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A problematic feature of low-energy-scale inflationary models, such as Starobinsky inflation, in a

spatially closed universe is the occurrence of a recollapse and a big crunch singularity before inflation can

even set in. In a recent work, it was shown that this problem can be successfully resolved in loop quantum

cosmology for a large class of initial conditions due to a nonsingular cyclic evolution and a hysteresislike

phenomenon. However, for certain highly unfavorable initial conditions, the onset of inflation was still

difficult to obtain. In this work, we explore the role of dissipative particle production, which is typical in

warm inflation scenario, in the above setting. We find that entropy production sourced by such dissipative

effects makes hysteresislike phenomena stronger. As a result, the onset of inflation is quick in general,

including for highly unfavorable initial conditions where it fails or is significantly delayed in the absence of

dissipative effects. We phenomenologically consider three warm inflation scenarios with distinct forms of

dissipation coefficient and from dynamical solutions and phase-space portraits find that the phase space

of favorable initial conditions turns out to be much larger than in cold inflation.

DOI: 10.1103/PhysRevD.104.106006

I. INTRODUCTION

Inflation is a finite period of quasi-de Sitter accelerated

expansion in the early universe, which elegantly predicts

the minimal late-time curvature as well as reproduces the

adiabatic, nearly Gaussian, and quasiscale-invariant spec-

trum of primordial density fluctuations in accordance with

the observational cosmological data. An important issue in

inflationary models is that of right initial conditions for the

inflaton to successfully yield sufficient e-foldings to con-

firm with observations. This issue becomes more relevant

in the case of low-energy inflationary models such as with

Starobinsky potential [1] which are favored by observations

[2,3]. Starting from Planck regime, the potential energy is

suppressed in low-energy inflation models, and inflaton

starts with kinetic energy domination [4,5]. If the universe

is spatially closed, then such a model can undergo a

recollapse before the onset of inflation and encounter the

big crunch singularity. It has been expected that a quantum

theory of gravity may provide some insight into this issue.

Since the main problem in above scenario is the existence

of a recollapse followed by a big crunch singularity, if

quantum gravity effects can resolve the big crunch singu-

larity and result in a nonsingular cyclic evolution, then one

can hope that in subsequent cycles conditions on domi-

nance of kinetic versus the potential energy alter in such a

way that recollapse can be avoided and inflation can begin.

Before we investigate the above problem in this manu-

script, it is important to make some remarks to set the right

context of this study and discuss alternative strategies to

solve the above problem. Our study is based on assuming a

positive spatial curvature of the universe. It has been noted

earlier that one requires a high degree of fine-tuning to start

inflation in low-energy models with a positive spatial

curvature [6]. Thus, in a sense, we take the most difficult

case to understand the initial conditions problem because if

the universe is spatially flat or spatially open the recollapse

caused by intrinsic curvature is absent. In fact, the initial

condition problem in such cases, especially with a compact

topology, becomes much easier to address [4,7,8]. Though

it has been recently claimed that a primordial spatial

curvature may partially account for the observed anomaly

in the temperature anisotropy spectrum at low multipoles

[9], and a small amount of late-time curvature consistent

with current observational data has the potential to explain

the current discrepancy between dataset probing early uni-

verse and those exploring late-time universe properties [10–

12], when Planck results are combined with baryon acoustic

oscillations data, one finds that the current observations are

consistent with a spatially flat universe [3,13]. But the almost

spatial flatness of the universe in the current epoch does not

imply that it was spatially flat in the preinflationary epoch.

Thus, it is worthwhile to study all the cases of spatial

curvature to understand the problem of initial conditions.

Let us also note that if the universe has a positive spatial

curvature the problem of recollapse can be avoided in low-

energy inflationarymodels by considering an additional field
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in a quadratic potential or a similar potential which drives
inflation in the beginning which is carried over by the low-
energy inflation.

1
In such a model, the additional field starts

from initial conditions which are potential dominated at
Planck density such that the problem of recollapse is
completely avoided before the low-energy inflation onsets.
This strategy is expected to work for any other low-energy
inflation model with an additional scalar field sourced by a
potential allowing the first phase of inflation to start near the
Planck density. Another possibility is to consider alternatives
to low-energy inflationmodels, such as a chaotic inflationary
model with additional cubic and quartic termswhich turn out
to be consistent with the Planck data [4,5].
While the above strategies exist to alleviate the problem

of initial conditions in low-energy inflation models, our
objective in this study is to understand whether quantum

gravity effects when included can resolve this problem
without any additional fields which start inflation near the

Planck density. Since the big crunch singularity caused by a
recollapse in the preinflationary phase is a roadblock to

solve this problem, it is pertinent to incorporate quantum
gravity modifications which resolve the big crunch singu-

larity to understand the onset of inflation in low-energy
inflation models. This problem was recently addressed

using nonperturbative quantum gravitational effects in loop
quantum cosmology (LQC) [14]. It was shown that,

although a large class of unfavorable initial conditions
does not result in inflation in the classical theory and lead to

a big crunch singularity in a few Planck seconds, the
universe successfully goes through an inflationary phase

after multiple nonsingular cycles of expansion and con-
traction due to quantum gravity effects. The goal of the

current work lies in the same direction with an aim to
improve and generalize these results to demonstrate that

inclusion of dissipative particle production in LQC results
in a rather quick and more robust onset of inflation even for

those extreme initial conditions where inflation does not
occur with above quantum gravity effects.

