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It is generally expected that in a nonsingular cosmological model a cyclic evolution is straightforward to

obtain on introduction of a suitable choice of a scalar field with a negative potential or a negative

cosmological constant which causes a recollapse at some time in the evolution. We present a

counterexample to this conventional wisdom. Working in the realm of loop cosmological models with

nonperturbative quantum gravity modifications we show that a modified version of standard loop quantum

cosmology based on Thiemann’s regularization of the Hamiltonian constraint while generically non-

singular does not allow a cyclic evolution unless some highly restrictive conditions hold. Irrespective of the

energy density of other matter fields, a recollapse and hence a cyclic evolution is only possible if one

chooses an almost Planck sized negative potential of the scalar field or a negative cosmological constant.

Further, cycles when present do not occur in the classical regime. Surprisingly, a necessary condition for a

cyclic evolution, not singularity resolution, turns out to be a violation of the weak energy condition. These

results are in a striking contrast to standard loop quantum cosmology where obtaining a recollapse at large

volumes and a cyclic evolution is straightforward, and, there is no violation of weak energy condition. On

one hand our work shows that some quantum cosmological models even though nonsingular and bouncing

are incompatible with a cyclic evolution, and on the other hand demonstrates that differences in various

quantization prescriptions in loop cosmology need not be faint and buried in the prebounce regime, but can

be striking and profound even in the postbounce regime.
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I. INTRODUCTION

Whether or not our Universe goes through a cyclic

evolution is a question which has intrigued both philoso-

phers and scientists for a long time. The first rigorous

construction of a cyclic cosmological model was presented

by Tolman [1] using Einstein’s theory of general relativity

(GR) for a universe with a positive spatial curvature. Since

then, cyclic models in different avatars have been proposed

(see for e.g., [2–35]). The first requirement to construct a

viable model of cyclic evolution is a robust mechanism to

resolve big bang/big crunch singularities. The second

ingredient is some form of matter energy or curvature to

cause a recollapse. In construction of cyclic models, it is the

first requirement, a nonsingular bounce of the scale factor

which turns out to be most challenging to meet, unless one

sacrifices weak energy condition which results in a host of

difficulties. To obtain a nonsingular bounce often needs

inputs from nonperturbative regime of quantum gravity and

this is where models based on loop quantum gravity (LQG)

stand out where resolution of strong curvature singularities

turns out to be a generic phenomena for various isotropic

and anisotropic models [36–40]. The second requirement

for cyclic models is generally considered easy to satisfy

either with a positive spatial curvature as in Tolman’s model

or with a negative potential which can be constant or

varying in some of the above models. Since recollapse

generally occurs in a macroscopic classical universe, this

requirement is straightforward to meet even with a small

magnitude of the negative potential.

The conventional wisdom in construction of cyclic

models is that once the singularity is taken care of, an

appropriate choice of some matter-energy content or spatial

curvature can be readily used to obtain a cyclic evolution.

The goal of this manuscript is to present a counterexample

to this understanding for a nonsingular cosmological

model. The premise of our work is loop quantum cosmol-

ogy (LQC) [41] which is a quantization of cosmological

spacetimes following techniques of LQG. Before going

into the details of a particular version of LQC which does

not favor a cyclic evolution, let us note some highlights of

the nonsingular dynamics in standard LQC. Unlike the

Wheeler-DeWitt quantum cosmology based on a con-

tinuum spacetime manifold, LQC is based on a discrete

quantum geometry arising from the nonperturbative quan-

tum geometric effects. These are responsible for a reso-

lution of the big bang singularity replacing it with a big

bounce at Planckian curvature scale [42–45]. Backward

evolution of a macroscopic universe towards the classical
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big bang singularity is well captured by GR up to a percent

of the Planck curvature beyond which nonlocal quantum

gravitational effects result in a significant departure from

GR. In particular there is a significant departure from

situation in anisotropic models. For instance, the chaotic

behavior of classical Bianchi IX model near the big bang/

crunch singularity in general relativity can be avoided near

the quantum bounce due to a discrete structure of quantum

geometry in LQC which essentially results in a bounded

spacetime curvature and thus prevents unlimited fragmen-

tation of the original homogeneous patches in the chaotic

approach to the singularity in general relativity and changes

the conventional Kasner behavior in presence of anisotro-

pies [46–49]. Interestingly, due to underlying quantum

geometry, evolution in LQC is governed by a second order

finite difference equation, but one can also extract an

effective spacetime description using semiclassical states

[50,51] from which a modified Friedman dynamics with

quadratic modifications to energy density (with a negative

sign) can be obtained [44,52]. This additional term causes

the Hubble rate to vanish at a maximum energy density

determined by the quantum geometry and the universe

reaches a prebounce regime where it soon becomes

classical once again. In contrast to various other bouncing

models, such as ghost condensate bounce [53], quintom

bounce [54] or Galilean bounce [55] which in order to

achieve a nonsingular bounce relies on violating the weak

energy condition, singularity resolution in LQC is obtained

without any violation of weak energy condition. It occurs

purely because of quantum gravity effects. In the absence

of a potential, the resulting picture across the bounce in the

standard LQC turns out to be symmetric. Further, consis-

tent quantum probabilities for a big bounce turn out to be

unity for arbitrary superposition of quantumwave functions

[56]. Notably, LQC dynamics turns out to be favorable for

both inflationary and cyclic models. As examples, quantum

bounce in LQC results in inflationary attractors for both

isotropic and anisotropic spacetimes [15,57–59], makes

onset of inflation, in particular for low energy models, in

closed universes much easier as compared to the classical

theory [30,31,60], and alleviates problems with a non-

singular turnaround of moduli field in the Ekpyrotic/cyclic

models [15,22]. As far as the question of a cyclic evolution

is concerned, standard LQC allows a nonsingular cyclic

dynamics in the presence of spatial curvature [16], a

negative cosmological constant [18], Ekpyrotic potentials

[15,22,34] and certain types of clocks [27].

Similar to any quantum cosmological model, LQC must

deal with various quantization and regularization ambigu-

ities to establish robustness of such predictions. In LQC,

one of such ambiguities arises in obtaining the quantum

Hamiltonian constraint for spatially flat isotropic models.

In the quantization procedure one encounters two terms in

the Hamiltonian constraint corresponding to the Euclidean

and Lorentzian parts. In the spatially flat model, one option

is to utilize the symmetries of the cosmological spacetime

to combine these terms before quantization [61]. This

procedure results in the standard LQC. On the other hand,

if one does not exploit this symmetry of the spatially

flat universe and treats Euclidean and Lorentzian terms

independently during quantization procedure, following

Thiemann’s regularization of the Hamiltonian constraint

in LQG, one obtains a modified version of standard LQC,

also known as mLQC-I in literature [62]. This model was

first analyzed in [63] and recently obtained following LQG

techniques by computing the expectation values of the

Hamiltonian constraint with the complexifier coherent

states [64]. Since this regularization aims to capture some

of the more generic features of the quantization of cosmo-

logical spacetimes motivated from full LQG, it is pertinent

to ask whether it yields similar predictions as standard

LQC. This question has been partly answered in the context

of singularity resolution and the inflationary paradigm. It

turns out that LQC and mLQC-I both yield a generic

resolution of strong curvature singularities [65] and are

compatible with inflation [66] resulting in an almost

identical power spectrum at ultraviolet scales [67,68].

But, there are also some important differences. First, the

evolution of the Universe in mLQC-I is asymmetric with

respect to the bounce. In the contracting phase, the

Universe quickly tends to a quasi–de Sitter phase with

an emergent cosmological constant of Planckian magnitude

[62,69] and a rescaled Newton’s constant [62]. The second

difference arises in the modifications to the dynamical

equations. At the quantum level, the difference equation is

fourth order, and, at the effective spacetime level, the

modified Friedmann equation has higher orders in energy

density [62,70]. Finally, there are significant differences in

the behavior of the primordial power spectrum in the infra-

red regime which can potentially lead to signatures in non-

Gaussianities [68,71]. Despite these differences, standard

LQC and mLQC-I obtained from Thiemann’s regulariza-

tion of the Hamiltonian constraint have a good qualitative

agreement with each other in the postbounce regime for

inflationary potentials and the compatibility with infla-

tionary dynamics is a robust prediction of different versions

of LQC.

