− t ¼ 0; ð3:17Þ

which reduces to (3.10) as δc tends to zero on one hand and

gives the analytical solution of c in (3.15) on the other

hand. Therefore, this gauge-fixing condition is compatible

with the dynamics when the lapse is chosen to be the one

from the polymerization of the classical lapse. It is

important to note that in the Hamiltonian constraint

(3.13) and the lapse (3.14), the sine function is used to

polymerize the connections while in the above gauge-fixing

condition, a tangent function appears as a polymerization of

the connection c. The gauge-fixing condition does not have
the same polymerization as the one used in the lapse and the

Hamiltonian constraint. This example illustrates what can

happen in a general case. Due to Lemma 1 we know that

gauge fixing and polymerization do not commute. Solving

the above PDE we end up with a solution of the second

category according to the discussion at the end of Sec. II A.

Case B.—When f0 depends on pc, the PDE (3.16)

implies f0 should depend on c as well. In this case, we need
to look for a solution of f0 which depends on both c and pc.

Such a solution exists and the corresponding gauge-fixing

condition is given by

GB
0 ¼−

1

2
ln

�
2tanðδcc

2
Þ

δc

�
þg

�
pc

sinðδccÞ
δc

�
− t¼0; ð3:18Þ

where gðpc
sinðδccÞ

δc
Þ is an arbitrary differentiable function of

pc
sinðδccÞ

δc
. Given the solutions of c and pc in (3.15), it is

straightforward to show that pc
sinðδccÞ

δc
turns out to be a

constant. As a result, the gauge-fixing condition GB
0 ¼ 0 is

also a solution of the effective dynamics with the lapse

(3.14). Note the gauge-fixing condition (3.18) for the

effective dynamics does not correspond to the polymeri-

zation of its classical counterpart (3.11) in the sense that the

latter only depends on the momentum variable pc while the

combination pc
sinðδccÞ

δc
whose classical counterpart is cpc

always shows up together in GB
0 . This solution falls into the

third category since the classical limit is different from the

classical gauge-fixing condition.

Case C.—When f0 only depends on the triad variable b,
we can keep the first term on the left-hand side of the PDE

(3.16) to obtain a solution of f0, which leads to the gauge-

fixing condition

GC
0 ¼ 2

b
tanh−1ðcosðδbbÞ=b0Þ −

2

b0
tanh−1ð1=b0Þ − t ¼ 0;

ð3:19Þ

where b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2δ2b

q
and the above gauge-fixing con-

dition exactly gives the analytical solution of b in (3.15).

Moreover, when δb approaches zero, the gauge-fixing

condition (3.19) recovers its classical limit given in

(3.12). As can be clearly seen, GC
0 cannot be obtained

from the polymerization of the connection b in the classical

gauge-fixing condition (3.12). Instead it can only be

obtained by requiring its compatibility with the effective

dynamics.

To summarize these examples, we have explicitly shown

that our Lemma 1 applies to the Schwarzschild interior

where the polymerization of the lapse and the Hamiltonian

constraint lead to consistent gauge-fixing conditions which

do not directly come from the polymerizations of their

classical counterparts but are obtained by demanding the

dynamical consistency of the gauge-fixing conditions.

Requiring this consistency of the effective dynamics shows

that polymerization does not commute with the gauge

fixing.

A pertinent question is the following. At the level of the

effective dynamics, what are the lapse functions which are

consistent with the gauge-fixing conditions that come

directly from the polymerization of the classical ones in

(3.10)–(3.12)? For the cases discussed above, these polym-

erized gauge-fixing conditions obtained directly from the

classical gauge-fixing conditions take the forms
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G
A;poly
0 ¼ −

