
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

On Construction and Estimation of Stationary
Mixture Transition Distribution Models

Xiaotian Zheng, Athanasios Kottas & Bruno Sansó

To cite this article: Xiaotian Zheng, Athanasios Kottas & Bruno Sansó (2021): On Construction
and Estimation of Stationary Mixture Transition Distribution Models, Journal of Computational and
Graphical Statistics, DOI: 10.1080/10618600.2021.1981342

To link to this article:  https://doi.org/10.1080/10618600.2021.1981342

View supplementary material 

Published online: 09 Nov 2021.

Submit your article to this journal 

Article views: 59

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2021.1981342
https://doi.org/10.1080/10618600.2021.1981342
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2021.1981342
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2021.1981342
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2021.1981342
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2021.1981342
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2021.1981342&domain=pdf&date_stamp=2021-11-09
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2021.1981342&domain=pdf&date_stamp=2021-11-09


JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2021, VOL. 00, NO. 0, 1–11
https://doi.org/10.1080/10618600.2021.1981342

On Construction and Estimation of Stationary Mixture Transition Distribution Models

Xiaotian Zheng , Athanasios Kottas, and Bruno Sansó

Department of Statistics, University of California, Santa Cruz, CA

ABSTRACT
Mixture transition distribution (MTD) time series models build high-order dependence through a weighted
combination of first-order transition densities for each one of a specified number of lags. We present a
framework to construct stationary MTD models that extend beyond linear, Gaussian dynamics. We study
conditions for first-order strict stationarity which allow for different constructions with either continuous
or discrete families for the first-order transition densities given a prespecified family for the marginal
density, and with general forms for the resulting conditional expectations. Inference and prediction are
developed under the Bayesian framework with particular emphasis on flexible, structured priors for the
mixture weights. Model properties are investigated both analytically and through synthetic data examples.
Finally, Poisson and Lomax examples are illustrated through real data applications. Supplementary files for
this article are available online.
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1. Introduction

Mixture transition distribution (MTD) models describe a time
series {Xt : t ∈ N}, where Xt ∈ S ⊆ R for all t, by specifying
the distribution of Xt conditional on the past as follows:

F(xt|xt−1) =
L∑
l=1

wl Fl(xt|xt−l), (1)

for t > L, based on initial values for (x1, . . . , xL)�. In Equa-
tion (1), F(xt | xt−1) is the conditional cumulative distribution
function (cdf) of Xt given that Xt−1 = xt−1, and Fl(xt | xt−l)
is the conditional cdf of Xt with respect to the lth transition
component given that Xt−l = xt−l, where Xt−1 = {Xi : i ≤
t − 1} and xt−1 = {xi : i ≤ t − 1}. The parameters wl ≥
0, l = 1, . . . , L, assign weights to the transition components,
such that

∑L
l=1 wl = 1. On a finite state space this model

provides a parsimonious approximation of high-order Markov
chains (Raftery 1985; Raftery and Tavaré 1994; Berchtold 2001).
On a more general space, the model structure can represent
time series that depict non-Gaussian features such as burst,
outliers, and flat stretches (Le, Martin, and Raftery 1996), or
change-points (Raftery 1994).We refer to Berchtold and Raftery
(2002) for a review. An MTD model consists of L first-order
transition components. The mixture autoregressive model of
Wong and Li (2000) is a generalization that allows for each tran-
sition component to depend on a different number of lags; Lau
and So (2008) consider a Bayesian nonparametric prior for the
transition component of such models. There are several related
extensions that consider mixtures of autoregressive conditional
heteroscedastic terms, including Wong and Li (2001b), Berch-
told (2003), Zhu, Li, andWang (2010), and Li et al. (2017). Other
extensions include multivariate model settings (Hassan and Lii
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2006; Fong et al. 2007; Kalliovirta, Meitz, and Saikkonen 2016),
time-varying mixture weights (Wong and Li 2001a; Bartolucci
and Farcomeni 2010; Bolano and Berchtold 2016), nonlinear
transition dynamics (Heiner and Kottas 2021a), and order/lag
selection (Khalili, Chen, and Stephens 2017; Heiner and Kottas
2021b). Applications of these models appear in many fields
such as finance, and the environmental and medical sciences;
see, for example, MacDonald and Zucchini (1997); Lanne and
Saikkonen (2003); Escarela, Mena, and Castillo-Morales (2006);
Cervone et al. (2014).

Stationarity for MTD models, and their extensions, is gen-
erally difficult to attain due to the mixture model structure.
This limits the choices of parametric families for the transition
components for these models. Families considered in the liter-
ature include: Gaussian (Le, Martin, and Raftery 1996; Wong
and Li 2000; Kalliovirta, Meitz, and Saikkonen 2015); Student-
t (Wong, Chan, and Kam 2009; Meitz, Preve, and Saikkonen
2021); Laplace (Nguyen et al. 2016); Weibull (Luo and Qiu
2009); and Poisson (Zhu, Li, and Wang 2010). These models
are typically parameterized in ways that result in conditional
expectations that are linear functions of the lags. This particular
parameterization facilitates the study of stationarity, though
only in a weak sense, at the cost of reducing model flexibility.
Indeed, the conditional expectation of an MTD model has the
general form

∑L
l=1 wl μl(xt−l), where μl(y) = ∫

xdFl(x | y),
allowing for nonlinear dependence of the mean, conditional on
past observations.

The primary goal of this article is to develop conditions for
first-order strictly stationary MTD models, that is, stationary
models with an invariant marginal distribution. We show that a
sufficient condition is to assume the same marginal distribution
for all the components of the mixture. It turns out that this
marginal distribution is also the invariant marginal distribution
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of the time series. Under this condition, the first-order strict
stationarity is achieved with respect to any particular param-
eterization. We thus obtain a rich class of distribution spec-
ifications for the model, facilitating the study of component
distributions that have not been explored in the literature, and
enhancing the modeler’s ability to extend beyond high-order
linear dependence in the conditional expectation. Although the
focus of our methodology is on strictly stationary models, we
also study weak stationarity conditions for MTD models with
linear conditional expectation.

