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Role of dissipative effects in the quantum gravitational
onset of warm Starobinsky inflation in a closed universe
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A problematic feature of low-energy-scale inflationary models, such as Starobinsky inflation, in a
spatially closed universe is the occurrence of a recollapse and a big crunch singularity before inflation can
even set in. In a recent work, it was shown that this problem can be successfully resolved in loop quantum
cosmology for a large class of initial conditions due to a nonsingular cyclic evolution and a hysteresislike
phenomenon. However, for certain highly unfavorable initial conditions, the onset of inflation was still
difficult to obtain. In this work, we explore the role of dissipative particle production, which is typical in
warm inflation scenario, in the above setting. We find that entropy production sourced by such dissipative
effects makes hysteresislike phenomena stronger. As a result, the onset of inflation is quick in general,
including for highly unfavorable initial conditions where it fails or is significantly delayed in the absence of
dissipative effects. We phenomenologically consider three warm inflation scenarios with distinct forms of
dissipation coefficient and from dynamical solutions and phase-space portraits find that the phase space

of favorable initial conditions turns out to be much larger than in cold inflation.
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I. INTRODUCTION

Inflation is a finite period of quasi-de Sitter accelerated
expansion in the early universe, which elegantly predicts
the minimal late-time curvature as well as reproduces the
adiabatic, nearly Gaussian, and quasiscale-invariant spec-
trum of primordial density fluctuations in accordance with
the observational cosmological data. An important issue in
inflationary models is that of right initial conditions for the
inflaton to successfully yield sufficient e-foldings to con-
firm with observations. This issue becomes more relevant
in the case of low-energy inflationary models such as with
Starobinsky potential [1] which are favored by observations
[2,3]. Starting from Planck regime, the potential energy is
suppressed in low-energy inflation models, and inflaton
starts with kinetic energy domination [4,5]. If the universe
is spatially closed, then such a model can undergo a
recollapse before the onset of inflation and encounter the
big crunch singularity. It has been expected that a quantum
theory of gravity may provide some insight into this issue.
Since the main problem in above scenario is the existence
of a recollapse followed by a big crunch singularity, if
quantum gravity effects can resolve the big crunch singu-
larity and result in a nonsingular cyclic evolution, then one
can hope that in subsequent cycles conditions on domi-
nance of kinetic versus the potential energy alter in such a
way that recollapse can be avoided and inflation can begin.
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Before we investigate the above problem in this manu-
script, it is important to make some remarks to set the right
context of this study and discuss alternative strategies to
solve the above problem. Our study is based on assuming a
positive spatial curvature of the universe. It has been noted
earlier that one requires a high degree of fine-tuning to start
inflation in low-energy models with a positive spatial
curvature [6]. Thus, in a sense, we take the most difficult
case to understand the initial conditions problem because if
the universe is spatially flat or spatially open the recollapse
caused by intrinsic curvature is absent. In fact, the initial
condition problem in such cases, especially with a compact
topology, becomes much easier to address [4,7,8]. Though
it has been recently claimed that a primordial spatial
curvature may partially account for the observed anomaly
in the temperature anisotropy spectrum at low multipoles
[9], and a small amount of late-time curvature consistent
with current observational data has the potential to explain
the current discrepancy between dataset probing early uni-
verse and those exploring late-time universe properties [10—
12], when Planck results are combined with baryon acoustic
oscillations data, one finds that the current observations are
consistent with a spatially flat universe [3,13]. But the almost
spatial flatness of the universe in the current epoch does not
imply that it was spatially flat in the preinflationary epoch.
Thus, it is worthwhile to study all the cases of spatial
curvature to understand the problem of initial conditions.
Let us also note that if the universe has a positive spatial
curvature the problem of recollapse can be avoided in low-
energy inflationary models by considering an additional field
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in a quadratic potential or a similar potential which drives
inflation in the beginning which is carried over by the low-
energy inflation." In such a model, the additional field starts
from initial conditions which are potential dominated at
Planck density such that the problem of recollapse is
completely avoided before the low-energy inflation onsets.
This strategy is expected to work for any other low-energy
inflation model with an additional scalar field sourced by a
potential allowing the first phase of inflation to start near the
Planck density. Another possibility is to consider alternatives
to low-energy inflation models, such as a chaotic inflationary
model with additional cubic and quartic terms which turn out
to be consistent with the Planck data [4,5].

While the above strategies exist to alleviate the problem
of initial conditions in low-energy inflation models, our
objective in this study is to understand whether quantum
gravity effects when included can resolve this problem
without any additional fields which start inflation near the
Planck density. Since the big crunch singularity caused by a
recollapse in the preinflationary phase is a roadblock to
solve this problem, it is pertinent to incorporate quantum
gravity modifications which resolve the big crunch singu-
larity to understand the onset of inflation in low-energy
inflation models. This problem was recently addressed
using nonperturbative quantum gravitational effects in loop
quantum cosmology (LQC) [14]. It was shown that,
although a large class of unfavorable initial conditions
does not result in inflation in the classical theory and lead to
a big crunch singularity in a few Planck seconds, the
universe successfully goes through an inflationary phase
after multiple nonsingular cycles of expansion and con-
traction due to quantum gravity effects. The goal of the
current work lies in the same direction with an aim to
improve and generalize these results to demonstrate that
inclusion of dissipative particle production in LQC results
in a rather quick and more robust onset of inflation even for
those extreme initial conditions where inflation does not
occur with above quantum gravity effects.