1

2
ln

�
sin ðδccÞ
c0δc

�
− t; G

B;poly
0 ¼ −

1

2
ln

�
pc

p
ð0Þ
c

�
− t; G

C;poly
0 ¼ − ln

�
1þ sin2ðδbbÞ

δ2bγ
2

�
− t: ð3:20Þ

Requiring the preservation of the above polymerized

gauge-fixing conditions under the effective dynamics

produced by the effective Hamiltonian (3.13), we can

readily obtain a PDE of the lapse for each gauge-fixing

condition in (3.20). Since the calculations for each gauge-

fixing condition is similar, in the following, we take G
A;poly
0

as an example. The consistency requirement demands that

d

dt
G

A;poly
0 ¼ fGA;poly

0 ; Hcang þ
∂

∂t
G

A;poly
0

¼ N
sinðδbbÞ cos δcc

γδb
ffiffiffiffi
p

p
c

− 1 ¼ 0; ð3:21Þ

which immediately yields

N ¼ γδb
ffiffiffiffi
p

p
c

sinðδbbÞ cosðδccÞ
: ð3:22Þ

It is straightforward to show that for the gauge-fixing

conditions given in (3.20), the consistent lapse functions

are all given by (3.22). Although this lapse also tends to the

classical lapse (3.5) when δb and δc approach zero, due to

the additional cosine function in the denominator, it is not

the polymerization of the classical lapse under the same

polymerization rules as used in the Hamiltonian constraint

and the gauge-fixing conditions. In this sense, using the

same polymerizations in the classical lapse and the classical

gauge-fixing conditions are not compatible with the effec-

tive dynamics governed by the effective Hamiltonian

(3.13). Last but not the least, we can directly find the

noncommutativity between the gauge fixing and the lapse

by comparing the algebraic equations for the classical lapse

and its counterpart in the effective theory. In the classical

theory, knowing the gauge-fixing condition GA;class
0 ¼ 0,

the classical lapse is determined by

d

dt
GA;class

0 ¼ fGA;class
0 ; Hcang þ

∂

∂t
GA;class

0 ¼ Nb

γ
ffiffiffiffiffi
pc

p − 1 ¼ 0:

ð3:23Þ

As we can see now clearly that the polymerization of

Eq. (3.23) would not lead to its counterpart which is (3.21)

in the effective theory due to the additional cosine function

in the latter which is exactly the factor HðAc
l
Þ in (2.14)

introduced in the proof of Lemma 1.

B. Gravitational collapse of an inhomogeneous dust

cloud in the LTB spacetime

Spherically symmetric spacetimes were first quantized

using complex Ashtekar variables in [52] and real

Ashtekar-Barbero variables in [53]. These techniques have

been used in recent years to explore quantum geometric

effects in various spherically symmetric spacetimes

[18,27–30,38–40]. In this subsection, we consider the

gravitational collapse of an inhomogeneous dust cloud in

a spherically symmetric spacetime. This example fits into

Corollary 2 of Lemma 1, and Lemma 2. The spacetime

whose metric can be expressed in terms of the Ashtekar-

Barbero variables as

ds2¼−N2
classdt

2þðEbÞ2
Ea

ðdxþNx
classdtÞ2þEadΩ2; ð3:24Þ

where Nclass and Nx
class are the lapse function and the radial

component of the shift vector, respectively, Eaðt; xÞ and

Ebðt; xÞ are the densitized triads in the radial and angular

directions, respectively, and dΩ2 ¼ dθ2 þ sin2 θdϕ2. In the

following we first consider the classical case which is

followed by its polymerized version. After integrating

out the angular part, the Hamiltonian of a collapsing dust

cloud can be written in terms of Ashtekar-Barbero variables

as [44]

Hclass
can ¼

Z
dt

Z
dxNclassC

class þ Nx
classC

class
x ; ð3:25Þ

where the two remaining constraints are given by

Cclass¼CgeoþCdust¼−
1

2Gγ2

�
2ab

ffiffiffiffiffiffi
Ea

p
þ Eb

ffiffiffiffiffiffi
Ea

p ðb2þγ2Þ
�

þ 1

8G

ð∂xE
aÞ2

Eb
ffiffiffiffiffiffi
Ea

p þ
ffiffiffiffiffiffi
Ea

p

2G
∂x

�
∂xE

a

Eb

�

þ4πpT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ea

ðEbÞ2 ð∂xTÞ2
s

; ð3:26Þ

Cclass
x ¼C

geo
x þCdust

x ¼ 1

2Gγ
ð2Eb∂xb−a∂xE

aÞ−4πpT∂xT:

ð3:27Þ

The Poisson algebra of the spherical symmetrized con-

nection and triad as well as the dust field is given by [44]
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faðxÞ;EaðyÞg¼2γGδðx;yÞ; fbðxÞ;EbðyÞg¼ γGδðx;yÞ;

fTðxÞ;pTðyÞg¼
1

4π
δðx;yÞ: ð3:28Þ

Since the system contains two first-class constraints,

namely, Cclass and Cclass
x , we need two gauge-fixing con-

ditions to convert the system into a second-class system.