MTD models are usually built by specifying transition den-
sities fUl|Vl for each component l = 1, . . . , L. These corre-
spond to conditional densities for random variable Ul given
random variable Vl. This specification raises a question of exis-
tence of a coherent bivariate density fUl ,Vl . Our second goal is
to provide a constructive approach to building MTD models
that satisfy our strict stationarity condition under a coherent
bivariate density fUl ,Vl . We present two distinct approaches: the
bivariate distribution method, which is based on specifying the
bivariate distribution of the pair (Ul,Vl), l = 1, . . . , L; and the
conditional distributionmethod, which consists of finding pairs
of compatible conditional distributions fUl|Vl and fVl|Ul for all
(Ul,Vl).

Our final goal is to develop a Bayesian framework for MTD
model inference and prediction. We assume that the order of
dependence is unknown, but is bounded above by a finite num-
ber L. We use an over-specified model with L chosen con-
servatively, under the expectation that only a few of the lags
contribute to the dynamics of the series. We consider two priors
for themixtureweights, one based on a truncated stick-breaking
process, and the other obtained by discretization of a cdf which
is assigned a nonparametric prior. While the former supports
stochastically decreasing weights, the latter favors important,
but not necessarily consecutive weights.

The rest of the article is organized as follows. In Section 2, we
review the issues related to establishing stationarity conditions
for MTD models. We then introduce the invariant condition
that yields the class of first-order strictly stationary MTD mod-
els, and connect it to weak stationarity. Section 3 illustrates
two methods to construct such models with many examples. In
Section 4, we outline the Bayesian approach for model estima-
tion and prediction, followed in Section 5 by an illustration of
the properties of two structured priors for mixture weights on
synthetic data, and applications of the models on two real data
sets of different nature. Finally, we conclude with a discussion
in Section 6. Proofs and details of Markov chain Monte Carlo
(MCMC) algorithms are provided in the appendix and the
supplementary material.

2. First-Order Strict Stationarity

Consider the conditional density specification of the model in
Equation (1)

f (xt|xt−1) =
L∑
l=1

wl fl(xt|xt−l). (2)

Under our modeling framework, each transition component is
taken to correspond to the distribution for a random vector

(Ul,Vl), for l = 1, ..., L, where fl ≡ fUl|Vl denotes the associated
conditional density.

Earlier work has studied necessary and sufficient conditions
for constant first and second moments (Le, Martin, and Raftery
1996). In general, such conditions are difficult to establish, espe-
cially for the second moment

∫
S x2t gt(xt)dxt , where gt(xt) =∑L

l=1 wl
∫
S fl(xt | xt−l)gt−l(xt−l)dxt−l is the marginal density of

the process {Xt}. This restricts the choices of parametric fami-
lies for the component transition densities. In particular, those
choices result in linear conditional expectations. Even when
conditions for time-independent first and second moments can
be obtained, the resulting constrained parameter spaces compli-
cate estimation.

The key result for our methodology is given in the following
proposition, the proof of which can be found in the Appendix.
The result provides the foundation for different constructions
of the first-order strictly stationary MTD models. Rather than
imposing restrictions on the parameter space, the proposition
formulates a substantially easier to implement condition on the
marginals of the bivariate distributions that define the transition
components.

Proposition 1. Consider a set of bivariate random vectors
(Ul,Vl) taking values in S × S , S ⊆ R, with conditional
densities fUl|Vl , fVl|Ul and marginal densities fUl , fVl , for l =
1, . . . , L, and let wl ≥ 0, for l = 1, ..., L, with

∑L
l=1 wl = 1.

Consider a time series {Xt : t ∈ N}, where Xt ∈ S , generated
from

f (xt|xt−1) =
L∑
l=1

wl fUl|Vl(xt|xt−l), t > L, (3)

and from

f (xt|xt−1) =
t−2∑
l=1

wl fUl|Vl(xt|xt−l) +
(
1 −

t−2∑
k=1

wk

)

fUt−1|Vt−1(xt|x1), 2 ≤ t ≤ L.

This time series is first-order strictly stationary with invariant
marginal density fX if it satisfies the invariant condition: X1 ∼
fX , and fX(x) = fUl(x) = fVl(x), for all x ∈ S , and for all l.

The two different expressions for the transition density allow
us to establish the stationarity condition for the entire time
series. The relevant form for inference is the one in Equation
(3), since we work with the likelihood conditional on the first L
time series observations. Proposition 1 applies regardless of Xt
being a continuous, discrete or mixed random variable.

Regarding strict stationarity, the literature mostly focuses on
existence of a stationary distribution. Exceptions are Kalliovirta,
Meitz, and Saikkonen (2015) and Meitz, Preve, and Saikkonen
(2021), where a stationary marginal distribution for a mixture
autoregressivemodel is obtained, albeit again under constrained
parameter spaces, andMena andWalker (2007)whose approach
is the one most closely related to our proposed methods.

Mena and Walker (2007) used the latent variable method
proposed in Pitt, Chatfield, and Walker (2002) to construct the
conditional density for each transition component of the MTD.
More specifically, fl(xt | xt−l) = ∫

hX|Z(xt | z)hZ|X(z | xt−l)dz,
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where hX|Z(x | z) ∝ hZ|X(z | x)fX(x), and the integral is replaced
by a sum if Z is a discrete variable. Then, provided X1 ∼ fX ,
the MTD model is first-order strictly stationary with invariant
density fX . Under this construction, the invariant density fX
can be viewed as the prior for likelihood hZ|X , which is built
through latent variable Z. In practice, this restricts the approach
to continuous time series, and the choices for the invariant
density to cases where fX is conjugate to hZ|X . Even for such
cases, the transition component will typically have a complex
form. In particular, the example explored in Mena and Walker
(2007) involves a gamma invariant distribution, with hZ|X cor-
responding to a Poisson distribution. In this case, fl(xt | xt−l)
is a countable sum whose evaluation requires modified Bessel
functions of the first kind. Moreover, following Pitt, Chatfield,
andWalker (2002),Mena andWalker (2007) restricted attention
to choices of hZ|X that yield linear conditional expectations for
the transition components, and thus also for the MTD models.