Let us recall that the nonperturbative loop quantum

gravitational effects resolve the big bang/big crunch sin-

gularities replacing them by a nonsingular bounce when the

energy density reaches Planckian values [15–17]. For the

spatially closed model, singularity resolution results in

multiple nonsingular cycles of expansion and contraction

[18–20]. It is to be noted that loop quantum gravity effects

are only dominant near the classical singularities and

diminish quickly at smaller energy densities, resulting in

classical dynamics at the macroscopic scales. In an effec-

tive spacetime description of these quantum gravity effects,

modified Friedmann equations which have been shown to

capture the underlying quantum dynamics to an excellent

approximation can be obtained [16,18,21,22]. From these

modified Friedmann equations, one can show a generic

resolution of all strong curvature singularities in isotropic

and anisotropic models in LQC [23] including in the

presence of spatial curvature [24]. Given that LQC robustly

solves the problem of singularities, it provides an excellent

stage to address the problem of resolution of onset of

inflation in low-energy inflationary models in the presence

of a positive spatial curvature.
An interesting feature of cosmic expansion/contraction

which leads to a novel hysteresislike phenomenon in non-
singular cyclic evolution is the difference in pressure during
expansion and contraction stages [25]. This phenomenon
occurs even in the absence of dissipative effects for suitable
scalar field potentials [26]. Hence, the universe possesses an
arrow of time due to an asymmetric equation of state during
the expansion-contraction phase [27] rather than entropy
production due to viscous pressure as was the case in
Tolman’s model [25]. Of course, the most challenging issue
to build such models is to overcome big bang/crunch
singularities and to achieve a nonsingular evolution. This
task was completed in LQC where the hysteresislike phe-
nomenon was demonstrated for chaotic ϕ2 inflation [28], a
result which was recently generalized for Starobinsky
inflation [14]. An interesting feature of such a hysteresislike
period is that, although the universemay fail to inflate at first,
conditions improve in subsequent cycles for the onset of
inflation because the ratio of kinetic to potential energy
decreases and a subsequent equation of stateω, defined as the
ratio of total pressure and energy density, becomes less than
−1=3. This causes a phase of accelerated expansion, and as a
result, the recollapse is avoided. This phenomenon of
occurrence of nonsingular cyclic evolution followed by
inflation turns out to be a feature of a large class of initial

conditions for ϕ2 and Starobinsky inflation models [14].
However, for the latter, the onset of inflation is found to

require a much larger number of cycles in contrast to the ϕ2

inflation, and for certain highly unfavorable initial condi-
tions, inflation was not found to occur even after numerous
nonsingular cycles of expansion and contraction [14]. The
reason for this was tied to theweak hysteresis for low-energy
inflation models.

To overcome the problem of onset of inflation in such

cases, we note that dissipation is an indispensable part of

any physical system interacting with its environment, and

there are two different dynamical realizations for inflation:

cold inflation and warm inflation [29], depending on

whether nonequilibrium dissipative particle production

processes due to the couplings of the inflaton field with

other field degrees of freedom are negligible or not during

inflation. In fact, dissipative processes determine the way

ultimately the vacuum energy density, stored in the inflaton

field, ends up converting into radiation, thus allowing the

universe to transit from the accelerating phase to the

radiation-dominated epoch. In the standard inflationary

or cold inflation scenarios, dissipative effects are typically

ignored during the inflationary phase if any preinflationary

radiation energy density is diluted. The universe then ends

1
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up in a supercooling phase requiring a reheating mecha-

nism [30], where the inflaton starts oscillating around the

minimum of its potential and progressively dissipates its

energy into other relativistic light degrees of freedom, to heat

up the universe again as required by the standard big bang

cosmology.On the contrary, dissipative effectsmay be strong

enough during inflation where preinflationary radiation

energy density can be sustained during inflation and also

become dominant at the end of inflation whereby the

universe smoothly enters into radiation dominated epoch

without a need for a separate reheating period [31]. Such

dissipative effects bring about much richer dynamics for

inflation at both background and perturbative levels (for

reviews, see, e.g., Ref. [32]) introducing warm inflation as a

promising complimentary version of cold inflation by

addressing some of long-lasting problems related to (post)

inflationary picture in cold inflation scenarios.

For a comparison with cold inflation, it is useful to recall

some of the features of warm inflation. It is interesting to

note that the dissipative effect appears as a supplementary

friction term in background equations allowing embedding

of steeper potentials in warm inflation solving the so-called

η-problem [33]. Also, it leads to several different possibil-

ities for a graceful exit, depending on the form of potential,

form of dissipation coefficient, and whether the dynamics is

in the strong or weak dissipative regime [34]. Moreover,

dissipative effects also modify the primordial spectrum of

curvature perturbations, resulting in a smaller energy scale

of inflation and reconciling steeper potentials with obser-

vational data [35]. Such appealing features of warm

inflation allows it to simultaneously satisfy the so-called

swampland conjectures, provided warm inflation can occur

in the sufficiently strong dissipative regime [36–38].

Although it is enormously challenging to achieve a strong

dissipative regime in warm inflation, two models were

successfully constructed to push warm inflation into the

strong dissipative regime with inspiration from particle

physics [39,40]. Furthermore, the inflaton itself can be a

source and responsible for cosmic magnetic field gener-

ation [41] and in combination with the intrinsic dissipative

effects lead to a novel dissipative baryogenesis scenario

during inflation [42]. More recently, it was shown that

warm inflation enables a stable remnant of inflaton in the

postinflationary epoch, which can behave either like cold

dark matter accounting for all the dark matter in the

universe [43] or like a quintessence at late time generating

the present phase of accelerated expansion [44] (see also

Refs. [45,46] for unifying all conventional ingredients of

modern cosmology using dissipative effects).

The goal of this manuscript is to investigate the dissipative

particle production effects
2
on preinflationary dynamics of

k ¼ 1 LQC and understand their role on the hysteresislike

phenomena and the onset of inflation for Starobinsky

potential starting from highly unfavorable initial conditions.

Our goal will be to consider those cases which failed to lead

to inflation in the absence of dissipative effects. In Sec. II, we

give a brief review of the effective dynamics of k ¼ 1 LQC

and thewarm inflation and discuss theway dissipative effects

are implemented in k ¼ 1 LQC. In Sec. III, we solve the

dynamical system of equations in the presence of dissipative

effects and show that even a small amount of dissipation

enlarges the phase space of initial conditions for which

inflation occurs. We phenomenologically investigate these

solutions for three models of warm inflation: the warm little

inflaton (linear temperature-dependent dissipation coeffi-

cient), variant of warm little inflaton (inverse temperature-

dependent dissipation coefficient), and minimal warm infla-

tion (cubic temperature-dependent dissipation coefficient).