Let us recall that the nonperturbative loop quantum
gravitational effects resolve the big bang/big crunch sin-
gularities replacing them by a nonsingular bounce when the
energy density reaches Planckian values [15—17]. For the
spatially closed model, singularity resolution results in
multiple nonsingular cycles of expansion and contraction
[18-20]. It is to be noted that loop quantum gravity effects
are only dominant near the classical singularities and
diminish quickly at smaller energy densities, resulting in
classical dynamics at the macroscopic scales. In an effec-
tive spacetime description of these quantum gravity effects,
modified Friedmann equations which have been shown to
capture the underlying quantum dynamics to an excellent
approximation can be obtained [16,18,21,22]. From these
modified Friedmann equations, one can show a generic

'We thank the anonymous referee for pointing out this
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resolution of all strong curvature singularities in isotropic
and anisotropic models in LQC [23] including in the
presence of spatial curvature [24]. Given that LQC robustly
solves the problem of singularities, it provides an excellent
stage to address the problem of resolution of onset of
inflation in low-energy inflationary models in the presence
of a positive spatial curvature.

An interesting feature of cosmic expansion/contraction
which leads to a novel hysteresislike phenomenon in non-
singular cyclic evolution is the difference in pressure during
expansion and contraction stages [25]. This phenomenon
occurs even in the absence of dissipative effects for suitable
scalar field potentials [26]. Hence, the universe possesses an
arrow of time due to an asymmetric equation of state during
the expansion-contraction phase [27] rather than entropy
production due to viscous pressure as was the case in
Tolman’s model [25]. Of course, the most challenging issue
to build such models is to overcome big bang/crunch
singularities and to achieve a nonsingular evolution. This
task was completed in LQC where the hysteresislike phe-
nomenon was demonstrated for chaotic ¢2 inflation [28], a
result which was recently generalized for Starobinsky
inflation [14]. An interesting feature of such a hysteresislike
period is that, although the universe may fail to inflate at first,
conditions improve in subsequent cycles for the onset of
inflation because the ratio of kinetic to potential energy
decreases and a subsequent equation of state @, defined as the
ratio of total pressure and energy density, becomes less than
—1/3. This causes a phase of accelerated expansion, and as a
result, the recollapse is avoided. This phenomenon of
occurrence of nonsingular cyclic evolution followed by
inflation turns out to be a feature of a large class of initial
conditions for ¢ and Starobinsky inflation models [14].
However, for the latter, the onset of inflation is found to
require a much larger number of cycles in contrast to the ¢?
inflation, and for certain highly unfavorable initial condi-
tions, inflation was not found to occur even after numerous
nonsingular cycles of expansion and contraction [14]. The
reason for this was tied to the weak hysteresis for low-energy
inflation models.

To overcome the problem of onset of inflation in such
cases, we note that dissipation is an indispensable part of
any physical system interacting with its environment, and
there are two different dynamical realizations for inflation:
cold inflation and warm inflation [29], depending on
whether nonequilibrium dissipative particle production
processes due to the couplings of the inflaton field with
other field degrees of freedom are negligible or not during
inflation. In fact, dissipative processes determine the way
ultimately the vacuum energy density, stored in the inflaton
field, ends up converting into radiation, thus allowing the
universe to transit from the accelerating phase to the
radiation-dominated epoch. In the standard inflationary
or cold inflation scenarios, dissipative effects are typically
ignored during the inflationary phase if any preinflationary
radiation energy density is diluted. The universe then ends
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up in a supercooling phase requiring a reheating mecha-
nism [30], where the inflaton starts oscillating around the
minimum of its potential and progressively dissipates its
energy into other relativistic light degrees of freedom, to heat
up the universe again as required by the standard big bang
cosmology. On the contrary, dissipative effects may be strong
enough during inflation where preinflationary radiation
energy density can be sustained during inflation and also
become dominant at the end of inflation whereby the
universe smoothly enters into radiation dominated epoch
without a need for a separate reheating period [31]. Such
dissipative effects bring about much richer dynamics for
inflation at both background and perturbative levels (for
reviews, see, e.g., Ref. [32]) introducing warm inflation as a
promising complimentary version of cold inflation by
addressing some of long-lasting problems related to (post)
inflationary picture in cold inflation scenarios.

For a comparison with cold inflation, it is useful to recall
some of the features of warm inflation. It is interesting to
note that the dissipative effect appears as a supplementary
friction term in background equations allowing embedding
of steeper potentials in warm inflation solving the so-called
n-problem [33]. Also, it leads to several different possibil-
ities for a graceful exit, depending on the form of potential,
form of dissipation coefficient, and whether the dynamics is
in the strong or weak dissipative regime [34]. Moreover,
dissipative effects also modify the primordial spectrum of
curvature perturbations, resulting in a smaller energy scale
of inflation and reconciling steeper potentials with obser-
vational data [35]. Such appealing features of warm
inflation allows it to simultaneously satisfy the so-called
swampland conjectures, provided warm inflation can occur
in the sufficiently strong dissipative regime [36-38].
Although it is enormously challenging to achieve a strong
dissipative regime in warm inflation, two models were
successfully constructed to push warm inflation into the
strong dissipative regime with inspiration from particle
physics [39,40]. Furthermore, the inflaton itself can be a
source and responsible for cosmic magnetic field gener-
ation [41] and in combination with the intrinsic dissipative
effects lead to a novel dissipative baryogenesis scenario
during inflation [42]. More recently, it was shown that
warm inflation enables a stable remnant of inflaton in the
postinflationary epoch, which can behave either like cold
dark matter accounting for all the dark matter in the
universe [43] or like a quintessence at late time generating
the present phase of accelerated expansion [44] (see also
Refs. [45,46] for unifying all conventional ingredients of
modern cosmology using dissipative effects).