Given that in the LQC version with Thiemann’s regu-

larization of the Hamiltonian constraint the evolution

across the bounce is highly asymmetric with one of the

branches having a Planck curvature even at large volumes,

it is pertinent to ask whether this modification of standard

LQC results in a viable cyclic evolution. The answer to this

question is also related to a broader issue, that is regardless

of the quantization choices, whether the existence of the

cyclic universes is a robust feature of the loop cosmologies.

In order to address this problem, one has to start with the

qualitative behavior of the mLQC-I universe when it is

filled with some particular form of the matter content that

can readily cause a cyclic universe in LQC.We consider the
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case when the matter content only consists of one single

scalar field and introduce a negative potential, constant as

well as varying, to obtain a recollapse. Unlike in the

presence of the positive potentials, some major qualitative

differences between standard LQC and mLQC-I become

apparent for negative potentials. These can also be viewed

as differences between any conventional bouncing model

which mimics features of standard LQC and the Thiemann

regularized LQC. These differences are the following:

(i) Unlike the standard LQC where as in GR, the minimum

possible energy density is zero, it is negative in mLQC-I

given by ρmin ≈ −0.023 in the Planck units. While this

magnitude is approximately 2% of the Planck density, it is

24% of the maximum allowed energy density in mLQC-I.

(ii) In the standard LQC, the recollapses in each cycle are

qualitatively of the same type when the negative potential

causes the minimum energy density to be achieved. There

is a single branch extending from prebounce to postbounce

eras described by the same modified Friedmann equation.

But in mLQC-I, because of the richer regularization of the

Hamiltonian constraint there are two branches in evolution

joined at the bounce. These are labeled as b− and bþ
branches following [62] and correspond to different mod-

ifications to the Friedmann equation. The b− branch leads

to classical GR, but the bþ branch is purely quantum

gravitational in character with an emergent Planck-sized

cosmological constant. These branches lead to two types of

recollapse points alternating each other. One recollapse

occurs at the vanishing energy density (in the b− branch).

This recollapse is thus classical in nature. The other

recollapse occurs at ρmin (in the bþ branch) and is thus

quantum gravitational in nature. For a cyclic evolution, the

Universe must pass through both the classical and quantum

recollapse points alternately. (iii) For a recollapse in bþ
branch to occur, the minimal of the potential must be more

negative than ρmin. Because of this constraint, a very large

parameter space of negative potentials including negative

cosmological constants which can easily cause a recollapse

in the classical regime in LQC and thus a cyclic evolution

gets ruled out. The recollapse requires a negative potential

which is almost Planckian in magnitude. (iv) In standard

LQC, there is no violation of weak energy condition in

presence of a negative potential. In mLQC-I, weak energy

condition must be violated at the recollapse point in the bþ
branch. Due to these differences we find that unlike

standard LQC, a cyclic evolution in mLQC-I is highly

restrictive and only occurs in very special situations

requiring an almost Planckian sized negative potential.

In the cases where this cyclic evolution is possible, the

energy density of the Universe retains its Planckian

character and does not reach a sustained period of a

classical cyclic evolution.

This manuscript is organized as follows. In Sec. II, using

the effective dynamics of LQC and mLQC-I, we study the

effects of a negative potential by focusing on the evolution

of the energy density. Since the energy density can be

expressed as a function of sinðλbÞ with λ the square root of

the minimal area eigenvalue in LQG and b the conjugate

momentum of the volume of the Universe, we also label

explicitly each bounce/recollapse point on the sinðλbÞ vs b
plot as the momentum b evolves monotonically over time.

The emphasis will be placed on the necessary conditions

for a negative potential to generate a cyclic universe in each

model and the distinctions between the resulting cyclic

universes. In Sec. III, based on the numerical results of the

Hamilton’s equations, we analyze the dynamics of the

Universe which is filled with a single scalar field with a

negative cosmological constant and an Ekpyrotic potential.

We study two types of cases. In the first situation we

consider ordinary values of negative cosmological constant

and the magnitude of the Ekpyrotic potential and show that

cyclic evolution is not possible. We then study the cases

where cyclic evolution is allowed albeit with an almost

Planckian magnitude of the cosmological constant and

the Ekpyrotic potential. We summarize our main findings

in Sec. IV. In the following, we use Planck units with

ℏ ¼ c ¼ 1 while keeping Newton’s constant G explicit in

our formulas In the numerical results, G is also set to unity.

II. POSSIBILITY OF CYCLIC EVOLUTION IN

SPATIALLY-FLAT LQC AND MLQC-I

In this section we first discuss the successive evolu-

tionary stages of a spatially flat Friedmann-Lemaître-

Robertson-Walker (FLRW) universe in LQC when a scalar

field minimally coupled to gravity is considered. Using

effective dynamics, whose validity for the sharply peaked

semiclassical states has been extensively corroborated via

numerical simulations for both isotropic and anisotropic

spacetimes [50,51,72,73], we note some distinctive proper-

ties in presence of a negative potential in contrast to the

positive potential. The latter has been applied in detail to

study the phenomenological implications of quantum

gravity in the early Universe, especially on the inflationary

spacetimes and quantum perturbations around the back-

ground quantum geometry [74]. In the following discussion

the negative potential may also be a constant potential

which mimics a negative cosmological constant or an

Ekpyrotic/cyclic potential which for an appropriate choice

of parameters results in a recollapse of a classical universe

at macroscopic scales. Here we focus on the change in

sinðλbÞ and the energy density as the Universe evolves

forward and backward in time. Then, we study the same

using the effective dynamics in mLQC-I and highlight

some important features of dynamics with a negative

potential and contrast them with the situation in LQC.

A. Characteristic evolution in LQC

The fundamental variables for loop quantization are the

holonomy of the Ashtekar-Barbero connection and the flux
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of the desenitized triad, which in a spatially flat FLRW

universe are symmetry reduced to a canonical pair c and p,
with p related with the scale factor of the Universe via

jpj ¼ a2 and c proportional to the time derivative of the

scale factor in the classical theory. In the μ̄ scheme [44] in

which a quantum bounce generically takes place at a fixed

Planck-scale energy density, it is more convenient to

employ an equivalent set of canonical variables which

are defined via v ¼ jpj3=2 and b ¼ cjpj−1=2 with their

fundamental Poisson bracket given by fb; vg ¼ 4πGγ,
where the Barbero-Immirzi parameter γ is usually chosen

to be 0.2375 based on the black hole thermodynamics in

LQG. Moreover, if we consider a spatially flat FLRW

universe filled with a single scalar field, the matter sector

consists of a scalar field ϕ and its conjugate momentum pϕ

with the Poisson bracket fϕ; pϕg ¼ 1.

In terms of the canonical variables introduced above,

the effective Hamiltonian constraint in LQC takes the

form [44]

HLQC ¼ −
3v sin2ðλbÞ
8πGγ2λ2

þHM; ð2:1Þ

where λ ¼
ffiffiffiffi

Δ
p

with Δ (¼ 4
ffiffiffi

3
p

πγ) denoting the minimum

eigenvalue of the area operator in LQG, HM stands for the

matter sector of the constraint, which consists of the kinetic

and potential energy of the scalar field and thus is explicitly

given by

HM ¼
p2

ϕ

2v
þ vU; ð2:2Þ

where U denotes the potential energy of the scalar field.