Moreover, we also investigate some features of the qualita-

tive dynamics using phase-space portraits. These results

show that in the presence of dissipation the hysteresislike

phenomenon becomes much stronger and results in a quick

onset of inflation for even those initial conditions where

inflation could not start in the absence of dissipation. We

conclude the manuscript with a summary of our results

in Sec. IV.

II. EFFECTIVE DYNAMICS IN k= 1 LQC AND

WARM INFLATION

In this section, we first briefly review the effective

dynamics of spatially closed LQC in the holonomy

quantization [18]. This is followed by a discussion of

the dynamical equations in the warm inflation scenario and

the way warm inflation can be implemented in the effective

spacetime description of k ¼ 1 model in LQC.

A. Effective dynamics of k= 1 LQC

LQC is a canonical quantization based on Ashtekar-

Barbero variables. The connection Ai
a and its conjugate

triad Ei
a which due to homogeneity and isotropy, symmetry

reduce to c and p for the k ¼ 1 Friedmann-Lemaître-

Robertson-Walker model. In the improved dynamics or the

μ̄ scheme of LQC [16], it turns out that an equivalent set of

variables defined as b ¼ cjpj−1=2 and v ¼ jpj3=2 is more

convenient to obtain the quantum and effective description.

Here, v denotes the physical volume of the unit sphere

spatial manifold and is related to the scale factor of the

universe as v ¼ 2π2a3. The phase-space variables b and v
satisfy fb; vg ¼ 4πGγ, where γ denotes the Barbero-

Immirzi parameter, whose value is generally taken to be

γ ≈ 0.2375 in LQC following the calculations of black hole

thermodynamics in loop quantum gravity.

The effective Hamiltonian in the holonomy-based quan-

tization of the k ¼ 1 model in LQC for the lapse chosen as

unity is given by

2
For brevity, we label these effects in the following as

dissipative effects. We note that the source of such dissipative
effects is particle production.
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Heff ¼ −
3

8πGγ2λ2
v½sin2ðλb −DÞ − sin2 Dþ ð1þ γ2ÞD2�

þHmatt ≈ 0; ð2:1Þ

where D ¼ ðλð2π2Þ1=3ÞÞ=v1=3 and λ2 ¼ 4ð
ffiffiffi

3
p

πγÞl2pl. Here,
we have ignored the modifications from the inverse volume

effects, which turn out to be negligible in comparison to the

holonomy modifications [18].
3
Before we examine the

dynamics resulting from this Hamiltonian, let us note that

there exists another quantization of the k ¼ 1 model in

LQC, which is known as the connection-based quantization

[20]. Though there exist some qualitative differences in the

way singularity resolution occurs in this prescription as

compared to the holonomy based quantization [20,49], the

main features of dynamics remain the same. Especially,

the existence of hysteresis which plays an important role in

the onset of inflation is robust in both the quantization

prescriptions, and the difference between the two approaches

turn to be small for inflationary dynamics [28]. For this

reason, we consider only the effective dynamics for the

holonomy quantization in this analysis.

Using Hamilton’s equations, the equation of motion for

volume turns out to be

_v ¼ fv;Heffg ¼ 3

γλ
v sinðλβ −DÞ cosðλβ −DÞ; ð2:2Þ

which results in the following modified Friedmann

equation:

H2 ¼ _v2

9v2
¼ 8πG

3
ðρ − ρminÞ

�

1 −
ρ − ρmin

ρflatmax

�

: ð2:3Þ

Here, ρflatmax ¼ 3=ð8πGγ2λ2Þ denotes the energy density at

the bounce for the spatially flat model in LQC, and

ρmin ¼ ρflatmax½ð1þ γ2ÞD2 þ sin2ðDÞ� ð2:4Þ

denotes the minimum allowed energy density in the

evolution. In the classical universe, this value coincides

with the value of energy density at which a classical

recollapse occurs. The maximum of the energy density

is given by

ρmax ¼ ρmin þ ρflatmax: ð2:5Þ

Note that in the quantum regime depending on the initial

conditions a bounce as well as a recollapse can occur at ρmin

as well as at ρmax [14].

The Hamilton equations for the phase-space variable

conjugate to v is given by

_b ¼ fb;Heffg ¼ −4πGγ½ρþ P − ρ1� ð2:6Þ

with

ρ1¼
ρflatmaxD

3
½2ð1þγ2ÞD−sinð2λβ−DÞ−sinð2DÞ�; ð2:7Þ

where P denotes the pressure which equals P ¼
−∂Hmatt=∂v. The dynamical equations for the scalar field

matter variables with a potential VðϕÞ are

_ϕ ¼ fϕ;Heffg ¼ pϕ

p3=2
ð2:8Þ

_pϕ ¼ fpϕ;Heffg ¼ −p3=2V ;ϕ: ð2:9Þ

Using the above equations, it is straightforward to show

that Klein-Gordon equation follows along with the standard

conservation law for matter energy density.

The above dynamical equations encode nonperturbative

quantum gravitational effects, which result in a nonsingular

bounce of the universe in the Planck regime [14,18,28].

This results in nonsingular cycles of expansion and con-

traction if the matter does not violate strong energy

condition, i.e., has equation of state ω ¼ P=ρ greater than

−1=3. For the latter type of matter content, the universe

undergoes a recollapse at late times, resulting in a con-

traction and a big crunch singularity in the classical theory.

This singularity is avoided in LQC, resulting in a bounce

and another phase of expansion and a possible recollapse if

the equation of state w > −1=3 in the expanding phase. If

the recollapses occur at the macroscopic scales, the differ-

ence in the volumes of two consecutive recollapses is found

to be [28]

δv
1=3
rec ¼ −

H

Pdv

ð2π2Þ2=3ρflatmaxγ
2λ2

: ð2:10Þ

This implies that in each cycle of expansion and contraction

the maximum volume vrec changes. This occurs because of
the asymmetry of the pressure during different phases of a

given cycle, which results in a hysteresislike phenomenon

[26,28]. This hysteresislike phenomenon has been shown to

be responsible for alleviating problems with the onset of

inflation for different potentials, especially low-energy

scale models [14]. Before we examine this phenomenon

in the presence of radiation production in warm inflationary

scenarios, we summarize the latter and obtain the relevant

equations in LQC.