The gauge-fixing conditions we choose are

G0 ¼ T − t; G1 ¼ Ea − x2: ð3:29Þ

The first of these gauge-fixing conditions is also known as

the dust-time gauge, which is typically used for reference

field models which incorporate matter in order to fix the

gauge freedom and derive a physical Hamiltonian (see [49]

for a collection of such models). The second gauge

condition G1 ¼ 0 is also referred to as the areal gauge

since it fixes radial coordinate x to be the physical radius;

i.e., a sphere of radius x has the surface area 4πx2.
The stability of the temporal gauge condition G0 ¼ 0

yields

dG0

dt
¼ fG0; H

class
can g þ ∂G0

∂t

¼ Nclass

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ea

ðEbÞ2 ð∂xTÞ2
s

− Nx
class∂xT − 1 ¼ 0;

ð3:30Þ

where we have used the dust-time gauge T ¼ t and thus

∂xT ¼ 0. Considering the stability of the areal gauge, we

find

dG1

dt
¼ fG1; H

class
can g ¼ 2Nclass

b

γ

ffiffiffiffiffiffi
Ea

p
þ Nx

class∂xE
a

¼ 2Nclass

b

γ
xþ 2Nx

classx ¼ 0: ð3:31Þ

This gives a second equation which determines the lapse

and shift. Solving the coupled equations (3.30) and (3.31),

one can obtain

Nclass ¼ 1; Nx
class ¼ −

b

γ
: ð3:32Þ

Having considered the classical case, we now want to

analyze the stability of the gauge conditions in the effective

theory. We can make this calculation for general polymer-

izations A
j
a ↦ h

j
aðAj

a; λ
j
aÞ. Specifically, for connection

variables a and b, a general polymerization takes the form

a↦haða;λaÞ¼
sinðλaaÞ

λa
; b↦hbðb;λbÞ¼

sinðλbbÞ
λb

;

ð3:33Þ

where λa and λb are polymerization factors which do not

depend on the connection variables. Correspondingly, the

effective Hamiltonian now becomes

Hcan ¼
Z

dt

Z
dxNCþ NxCx; ð3:34Þ

with

C ¼ −
1

2Gγ2

�
2hahb

ffiffiffiffiffiffi
Ea

p
þ Eb

ffiffiffiffiffiffi
Ea

p ððhbÞ2 þ γ2Þ
�

þ 1

8G

ð∂xE
aÞ2

Eb
ffiffiffiffiffiffi
Ea

p þ
ffiffiffiffiffiffi
Ea

p

2G
∂x

�
∂xE

a

Eb

�

þ 4πpT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ea

ðEbÞ2 ð∂xTÞ2
s

; ð3:35Þ

Cx ¼
1

2Gγ
ð2Eb∂xh

b − ha∂xE
aÞ − 4πpT∂xT: ð3:36Þ

Since the gauge-fixing conditions (3.29) do not depend on

the connection variables, we continue to use them to fix the

gauge freedom of the effective dynamics. Similar to the

classical case, the preservation of the temporal and areal

gauge conditions leads to a fixing of the lapse and shift. In

particular, requiring the stability of the temporal gauge, we

find

dG0

dt
¼ fG0Hcang þ

∂G0

∂t
≈ N − 1 ¼ 0; ð3:37Þ

which is exactly the same as in the classical case since only

the dust parts of the Hamiltonian have nontrivial contri-

butions in the Poisson bracket. On the other hand, the

stability of the areal gauge requires

dG1

dt
¼fG1;Hcang¼ð∂ah

aÞ
�
2N

hb

γ
xþ2Nxx

�
¼0; ð3:38Þ

where we have used the areal gauge after evaluating the

Poisson bracket. The derivative of ha can be factored out as
it only appears linearly in the Hamiltonian. Combining the

last two stability equations, one immediately finds

N ¼ 1; Nx ¼ −
hb

γ
¼ −

sin ðλbbÞ
λbγ

: ð3:39Þ

The lapse function has the same value as in the classical

theory and the shift vector is the polymerization of the

classical shift vector. Note that in this model the temporal

and the spatial gauges decouple. Since the stability of the

temporal gauge condition is completely independent of

the shift vector and the solution of the lapse function is the

same in the classical as well as the effective theory, we can

go to the partially gauge-fixed system where only the
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spatial gauge remains. Then we can actually use Corollary

2 to show that gauge fixing and polymerization always

commute. The important point is that now the system has

no gauge condition with a temporal dependence, which is

the exactly one of the conditions in Corollary 2.