The key feature of our approach is that it builds from the
bivariate distributions, fUl ,Vl , corresponding to the transition
components. In the next section, we discuss two approaches
to specifying those bivariate distributions, either directly or via
compatible conditionals, fUl|Vl and fVl|Ul . In conjunction with
Proposition 1, we obtain a general framework to constructing
first-order strictly stationary MTD models that can be applied
to both discrete and continuous time series, while allowing for a
wide variety of invariant marginal distributions, as well as for
both linear and nonlinear lag dependence in the conditional
expectation.

In general, an explicit expression for the autocorrelation
function for generalMTDmodels is difficult to derive. However,
a recursive equation can be obtained for a class of linear MTD
models. We say the MTD model is linear if E(Ul|Vl = y) =
al + bl y for some al, bl ∈ R, l = 1, . . . , L. Consider a linear
MTDmodel that satisfies the invariant condition of Proposition
1, and assume that the first and secondmoments of the invariant
marginal distribution, denoted by μ and μ(2), exist and are
finite. Then, for any L and h ≥ L, we can derive

E(Xt+hXt) = ∑L
l=1 wlalμ + ∑L

l=1 wlblE(Xt+h−lXt). (4)

Assuming that, for any h ≥ 1, E(Xt+hXt) does not depend on
time t, let r(h) be the lag-h autocorrelation function. Then,

r(h) = φ +
L∑
l=1

wlblr(h − l), h ≥ L, (5)

where φ = (
∑L

l=1 wlalμ − (1 − ∑L
l=1 wlbl)μ2)/(μ(2) − μ2)

is zero if and only if μ = 0 or al = (1 − bl)μ. When bl =
ρ, ρ ∈ (0, 1) and al = (1 − ρ)μ, for all l, Equation (5) reduces
to r(h) = ρ

∑L
l=1 wlr(h− l), h ≥ L, which is the result in Mena

and Walker (2007).
In the case of distinct roots, the general solution to Equa-

tion (5) is

r(h) = c1zh1 + · · · + cLzhL + φ ((1 − z1) . . . (1 − zL))−1 , (6)

where c1, . . . , cL are determined by the initial conditions
r(0), . . . , r(L − 1) and z1, . . . , zL are the roots of the associated
polynomial zL −w1b1zL−1 − · · · −wLbL = 0. It follows that, as
h → ∞, r(h) → 0 if and only if: (1) φ = 0; (2) z1, . . . , zL all lie
inside the unit circle.

The above discussion provides an approach to obtaining a
weakly stationary MTD model based on Equation (3), and is
summarized in the following proposition the proof of which is
included in the supplementary material.

Proposition 2. The time series defined in Equation (3) is weakly
stationary if: (i) the invariant condition of Proposition 1 is satis-
fied with a stationary marginal for which the first two moments
exist and are finite; (ii) the conditional expectation with respect
to fUl|Vl is E(Ul |Vl = y) = al +bl y, for some al, bl ∈ R, and for
all l; (iii) Equation (4) is independent of time t, and the roots of
the equation zL − w1b1zL−1 − · · · − wLbL = 0 all lie inside the
unit circle.

Proposition 2 illustrates the construction of a weakly station-
aryMTDmodel building from the invariant condition of Propo-
sition 1. We focus on the first-order strictly stationary MTD
models. Weak stationarity can be further studied if conditions
(2) and (3) of Proposition 2 are satisfied.

3. Construction of the First-Order Strictly Stationary
MTDModels

Here, we present two methods to develop first-order strictly
stationary MTD models. The bivariate distribution method
constructs the transition density given a specific marginal
distribution. This method may result in analytically intractable
transition densities. The second method, consisting of directly
specifying the transition component conditional densities,
has estimation advantages, although the analytical form of
the marginal density may not be readily available. Thus, the
selection among these methods depends on the modeling
objectives. In fact, there are special cases where both the
transition and marginal densities belong to the same family of
distributions.

3.1. Bivariate DistributionMethod

Under this method, we seek bivariate distributions fUl ,Vl
whose marginals fUl and fVl are equal to a given fX , for
l = 1, . . . , L. Consequently, the lth transition component
density is fUl|Vl(u | v) = fUl ,Vl(u, v)/fX(v). In contrast to the
approach in Mena and Walker (2007), which is practical
when the marginal density is a conjugate prior for some
likelihood, the bivariate distribution method is applicable
to essentially any discrete or continuous marginal invariant
density fX . In fact, for most parametric families, there is a rich
literature defining collections of bivariate distributions with
a desired marginal distribution, and allowing for a variety of
dependence structures. The following examples illustrate the
method.

Example 1: Gaussian and continuousmixtures of GaussiansMTD
models. Under marginal fX(x) = N(x | μ, σ 2), the Gaussian
MTD model can be constructed via the bivariate Gaussian
distribution for (Ul,Vl), with mean (μ,μ)� and covariance
matrix � = σ 2( 1 ρl

ρl 1
)
, resulting in a Gaussian density for fUl|Vl .
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In particular,

f (xt|xt−1) =
L∑
l=1

wl N
(
xt|(1 − ρl)μ + ρlxt−l, σ 2(1 − ρ2

l )
)
.

(7)

Let t(x | μ, σ , ν) ∝ (
1 + ν−1((x − μ)/σ)2

)−(ν+1)/2 denote
the Student-t density, whereμ, σ and ν are respectively location,
scale and tail parameters. To construct as a natural extension
of the Gaussian MTD model a stationary Student-t MTD
model, consider the bivariate Student-t distribution, which
can be defined as a scale mixture of a bivariate Gaussian
with mean (μ,μ)� and covariance matrix q�, with � as
previously defined, mixing on q with respect to an inverse-
gamma, IG(ν/2, ν/2), distribution. Under marginal fX(x) =
t(x | μ, σ , ν), the Student-t MTD model is given by

f (xt|xt−1) =
L∑
l=1

wl t(xt|(1 − ρl)μ + ρlxt−l,

σ 2(1 − ρ2
l )(ν + dl)/(ν + 1), ν + 1), (8)

where dl = (xt−l − μ)2/σ 2. In both the Gaussian and Student-
t MTD examples, the transition component densities and the
invariant density belong to the same family of distributions.