3
Note that a nonsingular dynamics results solely from inverse

volume modifications, too, in the k ¼ 1 model in LQC [47],
which has been used to understand conditions for the onset of
inflation [48].
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B. Warm inflationary dynamics in LQC

The dynamical realization of warm inflation is different

from the cold inflation due to the presence of radiation as

well as the possibility of energy exchange between inflaton

and radiation energy density. Hence, the total energy

density of the universe in warm inflation reads

ρ ¼ ρϕ þ ρr; ð2:11Þ

where ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ is the scalar field energy density

with VðϕÞ being some potential function and ρr is the

radiation energy density. The inflaton field ϕ and the

radiation energy density form a coupled system in warm

inflationary dynamics due to dissipation of energy out of

the inflaton system and into radiation. The background

evolution equations are, respectively, given by [34]

ϕ̈þ 3H _ϕþ V ;ϕ ¼ −ϒðϕ; TÞ _ϕ ð2:12Þ

_ρr þ 4Hρr ¼ ϒðϕ; TÞ _ϕ2: ð2:13Þ

Here, ϒðϕ; TÞ is the dissipation coefficient, which can be a
function of both inflaton and temperature, depending on the

specifics of the microscopic physics behind the construc-

tion of a warm inflation model. For a radiation or a bath of

relativistic particles, the radiation energy density is given

by ρr ¼ ðπ2g=30ÞT4, where g is the effective number of

light degrees of freedom (g is fixed according to the

dissipation regime and interactions form used in warm

inflation). Such radiation production results in entropy

production where the entropy density s is related to

radiation energy density by Ts ¼ ð4=3Þρr, i.e., is related

to temperature as s ¼ ð2π2g=45ÞT3, where we have con-

sidered a thermalized radiation bath as is typically the case

in warm inflationary scenarios. Then, Eq. (2.13) can be

written in terms of entropy as follows [38]:

Tð_sþ 3HsÞ ¼ ϒ _ϕ2: ð2:14Þ

As we will see in the next section, such entropy

production significantly changes the hysteresislike phe-

nomena. In fact, the term 3Hs, which is positive in the

expanding universe (H > 0) and negative in the contracting

universe (H < 0), produces a larger difference in pressure

during expansion/contraction stages, making the hystere-

sislike phase stronger in comparison with the case without

dissipative effects.

Let us note that the richer dynamics of warm inflation

sharpened the interest for finding explicit models aiming at

overcoming two important issues found in earlier particle

physics realizations of warm inflation. First is the require-

ment of large field multiplicities so as to be able to sustain

a nearly thermal bath, and second is the difficulty in

achieving achieve strong dissipative regimes (ϒ≫ H),

due to the interplay between inflaton and radiation

fluctuations, leading to the appearance of growing modes

in the scalar curvature power spectrum, and that can render

it inconsistent with the observations. The former problem

was first solved with an introduction of a new class of warm

inflation model building realization motivated from the

ingredients used in “little Higgs” models of electroweak

symmetry breaking where the inflaton is a pseudo-Nambu-

Goldstone boson of a broken gauge symmetry and its

potential is protected against large radiative corrections by

symmetry obeyed by the model while still having enough

interactions to allow thermalization of light degrees of

freedom. This results in enough dissipation even if the

mediators are very light with respect to ambient temper-

ature. In such a model also known as warm little inflaton,

the dissipation coefficient is given by [50]

ϒlin ¼ ClinT: ð2:15Þ

We refer to the above ϒlin as the linear dissipation

coefficient. Although warm little inflaton was successful

in producing a sustainable thermalized radiation bath

utilizing just a few mediator fields, it could not obtain a

strong dissipative regime, which allows steeper potentials

to be embedded in warm inflation by making the energy

scale of inflation smaller. To this end, a concrete model of

warm inflation, the so-called minimal warm inflation [39],

was recently constructed in which the inflaton has axionlike

coupling to gauge fields. Since the inflaton is an axion, its

shift symmetry protects it from any perturbative back-

reactions and thus from acquiring a large thermal mass.

Hence, the thermal friction from this bath can easily be

stronger than Hubble friction even for a small number of

fields. The corresponding axion friction coefficient turn out

to be

ϒcub ¼ CcubT
3: ð2:16Þ

Hereafter, we refer to the above ϒcub as the cubic

dissipation coefficient. In this regard, another model was

also recently proposed, inspired from an idea used in warm

little inflaton where the inflaton is directly coupled to light

scalar bosonic fields rather than fermionic fields, which is

known as a variant of warm little inflaton [40]. Although

the exact form of dissipation coefficient is complex, the

leading behavior of dissipation, when the effective mass is

dominated by thermal part, varies as

ϒinv ¼ CinvT
−1: ð2:17Þ

Hereafter, we refer to the above ϒinv as the inverse

dissipation coefficient. We should note that Cinv ≪ Clin ≪

Ccub since it should be fixed in such a way that the

condition for a sustainable thermal bath, i.e., T > H, is

satisfied during the inflationary phase.
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Taken together, to consider the dissipative effects during

both preinflationary and inflationary phases all the way

from the bounce until the end of inflation, we phenom-

enologically implement dissipative effects into the effective

equations of the spatially closed model LQC. The resulting

dynamical equations are

_v ¼ 3

γλ
v sinðλb −DÞ cosðλb −DÞ ð2:18Þ

_b ¼ −4πGγ

�

p2

ϕ

v2
þ 4

3
ρr − ρ1

�

ð2:19Þ

_ϕ ¼ −

pϕ

v
ð2:20Þ

_pϕ ¼ −vV ;ϕ −ϒðϕ; TÞpϕ ð2:21Þ

_ρr ¼ −

�

4

γλ
sinðλb −DÞ cosðλb −DÞ

�

ρr þ
ϒðϕ; TÞp2

ϕ

v2
:

ð2:22Þ

In the next section, we will first discuss the way such

dissipative effects, or equivalently entropy production,

change the dynamics of preinflationary phase and also

enlarge the phase space of initial conditions which result in

a (warm) inflation. Then, we perform a qualitative analysis

of the dynamical equations to understand the attractor

behavior of the solutions and gain insights on the way

dissipative effects help in the onset of inflation even starting

from highly unfavorable initial conditions.