We conclude this subsection with two remarks on

subtleties of using gauge-fixing conditions which arise

in recent works where this example is considered. These

remarks help illustrate Lemma 3.

Remark 1.—It should be noted that although the authors

in [44] use the same gauge-fixing conditions given in

(3.29), they work with a different effective theory since

the shift vector is polymerized differently than the

Hamiltonian constraint. In particular, the shift vector used

is (see also [39,51])

Nx ¼ −
1

2λbγ
sin ð2λbbÞ: ð3:40Þ

As compared with the shift vector in (3.39), the above shift

has an additional factor of 2 in the argument of the

trigonometric function. The motivation used to introduce

such a polymerization is to ensure that the operator of the

scalar constraint as well as the shift vector act on the same

vertices νj. But such a choice is fraught with problems. First,

it is rather unnatural and ad hoc to choose a different

polymerization exclusively for the shift vector. Secondly our

above calculation shows that if we transition to the effective

theory by polymerizing the canonical Hamiltonian and

requiring stability of the polymerized gauge-fixing condi-

tions to determine the lapse and the shift of the effective

theory, these solutions correspond to the polymerized

classical solutions of the lapse and shift. One is not allowed

to choose any other polymerization as it will be inconsistent

in the above sense. Thirdly, although the shift vector in

(3.40) has the same classical limit as the one in (3.39) when

λb tends to vanish, such a shift actually corresponds to a

different choice of the gauge-fixing conditions in the

effective theory. Similar to what we have computed in the

last subsection for the Schwarzschild interior, the specific

form of the gauge-fixing condition consistent with the

choice of the shift (3.40) can be obtained by requiring the

preservation of the gauge-fixing condition in the effective

theory which leads to a partial differential equation of the

gauge-fixing condition. In summarywe need to be careful in

considering polymerizations of different quantities in the

effective theory and choicesmade for certain simplifications

can be inconsistent.

Remark 2.—Another issue arises with respect to the

choice of the lapse in (3.40) when we consider the physical

Hamiltonian of the model in [44]. In principle, one can

obtain the polymerized physical Hamiltonian in two differ-

ent ways. The first is to impose the gauge-fixing conditions

(3.29) in the classical theory to get rid of one of the

connection variables and its conjugate momentum and then

use the polymerization in (3.33) for the remaining con-

nection variable. The other way is to first polymerize the

full phase space with the Ansatz for polymerization in

(3.33) and then impose the gauge-fixing conditions (3.29)

to obtain the polymerized physical Hamiltonian. Since the

gauge fixing and the polymerization commute in this model

and the gauge-fixing conditions remain the same for

classical and effective theories, the polymerized physical

Hamiltonian derived from the above two ways coincide.

However, if one uses a different shift such as (3.40) which

corresponds to a different gauge-fixing condition for the

effective theory, then a consequence is that the above two

Ansätze would result in different polymerized physical

Hamiltonians. In other words, in order to obtain the

polymerized physical Hamiltonian corresponding to the

choice of the shift in (3.40), one can only follow the second

Ansatz in which we first polymerize the full phase space

and then reduce to the physical phase space with the right

gauge-fixing conditions consistent with the shift (3.40).

This complexity does not arise if we simply choose the shift

as given in (3.39) which is consistent with the choice of the

gauge-fixing conditions in (3.29) in both classical and

effective theories.

C. Matter reference models including

polymerized matter

The general proofs in Sec. II already show that, for a wide

range of models that use geometrical clocks, polymerization

and gauge fixing do not commute. However, as shown in

Sec. III A 2, we can reverse engineer from a chosen lapse

function (and shift vector) the corresponding gauge con-

ditions. A difficulty lies in finding solutions of the corre-

sponding PDE of the gauge-fixing conditions which are

similar in structure to (3.16). However, there still might exist

inconsistencies when formulating the physical Hamiltonian.