The Hamilton’s equations for the effective dynamics of

LQC read

_v ¼ 3v

2γλ
sinð2λbÞ; _b ¼ −4πGγðρþ PÞ; ð2:3Þ

_ϕ ¼ pϕ

v
; _pϕ ¼ −vU;ϕ; ð2:4Þ

where U;ϕ denotes the derivative of the potential

with respect to the scalar field. In addition, the energy

density and the pressure of the scalar field are given

explicitly by

ρ ¼
p2

ϕ

2v2
þ U; P ¼

p2

ϕ

2v2
− U; ð2:5Þ

so that the equation of state parameter of the scalar field is

defined by

w ¼ P

ρ
: ð2:6Þ

From the vanishing of the total Hamiltonian constraint,

one can also relate the energy density with the momentum

b via

ρ ¼ 3 sin2 ðλbÞ
8πGγ2λ2

; ð2:7Þ

which implies the energy density in LQC is always non-

negative and lies in the range ρ ∈ ½0; ρLQCmax �, with ρ
LQC
max ¼

3

8πGγ2λ2
≈ 0.41 in the Planck units. From Eqs. (2.3) and (2.7),

it is straightforward to arrive at the Friedmann equation in

LQC, which reads

H2 ¼ 8πG

3
ρ

�

1 −
ρ

ρ
LQC
max

�

; ð2:8Þ

where H ¼ _a=a with a ¼ v1=3 being the scale factor. As a

result, the Hubble rate H vanishes at ρ ¼ 0 or ρ ¼ ρ
LQC
max .

By computing ä, one finds that the bounce happens at

ρ ¼ ρ
LQC
max while ρ ¼ 0 corresponds to a recollapse point.

Moreover, the rate of change of the Hubble parameter in

LQC simply reads [41]

_H ¼ −4πGðρþ PÞ
�

1 − 2
ρ

ρ
LQC
max

�

: ð2:9Þ

Since at the bounce we have _H > 0 and ρ ¼ ρ
LQC
max , there-

fore from the above formula, one can easily find ρþ P > 0

at the bounce in LQC which directly shows that the weak

energy condition is not violated at the bounce in LQC

which is in contrast with the situation in classical GR where

the rate of change of the Hubble parameter is given by

_H ¼ −4πGðρþ PÞ; ð2:10Þ

and hence a bounce with _H > 0 inevitably requires the

violation of null energy condition, namely ðρþ PÞ < 0.

Thus, unlike various bouncing models there is no violation

of weak energy condition in LQC at the bounce. The

bounce occurs purely due to quantum geometric effects.

Finally, since only a scalar field with the energy density and

pressure as given in (2.5) is considered, b decreases

monotonically in the forward evolution of the Universe

as can been seen from the _b equation in (2.3). As a result, b
can also be used as a geometric clock to unfold the

background evolution of the universe.

In Fig. 1, we show explicitly how the energy density of

the Universe evolves with respect to the clock b. Starting
with our present macroscopic universe denoted by the point

P, the Universe can go through different stages depending

on the sign of the potential of the scalar field. For a positive

potential, in the backward evolution, the Universe starting

at point P reaches the bounce point D and then tends

towards point A. Note that in the forward evolution, fromD
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to P, the Universe is in an expanding phase while from A to

D, the Universe is in a contracting phase. However, with a

positive potential, the Universe can never reach the recol-

lapse point G in the future and the recollapse point A in the

past since the energy density in (2.5) would not vanish

completely for any nonzero positive potential. As a result,

there is no cyclic evolution of the Universe when the scalar

potential is positive. The evolution only lies between the

boundary points A and G.
In case of a negative potential there are some changes

from the evolution in case of the positive potential. With a

cyclic (negative) potential, in the backward evolution, the

Uuniverse would go through the bounce at point D and

reach the recollapse point A in the past. And, in the forward

evolution starting from the point P, the Universe can reach

the recollapse point G when the kinetic energy of the scalar

field is exactly canceled by its potential energy and

then enters into a contracting phase between G and J,
where at point J, a second bounce happens. Afterwards,

the Universe undergoes expansion from J to M. Thus, the

evolution from A toM represents one complete cycle of the

evolution. In the right panel of Fig. 1, we show the change

in the energy density in the same cycle of evolution from

point A to point M. The universe would continue to evolve

after reaching points M and A. In this way, a cyclic

evolution of the universe can be realized with a negative

potential in LQC. It should be noted that in LQC, the

energy density is always non-negative, that is, the weak

energy condition is always satisfied irrespective of the sign

of the potential.

B. Characteristic evolution in mLQC-I

In mLQC-I, the fundamental canonical variables are the

same as in LQC with the same Poisson brackets. The

difference from LQC lies in the treatment of Lorentzian

term in the Hamiltonian constraint where it is quantized

independently rather than expressed in terms of the

Euclidean term. Assuming that the effective description

is still valid for the sharply-peaked quantum states, the

effective Hamiltonian constraint in mLQC-I (denoted with

HI) reads [62,63]

HI¼
3v

8πGλ2

�

sin2ðλbÞ−ðγ2þ1Þsin2ð2λbÞ
4γ2

�

þHM: ð2:11Þ

For a scalar field with a general potential term, the matter

Hamiltonian HM is still given by (2.2). From (2.11), it is

straightforward to derive the Hamilton’s equations in

mLQC-I which read,

_v ¼ 3v sinð2λbÞ
2γλ

fðγ2 þ 1Þ cosð2λbÞ − γ2g;

_b ¼ −4πGγðρþ PÞ; ð2:12Þ

_ϕ ¼ pϕ

v
; _pϕ ¼ −vU;ϕ: ð2:13Þ

Since the total Hamiltonian constraint vanishes, one

can relate the energy density with the momentum b in

mLQC-I via

ρ ¼ −
3 sin2ðλbÞ
8πGγ2λ2

fγ2 sin2 ðλbÞ − cos2 ðλbÞg; ð2:14Þ

from which one can easily find the maximal and minimal

energy densities in mLQC-I. More specifically, when

sin2ðλbÞ ¼ 1

2ð1þγ2Þ, the energy density reaches its maximum

value ρmax, and when sin2ðλbÞ ¼ 1, the energy density

reaches its minimum value ρmin. These values are given by

FIG. 1. In the figure, sinðλbÞ and ρ are depicted in the forward evolution of the Uuniverse in LQC. The arrows denote the direction of
time flow. The bounce points are labeled by D, J, and the recollapse points are labelled by A, G, M. ξ stands for the ratio of the energy

density of the scalar field over the maximum energy density ρ
LQC
max in LQC. Point P which is close to the recollapse pointG stands for the

macroscopic universe representing the present epoch in this cyclic evolution.
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ρmax¼
3

32πGγ2λ2ð1þγ2Þ and ρmin¼−
3

8πGλ2
: ð2:15Þ

One of the characteristic properties of mLQC-I is that the

evolution of the universe is asymmetrical with respect to the

bounce even when the potential vanishes identically. This

becomes evident from the modified Friedmann equations

which can be derived by using the _v equation in (2.12)

and the relation (2.14). It turns out that there exist two

distinct branches which we call bþ branch and b− branch,

following [62]. The modified Friedmann equation in the

b− branch takes the form

H2
−¼

8πGρ

3

�

1−
ρ

ρmax

��

1þ γ2

γ2þ1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ=ρmax

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ρ=ρmax

p

�

2
�

;

ð2:16Þ

which, by requiring H2
− ≥ 0, implies the energy density

ranges over ρ ∈ ½0; ρmax� in the b− branch. On the other

hand, in the bþ branch, the modified Friedmann equation

reads

H2
þ ¼ 8πGαρΛ

3

�

1 −
ρ

ρmax

�

×

�

1þ
�

1 − 2γ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ρ=ρmax

p

4γ2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ρ=ρmax

p

Þ

�

ρ

ρmax

�

; ð2:17Þ

with α≡ð1−5γ2Þ=ðγ2þ1Þ and ρΛ≡3=½8πGαλ2ð1þγ2Þ2�.
For the bþ branch, requiring H2

þ ≥ 0 leads to ρ ∈

½ρmin;ρmax� with ρmin ¼ −3=ð8πGλ2Þ ≈ −0.023. It should

be noted that unlike in the b− branch where the Hubble rate

vanishes at ρ ¼ 0 and ρ ¼ ρmax, in the bþ branch, the

Hubble rate vanishes at ρ ¼ ρmax and ρ ¼ ρmin with ρmin

obtained from requiring the terms in the square bracket

in (2.17) vanish. For ρ → 0, there emerges a rescaled

Newton’s constant Gα ¼ αG and a Planck-scale cosmo-

logical constant ρΛ ¼ 0.030 [62], which is larger than

the magnitude of the minimum energy density as

jρminj ≈ 0.023. The bþ branch and b− branch are connected

via a quantum bounce that takes place at the maximum

energy density ρmax. Similar to the case in LQC, for a single

scalar field with the energy density and pressure given by

(2.5), the _b equation in (2.12) implies b monotonically

decreases as the Universe evolves forward in time. As a

result, b also serves as a good global geometrical clock to

unfold the dynamical evolution of the Universe in mLQC-I.