III. DISSIPATIVE EFFECTS ON

PREINFLATIONARY DYNAMICS OF k= 1 LQC

In this section, we investigate the consequences of

dissipative effects in LQC to address the problem of onset

of inflation for the Starobinsky potential. We discussed in

Sec. II the way nonsingular cycles of expansion and

contraction result in a hysteresislike phenomenon, which

arises due to differences in pressure during expansion and

contraction stages of cosmic evolution. Because of this

difference in pressure, the work done during one cycle can

be positive or negative depending on the potential function.

For sufficiently flat potentials, the work can be positive,

resulting in increasing the size of the universe in the

successive cycles. Because of this, even if the inflaton

starts with a kinetic energy dominated condition and an

equation of state close to unity, the equation of state

decreases in each cycle and eventually becomes less than

−1=3, which leads to an onset of inflation. Hence, if the

universe fails to inflate after the first cycle, it can do so after

subsequent cycles enlarging the phase space of initial

conditions, which results in inflation [28]. Recently, it

was shown that for the Starobinsky potential the universe

can inflate for a large part of initial conditions; however, it

should go though numerous cycles of expansion and

contraction [14]. Further, for some of the initial conditions,

the inflation does not commence even after a large number

of nonsingular cycles. As we will see, the dissipation or

entropy production leads to larger differences in pressure

during expansion-contraction phase, resulting in a larger

amplitude of the cycles. Therefore, we expect that entropy

production due to radiation particle production makes the

hysteresis phenomena stronger, leading into the universe

with a bigger size in successive cycles, causing the universe

to inflate after a small number of cycles. In the following,

we first obtain the background solutions demonstrating the

above phenomena, which is followed by discussion of

phase-space portraits in qualitative dynamics of this model.

A. Dissipative effects for Starobinsky potential

Starobinsky inflation is a prominent example of low-

energy inflation models favored by current observations. In

classical cosmology, this model results from adding the R2

term to the action, which translates to adding the following

potential in the Einstein frame

UðϕÞ ¼ 3m2

32π

�

1 − e−
ffiffiffiffi

16π
3

p
ϕðtÞ

�

2

: ð3:1Þ

But in LQC, the above potential is not obtained from an R2

term in the action, since the covariant action in LQC does

result in higher-order curvature terms but in a Palatini

framework [51]. As in previous works in LQC, we consider

the above potential as a phenomenological input in effec-

tive dynamics.

In the Starobinsky model, the inflation is supposed to

start at energy scales far lower than the Planck scale, and as

a result, the initial conditions in the Planck regime are such

that kinetic energy dominates the potential energy. If one

numerically solves the classical cosmological dynamics of

above potential, one finds that the universe undergoes a

recollapse before potential energy can dominate and

encounters a big crunch singularity [4,5]. We would see

that this situation changes dramatically in the effective

dynamics in LQC. Below, we numerically solve dynamical

equations (2.18) for various initial conditions, using the

explicit Runge-Kutta algorithm and stiff-switching method

inMathematicawith accuracy and precision goals set to 11.

The initial value of b (the conjugate to volume v) is fixed by
the vanishing of the effective Hamiltonian constraint.

Moreover, we also set the initial value of pϕ using the

condition for the bounce, i.e., ρ ¼ ρmax. Therefore, we are

left with just three initial conditions on volume (v0), scalar
field (ϕ0), and initial radiation energy density (ρr0). We

choose initial conditions such that the radiation energy

density is subdominated in comparison with both the

kinetic energy density and potential energy density of
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the inflaton field, and the bounce happens with kinetic

dominated initial conditions (ρr0 ≪ Uðϕ0Þ ≪ _ϕ2

0=2).
In the following, we first solve the dynamical equations

for the case of minimal warm inflationary model, i.e., with

a cubic dissipation coefficient. In this case, the inflaton has

an axionic coupling to a non-Abelian gauge theory and the

sphaleron transitions between gauge vacua, existing at

sufficiently high temperatures. And if the corresponding

non-Abelian gauge theory has gauge group SUð3Þ, there
are eight gauge bosons, each of which contribute two

relativistic degrees of freedom. Including the inflaton itself,

there are in total 17 relativistic degrees of freedom. So, we

set the number of relativistic degree of freedom g ¼ 17

[37]. In Figs. 1 and 2, we plot the evolution of volume and

equation of state for three different values of Ccub in LQC.

For the initial conditions, v0 ¼ 5 × 107, ϕ0 ¼ −1, and

ρr0 ¼ 10−12, the dynamical evolution is nonsingular for

all the considered values of Ccub. The initial conditions are

chosen such that in the absence of dissipation, inflation

does not start after various cycles of nonsingular evolution.