The Student-t MTD model is an example for building MTD
models through bivariate distributions that admit a location-
scale mixture representation. Taking an exponential distribu-
tion for the scale q yields the bivariate Laplace distribution of
Eltoft, Kim, and Lee (2006), thus producing anMTDmodel with
an invariant Laplace marginal density. Scaling both the mean μ

and the covariance� of the bivariate Gaussian distribution by a
unit rate exponential random variable yields the bivariate asym-
metric Laplace distribution of Kotz, Kozubowski, and Podgorski
(2012), and thus an MTD model with an asymmetric Laplace
distribution as the invariant marginal. We can further elaborate
on this approach using appropriate mixing distributions for
the Gaussian location and scale parameters to obtain skewed-
Gaussian and skewed-t distributions (Azzalini 2013) for the
bivariate component distributions, as well as for the invariant
marginal distribution.

Example 2: Poisson and Poisson mixture MTD models. To
model time series of counts taking countably infinite values,
we can construct an MTD model with a Poisson marginal
by considering the bivariate Poisson distribution of Holgate
(1964) for the transition components. This choice has been
discussed in Berchtold and Raftery (2002), without addressing
the stationarity condition. In particular, we consider the latent
variable representation of Holgate’s bivariate Poisson. Given
a Poisson marginal fX(x) = Pois(x | φ), we take (Ul,Vl) ≡
(U,V) = (Q + Z,W + Z), for all l, where Q, W and Z
are independent Poisson random variables with means λ, λ

and γ , respectively. It follows that both U and V are Poisson
random variables with rate parameter φ = λ + γ . Using the
latent variable representation, the lth component transition
density of the Poisson MTD model can be sampled through
Qt ∼ Pois(qt | λ) and Zt |Xt−l = xt−l ∼ Bin(zt | xt−l, γ /φ),
with Xt = Qt + Zt obtained as the realization from the lth
component conditional distribution of Xt |Xt−l = xt−l. Here,

Bin(x | n, p) denotes the binomial distribution with n trials and
probability of success p.

A common extension of the Poisson to account for counts
that have excess zeros is a mixture of Poisson and a distribution
that degenerates at zero. A random variable X is zero-inflated
Poisson distributed, denoted as ZIP(x | φ, q), if its distribution
is a mixture of a point mass at zero and a Poisson distribution
with parameter φ, with respective probabilities 0 < q < 1 and
(1 − q). Given an invariant marginal fX(x) = ZIP(x | φ, q), we
use the bivariate zero-inflated Poisson distribution of Li et al.
(1999) for (Ul,Vl) ≡ (U,V), for all l, given by a mixture of a
point mass at (0, 0), two univariate Poisson distributions, and
a bivariate Poisson distribution; that is fU,V(u, v) = q0(0, 0) +
0.5q1(Pois(u | φ), 0) + 0.5q1(0, Pois(v | φ)) + q2BP(u, v | φ,φ),
where

∑2
j=0 qj = 1, q0 + 0.5q1 = q, and BP(·, ·|φ,φ) denotes

Holgate’s bivariate Poisson distribution. Although the corre-
sponding component density fU |V(u | v) = fU,V(u, v)/fX(v)
is complex, this example provides possibilities for modeling
stationary zero-inflated count time series.

Exploiting the latent variable representation of Holgate’s
bivariate Poisson, we can obtain extensions of the PoissonMTD
model that allow for more flexible dependence structure and
for overdispersion. Following the earlier notation, replace the
means λ and γ of the latent Poisson random variables with
αλ and αγ , and mix over α with respect to a Ga(α | k, η)

distribution, where Ga(x | a, b) denotes the gamma distribution
withmean a/b. Suchmixing yields a bivariate negative binomial
distribution after α is marginalized out (Kocherlakota and
Kocherlakota 2006). The conditional distribution of U given
V = v admits a convolution representation. Let Z1 and
Z2 be conditionally independent, given V = v, following a
Bin (z1 | v, γ /(λ + γ )) andNB (z2 | k + v, 1 − λ/(2λ + γ + η))

distribution, respectively, where NB(x | r, p) denotes the neg-
ative binomial distribution with r number of successes and
probability of success p. Then,U = Z1+Z2 is a realization from
the conditional distribution U |V = v. Similar to the Poisson
case, we can use this convolution representation to define a
stationary MTD model with a negative binomial marginal
fX(x) = NB (x | k, η/(λ + γ + η)).

Example 3: Bernoulli and Binomial MTD models. Assume
again (Ul,Vl) ≡ (U,V), for all l, and consider the bivariate
Bernoulli distribution with probability mass function p(u, v) =
puv1 pu(1−v)+(1−u)v

2 (1−p1−2p2)(1−u)(1−v), where p1 > 0, p2 > 0
and p1 +2p2 < 1. Then, marginallyU andV are both Bernoulli
distributed with probability of success p1 + p2. The conditional
distribution of U given V = v is also Bernoulli (Dai et al. 2013)
with probability of success p(1, v)/

(
p(1, v) + p(0, v)

)
. Using this

bivariate Bernoulli distribution, we define a stationary Bernoulli
MTD model

f (xt|xt−1) =
L∑
l=1

wl Ber
(
xt|p(1, xt−l)/(p(1, xt−l) + p(0, xt−l))

)
,

(9)

which has a stationary marginal distribution fX(x) = Ber(x |
p1 + p2).

Sequences of independent bivariate Bernoulli random
vectors can be used as building blocks for various bivarate
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distributions. In particular, a family of bivariate binomial
distributions for (U,V) can be constructed by setting U =∑n

i=1 Ũi and V = ∑n
i=1 Ṽi, where (Ũi, Ṽi), i = 1, . . . , n, are

independent from the bivariate Bernoulli distribution given
above (Kocherlakota and Kocherlakota 2006). The conditional
distribution of U given V = v can be defined through the
convolution of two conditionally independent, given V = v,
binomial random variables, one with parameters n − v and
p2/(1 − p1 − p2) and the other with parameters v and
p1/(p1 + p2). Again, this convolution representation can be
used to define a stationary binomial MTDmodel with marginal
fX(x) = Bin(x | n, p1 + p2).

Examples 2 and 3 illustrate MTD models for finite/infinite-
range discrete-valued time series with high-order dependence,
and with stationary marginal distributions belonging to a range
of families. These can be used, for example, for classification of
time series data, or for time-varying counts that exhibit features
such as overdispersion or excess of zero values when compared
to a traditional Poissonmodel. It is worthmentioning that some
of our examples induce nonlinear conditional expectations.
For example, the conditional expectation of the Bernoulli
MTD model is

∑L
l=1 wlp(1, xt−l)/(p(1, xt−l) + p(0, xt−l)).