Equipped with the Friedmann equations (2.16)–(2.17),

once the matter content is prescribed, we can numerically

find the generic behavior of the Hubble parameter under

various initial conditions. The qualitative dynamics of the

background evolution in mLQC-I has already been studied

and discussed in great detail in [66,75] where differences

and similarities between LQC and mLQC-I are analyzed

for the cases when gravity is minimally coupled to a scalar

field with a number of inflationary potentials.

Last but not the least, we would like to emphasize that

similar to LQC, the weak energy condition is not violated in

mLQC-I at the quantum bounce. This can be seen from the

rate of change of the Hubble parameter which in mLQC-I

takes the form [62]

_H� ¼ 4πGðρþ PÞ
1þ γ2

�

2γ2 þ 2
ρ

ρmax

� 3γ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
ρ

ρmax

r

− 1

�

:

ð2:18Þ

Again, at the bounce we have ρ ¼ ρmax and _H� > 0

which combined with the above formula results in the

energy condition ðρþ PÞ > 0. As a result, the weak energy

condition is also satisfied at the quantum bounce in

mLQC-I.

Remark. As we show in the following, the universe in

mLQC-I model can undergo a recollapse in two situations.

One when energy density vanishes and the other when

energy density becomes equal to ρmin. The first type of

recollapse occurs in the b− branch and corresponds to

points A, G,M in Fig. 2. These recollapse points take place

at the vanishing energy density and thus are the classical

recollapse points. The second type of recollapse occurs in

the bþ branch when the terms in the square bracket of

(2.17) vanish, which correspond to pointsD and J in Fig. 2.
These recollapse points can only take place at the negative

energy density ρ ¼ ρmin with an almost Planckian magni-

tude. Hence they are recollapse point originating from the

quantum gravitational effects. As one can see from Fig. 2,

for a universe to undergo cyclic evolution in mLQC-I it

must undergo both kinds of recollapses and hence there is a

violation of weak energy condition due to recollapse at a

negative ρmin in the bþ branch. In contrast, in LQC, there is

no such violation of weak energy condition at the recol-

lapse point and hence for a cyclic evolution. Finally, note

that in various cyclic models in cosmology generally a

violation of weak energy condition is needed for resolution

of the big bang singularity and a bounce. This is not the

case for LQC as well as mLQC-I.

In Fig. 2, we plot the evolution of sinðλbÞ and the energy
density as the Universe evolves in the time flow indicated

by the arrows in the plots. In the left panel, the regime

sandwiched between two dot-dashed purple lines (ξ ¼ 1)

corresponds to the b− branch, while the rest part of the solid

blue curve belongs to the bþ branch. Starting from the

present macroscopic universe located at P, it undergoes
various stages in the forward and backward evolution. In

the forward evolution, the recollapse point G can only be

reached when the potential of the scalar field becomes

negative and ρ becomes zero. This corresponds to a

recollapse of the first kind as discussed in the Remark

above. Afterwards, in the forward evolution from G to H,

the Universe is in a contracting phase. At point H, the
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bounce takes place and the Universe enters into the bþ
branch. The Universe expands from H to J and contracts

from J to L. At points I and K, the energy density becomes

zero and an effective cosmological constant ρΛ emerges

leading to a rapid expansion of the Universe, which implies

the Universe is in a state of exponential expansion (near I)
or contraction (near K). The Universe undergoes a recol-

lapse (of the second kind in above discussion) at point J. It
should be noted that in the regime I → J → K, the energy

density of the Universe is negative which is in violation of

the weak energy condition and even with a Planck-sized

emergent cosmological constant the Universe is not in a de

Sitter phase. Rather the expansion in this phase is super-

exponential or phantom universe like evolution (see for eg.

[76]). Finally, the Universe reenters into the b− branch

when it is expanding from L to M and the cycle continues.

In the backward evolution, the macroscopic universe at

point P would first contract to the bounce point F and then

expand to the point E. Similar to the point G, the point E
can only be reached when the potential of the scalar field is

negative. The backward evolution from F to B lies in the bþ
branch. At points E and C, the energy density vanishes

accompanied by an emergent cosmological constant ρΛ.

During the backward evolution E → D → C, the energy

density of the Universe turns out to be negative which

violates the weak energy condition once again. The

evolution from A to M forms a complete cycle as shown

in the left panel of Fig. 2 in presence of a suitable matter

such as a negative cosmological constant or an Ekpyrotic

potential. Note that for a cyclic evolution not only energy

density must vanish but also become negative whose

magnitude is approximately equal to 0.023 in Planck units.

Thus, cyclic evolution in mLQC-I requires an almost

Planckian valued negative potential.

To summarize the discussion in this subsection let us

consider the right panel of Fig. 2 which helps us identify the

locations of the bounces and recollapses when the Universe

evolves through various stages. All the local maxima in

the ρ vs b plot, such as B, F, H and L, are bounce points
while all the local minima, such as A, D, G, J and M, are

recollapse points. From the right panel, one can also easily

identify the regimes in which the energy density becomes

negative. Since the momentum b has to continuously and

monotonically evolve in a universe filled with a single

scalar field, there are some necessary conditions for the

generation of such universe in mLQC-I. For example, if

the potential of the scalar field is positive definite and the

universe starts from the bounce point F, then in the forward
(backward) evolution, the universe cannot reach point G
(E) in a finite period of time since E and G correspond to

the universe with zero energy density which requires

infinite volume when the potential of the scalar field is

positive definite. In addition to introducing a negative

potential, the necessary condition to have a cyclic universe

in mLQC-I turns out to be more restrictive than in LQC. In

LQC, one only needs a negative potential to ensure the

occurrence of the recollapse, the total energy density is

always non-negative as can be seen from the right panel of

Fig. 1. However, in mLQC-I, the total energy density must

be able to decrease to ρmin which is a Planck-sized energy

density. Thus, the weak energy condition must be violated

in the cyclic evolution of the universe in mLQC-I.

III. NUMERICAL RESULTS ON THE POSSIBILITY

OF CYCLIC EVOLUTION OF A SPATIALLY FLAT

FLRW UNIVERSE IN LQC AND MLQC-I

In this section, we analyze some representative numeri-

cal solutions in mLQC-I and LQC for the matter content

consisting of a scalar field with a negative cosmological

constant and an Ekpyrotic potential and discuss the

scenarios in which a cyclic evolution is possible. As

FIG. 2. In the figure, we show the values of sinðλbÞ and ρ in mLQC-I when the universe evolves in the direction indicated by the

arrows. In the left panel, ξ stands for the ratio of the energy density over the maximum energy density in mLQC-I. Hence, the line ξ ¼ 0

corresponds to the moment when the energy density vanishes and the line ξ ¼ 1 to the moment when the energy density reaches its

maximum. The bþ branches lie between points B − F andH − L, and the rest of trajectory lies in b− branch. In the right panel, we locate

the same bounce and recollapse points in the ρ vs b plot which shows the matter-energy density at each corresponding point.
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discussed in the previous section, in order to obtain a cyclic

evolution in mLQC-I one needs an almost Planck sized

value of a negative potential and a violation of the weak

energy condition. This is confirmed by the numerical

investigations discussed below. The numerical analysis is

based on the Hamilton’s equations in each model and thus

the initial parameter space is composed of four phase space

variables v, b, ϕ and pϕ. The numerical solutions are

obtained using Mathematica and we use the Planck units

and set G equal to unity. In the numerical results, we show

the evolution of several characteristic quantities for some

representative initial conditions, such as volume and its

conjugate variable and energy density. Another quantity of

interest is the equation of state parameter but since it

becomes infinite at each recollapse points where energy

density vanishes, we plot the inverse of the equation of state

parameter w−1 to explicitly show the regions where the

weak energy condition is violated with w−1 ∈ ð0;−1Þ or

equivalently w ∈ ð−1;−∞Þ.