As can be seen, in case of Ccub ¼ 0 (dissipationless

universe), the universe does not enter an inflationary phase

even after many cycles of nonsingular evolution. This is

because the hysteresislike phenomenon is not large enough

to set the scalar field at the flat part of potential function in

subsequent cycles. However, dissipative effects make the

hysteresis phase stronger (decreasing the number of cycles

and increasing its amplitudes), whereby the universe begins

the inflationary phase after a small number of cycles. This

is evident in the dynamical evolution for Ccub ¼ 0.4 and

Ccub ¼ 1000. We see from the former case that even a small

nonzero value of Ccub, resulting in small dissipative effects,

has substantial effects on the hysteresislike phenomena and

the onset of inflation. We find from the volume and

equation of state plot that a phase of inflation starts after

a few nonsingular cycles when the volume grows expo-

nentially and the equation of state becomes less than −1=3.
But such a small value of dissipation coefficient cannot

sustain the thermal bath during inflation, and one needs a

larger value of Ccub. As one increases the value of Ccub, the

dissipative effects make the hysteresis phase very strong,

and inflationary phase starts just after just one bounce. This

is shown in Fig. 1 for the case of Ccub ¼ 1000. Here, we

should note that the curves for Ccub ¼ 0.4 and Ccub ¼ 1000

start from the same initial volume, but because of the use of

logarithmic scale in the plot, the figure does not show the

same value of volume for both the curves. We note that the

evolution of equation of state in Fig. 2 shows that for

Ccub ¼ 0 the equation of state oscillates between 1 and 0.5

for the entire range of evolution; however, for nonvanishing

dissipation coefficients, it decreases quickly below w ¼
−1=3 and becomes w ≈ −1, indicating an onset of slow-roll

inflation. As one can see, the equation of state becomes −1

much earlier for larger dissipation coefficient.

We now discuss the case of warm little inflaton in LQC.

In Figs. 3 and 4, we plot the evolution of volume and

equation of state for the linear dissipation coefficient and

three different values of Clin for initial conditions v0 ¼ 107,

FIG. 1. The evolution of volume for different values of cubic

dissipation coefficient. Initial conditions are chosen at the bounce

with v0 ¼ 5 × 107, ϕ0 ¼ −1, ρr0 ¼ 10−12, and g ¼ 17.

FIG. 2. The evolution of equation of state for cubic dissipation

coefficient and same initial conditions as in Fig. 1.

FIG. 3. The evolution of volume for different values of linear

dissipation coefficient. Initial conditions are chosen at the bounce

with v0 ¼ 107, ϕ0 ¼ −1.5, ρr0 ¼ 10−11, and g ¼ 12.5.
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ϕ0 ¼ −1.5, and ρr0 ¼ 10−11. We also fix g ¼ 12.5 using

analysis in [50]. We consider nonzero values of Clin as

0.00004 and 0.00008, which are typical values for warm

inflation to happen in spatially flat spacetime. As before,

the chosen initial conditions correspond to the unfavorable

ones where inflation does not start in LQC even after

various cycles of nonsingular evolution when dissipation is

absent. This can be seen from the curve corresponding to

Clin ¼ 0, where the universe oscillates in nonsingular

evolution but there is no onset of inflation since the

equation of state never becomes less than −1=3.
However, when we add dissipative effects, the hysteresis

becomes stronger, and we see that the universe experiences

an inflationary phase after a small number of cycles. We see

that the equation of state becomes less than −1=3 after a

few cycles for Clin ¼ 0.00004 and Clin ¼ 0.00008. As we

increase the value of Clin, the number of cycles prior to

onset of inflation decreases, and the amplitude of the cycles

become larger.

Finally, we consider the variant of warm little inflaton

with the inverse dissipation coefficient, which is shown in

Figs. 5 and 6. As in previous cases, initial conditions are

chosen such that there is no inflationary phase even after

many cycles in the absence of dissipative effects. But

choosing a nonzero dissipation coefficient, even if small,

leads to a striking difference in dynamics and results in a

stronger phenomenon of hysteresis. In these figures, we

choose Cinv ¼ 3 × 10−11 and 6 × 10−11 and fix g ¼ 12.5.

The chosen values of Cinv are smaller than two other cases

as we discussed previously. We find that as we increase the

value of Cinv the number of cycles decreases, the amplitude

of the cycles become larger, and the universe enter into the

inflationary phase sooner.

To summarize the results so far, we have found the

dissipative effects resulting in radiation production make

the hysteresis phenomena stronger and set the condition for

inflation to happen sooner for dissipation coefficients

which have a cubic, linear, and inverse relationship to

temperature. Though we discussed a sample of initial

conditions, our results are robust to changes in initial

conditions. To gain some insights on the qualitative

dynamics and robustness of results we study the phase-

space portraits in the following.

B. Qualitative dynamics in phase-space portrait

It is useful to understand the phase-space portraits for

qualitative dynamics by introducing the variables

XðtÞ ¼ χ0

�

1 − e−
ffiffiffiffiffiffi

16πG
3

p
ϕðtÞ

�

ð3:2Þ

YðtÞ ¼ pϕðtÞ
vðtÞ ffiffiffiffiffiffiffiffiffiffiffi

2ρmax

p ZðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi

ρrðtÞ
ρmax

s

; ð3:3Þ

where χ0 ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

32πGρmax

q

and ρmax denotes the maximum

energy density (2.5) determined by the initial conditions.

Our goal will be to find the inflationary attractors for

different choices of dissipation coefficients and initial

conditions. These have been studied earlier for cold

inflation in detail in LQC [52]. The inflationary attractor

FIG. 4. The evolution of equation of state for linear dissipation

coefficient and same initial conditions as in Fig. 3.

FIG. 5. The evolution of volume for different values of inverse

dissipation coefficient. Initial conditions are chosen at the bounce

with v0 ¼ 2.5 × 106, ϕ0 ¼ −2, ρr0 ¼ 10−9, and g ¼ 12.5.

FIG. 6. The evolution of equation of state for inverse dissipa-

tion coefficient and same initial conditions as in Fig. 5.
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lies at ðX ¼ 0; Y ¼ 0Þ, which corresponds to the reheating

phase in cold inflation and the beginning of radiation epoch

in warm inflation.

Starting with the cubic dissipation in Fig. 7, the left plot

shows the projection of entire phase-space region on plane

Z ¼ 0, and the right plot zooms in on the attractor near the

origin. The vertical dashed black line corresponds to

X ¼ χ0, and all real solutions lie to the left of this line.