The goal of this manuscript is to investigate the dissipative
particle production effects” on preinflationary dynamics of

*For brevity, we label these effects in the following as
dissipative effects. We note that the source of such dissipative
effects is particle production.

k =1 LQC and understand their role on the hysteresislike
phenomena and the onset of inflation for Starobinsky
potential starting from highly unfavorable initial conditions.
Our goal will be to consider those cases which failed to lead
to inflation in the absence of dissipative effects. In Sec. II, we
give a brief review of the effective dynamics of k = 1 LQC
and the warm inflation and discuss the way dissipative effects
are implemented in k = 1 LQC. In Sec. III, we solve the
dynamical system of equations in the presence of dissipative
effects and show that even a small amount of dissipation
enlarges the phase space of initial conditions for which
inflation occurs. We phenomenologically investigate these
solutions for three models of warm inflation: the warm little
inflaton (linear temperature-dependent dissipation coeffi-
cient), variant of warm little inflaton (inverse temperature-
dependent dissipation coefficient), and minimal warm infla-
tion (cubic temperature-dependent dissipation coefficient).
Moreover, we also investigate some features of the qualita-
tive dynamics using phase-space portraits. These results
show that in the presence of dissipation the hysteresislike
phenomenon becomes much stronger and results in a quick
onset of inflation for even those initial conditions where
inflation could not start in the absence of dissipation. We
conclude the manuscript with a summary of our results
in Sec. IV.

II. EFFECTIVE DYNAMICS IN k=1 LQC AND
WARM INFLATION

In this section, we first briefly review the effective
dynamics of spatially closed LQC in the holonomy
quantization [18]. This is followed by a discussion of
the dynamical equations in the warm inflation scenario and
the way warm inflation can be implemented in the effective
spacetime description of kK = 1 model in LQC.

A. Effective dynamics of k=1 LQC

LQC is a canonical quantization based on Ashtekar-
Barbero variables. The connection Al and its conjugate
triad E!, which due to homogeneity and isotropy, symmetry
reduce to ¢ and p for the k = 1 Friedmann-Lemaitre-
Robertson-Walker model. In the improved dynamics or the
i scheme of LQC [16], it turns out that an equivalent set of
variables defined as b = c|p|~!/? and v = |p|*/? is more
convenient to obtain the quantum and effective description.
Here, v denotes the physical volume of the unit sphere
spatial manifold and is related to the scale factor of the
universe as v = 2z°a’. The phase-space variables b and v
satisfy {b,v} = 4nGy, where y denotes the Barbero-
Immirzi parameter, whose value is generally taken to be
y = 0.2375 in LQC following the calculations of black hole
thermodynamics in loop quantum gravity.

The effective Hamiltonian in the holonomy-based quan-
tization of the k = 1 model in LQC for the lapse chosen as
unity is given by
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Hegr = v[sin?(Ab — D) — sin?> D + (1 + y*)D?]

(2.1)

where D = (A(22%)!'/3))/v"/3 and 2* = 4(\/37y)¢%,. Here,
we have ignored the modifications from the inverse volume
effects, which turn out to be negligible in comparison to the
holonomy modifications [1 8].3 Before we examine the
dynamics resulting from this Hamiltonian, let us note that
there exists another quantization of the X = 1 model in
LQC, which is known as the connection-based quantization
[20]. Though there exist some qualitative differences in the
way singularity resolution occurs in this prescription as
compared to the holonomy based quantization [20,49], the
main features of dynamics remain the same. Especially,
the existence of hysteresis which plays an important role in
the onset of inflation is robust in both the quantization
prescriptions, and the difference between the two approaches
turn to be small for inflationary dynamics [28]. For this
reason, we consider only the effective dynamics for the
holonomy quantization in this analysis.

Using Hamilton’s equations, the equation of motion for
volume turns out to be

872Gy 2
+ Hman ~ O?

v ={v,Het} = %v sin(Ap — D) cos(4 — D), (2.2)

which results in the following modified Friedmann
equation:

? 87G

£ — Pmin
H? :W:T(p_pmin><l_pﬂT>' (2.3)

Here, p% = 3/(87Gy*?) denotes the energy density at
the bounce for the spatially flat model in LQC, and

Pmin = Phix[(1 +7*)D? + sin*(D)] (2.4)
denotes the minimum allowed energy density in the
evolution. In the classical universe, this value coincides
with the value of energy density at which a classical

recollapse occurs. The maximum of the energy density
is given by

Pmax = Pmin T pgztx- (25)

Note that in the quantum regime depending on the initial
conditions a bounce as well as a recollapse can occur at p,;,
as well as at p,., [14].

*Note that a nonsingular dynamics results solely from inverse
volume modifications, too, in the k = 1 model in LQC [47],
which has been used to understand conditions for the onset of
inflation [48].

The Hamilton equations for the phase-space variable
conjugate to v is given by

b ={b, Her} = —4nGylp + P - p)] (2.6)
with
pﬂat D
P :%[2(1 +y?)D—sin(24—D)—sin(2D)],  (2.7)
where P denotes the pressure which equals P =

—OH mai/ Ov. The dynamical equations for the scalar field
matter variables with a potential V(¢) are

¢ = {p, Het} = % (2.8)

i)(/) = {pr, Heff} = —P3/2V,¢~ (2-9)

Using the above equations, it is straightforward to show
that Klein-Gordon equation follows along with the standard
conservation law for matter energy density.

The above dynamical equations encode nonperturbative
quantum gravitational effects, which result in a nonsingular
bounce of the universe in the Planck regime [14,18,28].
This results in nonsingular cycles of expansion and con-
traction if the matter does not violate strong energy
condition, i.e., has equation of state @ = P/p greater than
—1/3. For the latter type of matter content, the universe
undergoes a recollapse at late times, resulting in a con-
traction and a big crunch singularity in the classical theory.
This singularity is avoided in LQC, resulting in a bounce
and another phase of expansion and a possible recollapse if
the equation of state w > —1/3 in the expanding phase. If
the recollapses occur at the macroscopic scales, the differ-
ence in the volumes of two consecutive recollapses is found
to be [28]

— ¢ Pdv

Sol/3 —
O

VUrec =

(2.10)

This implies that in each cycle of expansion and contraction
the maximum volume v, changes. This occurs because of
the asymmetry of the pressure during different phases of a
given cycle, which results in a hysteresislike phenomenon
[26,28]. This hysteresislike phenomenon has been shown to
be responsible for alleviating problems with the onset of
inflation for different potentials, especially low-energy
scale models [14]. Before we examine this phenomenon
in the presence of radiation production in warm inflationary
scenarios, we summarize the latter and obtain the relevant
equations in LQC.