Going to models that use a mix of geometrical and matter

clocks, we can already see in Sec. III B that the situation

simplifies. The geometrical part of the Hamiltonian is not

contributing to the stability equations of the gauge-fixing

condition. This also means that the solutions for lapse and

shift vector of the stability equations will lose their con-

nection dependency and thus any sensitivity to polymeri-

zation. This is the reason that matter clocks using

unpolymerized matter, as considered in the previous sub-

section, are able to bypass the polymerization.

Let us elaborate on this point by considering a reference

model which incorporates spherically symmetric Brown-

Kuchař dust [46] considered in the relational formalism in

[7] and its quantization within LQG in [47]. After reducing

the second-class constraints, the system takes the following

form [7]:

Cdust¼�4ππ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxxUxUxþ1

p
; Cdust

x ¼4πðπ0T ;xþπxS;xÞ;
ð3:41Þ
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where the dust fields ðT; SÞ have the canonical momenta

ðπ0; πxÞ, Ux ¼ −T ;x −
πx
π0
S;x and the metric component

is expressed by triads qxx ¼ Ea

ðEbÞ2. Defining the matter

clocks by the gauge-fixing conditions G0 ¼ T − t and

G1 ¼ S − x, we can compute the solution of lapse function

and shift vector to be

N ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxxπ2x þ π20

p

π0
; Nx ¼ −qxx

πx

π0
: ð3:42Þ

For such reference models (see the Appendix for further

examples), the matter parts of the constraints only depend

on the matter degrees of freedom as well as the metric, thus

the densitized triads. Since the gauge-fixing conditions

only depend on the matter degrees of freedom, no con-

nection components occur in the stability equations and

therefore in the lapse and the shift vector. This means that

the stability equations are unchanged under polymerization

and so the question whether polymerization and gauge

fixing commute can be trivially answered for these models

affirmatively.

We now consider the case where the matter sector is

quantized with a loop quantization which yields a polym-

erization in the matter part at the effective level as well. It

turns out that in this case gauge fixing and polymerization

do no longer commute. To illustrate this let us discuss a

polymerized version of the Brown-Kuchař dust model

above (in the Appendix we have calculated this for the

other reference models too). To incorporate matter polym-

erization, we define a general polymerization by replacing

the canonical momentum of the matter fields by a general

function

πi ↦ hiðπi; λiÞ; i ¼ 0; x: ð3:43Þ

As mentioned earlier, it makes no difference for the stability

equations in this model whether the geometric degrees of

freedom are polymerized as well, so we can directly

compute the stability of the gauge-fixing conditions:

_G0 ≈

�
�N

h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxxh2x þ h20

p
�
ð∂π0

h0Þ − 1 ¼ 0 ⇒

N ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxxh2x þ h20

p

h0ð∂π0
h0Þ

; ð3:44Þ

_G1 ≈

�
Nx � N

qxxhxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qxxh2x þ h20

p
�
ð∂πx

hxÞ ¼ 0 ⇒

Nx ¼ −
qxxhx

h0ð∂π0
h0Þ

: ð3:45Þ

We can see that, whenever the polymerization of the matter

field T is not the identity, we get a nontrivial contribution

from the derivative of the corresponding polymerization

function h0 in the effective theory. This leads us to the

conclusion that for models with matter clocks where the

matter is polymerized, gauge fixing and polymerization do

not commute. This is not surprising, since in this case one is

essentially treating thematter degrees of freedom in the same

way as the geometrical ones under polymerization and sowe

are again in the scope of Lemma 1. One can see this in the

second stability equation too. Note that here we can factor

out the derivative term of hx. This is possible sincewe do not
have any temporal dependence of the gauge-fixing con-

dition. So in the partially gauge fixed system, where G0 is

fixed, gauge fixing and polymerization would again com-

mute, a point we have discussed extensively in Sec. III B.

Furthermore the above calculation is a faithful example of

Lemma 2 in action.

