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Atmospheric rivers (ARs) are elongated regions of water vapor in the at-
mosphere that play a key role in global water cycles, particularly in western
US precipitation. The primary component of many AR detection schemes is
the thresholding of the integrated water vapor transport (IVT) magnitude at
a single quantile over time. Utilizing a recently developed family of para-
metric distributions for quantile regression, this paper develops a flexible dy-
namic quantile linear model (exDQLM) which enables versatile, structured,
and informative estimation of the IVT quantile threshold. A simulation study
illustrates our exDQLM to be more robust than the standard Bayesian para-
metric quantile regression approach for non-standard distributions, perform-
ing better in both quantile estimation and predictive accuracy. In addition to
a Markov chain Monte Carlo (MCMC) algorithm, we develop an efficient
importance sampling variational Bayes (ISVB) algorithm for fast approxi-
mate Bayesian inference which is found to produce comparable results to the
MCMC in a fraction of the computation time. Further, we develop a transfer
function extension to our exDQLM as a method for quantifying non-linear re-
lationships between a quantile of a climatological response and an input. The
utility of our transfer function exDQLM is demonstrated in capturing both
the immediate and lagged effects of El Niño Southern Oscillation Longitude
Index on the estimation of the 0.85 quantile IVT.

1. Introduction. Motivated by the need to describe and quantify atmospheric rivers
(ARs) in global climate and weather models, several techniques have been developed with
the objective of detecting ARs (Rutz, Steenburgh and Ralph, 2014; Backes et al., 2015). To
this end, an effective approach is to focus on the integrated water vapor transport (IVT), a
vector representing the total amount of water vapor being transported in an atmospheric col-
umn. This is increasingly used in the study of ARs because of its direct relationship with
orographically induced precipitation (Neiman et al., 2009). One study in particular by Guan
and Waliser (2015) presents a method for detection of ARs based on characteristics of the
IVT magnitude. A key component of this and many other AR detection schemes is the thresh-
olding of IVT magnitude at a specified quantile, specifically the 0.85 quantile in Guan and
Waliser (2015). A sensitivity study found their AR detection scheme to be sensitive to the IVT
threshold, thus accurate estimation of IVT quantile is crucial. However, the current approach
for calculating the 0.85 quantile is unstructured, invariant from year to year, and incapable of
including relevant climatological information. Motivated by the problem of modeling time-
varying IVT thresholds in a way that provides richer quantitative information, we consider a
class of models to describe the dynamics of a specific quantile of a time series. This prompts
us to present several methodological and computational contributions for dynamic quantile
modeling, and, more generally, non-Gaussian time-varying models.

Keywords and phrases: Dynamic quantile regression, asymmetric Laplace, variational Bayes, atmospheric
river.
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The first contribution of this paper is a novel model referred to as the extended dynamic
quantile linear model (exDQLM). Our exDQLM utilizes a recently developed family of para-
metric error distributions for quantile regression, the extended asymmetric Laplace distribu-
tion (exAL; Yan and Kottas, 2017). In the Bayesian setting, parametric quantile regression
models are almost exclusively based on the asymmetric Laplace (AL) distribution, a special
case of the exAL. However the AL is known to have several drawbacks, which we discuss in
detail in Section 2.1. For example, the skewness of the distribution as well as the location of
the mode are fully dictated by the choice of the fixed quantile. More flexible error distribu-
tions for a single quantile have been considered extensively in the Bayesian non-parametric
literature. The median regression case has been considered in the semi-parametric setting
by Walker and Mallick (1999), Kottas and Gelfand (2001) and Hanson and Johnson (2002),
with general quantile regression seen in Kottas and Krnjajić (2009) and Reich, Bondell and
Wang (2009). Fully non-parametric nonlinear modeling of a single quantile regression func-
tions is seen in Taddy and Kottas (2010) and Kottas and Krnjajić (2009).The literature on
parametric approaches that lead to flexible quantile regression models is much less extensive.
Wichitaksorn, Choy and Gerlach (2014) presents a new class of skew distributions with the
AL as a special case, however the skewness remains fully determined by the fixed quantile.
Zhu and Zinde-Walsh (2009) and Zhu and Galbraith (2011) present a four parameter family
of asymmetric exponential power distributions for a fixed quantile, however, the mode of the
distribution remains fixed at the quantile of interest. The exAL presented in Yan and Kottas
(2017) overcomes these shortcomings in the current parametric methods. A detailed discus-
sion of the properties of the exAL can be found Section 2.1. Our methods generalize the
utility of the exAL to the time series setting and allow for time-varying quantile inference.

It is important to mention our exDQLM is not exempt to the possibility of quantile crossing
for settings in which multiple quantiles are of interest. This is a well known challenge for the
majority of models which provide inference for a single quantile at a time. Nonparametric
methods for simultaneous analysis of several quantiles can be found in Reich and Smith
(2013) and Tokdar et al. (2012), however these nonparametric methods are computationally
taxing and do not scale well to the time-varying setting. In the context of our application,
quantile crossing is not a concern as we are interested in a single fixed quantile.