106006-4



ROLE OF DISSIPATIVE EFFECTS IN THE QUANTUM ...

PHYS. REV. D 104, 106006 (2021)

B. Warm inflationary dynamics in LQC

The dynamical realization of warm inflation is different
from the cold inflation due to the presence of radiation as
well as the possibility of energy exchange between inflaton
and radiation energy density. Hence, the total energy
density of the universe in warm inflation reads

P =Pyt P (2.11)
where pj = %cﬁz + V(¢) is the scalar field energy density
with V(¢) being some potential function and p, is the
radiation energy density. The inflaton field ¢ and the
radiation energy density form a coupled system in warm
inflationary dynamics due to dissipation of energy out of
the inflaton system and into radiation. The background
evolution equations are, respectively, given by [34]

G+3HP+V 4 =-"(4.T)¢ (2.12)

py + 4Hp, = T(. T)dF. (2.13)
Here, Y'(¢, T) is the dissipation coefficient, which can be a
function of both inflaton and temperature, depending on the
specifics of the microscopic physics behind the construc-
tion of a warm inflation model. For a radiation or a bath of
relativistic particles, the radiation energy density is given
by p, = (n>g/30)T*, where g is the effective number of
light degrees of freedom (g is fixed according to the
dissipation regime and interactions form used in warm
inflation). Such radiation production results in entropy
production where the entropy density s is related to
radiation energy density by T's = (4/3)p,, i.e., is related
to temperature as s = (2z2g/45)T?, where we have con-
sidered a thermalized radiation bath as is typically the case
in warm inflationary scenarios. Then, Eq. (2.13) can be
written in terms of entropy as follows [38]:

T(5 +3Hs) = T¢*. (2.14)

As we will see in the next section, such entropy
production significantly changes the hysteresislike phe-
nomena. In fact, the term 3Hs, which is positive in the
expanding universe (H > 0) and negative in the contracting
universe (H < 0), produces a larger difference in pressure
during expansion/contraction stages, making the hystere-
sislike phase stronger in comparison with the case without
dissipative effects.

Let us note that the richer dynamics of warm inflation
sharpened the interest for finding explicit models aiming at
overcoming two important issues found in earlier particle
physics realizations of warm inflation. First is the require-
ment of large field multiplicities so as to be able to sustain
a nearly thermal bath, and second is the difficulty in
achieving achieve strong dissipative regimes (1 > H),
due to the interplay between inflaton and radiation

fluctuations, leading to the appearance of growing modes
in the scalar curvature power spectrum, and that can render
it inconsistent with the observations. The former problem
was first solved with an introduction of a new class of warm
inflation model building realization motivated from the
ingredients used in “little Higgs” models of electroweak
symmetry breaking where the inflaton is a pseudo-Nambu-
Goldstone boson of a broken gauge symmetry and its
potential is protected against large radiative corrections by
symmetry obeyed by the model while still having enough
interactions to allow thermalization of light degrees of
freedom. This results in enough dissipation even if the
mediators are very light with respect to ambient temper-
ature. In such a model also known as warm little inflaton,
the dissipation coefficient is given by [50]
T]in - ClinT' (215)
We refer to the above Yy, as the linear dissipation
coefficient. Although warm little inflaton was successful
in producing a sustainable thermalized radiation bath
utilizing just a few mediator fields, it could not obtain a
strong dissipative regime, which allows steeper potentials
to be embedded in warm inflation by making the energy
scale of inflation smaller. To this end, a concrete model of
warm inflation, the so-called minimal warm inflation [39],
was recently constructed in which the inflaton has axionlike
coupling to gauge fields. Since the inflaton is an axion, its
shift symmetry protects it from any perturbative back-
reactions and thus from acquiring a large thermal mass.
Hence, the thermal friction from this bath can easily be
stronger than Hubble friction even for a small number of
fields. The corresponding axion friction coefficient turn out
to be
Yo = CounT>. (2.16)
Hereafter, we refer to the above Y., as the cubic
dissipation coefficient. In this regard, another model was
also recently proposed, inspired from an idea used in warm
little inflaton where the inflaton is directly coupled to light
scalar bosonic fields rather than fermionic fields, which is
known as a variant of warm little inflaton [40]. Although
the exact form of dissipation coefficient is complex, the
leading behavior of dissipation, when the effective mass is
dominated by thermal part, varies as
Tinv = Cian_l' (217)
Hereafter, we refer to the above Y,;,, as the inverse
dissipation coefficient. We should note that C;,, < Cy;, <
C.., since it should be fixed in such a way that the
condition for a sustainable thermal bath, ie., T > H, is
satisfied during the inflationary phase.
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Taken together, to consider the dissipative effects during
both preinflationary and inflationary phases all the way
from the bounce until the end of inflation, we phenom-
enologically implement dissipative effects into the effective
equations of the spatially closed model LQC. The resulting
dynamical equations are

3
b= ke sin(Ab — D) cos(4b — D) (2.18)
v
2
: p; 4
b = —4zGy [U—§+§pr —pl] (2.19)
R (2.20)
v
pyp=—vVy="T(p.T)p, (2.21)
4 Y(¢.T)p;
pr = —|—sin(db — D) cos(Ab — D)} pr+ M
YA v
(2.22)

In the next section, we will first discuss the way such
dissipative effects, or equivalently entropy production,
change the dynamics of preinflationary phase and also
enlarge the phase space of initial conditions which result in
a (warm) inflation. Then, we perform a qualitative analysis
of the dynamical equations to understand the attractor
behavior of the solutions and gain insights on the way
dissipative effects help in the onset of inflation even starting
from highly unfavorable initial conditions.