IV. CONCLUSIONS

In this manuscript, we have addressed the question of

whether the procedure of gauge fixing and polymerization

commutes for the effective dynamics of symmetry-reduced

models based on techniques of LQG. We have studied

some representative situations in which the Gauss con-

straint is eliminated and only the Hamiltonian constraint

possibly along with the diffeomorphism constraint remains

to be solved. To obtain dynamics in constrained systems

one usually introduces gauge-fixing conditions and their

dynamical stability determines the corresponding Lagrange

multipliers which are lapse and shift in the gravitational

systems considered in this work. In practice for a given

model one can also take the perspective of first choosing

lapse and shift and then determining a set of gauge-fixing

conditions consistent with the dynamics. If we go beyond

the classical theory and consider quantized models, then we

can either implement the gauge fixing at the classical level

or in the quantum theory, where the latter is treated at the

effective level (polymerization) in this article. Therefore, a

pertinent question is whether polymerizing just the classical

lapse and shift is sufficient to obtain solutions for the

effective lapse and shift that are consistent with the stability

of the effective gauge-fixing conditions. In case the

preservation of the effective gauge-fixing conditions with

respect to the effective dynamics yields solutions for lapse

and shift which are simply the polymerized versions of the

classical lapse and shift, then we say that gauge fixing and

the polymerization are commutable with each other. If this

is not the case, then polymerization and gauge fixing do not

commute.

From our studies, we find that the commutativity of

gauge fixing and polymerization depends, apart from the

model under consideration, on the types of the gauge-fixing

conditions as well as their dependence on the temporal

coordinate. For geometrical clocks, that we denote as the

first type, the gauge-fixing condition involves only the

geometrical degrees of freedom, whereas for matter clocks,

denoted as the second type, they involve only matter
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degrees of freedom. As Lemma 1 shows, when only the

geometrical sector is polymerized and the gauge-fixing

conditions are of the first type with at least one of them

depending on the temporal coordinate, then gauge fixing

does not commute with polymerization. Lemma 1 is then

further illustrated by a simple but nontrivial example, i.e.,

the loop quantization of the interior of the Schwarzschild

black hole [32]. In this example, due to the homogeneity of

the Schwarzschild interior, the diffeomorphism constraint

is fixed. As a result, the gauge-fixing condition used to

determine the lapse must depend on the temporal coor-

dinate and thus Lemma 1 applies to this setting. As a

consequence, if we work with the same polymerization for

the gauge-fixing condition that is used for the Hamiltonian

constraint, simply polymerizing the classical lapse in the

effective theory leads to inconsistencies. Therefore, in

practice, if we want to work with the lapse which is

specified to yield well-known analytic solutions in the

literature, we need to solve for the corresponding gauge-

fixing condition which obeys a PDE derived from con-

sistency requirements. Our results reveal several properties

of the gauge-fixing conditions which hold for both classical

and effective dynamics. Firstly, as expected for a specific

lapse, there can be multiple choices of the gauge-fixing

conditions and all of the applicable gauge-fixing conditions

are the solutions of the system. Secondly, if we choose a

lapse for the effective dynamics that is the polymerization

of the classical lapse, the corresponding consistent gauge-

fixing conditions for the effective dynamics are not the

polymerization of their classical counterparts. Thirdly,

although gauge fixing and polymerization do not commute

in this case, the polymerized quantum system has the

correct classical limit; that is to say, the effective

Hamiltonian constraint, the effective lapse and the corre-

sponding gauge-fixing conditions can reduce to their

classical counterparts when the polymerization para-

meters approach zero. It will be interesting to further

investigate this issue for other loop quantizations of the

Schwarzschild interior, such as in [26,33,36,37] and under-

stand the commutability of polymerization and gauge-

fixing conditions.