Building MTD models like the ones we have proposed using
the existing methods in the MTD literature is a formidable
task.

3.2. Conditional DistributionMethod

The strategy here is to use compatible conditional densities,
fUl|Vl and fVl|Ul , to specify the bivariate density of (Ul,Vl) for the
lth transition component. Conditional densities fU|V and fV|U
are said to be compatible if there exists a bivariate density with
its conditionals given by fU|V and fV|U ; see Arnold et al. (1999)
for general conditions under which candidate families of two
conditionals are compatible.

We begin with the assumption that fUl|Vl and fVl|Ul belong
to the same family. This assumption is reasonable, since the
invariant condition of Proposition 1 requires that all marginals
are the same. Once the family of distributions for the condi-
tionals is chosen, we ensure the conditionals are compatible,
as well as that both marginals of the corresponding bivariate
density are given by the target invariant density fX . In some
special cases, themarginal densities are in the same family as the
compatible conditionals. To demonstrate this method, we use a
pair of Lomax conditionals and a pair of gamma conditionals;
both cases are considered in Arnold et al. (1999) to identify
compatibility restrictions for their parameters.

Example 4: Lomax MTD models. The Lomax distribu-
tion is a shifted version of the Pareto Type I distribution
such that it is supported on R

+. Denote by P(x | σ ,α) =
ασ−1 (

1 + xσ−1)−(α+1) the Lomax density, where α > 0 is
the shape parameter, and σ > 0 the scale parameter. The
corresponding tail distribution function is Pr(X > x) = (1 +
xσ−1)−α , implying a polynomial tail that supports modeling
for time series with high levels of skewness. We consider a
pair of compatible Lomax densities for (Ul,Vl) ≡ (U,V), for
all l, such that fU |V(u | v) = P (u | (λ0 + λ1v)/(λ1 + λ2v),α),

and fV |U(v | u) = P (v | (λ0 + λ1u)/(λ1 + λ2u),α), with the
restriction that λ0, λ1, λ2 > 0 if α = 1, λ0 ≥ 0, λ1, λ2 > 0 if
0 < α < 1, and λ0, λ1 > 0, λ2 ≥ 0 if α > 1, to guarantee that
these are proper densities. Lomax MTD models specified using
the conditional distributions above have an invariant marginal
fX(x) ∝ (λ1 + λ2x)−1(λ0 + λ1x)−α . Taking α > 1 and λ2 = 0
leads to a special case where both the component transition
density and the marginal density are Lomax. This particular
Lomax MTDmodel is

f (xt|xt−1) =
L∑
l=1

wl P(xt|φ + xt−l,α), (10)

where φ = λ0/λ1, and the invariant marginal is fX(x) =
P(x | φ,α − 1).

Example 5: Gamma MTD models. We consider a pair of con-
ditional gamma densities for the random vector (Ul,Vl) ≡
(U,V), for all l, such that fU|V(u | v) = Ga(u |m0,m1 + m2v),
and fV|U(v | u) = Ga(v |m0,m1 + m2u), where m0,m1,m2 >

0. This pair of conditionals is one of six choices discussed
in Arnold et al. (1999) in the context of conditional gamma
distributions that produce proper bivariate densities for (U,V).
The resulting transition density is

f (xt|xt−1) =
L∑
l=1

wl Ga(xt|m0,m1 + m2xt−l), (11)

and the invariant marginal is fX(x) ∝ xm0−1 exp(−m1x)(m1 +
m2x)−m0 .

Examples 4 and 5 present two stationary MTD models
with, respectively, polynomial and exponential tail behaviors.
They provide alternatives to the existing MTD model literature
for positive-valued time series, where the only model that
has received attention is based on the Weibull distribution.
In addition, the general Lomax MTD model with λ2 �= 0
and the gamma MTD model have nonlinear conditional
expectations.

4. Bayesian Implementation

4.1. Hierarchical Model Formulation

Here, we outline an approach to perform posterior inference
for the general MTD model, using a likelihood that is condi-
tional on the first L observations of the time series realization
{xt}nt=1. We introduce a set of latent variables {Zt}nt=L+1 with Zt
taking values in {1, . . . , L} such that p(zt |w) = ∑L

l=1 wlδl(zt),
where w = (w1, . . . ,wL)�, and δl(zt) = 1 if zt = l and
0 otherwise. Conditioning on the set of latent variables and
the first L observations, the hierarchical representation of the
model is

xt|zt , θ ind∼ fzt (xt|xt−zt , θ zt ), t = L + 1, . . . , n,

zt|w iid∼
L∑
l=1

wlδl(zt), t = L + 1, . . . , n,

w ∼ πw(·), θ l
ind∼ πl(·), l = 1, . . . , L,

(12)
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where θ l denotes the transition component parameters, and θ

collects all θ l. Any MCMC algorithm for finite mixture models
is readily adoptable. If the transition density of the model is
sampled via a latent process, such as for Example 2 of Section
3, then an additional step to sample the latent variables needs to
be added in Equation (12).

A key component of the Bayesian model formulation is the
choice of the prior distribution for the mixture weights. As
a point of reference, we consider a uniform Dirichlet prior
that assumes equal contribution from each lag, denoted by
Dir(·|1L/L), where 1L is a unit vector of length L. We discuss
next two priors that assume more structure.

The first prior is a truncated version of the stick-breaking
prior, which characterizes the weights for random discrete
distributions generated by the Dirichlet process (Sethuraman
1994). More specifically, the weights are constructed as follows:
w1 = ζ1, wl = ζl

∏l−1
r=1(1 − ζr), l = 2, . . . , L − 1,

and wL = ∏L−1
l=1 (1 − ζl), where ζl

i.i.d.∼ Beta(1,αs), for
l = 1, . . . , L − 1. The resulting joint distribution for the
mixture weights is a special case of the generalized Dirichlet
distribution (Connor and Mosimann 1969). We denote the
truncated stick-breaking prior as SB(· |αs). For l = 1, ..., L − 1,
E(wl) = α∗

s (1 − α∗
s )

l−1, where α∗
s = (1 + αs)−1. Hence, on

average, this prior implies geometrically decreasing weights,
with smaller αs values favoring stronger contributions from
recent lags. In certain applications, it may be natural to expect
some directionality in the relevance of the weights implied by
time, and this prior provides one option to incorporate into the
model such a property.