II1. DISSIPATIVE EFFECTS ON
PREINFLATIONARY DYNAMICS OF k=1 LQC

In this section, we investigate the consequences of
dissipative effects in LQC to address the problem of onset
of inflation for the Starobinsky potential. We discussed in
Sec. II the way nonsingular cycles of expansion and
contraction result in a hysteresislike phenomenon, which
arises due to differences in pressure during expansion and
contraction stages of cosmic evolution. Because of this
difference in pressure, the work done during one cycle can
be positive or negative depending on the potential function.
For sufficiently flat potentials, the work can be positive,
resulting in increasing the size of the universe in the
successive cycles. Because of this, even if the inflaton
starts with a kinetic energy dominated condition and an
equation of state close to unity, the equation of state
decreases in each cycle and eventually becomes less than
—1/3, which leads to an onset of inflation. Hence, if the
universe fails to inflate after the first cycle, it can do so after
subsequent cycles enlarging the phase space of initial
conditions, which results in inflation [28]. Recently, it
was shown that for the Starobinsky potential the universe

can inflate for a large part of initial conditions; however, it
should go though numerous cycles of expansion and
contraction [14]. Further, for some of the initial conditions,
the inflation does not commence even after a large number
of nonsingular cycles. As we will see, the dissipation or
entropy production leads to larger differences in pressure
during expansion-contraction phase, resulting in a larger
amplitude of the cycles. Therefore, we expect that entropy
production due to radiation particle production makes the
hysteresis phenomena stronger, leading into the universe
with a bigger size in successive cycles, causing the universe
to inflate after a small number of cycles. In the following,
we first obtain the background solutions demonstrating the
above phenomena, which is followed by discussion of
phase-space portraits in qualitative dynamics of this model.

A. Dissipative effects for Starobinsky potential

Starobinsky inflation is a prominent example of low-
energy inflation models favored by current observations. In
classical cosmology, this model results from adding the R?
term to the action, which translates to adding the following
potential in the Einstein frame

2 2

U(g) =21 (1 —e—@qﬂ(’)) . (3.1)
32x

But in LQC, the above potential is not obtained from an R?
term in the action, since the covariant action in LQC does
result in higher-order curvature terms but in a Palatini
framework [51]. As in previous works in LQC, we consider
the above potential as a phenomenological input in effec-
tive dynamics.

In the Starobinsky model, the inflation is supposed to
start at energy scales far lower than the Planck scale, and as
a result, the initial conditions in the Planck regime are such
that kinetic energy dominates the potential energy. If one
numerically solves the classical cosmological dynamics of
above potential, one finds that the universe undergoes a
recollapse before potential energy can dominate and
encounters a big crunch singularity [4,5]. We would see
that this situation changes dramatically in the effective
dynamics in LQC. Below, we numerically solve dynamical
equations (2.18) for various initial conditions, using the
explicit Runge-Kutta algorithm and stiff-switching method
in Mathematica with accuracy and precision goals set to 11.
The initial value of b (the conjugate to volume v) is fixed by
the vanishing of the effective Hamiltonian constraint.
Moreover, we also set the initial value of p, using the
condition for the bounce, i.e., p = p.x. Therefore, we are
left with just three initial conditions on volume (v,), scalar
field (¢¢), and initial radiation energy density (p,;). We
choose initial conditions such that the radiation energy
density is subdominated in comparison with both the
kinetic energy density and potential energy density of
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FIG. 1. The evolution of volume for different values of cubic

dissipation coefficient. Initial conditions are chosen at the bounce
with vy = 5 x 107, ¢y = =1, p,o = 1072, and g = 17.

the inflaton field, and the bounce happens with kinetic
dominated initial conditions (p,g < U(¢y) < ¢3/2).

In the following, we first solve the dynamical equations
for the case of minimal warm inflationary model, i.e., with
a cubic dissipation coefficient. In this case, the inflaton has
an axionic coupling to a non-Abelian gauge theory and the
sphaleron transitions between gauge vacua, existing at
sufficiently high temperatures. And if the corresponding
non-Abelian gauge theory has gauge group SU(3), there
are eight gauge bosons, each of which contribute two
relativistic degrees of freedom. Including the inflaton itself,
there are in total 17 relativistic degrees of freedom. So, we
set the number of relativistic degree of freedom g = 17
[37]. In Figs. 1 and 2, we plot the evolution of volume and
equation of state for three different values of C, in LQC.
For the initial conditions, vy =35 x 107, ¢, = —1, and
p,o = 10712, the dynamical evolution is nonsingular for
all the considered values of C,,,. The initial conditions are
chosen such that in the absence of dissipation, inflation
does not start after various cycles of nonsingular evolution.
As can be seen, in case of C., = 0 (dissipationless

-05

A\ e Ceup = 1000
\ i—— Cop=04
\.\ —— Cop=0
-1.0 -
0 20x10°  40x10° 60x10° 80x10° 1.0x10° 1.2x10

t

FIG. 2. The evolution of equation of state for cubic dissipation
coefficient and same initial conditions as in Fig. 1.