A. The effective dynamics with a constant

negative potential

When the potential U is independent of the scalar field,

it is equivalent to a cosmological constant, which can be

set to

U ¼ Λ

8πG
; ð3:1Þ

where Λ is the cosmological constant and the factor in the

denominator is to recover the standard Friedmann equation

with a cosmological constant in the classical limit. In this

case, the initial conditions are chosen right at the bounce

where the energy density reaches its maximum. Since the

Hamilton’s equations in both LQC and mLQC-I are form

invariant under the rescaling v → βv and pϕ → βpϕ with β

being any arbitrary constant, without loss of generality, the

initial volume at the bounce is set to 103. Then, once the

cosmological constant Λ is specified, the momentum of

the scalar field is given by

pϕi
¼ �vi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðρbouncemax −UiÞ
q

; ð3:2Þ

here ρbouncemax refers to the maximum energy density at the

bounce in LQC or mLQC-I and the subscript “i” refers to

quantities at the initial time ti ¼ 0. In addition, in mLQC-I,

the momentum b can be solved from (2.14), yielding

multiple values of the initial bi which correspond to

different bounce points as shown in the left panel of

Fig. 2, such as B, F, H, L etc. To be concrete, we set

the initial conditions at point F. On the other hand, for

LQC, the initial conditions are chosen at the bounce

point D in Fig. 1 where bi ¼ π=ð2λÞ and the energy

density reaches its maximum value. Finally, in the case

of a constant potential, the momentum of the scalar field

becomes a constant of motion which implies that the scalar

field can be used as a good global clock. As a result, the

initial value of the scalar field can be chosen arbitrarily. For

concreteness, in the numerical analysis, we choose ϕi ¼ 0

at the initial bounce ti ¼ 0. In the following, depending on

the magnitude of the negative cosmological constant, two

phenomenologically distinct cases are studied. We first

discuss the case when negative cosmological constant is

such that its energy density is greater than ρmin ≈ −0.023

(in Planck units) in mLQC-I. In such a case we show that no

cyclic evolution is possible. We then consider a more

negative cosmological constant with an almost Planckian

magnitude such that jρΛj > jρminj which allows a cyclic

evolution.

1. Noncyclic evolution in mLQC-I

When the energy density of the scalar field with a

constant negative potential is larger than ρmin ¼
−3=ð8πGλ2Þ ≈ −0.023 there is no cyclic evolution. As

an example of such a case, we choose the negative

cosmological constant as

Λ ¼ −0.01; ð3:3Þ

leading to Ui ¼ −3.98 × 10−4 which is larger than the

minimum energy density in mLQC-I, namely ρmin ¼
−3=ð8πGλ2Þ ≈ −0.023. Using (3.2) the momentum of

the scalar field equals 0.44 in mLQC-I and 0.91 in

LQC. Here, we take the positive sign of the momentum

so that the value of the scalar field increases in the forward

evolution of the cosmic time.

The numerical results for above initial condition are

presented in Figs. 3 and 4 where the blue solid curves are

used for mLQC-I and the red dashed curves in the inset

plots are for LQC. Figure 3 depicts the behavior of v and b
in both models. In the left panel (the volume plot), one finds

that there are a total of two bounces in mLQC-I. The first

bounce which takes place at ϕ ¼ 0 corresponds to the point

F in Fig. 2 while the second bounce at around ϕ ¼ 1.40

corresponds to the pointH in Fig. 2. Between two bounces,

there is a recollapse point at ϕ ≈ 0.70 which corresponds to

the point G in Fig. 2. This recollapse point is in the b−
branch and is of the first type as discussed in Sec. II where

the energy density vanishes. After the second bounce point

H, the Universe lies in the bþ branch and quickly enters

into a state of superexponential expansion with a negative

energy density. As the volume increases, the total energy

density is dominated by the potential energy of the scalar

field. From the Friedmann equation (2.17) and the relation

(2.14), one can find when ρ → Ui ¼ −3.98 × 10−4,

b → −0.59. Similarly, before the first bounce point F,
the Universe also lies in the bþ branch and contracts

superexponentially in the distant past of this contracting

phase when ρ → Ui and b → 0.59. As a result, during the

BAO-FEI LI and PARAMPREET SINGH PHYS. REV. D 105, 046013 (2022)

046013-8



whole evolution of the Universe, b is bounded by b ∈

ð−0.59; 0.59Þ as depicted in the right panel (the b plot) in

Fig. 3 which also shows that b monotonically decreases in

the forward evolution (in the direction of increasing ϕ).

From the plots of volume and its conjugate momentum b,
we see that there is no cyclic evolution in mLQC-I even

though the potential energy is negative. This is in a striking

contrast with the LQC results depicted in the inset plots of

Fig. 3 where the red dashed curve from LQC shows a cyclic

universe in which all the recollapses happen at the zero

energy density and all the bounces occur at the maximum

energy density in LQC. The volume of the Uuniverse at

consecutive bounces or recollapses are exactly the same,

implying that the Universe would undergo identical cycles

for an infinitely long time. Meanwhile, from the inset plot

in the right panel of Fig. 3, one can find the momentum b
changes monotonically in LQC and is not bounded from

above or below.

In Fig. 4, we show explicitly the behavior of the energy

density and the inverse of the equation of state parameter

when the Universe undergoes evolution as depicted in

Fig. 3. For a constant negative potential Ui, the pressure is

always positive. Since at the recollapse point G the

equation of state parameter would become infinite, in

Fig. 4, we show the plot of w−1 which takes value in a

finite range in both LQC and mLQC-I. In LQC (red dashed

curves in the inset plot), with the energy density oscillating

between 0 and ρ
LQC
max , the inverse of the equation of state

parameter changes correspondingly between 0 and approx-

imately 0.99. Correspondingly, the equation of state

parameter reaches its minimum value (larger than unity)

at the bounce points and blows up at the recollapse points.

As a result, the weak energy condition is always satisfied

during the cyclic evolution of the Universe in LQC.

Besides, there is no region in which the energy density

would fall below zero. On the other hand, in mLQC-I (blue

solid curves), the right panel of the Fig. 4 shows that the

inverse of the equation of state parameter lies in the range

w−1 ∈ ð−1; 1Þ. In particular, w−1 quickly becomes negative

after (before) the bounce point H (F) and moves towards

−1. This implies that in mLQC-I, in the distant past and

future, the energy density would become negative which

results in a negative equation of state parameter whose

magnitude is always larger than unity. As a result, even

though there is no cyclic evolution in mLQC-I, the weak

energy condition is still violated in the distant past and

future when the Universe is filled with a constant negative

potential [given by (3.3)].

2. Cyclic evolution in mLQC-I with a Planckian

negative cosmological constant

As noted earlier, for a cyclic evolution in mLQC-I one

needs to consider energy densities of the matter content

which are more negative than ρmin ≈ −0.023 (in Planck

units). In the case of a scalar field, we require the minimal

value of its potential energy less than ρmin since the kinetic

energy of the scalar field is always non-negative. For this

reason, when the potential is a cosmological constant, we

choose it to be

Λ ¼ −
4

λ2
; ð3:4Þ

FIG. 3. Noncyclic evolution for mLQC-I is shown and compared with the situation in LQC for initial conditions given in (3.3). The

blue solid curves depict the evolution of the volume and b in mLQC-I with respect to the massless scalar field with the initial bounce

located at ϕ ¼ 0. The red dashed curves in the inset plots show the results in LQC with the same value of the cosmological constant as in

mLQC-I. The Universe expands (contracts) rapidly in the distant future (past) in mLQC-I. In contrast, there appears a cyclic universe in

LQC due to the effects of constant negative potential.
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yielding Ui ¼ −0.03 < ρmin ≈ −0.023 (in Planck units).

The initial volume in this case is set to 1000. The numerical

results are presented in Figs. 5 and 6. Since in this case the

qualitative evolution of the Universe in LQC remains

the same as discussed in the previous case, we only

show the numerical solutions of mLQC-I in the figures.