An alternative prior is obtained by assuming that the weights
are increments of a cdf G with support on [0, 1]; that is, wl =
G(l/L) − G((l − 1)/L), for l = 1, . . . , L. We place a Dirich-
let process prior on G, denoted as DP(α0,G0), where G0 =
Beta(a0, b0) and α0 > 0 is the precision parameter. From
the Dirichlet process definition (Ferguson 1973), given α0 and
G0, the vector of mixture weights follows a Dirichlet distribu-
tion with shape parameter vector α0(a1, . . . , aL)�, where al =
G0(l/L) − G0((l − 1)/L), for l = 1, . . . , L. We refer to this
prior as the cdf-based prior, and denote it as CDP(· |α0, a0, b0).
Under this prior, we have that E(w) = (a1, . . . , aL)�. The non-
parametric prior for G supports general distributional shapes,
and thus allows for flexibility in the estimation of the mixture
weights. In particular, multimodal distributions G can pro-
duce sparse weight vectors, with some/several entries near zero.
Hence, this prior may be suitable for scenarios where there are
inactive lags between influential lags and the influential lags
are not necessarily the most recent lags. Heiner, Kottas, and
Munch (2019) proposed a different prior for sparse probabil-
ity vectors, which generally requires a larger number of prior
hyperparameters.

Overall, the properties of both structured priors support
flexible inference for the mixture weights, enabling our strategy
to specify a large value of L, assigning a priori small probabilities
to distant lags. The contribution of each lag will be induced by
the mixing, with important lags being assigned large weights a
posteriori.

4.2. Estimation, Model Checking and Prediction

The posterior distribution of the model parameters, based on
the conditional likelihood, is

p(w, θ , {zt}nt=L+1|Dn) ∝ πw(w)

L∏
l=1

πl(θ l) (13)

n∏
t=L+1

{
fzt (xt|xt−zt , θ zt )

L∑
l=1

wlδl(zt)

}
,

where Dn = {xt}nt=L+1, and it can be explored using MCMC
posterior simulation.

Conditional on θ and w, the posterior full conditional of
each Zt is a discrete distribution on {1, ..., L} with probabilities
proportional to wlfl(xt | xt−l, θ l). Conditional on the latent vari-
ables and w, the sampling for each θ l depends on the particular
choice of the transition component distributions. Details for the
models implemented are given in the supplementary material.
The sampling for w, conditional on {zt}nt=L+1 and θ , depends
only on Ml = |{t : zt = l}|, for l = 1, ..., L, where |{·}|
is the cardinality of the set {·}. Both priors for the mixture
weights result in ready updates. The posterior full conditional
of w under the truncated stick-breaking prior can be sampled
through latent variables ζ ∗

l , which are conditionally indepen-
dent Beta(1 + Ml,αs + ∑L

r=l+1Mr), for l = 1, . . . , L − 1, such
that w1 = ζ ∗

1 , wl = ζ ∗
l

∏l−1
r=1(1 − ζ ∗

r ), for l = 2, . . . , L − 1,
and wL = ∏L−1

l=1 (1 − ζ ∗
l ). Under the cdf-based prior, the

posterior full conditional ofw is Dirichlet with parameter vector
(α0a1 + M1, . . . ,α0aL + ML)�.

We assess the model’s validity using randomized quantile
residuals (Dunn and Smyth 1996; Escarela, Mena, and Castillo-
Morales 2006). Such residuals are calculated by inverting the
fitted conditional cdf for the time series. Posterior samples of
these quantile sets can then be compared with the standard
Gaussian distribution, providing a measure of goodness-of-
fit with uncertainty quantification. Specifically, the random-
ized quantile residual for continuous xt is defined as rt =
�−1 (

F(xt | xt−1)
)
where �(·) is the cdf of the standard Gaus-

sian distribution. If xt is discrete, rt = �−1(ut), where ut is
generated from a uniform distribution on the interval (at , bt)
with at = F(xt − 1 | xt−1) and bt = F(xt | xt−1). If F is correctly
specified, the residuals rt , t = L+1, . . . , n, will be independently
and identically distributed as a standard Gaussian distribution.

Finally, we consider prediction for future observations. The
posterior predictive density of Xn+1, corresponding to the first
out-of-sample observation, is obtained by marginalizing the
transition density with respect to the posterior distribution of
model parameters:

p(xn+1|Dn) =
∫ ∫ { L∑

l=1
wl fl(xn+1|xn+1−l, θ l)

}

p(θ ,w|Dn) dθdw. (14)

Exploiting the structure of the conditional distributions of the
MTD model, we can sample from the k-step-ahead posterior
predictive density using a straightforward extension of Equa-
tion (14). Note that the k-step-ahead posterior predictive uncer-
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tainty incorporates both the uncertainty from the parameter
estimation, and the uncertainty from the predictions of the
previous (k − 1) out-of-sample observations.

5. Data illustrations

5.1. Simulation Example

We generated 2000 observations from the Gaussian MTD
model specified in Equation (7) with μ = 10, σ 2 = 100,
under two scenarios for the mixture weights, one with
exponentially decreasing weights and the other one with an
uneven arrangement of the relevant lags. In Scenario 1, we took
ρ = (0.7, 0.3, 0.1, 0.05, 0.05)� and wi ∝ exp(−i), i = 1, . . . , 5.
In Scenario 2, we took ρ = (0.4, 0.1, 0.7, 0.1, 0.5)� and w =
(0.2, 0.05, 0.45, 0.05, 0.25)�. We consider these two scenarios to
examine the effectiveness of structured priors for the mixture
weights.