universe), the universe does not enter an inflationary phase
even after many cycles of nonsingular evolution. This is
because the hysteresislike phenomenon is not large enough
to set the scalar field at the flat part of potential function in
subsequent cycles. However, dissipative effects make the
hysteresis phase stronger (decreasing the number of cycles
and increasing its amplitudes), whereby the universe begins
the inflationary phase after a small number of cycles. This
is evident in the dynamical evolution for C.,, = 0.4 and
C.up, = 1000. We see from the former case that even a small
nonzero value of C,, resulting in small dissipative effects,
has substantial effects on the hysteresislike phenomena and
the onset of inflation. We find from the volume and
equation of state plot that a phase of inflation starts after
a few nonsingular cycles when the volume grows expo-
nentially and the equation of state becomes less than —1/3.
But such a small value of dissipation coefficient cannot
sustain the thermal bath during inflation, and one needs a
larger value of C,,. As one increases the value of C,, the
dissipative effects make the hysteresis phase very strong,
and inflationary phase starts just after just one bounce. This
is shown in Fig. 1 for the case of C.,, = 1000. Here, we
should note that the curves for C., = 0.4 and C, = 1000
start from the same initial volume, but because of the use of
logarithmic scale in the plot, the figure does not show the
same value of volume for both the curves. We note that the
evolution of equation of state in Fig. 2 shows that for
C.u, = 0 the equation of state oscillates between 1 and 0.5
for the entire range of evolution; however, for nonvanishing
dissipation coefficients, it decreases quickly below w =
—1/3 and becomes w =~ —1, indicating an onset of slow-roll
inflation. As one can see, the equation of state becomes —1
much earlier for larger dissipation coefficient.

We now discuss the case of warm little inflaton in LQC.
In Figs. 3 and 4, we plot the evolution of volume and
equation of state for the linear dissipation coefficient and
three different values of Cy;, for initial conditions v, = 107,

10" - : : T T
: ]
ob Cyn = 0.00008 P
07F  .—— Cy,=0.00004 N
— GCin=0 § !
1019
10"
>
1017
1016
10"
5x10% 1x10° 5x10°1x10° 5x10%1x 10
t
FIG. 3. The evolution of volume for different values of linear

dissipation coefficient. Initial conditions are chosen at the bounce
with vy = 107, ¢y = —1.5, p,y = 107", and g = 12.5.
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FIG. 4. The evolution of equation of state for linear dissipation
coefficient and same initial conditions as in Fig. 3.

¢o = —1.5, and p,; = 1071, We also fix g = 12.5 using
analysis in [50]. We consider nonzero values of Cj, as
0.00004 and 0.00008, which are typical values for warm
inflation to happen in spatially flat spacetime. As before,
the chosen initial conditions correspond to the unfavorable
ones where inflation does not start in LQC even after
various cycles of nonsingular evolution when dissipation is
absent. This can be seen from the curve corresponding to
Cjin» = 0, where the universe oscillates in nonsingular
evolution but there is no onset of inflation since the
equation of state never becomes less than —1/3.
However, when we add dissipative effects, the hysteresis
becomes stronger, and we see that the universe experiences
an inflationary phase after a small number of cycles. We see
that the equation of state becomes less than —1/3 after a
few cycles for Cj;, = 0.00004 and Cj;, = 0.00008. As we
increase the value of Cj,, the number of cycles prior to
onset of inflation decreases, and the amplitude of the cycles
become larger.

Finally, we consider the variant of warm little inflaton
with the inverse dissipation coefficient, which is shown in
Figs. 5 and 6. As in previous cases, initial conditions are

21

10 . . . . . g

------- Ciny =6x 107" I
109F == Cppy=3+10" P

— Cinv =0 '. !

H I
10k ! 5

J
N\
> qomf : 3
10" E
1016 L -
5x10* 1x10° 5x10°1x10° 5x10%1x 107
t

FIG. 5. The evolution of volume for different values of inverse

dissipation coefficient. Initial conditions are chosen at the bounce
with vy = 2.5 x 10°, ¢y = =2, p,y = 107°, and g = 12.5.

_______ Coy=6x10"" % \

= Cpy= 31071 % X,
Y Cine = 0 Y
0 20x10° 4.0x10° 6.0x10° 80x10° 1.0x107 1.2x10"

t

FIG. 6. The evolution of equation of state for inverse dissipa-
tion coefficient and same initial conditions as in Fig. 5.

chosen such that there is no inflationary phase even after
many cycles in the absence of dissipative effects. But
choosing a nonzero dissipation coefficient, even if small,
leads to a striking difference in dynamics and results in a
stronger phenomenon of hysteresis. In these figures, we
choose Ci,, =3 x 107!" and 6 x 10~!'! and fix g = 12.5.
The chosen values of C;,, are smaller than two other cases
as we discussed previously. We find that as we increase the
value of C;,, the number of cycles decreases, the amplitude
of the cycles become larger, and the universe enter into the
inflationary phase sooner.

To summarize the results so far, we have found the
dissipative effects resulting in radiation production make
the hysteresis phenomena stronger and set the condition for
inflation to happen sooner for dissipation coefficients
which have a cubic, linear, and inverse relationship to
temperature. Though we discussed a sample of initial
conditions, our results are robust to changes in initial
conditions. To gain some insights on the qualitative
dynamics and robustness of results we study the phase-
space portraits in the following.

B. Qualitative dynamics in phase-space portrait

It is useful to understand the phase-space portraits for
qualitative dynamics by introducing the variables

X(1) = ;{0(1 — eV 1<z>) (3.2)
 pylD) e
TN

where y, = m, /-5—2— and p,,,; denotes the maximum
3277"Gpmax

energy density (2.5) determined by the initial conditions.
Our goal will be to find the inflationary attractors for
different choices of dissipation coefficients and initial
conditions. These have been studied earlier for cold
inflation in detail in LQC [52]. The inflationary attractor
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FIG. 7. Projection of three-dimensional phase-space portrait on Z = 0 plane for cubic dissipation coefficient with m = 0.62,
C.p = 7.5, vy = 35, p,y = 1073, and seven distinct initial conditions for ¢y.

lies at (X = 0,Y = 0), which corresponds to the reheating
phase in cold inflation and the beginning of radiation epoch
in warm inflation.