Relaxing some of the restrictions in the assumptions

of Lemma 1 can make gauge fixing commute with the

polymerization. The first two corollaries of Lemma 1

highlight this. In particular, when only the geometrical

sector is polymerized, and if none of the gauge-

fixing conditions depend on the temporal coordinate

(Corollary 1), or the time-dependent gauge-fixing condition

is of the second type (Corollary 2), then gauge fixing turns

out to commute with the polymerization. The gravitational

collapse of an inhomogeneous dust cloud which we have

analyzed in Sec. III B fits exactly into Corollary 2. Since the

time-dependent gauge-fixing condition only depends on

the dust field and thus is not affected by the polymerization

of the geometric sector, the stability equations of the

gauge-fixing conditions for the effective dynamics are

equivalent to those obtained from the polymerization of

the classical stability equations, leading to the solutions of

the lapse and the shift which are the polymerization of their

respective classical counterparts. It is important to note that

with this type of the gauge-fixing conditions, the choice of

the lapse and shift for the effective dynamics should be

exactly their polymerized classical counterparts; otherwise,

inconsistencies in the dynamics would arise as is proved

in Lemma 3. We discuss some consequences of this in

Sec. III B for the works in [39,44,51]. Our analysis shows

pitfalls with some choices made in literature for the shift

vector which are inconsistent with the stability of gauge-

fixing conditions.

Finally, we have also extended our analysis to the case in

which the matter sector is polymerized and matter clocks

are chosen. In this particular case, which is an example of

Lemma 2, polymerization turns out to not commute with

gauge fixing for the same reason as in the case of choosing

geometric clocks with a polymerized geometric sector

addressed in Lemma 1. We choose the Brown-Kuchař

dust model [7,46] and the Gaussian dust model [48,49] as

well as the four-scalar fields model [50] as examples in this

category (in the Appendix). Due to the polymerization of

the matter sector, the lapse and shift which are consistent

with the effective dynamics include extra terms other than

those obtained from the polymerization of the momenta

of the matter fields. In general our analysis shows that

whenever the gauge-fixing condition that involves a tem-

poral dependence involves variables that belong to a set of

canonical variables where at least one of the elementary

variables is polymerized we are in the situation that gauge

fixing and polymerization will not commute. As a result,

in order to deal with a model where gauge fixing and

polymerization commute, one could for instance choose

matter clocks for the Hamiltonian constraint and only

polymerize the geometric degrees of freedom or choose

geometric clocks for the unpolymerized Hamiltonian con-

straint and apply a polymerization to the matter sector

only. From the LQG perspective the latter will be a rather

unnatural choice.

In summary, our examples illustrate that when polym-

erizing a classical system with gauge degrees of freedom,

gauge fixing and polymerization may not commute with

one another in general. However, this causes no issue

a priori because independent from the classical theory the

requirement of the stability of the gauge-fixing conditions

yields a clear procedure how the effective lapse and shift

that are consistent with the effective dynamics can be

determined for a given choice of gauge-fixing conditions.

This allows one to check for each given model in practice

whether gauge fixing and polymerization commute. If one

wants to work with a specific choice of a polymerized lapse

and/or shift, then one can look for possible gauge-fixing

conditions that yield this choice and that are consistent with
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the effective dynamics. As shown in our work depending

on the model this might require one to use different

polymerizations for constraints and gauge-fixing condi-

tions and/or work with polymerized gauge-fixing condi-

tions that do not correspond to a polymerization of the

classical gauge-fixing condition. These are undesirable

features which should be avoided for a well-motivated

and consistent polymerized model.

As a further remark, compared with other requirements

on the effective dynamics, such as a specific choice for

lapse and/or shift motivated from the effective constraint

algebra, we believe the first priority should be placed on the

consistency in the dynamics generated by the effective

Hamiltonian; that is, the gauge-fixing conditions must be

preserved by the effective dynamics and one has to care-

fully check whether choices one motivates from the

constraint algebra do not violate this consistency require-

ment. Under this necessary condition, the commutativity or

noncommutativity of the gauge fixing and the polymeri-

zation depends on the types of gauge-fixing conditions and

also on which sector of the system is polymerized.