In LQC, the Universe still evolves in identical cycles of

contraction and expansion as depicted in the inset plots of

Figs. 3 and 4. There are only quantitative changes in LQC

dynamics for different initial conditions, for example when

Ui decreases, the maximum volume of the Universe would

decrease and the minimal value of the equation of state

parameter would increase. On the other hand, there is a

qualitative change in dynamics for mLQC-I where a cyclic

universe appears as shown in Fig. 5. While as in LQC, the

momentum b now becomes unbounded and evolves mono-

tonically for a cyclic evolution of the Universe, the

characteristic feature of the cyclic universe in mLQC-I is

that there exist two types of the recollapse points which

yield two different recollapse volumes of the Universe.

FIG. 4. In the figure, with the same initial conditions and the cosmological constant given in Fig. 3, we show the evolution of the

energy density and the inverse of the equation of state parameter in mLQC-I (blue solid curves) and LQC (red dashed curves in the inset

plots). In LQC, the energy density oscillates between 0 and ρ
LQC
max and the equation of state parameter lies in the range w ∈ ð1;þ∞Þ. On

the other hand, in mLQC-I, the energy density becomes negative in the distant past (ϕ < −0.33) and future (ϕ > 1.67). In these regimes,

the equation of state parameter lies in the interval w ∈ ð−1;−∞Þ which implies the weak energy condition is violated.

FIG. 5. The figure shows the case of Planckian sized negative cosmological constant given by (3.4). The evolution of the volume and b
in mLQC-I is depicted. The Universe undergoes two distinct branches alternately, causing two local maxima of the volume in each cycle

(for example pointD and point G). These maxima (and also minima) remain the same in successive cycles due to the constant potential.

The momentum b decreases monotonically and becomes unbounded. The bounce and recollapse points in the v plot are labeled with the
same letters as in Fig. 2.
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The first type of the recollapse points, such as points A, G
and M, belong to the b− branch, while the second type of

the recollapse points, such as D and J, belong to the bþ
branch. As shown in the ρ plot of Fig. 6, these two types of

recollapse points also have different recollapse energy

densities. To be specific, the energy density becomes zero

at the recollapse points in the b− branch on one hand and

reaches ρmin at the recollapse points in the bþ branch on the

other hand. It is important to note that though the Universe

is cyclic in this case, it retains its Planckian character for a

large part of evolution as is evident from the behavior of

energy density.

Since the equation of state parameter becomes infinite

at each recollapse point in the b− branch, we show

the w−1 plot in the right panel of Fig. 6 which indicates

the magnitude of w−1 is confined within the range

w−1 ∈ ð−0.6; 0.6Þ. As a result, the magnitude of the

equation of state parameter is always larger than one.

More specifically, in the neighborhood of the recollapse

and bounce points in the b− branch, the equation of state

parameter is positive and attains its minimum at each

bounce point. Whereas, in the neighborhood of the recol-

lapse points in the bþ branch, w−1 becomes negative

implying that the equation of state parameter becomes less

than −1. Therefore, the weak energy condition is violated

in the neighborhood of the recollapse points (such as points

D and J) in the bþ branch. It should be noted that for other

negative cosmological constants with larger magnitudes,

although the exact values of the local maxima of the

volume would change correspondingly, the qualitative

dynamics of the evolution of the Universe in mLQC-I

remains the same as depicted in Figs. 5 and 6.

To summarize the discussion for the negative cosmo-

logical constant, our numerical results confirm that unless

the matter content is such that a Planckian sized negative

cosmological constant is present there is no cyclic evolu-

tion in mLQC-I. Further there is a violation of weak energy

condition near the points of recollapse. Notably the cyclic

universe obtained is highly quantum and Planck sized as is

evident from the figures of volume and energy density 5

and 6. This observation is in contrast to LQC where a

macroscopic cyclic universe can be generically obtained for

a constant negative potential without any violation of weak

energy condition.

B. The effective dynamics with a cyclic potential

In this subsection, we discuss the background dynamics

of the universe in mLQC-I and LQC in presence of a

negative potential. The cyclic potential used in the follow-

ing originates from an ansatz for a cyclic universe proposed

by Steinhardt and Turok [10]. It was later studied in

[14,15,22] within the framework of LQC. The form of

the cyclic potential is given by

U ¼ αð1 − e−σϕÞ exp ð−e−ωϕÞ; ð3:5Þ

where parameter α is chosen to give the right magnitude of

the current cosmic acceleration and other parameters can be

fixed by the current observations on the density perturba-

tions. The potential U tends to α (> 0) when ϕ → ∞, and

decreases monotonically as ϕ moves towards the origin.

It attains its minimum negative value at some point in

the regime ϕ < 0 and goes to zero as ϕ → −∞. In the

Ekpyrotic model, the potential is always positive (negative)

FIG. 6. The evolution of the energy density and the inverse of the equation of state parameter in mLQC-I is shown for the same

cosmological constant chosen in Fig. 5, the energy density oscillates between ρmin and ρmax and the inverse of the equation of state

parameter also lies in a finite range which is about jw−1j < 0.6. At the bounce points B, F, H and L, the equation of state is about 1.67

which implies the weak energy condition is satisfied near the bounce. On the other hand, at the recollapse pointsD and J, the equation of
state is about −1.67 implying a violation of the weak energy condition in the neighborhood of these turning points.
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when ϕ > 0 (ϕ < 0) while the location and the value of the

minimum of the potential are determined by the parameters

α, σ and ω. Without any loss of generality, in order to study

the qualitative dynamics resulting from the potential, one

can fix the parameters to σ ¼ 0.3
ffiffiffiffiffiffi

8π
p

, ω ¼ 0.09
ffiffiffiffiffiffi

8π
p

as in

[15] while choosing different values of α to investigate the

effects of the minimum of the potential on the background

evolution of the universes in LQC and mLQC-I. In the

following, we discuss two representative choices of α

which yield qualitatively distinct dynamics as the minimum

of the potential changes.

Before going into the details of the numerical solutions,

wewould like to emphasize that the initial conditions in this

case are chosen in such a way that the scalar field is initially

released from the right wing of the potential and moving

towards the bottom of the potential when the Universe is

initially in a state of contraction. The bounce occurs later

when the potential energy becomes negative. As a result,

one starts with a small positive value of ϕ and a negative

momentum of the scalar field. In this way, the initial energy

density is fixed and b can be solved from the effective

Hamiltonian constraint. Similar to the cases in the previous

subsection, we also choose a positive b which is closest

to zero.

1. Noncyclic evolution in mLQC-I

In the first example, the parameter α, the initial value of

the scalar field and its momentum are set to

α¼0.001; ϕi¼0.01; vi¼105; pϕi
¼−0.10; ð3:6Þ

so that the initial energy density ρi ¼ 5.56 × 10−6, the

initial value of b is 0.59 in mLQC-I and 1.38 in LQC.

With α ¼ 0.001, the potential reaches its minimum value,

namely Umin ¼ −0.0019 at ϕ ¼ −2.7. Note in this case

Umin > ρmin. The numerical results are presented in Figs. 7

and 8 where the blue solid curves are used for mLQC-I and

the red dashed curves are used for LQC. Since the scalar

field becomes massive in this case, it cannot play the role of

a good global clock any more, and we use cosmic time to

study evolution.

Similar to the case in Fig. 3, the universe in mLQC-I

undergoes a total of two bounces at points F and H as

shown in the left panels of Figs. 7 and 8. However, due to

the asymmetry of the potential, the evolution is now

asymmetrical with respect to the recollapse point G.
Since the energy density can never decrease to ρmin in

the current case, the Universe can never arrive at the

recollapse points D and J in the bþ branch. As a result,

after the second bounce at point H, the Universe quickly

enters into a state of superexponential expansion with a

Planck-scale Hubble rate and the energy density decreases

monotonically ever after. Meanwhile, in the right panel of

Fig. 7, we can see in mLQC-I the scalar field rolls down the

potential and moves towards the bottom of the potential,

which is represented by the black dotted line in the plot.

This is in contrast with a case in LQC plotted in the red

dashed curves. The universe in LQC undergoes a number

of bounces in a short period of time between t ¼ 30 and

t ¼ 70 when the scalar field passes through the bottom of

the potential. Then, the Universe enters into an expanding

phase when the scalar field moves away from the potential

well and rolls on the left wing of the potential. The maxima

of the volume at each consecutive recollapse change in

small amounts due to nonconstant potential.