Starting with the cubic dissipation in Fig. 7, the left plot
shows the projection of entire phase-space region on plane
Z =0, and the right plot zooms in on the attractor near the
origin. The vertical dashed black line corresponds to
X = y¢, and all real solutions lie to the left of this line.
For a better visualization of the qualitative features it is
useful to consider a large value of inflaton mass, which is
chosen here to be m = 0.62. The solid black circular curve
corresponds to the energy density of the first bounce at
t = 0 where the initial conditions are set. The left plot in
Fig. 7 shows curves corresponding to seven distinct initial
conditions for ¢, while other parameters are fixed, for
which the universe undergoes inflation in the presence of
dissipative effects. For the same initial conditions in the
absence of dissipative effects, the universe goes through

0.01

107°

1078

107"

107

t

many cycles without the onset of an inflationary phase.
It should be noted that we chose C,;, large enough to see
the end of inflation and also the postinflationary phase. So,
in most of the cases, the hysteresislike phenomena go away,
and the universe experiences an inflationary phase after just
one bounce.

We expand on details of the above dynamics in Fig. 8,
where the evolution of the potential energy density V(¢),
kinetic energy density ¢ /2, and the radiation energy
density p, are shown for the gray curve in Fig. 7. We
can see from the figure that the universe starts from a
bounce in the kinetic dominated regime (initial condition
with equation of state w ~ 1), with ¢>/2> U (@) > p,,
and the kinetic energy very soon dilutes away since it
behaves as a%. In the subsequent evolution, we find that
radiation energy density becomes important in comparison
to kinetic and potential energies. Such a radiation domi-
nated regime before the inflationary phase has also been

o

0.0

-0.5

t

FIG. 8. Evolution of energy components as well as equation of state for cubic dissipation coefficient with m = 0.62, C, = 7.5,

vy = 35, pyo = 1073, and ¢, = 0.5 (gray curve in Fig. 7).
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FIG. 9. Projection of three-dimensional phase-space portrait on the Z = 0 plane for the linear dissipation coefficient with m = 0.62,
Cyin = 0.8, vy =35, p,o = 1073, and seven distinct initial conditions for ¢.

reported for warm inflation in spatially flat LQC [53] (see
also Ref. [54] for a review on warm inflation in spatially flat
LQC). After some cycles, when the hysteresislike phe-
nomenon causes an onset of inflation, the radiation energy
density becomes subdominant in evolution. Note that,
contrary to cold inflation, radiation is concurrently pro-
duced during the inflationary phase, and it may reach an
equality with potential energy density at the end of inflation
if dissipative effects are strong enough to sustain the
thermal bath, and the universe smoothly enters into a
radiation-dominated epoch without subsequent (p)reheat-
ing phase. However, as is clear in Fig. 8, the universe does
not enter into a radiation-dominated epoch at the end of
inflation. This is because the considered value of C.y,,
chosen due to computational constraints, is not large
enough, and hence the inflationary phase is a cold type,
and a reheating mechanism is a must. Hence, although a
small dissipation coefficient could not sustain thermal bath
during inflation leading to warm-type inflation, it has

107"

0.5 1 5 10 50 100
t

substantial effect on preinflationary dynamics and the onset
of inflation, which is evident from the existence of a
o ~ —1 phase from the plot of the equation of state. We
further note that if the dissipation coefficient is chosen large
enough the warm inflation starts quickly and the radiation
energy density reaches values similar to the potential
energy density at the end of inflation.

Figure 9 illustrates the projection of the entire phase-
space portrait on Z = 0 plane for the linear dissipation
coefficient and m = 0.62. The left plot shows that seven
distinct initial conditions (different values of ¢, while other
parameters are fixed) starting from the first bounce all
exhibit an attractor behavior and come to the center of circle
(fixed point). In Fig. 10, the evolution of energy density
components shows that inflation ends in a radiation-
dominated epoch due to dissipative effects. Although such
dissipative effects are large enough to sustain thermal bath
during inflation, they are not large enough to suppress
kinetic energy during inflation and terminate the universe in

60 80 100 120 140
t

FIG. 10. Evolution of energy components as well as equation of state for linear dissipation coefficient with m = 0.62, Cy;, = 0.8,

vy = 35, po = 1073, and ¢, = 1.55 (gray curve in Fig. 9).
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FIG. 11. Projection of three-dimensional phase-space portrait on Z = 0 plane for inverse dissipation coefficient with m = 0.79,

Civ = 0.2, vy = 30, p,y = 1073, and six distinct initial conditions
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FIG. 12. Evolution of energy components as well as equation of state for inverse dissipation coefficient with m = 0.79, C;,, = 0.2,

vy = 30, p,o = 1073, and ¢, = 2.2 (brown curve in Fig. 11).

a radiation-dominated epoch. Hence, there is a very short
kinetic-dominated regime before the universe transits into a
radiation epoch, which is typical in the warm inflation
scenario when the dissipation effect is small (such a kinetic-
dominated regime after warm inflation has also been seen
in Ref. [45]). However, such a kinetic-dominated regime
does not have any adverse implications since it is very
short. Moreover, since in this model such a kinetic-
dominated regime occurs around the minimum of potential,
we see spiral behavior, which is typical in cold inflation due
to the reheating phase. However, this oscillatory phase
plays no role in making the universe hot, and the universe
enters into a radiation-dominated regime due to radiation
production during inflation and not a reheating phase. We
also find that there is a radiation-dominated regime before
the inflation phase, as was seen in the case of the cubic
dissipation coefficient.

In Fig. 11, we illustrate the projection of the entire phase-
space portrait on the Z = 0 plane for the inverse dissipation

coefficient and m = 0.79. We find that in this case, although
there is an attractor behavior and all initial conditions starting
from the first bounce come to the center of the phase-space
plot, there is no spiral behavior. This is because the universe
enters into a radiation-dominated regime due to strong
dissipative effects. There is no oscillatory behavior, which
is typical of cold inflation or what is found for previous
cases of the dissipation coefficient. In particular, the kinetic
energy always remains subdominated during inflation due
to strong dissipative effects, and inflation ends when radi-
ation becomes equal to potential energy (see Fig. 12).
Furthermore, we find that there is also a radiation-dominated
regime before the inflationary phase, as was seen for cubic
and linear dissipation coefficients.