We applied the Gaussian MTD model with three different
orders L = 5, 15, 25. In each case, we considered three priors
for the weights: the Dirichlet prior, the truncated stick-breaking
prior, and the cdf-based prior. The shape parameter of the
Dirichlet prior was 1L/L for each L. The precision parameter
αs for the truncated stick-breaking prior was taken to be 1, 2, 3,
corresponding to the three L values. For the cdf-based prior,
we chose α0 = 5 as the precision parameter, and used as base
distribution a beta with shape parameter a0 = 1, and b0 =
3, 6, 7, respectively, for the three orders considered. Thus, this
prior elicited a decreasing pattern similar to the truncated stick-
breaking prior. For all models, the mean μ and the variance
σ 2 received conjugate priors N(μ | 0, 100) and IG(σ 2 | 2, 0.1),
respectively, and the component-specific correlation coefficient
ρl was assigned a uniform prior Unif(−1, 1) independently for
all l.

We ran the Gibbs sampler for 165,000 iterations, discarding
the first 5000 samples as burn-in, and collected samples every
20 iterations. Focusing on inference results for the mixture
weights, when the order was correctly specified, that is, L = 5,
all three models provided good estimates. Figure 1 provides
a visual inspection on the posterior estimates for the mixture
weights when L = 15 (the weight patterns estimated from the
three models were similar when L = 25). In Scenario 1, all
models underestimated the weight for lag 2. Models with the
proposed priors produced accurate estimates for the rest of the
lags, while themodel that used theDirichlet prior systematically
overestimated the weight for the first lag, and underestimated
all other weights. In Scenario 2, all models underestimated the
weight for the first lag. For the other nonzero weights, themodel
with the Dirichlet prior tended to underestimate the weights for
lags 2, 4 and overestimated the weight for lag 5, while the other
two models estimated the weights quite well. In both scenarios,
the proposed priors had a parsimonious behavior in that, given
the data, distant lags were assigned almost zero probability mass
with low posterior uncertainty. Overall, we note that, under
an over-specified order L, the proposed priors offer inferential
advantages when compared to the Dirichlet prior.

We conducted an additional simulation to demonstrate the
ability of the negative binomial MTD model to accommodate
over-dispersed count data, including comparison with the Pois-

son MTD model. Details of this simulation example are pre-
sented in the supplementary material.

5.2. Chicago CrimeData

The first real data example involves the 1090 daily reported inci-
dents of domestic-related theft that have occurred in Chicago
from 2015 to 2017, extracted online from the Chicago Data
Portal (https://data.cityofchicago.org/). The data exhibits some
flat stretches, without evidence of overdispersion. The empirical
mean and variance are 6.05 and 6.39.

We applied the Poisson MTDmodel discussed in Example 2
of Section 3, with order L = 20, selected based on the autocorre-
lation and partial autocorrelation functions. We reparameterize
themodel in terms of rate parameterλ, and binomial probability
θ = γ /φ for Zt |Xt−l. This allows updates for λ and θ with
posterior full conditionals available in closed form. The prior
for (λ, θ) was taken to be Ga(λ | 2, 1)Beta(θ | 2, 2), implying a
Ga(4, 1) prior for φ. Two priors, SB(w | 2) and CDP(w | 5, 1, 8),
were considered for the mixture weights. Both models were
fitted to the entire dataset. After fitting the model, we obtained
the one-step posterior predictive distribution at each time t and
the corresponding posterior predictive intervals.

We obtained a thinned sample retaining every 10th iteration,
from a total of 85000 samples with the first 5000 as burn-in. The
posterior mean and 95% interval for φ are 6.04 (5.79, 6.30) and
6.05 (5.82, 6.29) for models with SB(w | 2) and CDP(w | 5, 1, 8)
priors. This indicates an average of around six incidents of
domestic-related theft per day. Multiple influential lags, with
gaps in between, are suggested by the results in Figures 2(b)
and 2(c). Both models agree on the pattern for the weights, as
well as on lags 1, 4, 6 being the most relevant ones. Compared to
the truncated stick-breaking prior, the cdf-based prior suggests
a weight pattern that decreases slightly faster, and it assigns
relatively larger weights to important lags, albeit with higher
uncertainty. Figure 2(a) shows that bothmodels produce similar
one-step predictive intervals.

5.3. Tunkhannock Creek Precipitation Data

Our second example involves 22 years of rainfall data from
January 1982 to December 2003. The data consist of 1149 mean
areal precipitation amounts ranging from 0.01 to 128.87 mil-
limeters, aggregated to a weekly time scale from the daily data
for the Tunkhannock Creek near Tunkhannock, Pennsylvania.
The data were extracted through R package hddtools (Vitolo
2017).

We consider a multiplicative model yt = μtεt , where μt is
a seasonal factor and εt is generated by a Lomax MTD model
specified inEquation (10), with polynomial tails that can accom-
modate large precipitation events. More specifically, the model
is given by

yt = μtεt , μt = exp(x�
t β), t = 1, . . . , n,

εt|εt−1,w,φ,α ∼
L∑
l=1

wl P(εt|φ + εt−l,α),

t = L + 1, . . . , n,

(15)
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Figure 1. Simulation study. Inference results for theweights under Scenarios 1 (top) and 2 (bottom), based on the GaussianMTDmodel (L = 15) with the Dirichlet (column
(a)), the truncated stick-breaking (column (b)), and the cdf-based (column (c)) priors. Dashed lines are trueweights, dot-dashed lines are priormeans, solid lines are posterior
means, and polygons are 95% posterior credible intervals.

Figure 2. Chicago crime data analysis. In panel (a), the circles denote the data, and solid and dashed lines correspond to themodel with the SB and CDP priors, respectively.
Panels (b) and (c): prior means (dashed line), posterior means (solid line) and 95% credible intervals (polygon) of the weights under the SB and CDP priors, respectively.
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Figure 3. Precipitation data analysis. Panels (a) and (b): prior means (dashed line), posterior means (solid line) and 95% intervals (polygons) of the weights under two
priors. The top row of panel (c) plots the observed precipitation amounts from 2000 to 2004, and the middle and bottom rows show sample paths generated from the
fitted models with SB and CDP priors, respectively.