As a final remark, next toperforming thegauge fixing in the

effective theory, that corresponds to applying a gauge fixing

in the quantum theory, one can also apply the relational

formalism and the construction of Dirac observables in the

quantum theory. Although a detailed analysis on this topic

goes beyond the scope of this paper our results give some first

insight on the relation between classical and quantum clocks

for those classes of gauge-fixing conditions where we can

relate the gauge-fixed theory to the reduced phase space of

elementary Dirac observables and their dynamics. As our

results show, if one quantizes the gauge-fixing condition with

the same polymerization as used for the constraints, that is

what one would usually do, then only in very special cases

will a dynamically consistent lapse and shift be given by the

polymerization of their classical counterparts. In the generic

case thismeans that choosing a classical or quantumclock has

an effect onhow thequantizationof lapse and shift needs to be

performed. Moreover, our analysis also shows that whether

such a commutativity exists strongly depends on how the

variables and their conjugates involved in the temporal gauge-

fixing condition are quantized, which at an effective level

means whether the variables and/or their conjugate variables

are polymerized.Among other criteria such as that the algebra

of Dirac observables has a simple structure and the physical

Hamiltonian can be implemented as a well-defined operator

on the physical Hilbert space, the requirement of commuta-

tivity of quantization and gauge fixing in the sense discussed

in this work can allow one to further discriminate possible

different choices of clocks in the relational formalism.
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APPENDIX: THE MATTER CLOCKS WITH

POLYMERIZED MATTER SECTOR IN THE

GAUSSIAN DUST AND THE FOUR-SCALAR

REFERENCE FIELD MODELS

In this Appendix, we extend the analysis of reference

matter models. We will start with the Gaussian dust model

discussed in [48,49]. As before we do not specify to any

symmetry-reduced model yet but keep our analysis as

general as possible and formulate the effective model by

polymerizing a suitable subset of the canonical variables.

The Gaussian dust gives rise to the following additional

terms to the geometrical parts of the constraints [49]:

Cdust¼�

0
B@p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þqabT ;aT ;b

q
þ

qabT ;aπjS
j
;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þqabT ;aT ;b

q

1
CA; ðA1Þ

Cdust
x ¼ π0T ;a þ πjS

j
;a; ðA2Þ

where the four dust fields ðT; SjÞ have the canonical

momenta ðπ0; πjÞ. To construct the reference model we

will use these fields as clocks, i.e., G0 ¼ T − t and

Gj ¼ Sj − xj. We will directly compute the stability of

these gauge-fixing conditions in the effective theory using

the polymerization of the matter degrees of freedom like

in Eq. (3.43). Note that we can go back to the classical

theory by setting hiðπi; λiÞ → πi. Straightforward calcula-

tions show that

_G0¼�Nð∂π0
h0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þqabT ;aT ;b

q
−1≈�Nð∂π0

h0Þ−1¼0

⇒N¼� 1

∂π0
h0

; ðA3Þ

_Gj ¼ NaS
j
;a �N

qabT ;aS
j
;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qabT ;aT ;b

q ≈NaS
j
;a ¼ 0⇒ Na ¼ 0:

ðA4Þ

Similar to the Brown-Kuchař dust model [7,46,47] dis-

cussed in Sec. III C, we can see that once again polym-

erization and gauge fixing do not commute. To be precise,

in the classical theory the lapse equals unity. Switching to

the effective theory this is not the case anymore, since

lapse is now the inverse derivative of the polymerization

of the temporal reference field. These two solutions only

coincide for constant polymerizations, which are trivial

and thus will be excluded. In both cases the shift vector is

vanishing.

Another reference model in the literature is the four

Klein-Gordon scalar field model of [50]. Wewill again treat

this model in the symmetry unrestricted sector. Although

this is not a dust model, we will adapt the notation of the
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cited paper to our notation used for matter models. The

matter part constraints take the form [50]

Cdust ¼ π20
2

ffiffiffi
q

p þ 1

2

ffiffiffi
q

p
qabT ;aT ;b −

X

j

πj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qabS

j
;aS

j
;b

q
; ðA5Þ

Cdust
x ¼ π0T ;a þ πjS

j
;a; ðA6Þ

where we used the abbreviation
ffiffiffi
q

p
≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðqabÞj

p
.

Using the same gauge-fixing conditions as before we

compute

_G0 ¼ Nð∂π0
h0Þ

h0ffiffiffi
q

p − 1 ¼ 0 ⇒ N ¼ �
ffiffiffi
q

p

h0ð∂π0
h0Þ

; ðA7Þ

_Gj¼ð∂πj
hjÞðN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qabS

j
;aS

j
;b

q
þNaS

j
;aÞ¼0⇒Na¼N

ffiffiffiffiffiffiffi
qaa

p
:

ðA8Þ

Similar to the reference model analyzed above, a partial

derivative of the polymerization is appearing. This breaks

the commutativity of gauge fixing and polymerization.
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