For a better visualization of the qualitative features it is

useful to consider a large value of inflaton mass, which is

chosen here to be m ¼ 0.62. The solid black circular curve

corresponds to the energy density of the first bounce at

t ¼ 0 where the initial conditions are set. The left plot in

Fig. 7 shows curves corresponding to seven distinct initial

conditions for ϕ0, while other parameters are fixed, for

which the universe undergoes inflation in the presence of

dissipative effects. For the same initial conditions in the

absence of dissipative effects, the universe goes through

many cycles without the onset of an inflationary phase.

It should be noted that we chose Ccub large enough to see

the end of inflation and also the postinflationary phase. So,

in most of the cases, the hysteresislike phenomena go away,

and the universe experiences an inflationary phase after just

one bounce.

We expand on details of the above dynamics in Fig. 8,

where the evolution of the potential energy density VðϕÞ,
kinetic energy density _ϕ2=2, and the radiation energy

density ρr are shown for the gray curve in Fig. 7. We

can see from the figure that the universe starts from a

bounce in the kinetic dominated regime (initial condition

with equation of state ω ≈ 1), with _ϕ2=2 ≫ UðϕÞ ≫ ρr,

and the kinetic energy very soon dilutes away since it

behaves as a−6. In the subsequent evolution, we find that

radiation energy density becomes important in comparison

to kinetic and potential energies. Such a radiation domi-

nated regime before the inflationary phase has also been

FIG. 7. Projection of three-dimensional phase-space portrait on Z ¼ 0 plane for cubic dissipation coefficient with m ¼ 0.62,

Ccub ¼ 7.5, v0 ¼ 35, ρr0 ¼ 10−3, and seven distinct initial conditions for ϕ0.

FIG. 8. Evolution of energy components as well as equation of state for cubic dissipation coefficient with m ¼ 0.62, Ccub ¼ 7.5,

v0 ¼ 35, ρr0 ¼ 10−3, and ϕ0 ¼ 0.5 (gray curve in Fig. 7).
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reported for warm inflation in spatially flat LQC [53] (see

also Ref. [54] for a review on warm inflation in spatially flat

LQC). After some cycles, when the hysteresislike phe-

nomenon causes an onset of inflation, the radiation energy

density becomes subdominant in evolution. Note that,

contrary to cold inflation, radiation is concurrently pro-

duced during the inflationary phase, and it may reach an

equality with potential energy density at the end of inflation

if dissipative effects are strong enough to sustain the

thermal bath, and the universe smoothly enters into a

radiation-dominated epoch without subsequent (p)reheat-

ing phase. However, as is clear in Fig. 8, the universe does

not enter into a radiation-dominated epoch at the end of

inflation. This is because the considered value of Ccub,

chosen due to computational constraints, is not large

enough, and hence the inflationary phase is a cold type,

and a reheating mechanism is a must. Hence, although a

small dissipation coefficient could not sustain thermal bath

during inflation leading to warm-type inflation, it has

substantial effect on preinflationary dynamics and the onset

of inflation, which is evident from the existence of a

ω ≈ −1 phase from the plot of the equation of state. We

further note that if the dissipation coefficient is chosen large

enough the warm inflation starts quickly and the radiation

energy density reaches values similar to the potential

energy density at the end of inflation.

Figure 9 illustrates the projection of the entire phase-

space portrait on Z ¼ 0 plane for the linear dissipation

coefficient and m ¼ 0.62. The left plot shows that seven

distinct initial conditions (different values of ϕ0 while other

parameters are fixed) starting from the first bounce all

exhibit an attractor behavior and come to the center of circle

(fixed point). In Fig. 10, the evolution of energy density

components shows that inflation ends in a radiation-

dominated epoch due to dissipative effects. Although such

dissipative effects are large enough to sustain thermal bath

during inflation, they are not large enough to suppress

kinetic energy during inflation and terminate the universe in

FIG. 9. Projection of three-dimensional phase-space portrait on the Z ¼ 0 plane for the linear dissipation coefficient with m ¼ 0.62,

Clin ¼ 0.8, v0 ¼ 35, ρr0 ¼ 10−3, and seven distinct initial conditions for ϕ0.

FIG. 10. Evolution of energy components as well as equation of state for linear dissipation coefficient with m ¼ 0.62, Clin ¼ 0.8,

v0 ¼ 35, ρr0 ¼ 10−3, and ϕ0 ¼ 1.55 (gray curve in Fig. 9).
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a radiation-dominated epoch. Hence, there is a very short

kinetic-dominated regime before the universe transits into a

radiation epoch, which is typical in the warm inflation

scenario when the dissipation effect is small (such a kinetic-

dominated regime after warm inflation has also been seen

in Ref. [45]). However, such a kinetic-dominated regime

does not have any adverse implications since it is very

short. Moreover, since in this model such a kinetic-

dominated regime occurs around the minimum of potential,

we see spiral behavior, which is typical in cold inflation due

to the reheating phase. However, this oscillatory phase

plays no role in making the universe hot, and the universe

enters into a radiation-dominated regime due to radiation

production during inflation and not a reheating phase. We

also find that there is a radiation-dominated regime before

the inflation phase, as was seen in the case of the cubic

dissipation coefficient.

In Fig. 11, we illustrate the projection of the entire phase-

space portrait on the Z ¼ 0 plane for the inverse dissipation

coefficient andm ¼ 0.79. We find that in this case, although

there is an attractor behavior and all initial conditions starting

from the first bounce come to the center of the phase-space

plot, there is no spiral behavior. This is because the universe

enters into a radiation-dominated regime due to strong

dissipative effects. There is no oscillatory behavior, which

is typical of cold inflation or what is found for previous

cases of the dissipation coefficient. In particular, the kinetic

energy always remains subdominated during inflation due

to strong dissipative effects, and inflation ends when radi-

ation becomes equal to potential energy (see Fig. 12).

Furthermore, we find that there is also a radiation-dominated

regime before the inflationary phase, as was seen for cubic

and linear dissipation coefficients.

IV. CONCLUSIONS

The onset of inflation in low-energy inflationary models

in classical theory is challenging in spatially closed models

FIG. 11. Projection of three-dimensional phase-space portrait on Z ¼ 0 plane for inverse dissipation coefficient with m ¼ 0.79,

Cinv ¼ 0.2, v0 ¼ 30, ρr0 ¼ 10−3, and six distinct initial conditions for ϕ0.