IV. CONCLUSIONS

The onset of inflation in low-energy inflationary models
in classical theory is challenging in spatially closed models
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because of the recollapse of the universe before inflation
can set in. Indeed, one requies a high degree of fine-tuning
of initial conditions for the onset of inflation in such a case
[6]. On the other hand, if the spatial curvature is zero or
negative, this problem is nonexistent, and the onset of
inflation becomes highly probable [4,7,8]. The recollapse
in a spatially closed model causes a big crunch singularity,
and a closed universe ends in a big crunch singularity in a
few Planck seconds before the beginning of an inflationary
phase. This is a longstanding problem whose resolution
becomes important given that current observational data
favor low-energy inflation models and a slight positive
spatial curvature of the universe. There are various ways to
overcome this issue in classical cosmology. Apart from the
case of considering models with a spatially flat and
spatially open universe, one can consider a low-energy
inflation model coupled with an additional scalar field
which drives an early phase of inflation near the Planck
density, which is taken over later by low-energy inflation.
Further, one can introduce additional higher-order terms in
the quadratic potential to fit with Planck data [4,5]. But if
one aims to understand this issue for a single field set up in
low-energy inflation models, two issues need to be
addressed simultaneously. The first is a successful and a
generic resolution of singularities, and the second is a
mechanism to create favorable conditions for inflation to
begin. The challenges underlying the first problem are well
known and require insights from nonperturbative quantum
gravity. The latter problem is also nontrivial, given that
inflation in low-energy inflation models begins at very
small energy scales compared to Planck scale due to which
initial conditions in the Planck regime are kinetic energy
dominated, which leads to a recollapse of the universe. The
above problem was recently analyzed in LQC [14] where
nonperturbative quantum gravity effects are known to result
in a generic resolution of all strong curvature singularities
[23]. In particular, the big bang/big crunch singularities are
resolved and replaced by a nonsingular bounce [15,16,18].
It was found that for the Starobinsky inflation potential the
universe in LQC cycles through various periods of expan-
sion and contraction, resulting in an onset of inflation even
when inflation starts from kinetic-energy-dominated initial
conditions which result in a big crunch in a few Planck
seconds. At the heart of this resolution likes a hysteresislike
phenomenon, which changes the ratio of kinetic and
potential energy in subsequent cycles in such a way that
the equation of state even when starting from w= 1
becomes less than —1/3. The universe then enters a phase
of accelerated expansion, a recollapse is avoided, and
inflation sets in.

Although hysteresislike phenomena can enlarge the
phase space of initial conditions for a plateaulike potential,
with the Starobinsky potential as the most known one, the
inflationary phase either occurs after many cycles or does
not happen due to flatness of the potential for some

unfavorable initial conditions [14]. A pertinent question
is whether there exists a mechanism which can result in the
onset of inflation in LQC even for such unfavorable initial
conditions. The goal of the paper was to successfully
answer this question. Motivated by Tolman’s model in
which the hysteresislike phase happens due to entropy
production sourced by viscous pressure and also warm
inflationary dynamics, we considered spatially closed LQC
in which the scalar field concurrently dissipates its kinetic
energy into a radiation field starting from the first bounce.
Hence, there are two contributions for work done in each
cycle: one from an asymmetric equation of state of scalar
field during the expansion-contraction phase and the other
from entropy production due to dissipative effects. Because
of dissipative effects, one expects the phenomena of
hysteresis to become much stronger and inflation to set
in far more easily.

We worked in the setting of effective spacetime descrip-
tion in LQC and obtained Hamilton’s equations with
nonperturbative quantum gravity corrections in the pres-
ence of dissipative effects for the k =1 model using
holonomy quantization. Hamilton’s equations were
numerically solved for the Starobinsky potential and three
different dissipation coefficients inspired from quantum
field theory all the way from the first bounce until the end
of inflation. These were with cubic, linear, and inverse
temperature dependence. We found that even a small value
of dissipation makes the hysteresislike phenomena strong.
The effect is such that inflation sets in not only a few cycles
but also for those initial conditions which are extremely
unfavorable for inflation to begin even in LQC without
radiation production. Moreover, we find that as we make
the dissipative effects large enough the hysteresislike
phenomenon goes away and the universe inevitably enters
into the inflationary phase after just one bounce. To gain
insights on the qualitative dynamics of the universe from
the bounce until the end of inflation, we studied the phase-
space portraits for different initial conditions and all three
dissipation coefficients. In all three cases, we found that all
initial conditions experience an attractor dynamics showing
that the universe goes through the inflationary phase. In
other words, the universe starting from the first bounce with
stifflike initial conditions dilutes its kinetic energy due to
both Hubble friction and dissipative effects and transfers it
to radiation field, as opposed to a dissipationless universe,
whereby after some cycles the radiation energy density
becomes the dominant energy component. However, such a
radiation-dominated epoch continues only for a very short
period since radiation energy density decays as a~*. Then,
the potential energy becomes dominant, resulting in an
inflationary phase. Moreover, if the dissipative effects are
large enough, the inflationary phase will be of warm type,
whereby the universe smoothly enters into a radiation-
dominated epoch without the need for a separate reheating
epoch. Our analysis shows that with the presence of
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dissipative effects nonsingular quantum gravitational
dynamics results in an onset of inflation for low-energy
inflationary models even from highly unfavorable initial
conditions. In comparison to the cases where dissipation is
absent, we find hat inflation sets in much quicker due to
stronger hysteresislike phenomena. Since our results estab-
lish phenomenological viability of low-energy inflationary
models in spatially closed universes at the level of back-
ground dynamics, it will be interesting to investigate the

model at perturbative level to confront its predictions with
observational data.
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