In Fig. 8, we show the behavior of the energy density and

the inverse of the equation of state parameter in mLQC-I. In

LQC, the energy density is always non-negative and there

is no violation of the weak energy condition at any stages of

the evolution, so we only show the plots for mLQC-I for

brevity. In the right panel of the figure, we plot the inverse

of the equation of state parameter for t ∈ ð0; 60Þ which

shows two maxima at the bounce points F and H. After the

second bounce at H, the inverse of the equation of state

FIG. 7. These plots show noncyclic evolution for the cyclic potential in mLQC-I (blue solid curves) and compare it to the cyclic

evolution in LQC (red dashed curves). The initial conditions are chosen at t ¼ 0 and given explicitly in (3.6). The blue solid curves

depict the evolution of the volume (left panel) and the scalar field (right panel) in mLQC-I while the red dashed curves are the results

from LQC. The black dotted line in the right panel shows the value of the scalar field at which the minimum of the potential is attained.
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parameter quickly goes below zero and moves towards

negative unity, implying an equation of state parameter

less than −1 and thus the violation of the weak energy

condition. In the contracting regime before the bounce

point F, we find an equation of state parameter which

ranges in the interval w ∈ ð−1; 1Þ as shown in the inset plot
of Fig. 8. In this case, before the bounce at point F there

appears a brief quasi–de Sitter phase, indicating a small

positive energy density. This is because the scalar field is

moving on the right wing of the potential and thus the

potential energy is positive in this regime. We find the

equation of state parameter turns out to be less than −1

again if the Universe is evolved backwards to any time at

t < −23.18 (at t ¼ −23.18, the energy density vanishes

which corresponds to the point E in Fig. 2), which implies

the energy density becomes negative and the weak energy

condition is violated in the distant past when t < −23.18.

2. Cyclic evolution in mLQC-I with a

Planckian negative potential

We now consider the case where negative potential has

an almost Planckian magnitude. This example is depicted

in Figs. 9 and 10 which display the numerical results with

the initial conditions

α¼0.10; ϕi¼0.01; vi¼104; pϕi
¼−0.10; ð3:7Þ

so that the initial energy density ρi ¼ 5.52 × 10−4, the

initial value of b is 0.59 in mLQC-I and 0.02 in LQC. In

this case, the bottom of the potential is located at ϕ ¼ −2.7

with Umin ¼ −0.19 < ρmin. In spite of the change in Umin,

the qualitative dynamics of the universe in LQC (depicted

in the right panel of Fig. 9) is similar to Fig. 7. The

difference lies in the fact that since the potential well

becomes deeper in this case, there are more bounces located

FIG. 8. In this figure, we show the energy density and the inverse of the equation of state parameter in mLQC-I with the same initial

conditions as in Fig. 7. Since the minimal value of the scalar potential is larger than ρmin in mLQC-I, there only exist two bounces (F and

H) as shown in the left panel. In the right panel, we show the inverse of the equation of state parameter in the time range t ∈ ð0; 60Þ
where w−1 vanishes at the recollapse point G and then quickly tends to negative unity. The inset plot shows the behavior of the equation

of state parameter in the time range t ∈ ð−4; 4Þ where the equation of state parameter tends to negative unity corresponding to an

emergent de Sitter phase.

FIG. 9. With initial conditions given in (3.7), the evolution of the volume is displayed for mLQC-I (left panel) and LQC (right panel).

Islands of cluster of bounces separated by rapid expansions or contractions can be observed in mLQC-I and LQC. The inset plot in the

left panel zoom in around two clusters and show explicitly the bounces and the change in the maximum volumes at consecutive

recollapse points.
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very close to one another (as shown in the right panel in

Fig. 9). These clusters of bounces are produced as the scalar

field moves across the bottom of the potential. Starting

from t ¼ −20, the scalar field is passing through the

potential well from the left, resulting in the clusters of

bounces for t ∈ ð−10; 20Þ. By the end of our simulation

(t ¼ 2000), we did not observe the turnaround of the scalar

field on the left wing of the potential. The situation

becomes more complicated in mLQC-I as shown in the

left panel of Fig. 9 where a number of islands of clusters of

bounces separated by superexponential expanding or con-

tracting phases can be observed. These islands are formed

when the scalar field keeps oscillating around the bottom of

the potential. The inset plot of the left panel of Fig. 9

displays two clusters of bounces in mLQC-I in which the

maximum volumes at consecutive collapses do not uni-

formly increase or decrease. Here we note that such islands

of clusters of bounces have been found numerically earlier

also in LQC but in the presence of spatial curvature [31,33].

We plot the energy density and the inverse of the equation

of state parameter in mLQC-I in Fig. 10. From the left

panel, one can find there are regimes in each cluster of

bounces where the energy density goes to negative and

reaches ρmin. Correspondingly, the equation of state param-

eter becomes more negative than −1 in the regimes when

the energy density is negative, implying a violation of the

weak energy condition.

To end this section, we conclude that our numerical

results are consistent with the analysis in Sec. II. In LQC, as

generally in bouncing models, a necessary condition to

produce a cyclic evolution in a universe is to introduce a

negative potential which can lead to recollapses with

vanishing energy density. During the whole evolution,

the energy density in LQC is always non-negative.

However, a negative potential cannot guarantee a cyclic

universe in mLQC-I. A cyclic universe is only allowed in

mLQC-I if one chooses an almost Planckian valued

negative potential. Moreover, the cyclic evolution of the

universe in mLQC-I can only be realized when the total

energy density decreases to ρmin ≈ −0.023 at the recollapse

points in the bþ branch, that is to say, the weak energy

condition must be violated to allow a cyclic evolution in

mLQC-I. Finally, even in the cases where a cyclic evolution

is allowed in mLQC-I there is almost no classical epoch in

the dynamics and the energy density oscillates rapidly

between its maximum and minimum values.

IV. SUMMARY

Previous studies on loop quantum cosmologies were

mainly focused on the investigation of the robustness of the

singularity resolution in various isotropic and anisotropic

spacetimes as well as for different regularizations of the

Hamiltonian constraint. Since it was generally expected

that a cyclic universe is guaranteed once the singularity is

resolved and a negative potential is included, not much

attention was so far paid to studying whether a cyclic

evolution of the Universe is also a generic feature of loop

cosmologies. The goal of this paper was to demonstrate that

quantum gravitational modifications responsible for singu-

larity resolution may modify the dynamics in such a way

that a cyclic evolution becomes difficult to achieve. While

in the standard LQC, a spatially flat universe can naturally

undergo a cyclic evolution without violating any energy

conditions once a scalar field with a negative potential or a

negative cosmological constant is introduced, we showed

that in the LQC employing Thiemann’s regularization of

the Hamiltonian constraint, namely mLQC-I, a cyclic

universe can be realized only under highly restrictive

conditions which do not allow a classical regime. For a

large region of parameter space, the Universe can at most

have only two bounces and a single recollapse in mLQC-I

in contrast to infinite number of bounces and recollapses

in LQC.