FIG. 12. Evolution of energy components as well as equation of state for inverse dissipation coefficient with m ¼ 0.79, Cinv ¼ 0.2,

v0 ¼ 30, ρr0 ¼ 10−3, and ϕ0 ¼ 2.2 (brown curve in Fig. 11).
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because of the recollapse of the universe before inflation

can set in. Indeed, one requies a high degree of fine-tuning

of initial conditions for the onset of inflation in such a case

[6]. On the other hand, if the spatial curvature is zero or

negative, this problem is nonexistent, and the onset of

inflation becomes highly probable [4,7,8]. The recollapse

in a spatially closed model causes a big crunch singularity,

and a closed universe ends in a big crunch singularity in a

few Planck seconds before the beginning of an inflationary

phase. This is a longstanding problem whose resolution

becomes important given that current observational data

favor low-energy inflation models and a slight positive

spatial curvature of the universe. There are various ways to

overcome this issue in classical cosmology. Apart from the

case of considering models with a spatially flat and

spatially open universe, one can consider a low-energy

inflation model coupled with an additional scalar field

which drives an early phase of inflation near the Planck

density, which is taken over later by low-energy inflation.

Further, one can introduce additional higher-order terms in

the quadratic potential to fit with Planck data [4,5]. But if

one aims to understand this issue for a single field set up in

low-energy inflation models, two issues need to be

addressed simultaneously. The first is a successful and a

generic resolution of singularities, and the second is a

mechanism to create favorable conditions for inflation to

begin. The challenges underlying the first problem are well

known and require insights from nonperturbative quantum

gravity. The latter problem is also nontrivial, given that

inflation in low-energy inflation models begins at very

small energy scales compared to Planck scale due to which

initial conditions in the Planck regime are kinetic energy

dominated, which leads to a recollapse of the universe. The

above problem was recently analyzed in LQC [14] where

nonperturbative quantum gravity effects are known to result

in a generic resolution of all strong curvature singularities

[23]. In particular, the big bang/big crunch singularities are

resolved and replaced by a nonsingular bounce [15,16,18].

It was found that for the Starobinsky inflation potential the

universe in LQC cycles through various periods of expan-

sion and contraction, resulting in an onset of inflation even

when inflation starts from kinetic-energy-dominated initial

conditions which result in a big crunch in a few Planck

seconds. At the heart of this resolution likes a hysteresislike

phenomenon, which changes the ratio of kinetic and

potential energy in subsequent cycles in such a way that

the equation of state even when starting from ω ≈ 1

becomes less than −1=3. The universe then enters a phase

of accelerated expansion, a recollapse is avoided, and

inflation sets in.

Although hysteresislike phenomena can enlarge the

phase space of initial conditions for a plateaulike potential,

with the Starobinsky potential as the most known one, the

inflationary phase either occurs after many cycles or does

not happen due to flatness of the potential for some

unfavorable initial conditions [14]. A pertinent question

is whether there exists a mechanism which can result in the

onset of inflation in LQC even for such unfavorable initial

conditions. The goal of the paper was to successfully

answer this question. Motivated by Tolman’s model in

which the hysteresislike phase happens due to entropy

production sourced by viscous pressure and also warm

inflationary dynamics, we considered spatially closed LQC

in which the scalar field concurrently dissipates its kinetic

energy into a radiation field starting from the first bounce.

Hence, there are two contributions for work done in each

cycle: one from an asymmetric equation of state of scalar

field during the expansion-contraction phase and the other

from entropy production due to dissipative effects. Because

of dissipative effects, one expects the phenomena of

hysteresis to become much stronger and inflation to set

in far more easily.

We worked in the setting of effective spacetime descrip-

tion in LQC and obtained Hamilton’s equations with

nonperturbative quantum gravity corrections in the pres-

ence of dissipative effects for the k ¼ 1 model using

holonomy quantization. Hamilton’s equations were

numerically solved for the Starobinsky potential and three

different dissipation coefficients inspired from quantum

field theory all the way from the first bounce until the end

of inflation. These were with cubic, linear, and inverse

temperature dependence. We found that even a small value

of dissipation makes the hysteresislike phenomena strong.

The effect is such that inflation sets in not only a few cycles

but also for those initial conditions which are extremely

unfavorable for inflation to begin even in LQC without

radiation production. Moreover, we find that as we make

the dissipative effects large enough the hysteresislike

phenomenon goes away and the universe inevitably enters

into the inflationary phase after just one bounce. To gain

insights on the qualitative dynamics of the universe from

the bounce until the end of inflation, we studied the phase-

space portraits for different initial conditions and all three

dissipation coefficients. In all three cases, we found that all

initial conditions experience an attractor dynamics showing

that the universe goes through the inflationary phase. In

other words, the universe starting from the first bounce with

stifflike initial conditions dilutes its kinetic energy due to

both Hubble friction and dissipative effects and transfers it

to radiation field, as opposed to a dissipationless universe,

whereby after some cycles the radiation energy density

becomes the dominant energy component. However, such a

radiation-dominated epoch continues only for a very short

period since radiation energy density decays as a−4. Then,
the potential energy becomes dominant, resulting in an

inflationary phase. Moreover, if the dissipative effects are

large enough, the inflationary phase will be of warm type,

whereby the universe smoothly enters into a radiation-

dominated epoch without the need for a separate reheating

epoch. Our analysis shows that with the presence of
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dissipative effects nonsingular quantum gravitational

dynamics results in an onset of inflation for low-energy

inflationary models even from highly unfavorable initial

conditions. In comparison to the cases where dissipation is

absent, we find hat inflation sets in much quicker due to

stronger hysteresislike phenomena. Since our results estab-

lish phenomenological viability of low-energy inflationary

models in spatially closed universes at the level of back-

ground dynamics, it will be interesting to investigate the

model at perturbative level to confront its predictions with

observational data.
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