Figure 4. Precipitation data analysis. Randomized quantile residual analysis for the fittedmodelwith the SB(w | 1) prior. In panel (a), the circles anddashed lines correspond
to the posterior mean and 95% interval bands, respectively. In panel (b), the solid and dashed line are the standard Gaussian density and the kernel density estimate of the
posterior means of the residuals, respectively. Panel (c) is based on the posterior means of the residuals.

with xt = (cos(ωt), sin(ωt), cos(2ωt), sin(2ωt), cos(3ωt),
sin(3ωt))�, and ω = 2π/T where T = 52 is the period for
weekly data. On the basis of the autocorrelation and partial
autocorrelation functions, we chose model order L = 10. The
regression coefficients vector β = (β1, . . . ,β6)� was assigned
a flat prior. The shape parameter α was assigned a Ga(α | 6, 1)
prior, and the scale parameter φ an IG(φ | 3, 20) prior. Note
that the invariant marginal of the process {εt} is P(ε | φ,α − 1)
and its tail distribution function is (1 + ε/φ)−(α−1). A small
value of α indicates a heavy tail, while a large value of α ensures

the existence of finite high moments. Under the priors above,
E(α) = 6, implying the expectation that the first four moments
are finite with respect to both the component and marginal
distributions of the Lomax MTD for {εt}. We fit the model with
SB(w | 1) and CDP(w | 5, 1, 6.5) priors for the weights.

We ran the algorithm for 85,000 iterations and collected
samples every 10 iterations after the first 5000 was discarded.
The inference results were almost the same for the two mod-
els. Here we report the ones under the SB(w | 1) prior. The
posterior mean and 95% credible interval of the shape param-
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eter α are 14.80 (10.30, 20.91), indicating a moderately heavy
tail. The corresponding estimates for the scale parameter φ

are 254.33 (166.36, 370.04), indicating substantial dispersion.
Among the harmonic component coefficients, the first and the
fourth have 95% posterior credible intervals that indicate sta-
tistical significance; the estimates are −0.14 (−0.23,−0.05) for
β1, and −0.13 (−0.22,−0.03) for β4, implying the presence of
semiannual and annual seasonality in the data. Figures 3(a)
and 3(b) shows that both models suggest a decreasing weight
pattern, with the first three lags being the most influential. As
shown in Figure 3(c), the sample paths generated from the
models resemble the observed precipitation time series.

Randomized quantile residual analysis results were similar
for both models; in Figure 4, we present the ones under the
SB(w | 1) prior. The figure shows posterior mean and interval
estimates for the Gaussian quantile–quantile plot, and the his-
togram and autocorrelation function for the posterior means
of the residuals. The results suggest reasonably good model fit,
providing an illustration of the flexibility of the proposed MTD
model to capture non-Gaussian tails.

6. Discussion

We have developed a broad class of stationary MTD mod-
els focusing on attaining stationarity from the perspective of
a distributional formulation. The advantage of our proposed
approach over more traditional methods is that no constraints
on the parameter space are needed. This facilitates inference for
model parameters, as the need for constrained optimization or
sampling is avoided. We further proposed structured priors to
support flexible inference on the weights, which accommodate
nonstandard scenarios that a model with a Dirichlet prior may
fail to capture.

The proposed constructive framework brings several options
for alternative parametric families that were formidable to tackle
for the MTD model and its extensions, when stationarity is a
desirable property. A limitation of our approach is that, if the
stationary marginal distribution shares all the parameters with
the bivariate component distribution, the resulting transition
component lacks component-varying parameters. One solution
is to specify the bivariate distribution using a copula (Joe 2014),
which we regard as a special case of the bivariate distribu-
tion method. Given a prespecified marginal, the construction
boils down to the selection of a copula. The copula function,
which brings additional component parameters, allows speci-
fying dependence in the bivariate distribution, separately from
modeling the marginal distribution. On the other hand, some
properties of the resulting model, including the conditional
expectation,may be intractable, and the computational costmay
increase, especially in the discrete case.

The class of models proposed in this article can be easily
extended for nonstationary time series that exhibit trends and
seasonality, by incorporating corresponding factors into the
model, either multiplicatively or additively. This is illustrated in
our second real data example. A similar approach can be applied
to incorporate covariates. Therefore, this class of models is quite
general, and is useful as an alternative to the existing time series
models, especially when traditional models fail to capture non-
Gaussian features suggested by the data.
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Appendix

Proof of Proposition 1

Proof. Without loss of generality, we consider the case where Xt has
a continuous distribution for all t. Moreover, for the argument that
follows to apply to any t ≥ 2, we express the transition density as
f (xt|xt−1) = ∑tL

l=1 w
∗
l fUl|Vl (xt|xt−l), for t ≥ 2, where tL = min{t −

1, L}. When t > L, w∗
l ≡ wl, for l = 1, ..., L, whereas for 2 ≤ t ≤ L,

w∗
l = wl, for l = 1, ..., tL − 1, and w∗

tL = 1 − ∑tL−1
k=1 wk. With this

notational convention, we have
∑tL

l=1 w
∗
l = 1.

Using the proposition assumptions,

g2(x2) =
∫
S
f (x2|x1)fX(x1)dx1 =

∫
S
fU1|V1(x2|x1)fV1(x1)dx1

= fU1(x2) = fX(x2)
and thus the result is valid for t = 2. To prove the proposition by
induction, assume the result holds true for generic t − 1, that is,
gt′ (xt′) = fX(xt′ ), for all xt′ ∈ S , and for all t′ ≤ t − 1. Denote by
p(x1, . . . , xt−1) and p(xt−tL , . . . , xt−1) the joint density for random
vector (X1, . . . ,Xt−1) and (Xt−tL , . . . ,Xt−1), respectively. Then, the
marginal density for Xt can be derived as follows:

gt(xt) =
∫
S t−1

f (xt|xt−1) p(x1, . . . , xt−1) dx1 . . . dxt−1

=
tL∑
l=1

w∗
l

∫
S tL

fUl|Vl (xt|xt−l) p(xt−tL , . . . , xt−1)

dxt−tL . . . dxt−1

=
tL∑
l=1

w∗
l

∫
S
fUl|Vl (xt|xt−l) gt−l(xt−l) dxt−l

=
tL∑
l=1

w∗
l

∫
S
fUl|Vl (xt|xt−l) fVl (xt−l) dxt−l

= fX(xt),
where for the second-to-last equation we used gt−l = fX , for l =
1, ..., tL, obtained from the induction argument, as well as the propo-
sition assumption, fX = fVl , for all l. Finally, the last equation is based
on the proposition assumption that fUl = fX , for all l.
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