FIG. 10. With the same initial conditions as in Fig. 9, we show the behavior of the energy density and the inverse of the equation of

state parameter in the time range t ∈ ð0; 70Þ, where both of them oscillate rapidly in each cluster of bounces. In each cluster and also

between two neighboring clusters, there are times when the energy density turns out to be negative and the equation of state parameter

becomes less than −1 which are indicative of the violations of the weak energy condition.
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Assuming the validity of effective dynamics in LQC and

mLQC-I, we first analyzed the generic features of the

evolution of a spatially flat FLRW universe with a constant

and varying negative potential and found the main dis-

tinctions between two loop cosmological models. In

standard LQC, since the contracting and the expanding

phases are described by the same modified Friedmann

equation, the bounces always take place at the maximum

energy density and the recollapses at the minimal energy

density which is zero in LQC. As a result, the minimal

requirement to have a cyclic universe in LQC is the

presence of a negative potential with no specifications

on the magnitude of the minimal of the potential. Besides,

at any stage, the energy density of the universe in LQC is

always non-negative which implies that the equation of

state parameter of the scalar field is always greater than

unity. The nature of the recollapse is the same in each cycle

which occurs in the classical regime. On the other hand, in

mQLC-I, there are two qualitatively distinct branches,

namely the so-called bþ and b− branches. These two

branches are described by two different modified

Friedmann equations and are connected via a quantum

bounce where the energy density reaches its maximum

value in the model. The b− branch can describe either a

contracting or an expanding phase which has similar

properties to the contracting or the expanding phase in

LQC in the sense that an expanding phase in the b− branch

would switch into a contracting phase at a recollapse point

where the energy density becomes zero. Moreover, in the

b− branch, the energy density is always non-negative and

the classical GR can be recovered when the energy density

is far below the Planck scale. In contrast, the bþ branch has

very distinctive features. Although it can also account for

both expanding and contracting phases, an expanding

phase in the bþ branch can only switch into a contracting

phase at the recollapse point with a negative energy density

ρmin which is also the minimal energy density allowed in

the model. As a result, the energy density in the bþ branch

must be negative with a magnitude of at least about 2% of

the Planck density near the recollapse point, resulting in a

violation of the weak energy condition. Moreover, the GR

limit cannot be recovered in the bþ branch due to the

emergence of a Planckian magnitude effective cosmologi-

cal constant at the vanishing energy density. With the above

properties of the two branches in mLQC-I in mind, we

found a cyclic universe in mLQC-I must go through each

branch alternately as the quantum bounce would switch one

branch into another automatically. The minimal require-

ment for the realization of a cyclic universe in mLQC-I is

then to reach the recollapse point in the bþ branch, which

implies that the minimal of the potential of the scalar field

must be more negative than ρmin, considering the kinetic

energy density of the scalar field is always non-negative.

Since the bþ branch does not exist in the classical GR but

only emerges due to a separate regularization of the

Lorentzian part of the classical Hamiltonian constraint, it

should be regarded as one of the potential outcomes of the

quantum geometrical effects.

For the negative cosmological constant, we tested two

different magnitudes with one less negative than ρmin and

the other more negative than ρmin. We found a cyclic

evolution of the universe in both cases in LQC while in

mLQC-I, a cyclic universe can be observed only for the

second case in which the cosmological constant is chosen

to be more negative than ρmin. The evolution of the cyclic

universe in LQC is characterized by the same energy

density (ρ ¼ 0) and the same maximum volume at all of

the recollapse points as well as an equation of state

parameter greater than unity. As a result, the weak energy

condition is always satisfied in LQC. On the other hand, in

mLQC-I, when the cosmological constant is less negative

than ρmin, only one recollapse point which belongs to the

b− branch would appear, in the distant past and future,

the Universe would always remain in the bþ branch since

the energy density cannot attain the value required by the

recollapse point in the bþ branch. It is only when the energy

density associated with the cosmological constant becomes

more negative than ρmin then a cyclic universe emerges in

mLQC-I which is characterized by two alternating distinct

recollapse points with different recollapse volumes.

The situation becomes much richer when it comes to a

nonconstant potential. In LQC, a cyclic universe can be

observed regardless of the magnitude of the minimal value

of the negative potential. However, due to the asymmetry of

the potential, the qualitative behavior of the cyclic universe

is no longer the same as the identical cycles observed in the

case of a negative cosmological constant. There appear

some regions with clusters of bounces where rapid con-

tractions and expansions are located near to each other,

these regions correspond to the moments when the scalar

field is passing through the bottom of the potential, while in

other regions when the scalar field is rolling on the wings

of the potential, exponential contraction or expansion is

observed in a longer time period. On the contrary, the cyclic

evolution of the Universe can be observed in mLQC-I only

when the minimal of the potential is more negative than

ρmin. We also observe more clusters of bounces in the case

of mLQC-I which are formed when the scalar field is

oscillating around the bottom of the potential.

In summary, the main result of our manuscript is that the

realization of a cyclic universe in mLQC-I is highly

restricted as compared with in LQC. We wish to emphasize

that this is due to the presence of the bþ branch in mLQC-I

which has no classical counterpart in the classical GR and

thus should be regarded as an outcome of the regularization

prescription when gravity is loop quantized. More specifi-

cally, the recollapse point in the bþ branch can be reached

only when the energy density becomes negative with an

almost Planck-sized magnitude. As a result, near the

recollapse point in the bþ branch the weak energy condition
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is violated in mLQC-I which is in contrast with the cyclic

universe in LQC where there is no violation of any energy

conditions at any stages of evolution. Therefore, unlike the

resolution of the curvature singularities which is a generic

feature with respect to quantization ambiguities, the cyclic

evolution of the Universe can be highly restricted by the

quantization prescriptions in loop quantum cosmologies.

Finally, our study opens a new avenue to phenomenologi-

cally constrain loop quantum cosmological models. It

shows that certain regularizations in LQG are simply

incompatible with cyclic models. They do not allow cyclic

evolutionary paradigms and if the Universe went through a

cyclic evolution such LQG models will be easily ruled out.

As pointed out in [77,78], one of the potential observational

signals to distinguish the inflationary paradigm from the

cyclic scenario is the primordial tensor spectrum which is

highly suppressed on cosmic scale in the latter. As a result,

if the primordial gravitational waves would be detected in

the near future, then it may imply that regularizations in

mLQC-I favor inflationary paradigm, but one must note

that a cyclic evolution in some loop cosmological models

plays an important role in setting right initial conditions for

the onset of inflation [33,34]. In these ways, unlike the

standard LQC, the Thiemann regularized LQC being richer

in mathematical complexity seems more likely to be

phenomenologically constrained.

To conclude, let us briefly discuss some ramifications of

this result in general for loop cosmologies. First it shows

that there are two types of quantum gravity models

allowing bouncing cosmologies. One which leads to a

cyclic evolution and the other which does not. Apart from

showing that cyclic evolution is not a robust prediction of

all loop cosmologies, our analysis indicates that one can no

longer assume that additional inputs from LQG cannot

dramatically change the qualitative dynamics in the post-

bounce branch as understood in standard LQC. The

Thiemann regularized LQC, or the mLQC-I, is an example

which shows that seemingly small changes in the quanti-

zation procedure from standard LQC may significantly

alter the resulting physics. These changes are no longer

hidden in the prebounce regime as for inflationary poten-

tials [62]. But, we should note that this does not indicate

that all modifications from standard LQC which yield an

asymmetric bounce would result in similar effects. As an

example, a loop quantization utilizing gauge-covariant

fluxes even though yielding an asymmetric bounce [79]

would still yield a viable cyclic evolution because the

regularization of the constraint does not change from the

one used in standard LQC. Besides, our work provides

insights on an important question often posed in quantum

gravity: How does the physics change when one imposes

symmetries before the quantization (as in standard LQC)

versus quantization before or without using symmetries (as

in Thiemann regularized LQC)? Our analysis shows that

for appropriate situations the physical effects associated

with such a change in procedure can be dramatic. Last but

not the least, we want to comment on the general behavior

of the entropy in the cyclic model we have analyzed above

in this manuscript. Since we only consider gravity mini-

mally coupled to a scalar field which is in a pure state, the

particle entropy enclosed within the cosmological apparent

horizon of the spatially flat FLRW universe is identically

zero. As a result, the only relevant entropy is the gravita-

tional entropy associated with the apparent horizon which

is directly determined by the Hubble parameter [80]. Based

on the generic behavior of the Hubble parameter when the

Universe is filled with only a single scalar field in LQC (or

mLQC-I), our preliminary investigations show that in the

contracting phase the horizon entropy would first decrease

when spacetime curvature is low and then increase in the

Planck regime near the bounce. In the expanding phase,

right after the bounce, the entropy would first decrease in

the Planck regime and then increase again in the low-

curvature regime. So in this particular setting, it turns out

that the generalized second law of thermodynamics fails to

hold in some regions of the contracting and the expanding

phases. Finally, the more complicated but also more

realistic cases in which the matter content consists of

baryonic matter and radiation have not yet been thoroughly

investigated in LQC and will be reported elsewhere [81].
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