The second contribution of this paper is our importance sampling variational Bayes (ISVB)
algorithm for fast, flexible inference of a time-varying quantile. Current methods for quan-
tile regression with time-evolving parameters in both the parametric and semi-parametric
approaches are almost exclusively based on the AL likelihood and check loss function, re-
spectively (Gonçalves, Migon and Bastos, 2017; Bernardi et al., 2016; Paraschiv, Bunn and
Westgaard, 2016; Koenker and Xiao, 2006). Nonparametric approaches are even more lim-
ited in the time series setting as defining likelihood functions for quantile-function-valued
data is a non-trivial task (Chen et al., 2017). Further, a majority of these approaches, both
parametric and non-parametric, are computationally expensive. This has prompted the de-
velopment of approximate estimation algorithms. Although these alternative algorithms are
faster computationally, many compromise the true underlying estimation problem in their
original models. Our ISVB algorithm relieves the computational burden while preserving
the underlying model structure, thus not compromising the interpretability of the resulting
estimated quantile.

Although variational methods are becoming more widespread in the statistical community
(for a comprehensive review see Blei, Kucukelbir and McAuliffe, 2017), the literature on
variational inference in the time-varying setting remains limited. There has been some work
on linear Gaussian state-space models (Barber and Chiappa, 2007; Penny, Kiebel and Friston,
2003), dynamic generalized linear models (Quiroz, Nott and Kohn, 2018; Berry and West,
2020), and hidden Markov models (Johnson and Willsky, 2014; Foti et al., 2014), however
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the application of variational inference to non-conjugate non-linear state-space models is not
seen in the literature. Further, the parameteric quantile regression methods found in Kozumi
and Kobayashi (2011) and Yan and Kottas (2017) are special cases of our exDQLM, thus our
ISVB can be applied to these non-time-varying models as well. Until this point, variational
inference has not been applied in the quantile regression setting. Our ISVB algorithm con-
tributes to both the quantile regression and time-series literature a simple and straightforward
method for estimation of the true high-dimensional posterior distribution.

The final contribution of this paper is the development of a transfer function exDQLM as a
method for quantifying associations that account for the cumulative effect of a time-varying
input on a quantile of a response variable, e.g., a given climatological response. Most studies
associating climate indices to specific atmospheric phenomena focus on simple linear associ-
ations, when in reality the relationships are much more complex. Numerous climate indices
have been extensively studied as potential sources of predictability for precipitation and ARs.
A few examples include the Arctic Oscillation (AO) index (Guan et al., 2013), the “Pineapple
Express" (PE) index (Weller, Cooley and Sain, 2012), the Madden-Julian Oscillation (MJO)
(Guan et al., 2012), the Niño3.4 index (Tziperman et al., 1998), as well as the recently devel-
oped El Niño Southern Oscillation (ENSO) Longitude Index (ELI; Williams and Patricola,
2018). In this paper, we demonstrate the practical utility of our transfer function exDQLM in
capturing both immediate and lagged effects of ELI on the 0.85 quantile IVT magnitude.

The remainder of this paper is organized as follows. In Section 2, we begin with back-
ground on the exAL distribution and develop our exDQLM. We present a Markov chain
Monte Carlo (MCMC) algorithm for posterior inference. We also discuss the computational
challenges associated to posterior inference within this modeling framework, and provide an
efficient ISVB algorithm that addresses such challenges. In Section 3, we present the results
from a simulation study to compare the performance of the exDQLM with the dynamic quan-
tile linear model (DQLM) introduced in Gonçalves, Migon and Bastos (2017), a special case
of the exDQLM when the exAL is reduced to the AL. The results of the ISVB algorithm com-
pared to the MCMC algorithm for the synthetic data are also included in Section 3. In Section
4, we develop our transfer function exDQLM with details on MCMC and ISVB algorithm
augmentations for this new model. Section 5 demonstrates the utility of the transfer function
exDQLM in capturing the non-linear effects of ELI on the 0.85 quantile of IVT magnitude
in Santa Cruz, California. Lastly, Section 6 concludes with final remarks and discussion of
future work.

2. A flexible dynamic quantile linear model.

2.1. Background. As mentioned previously, Bayesian parametric quantile regression
models are almost exclusively based around the asymmetric Laplace (AL) likelihood,

(1) ALp(y|µ,σ) =
p(1− p)

σ
exp

{
−ρp(y− µ)

σ

}
where ρp(u) = u[p − I(u < 0)] is the check loss function and I(·) denotes the indicator
function. σ > 0 is a scale parameter, p ∈ (0,1) is a skewness parameter typically fixed to be
the quantile of interest, and the mode µ is the corresponding value of that p-th quantile. More
explicitly,

∫ µ
−∞ALp(y|µ,σ)dy = p. A model for quantile regression can be developed by

allowing µ to be a function of covariates x, such as µ= xTβp which yields a linear quantile
regression structure. Maximization of the AL likelihood with respect to βp is equivalent to the
minimization of the check loss function, a common approach in classical quantile regression
(Koenker, 2005). For a time-evolving yt, a time-evolving mode µt = F′tθ

p
t yields a dynamic

linear regression structure where Ft is the regression vector of the covariates corresponding to
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the parameter vector θpt at time t. In quantile regression, the parameter vectors are dependent
on the fixed quantile p, however for notational simplicity we will omit the superscript p going
forward.

The AL was first used for Bayesian quantile regression by Yu and Moyeed (2001) and
Tsionas (2003). Kotz, Kozubowski and Podgorski (2001) presents several representations of
the AL, one of which is a location-scale mixture which easily facilitates posterior simulation
(Kozumi and Kobayashi, 2011). That is,

(2) ALp(y|µ,σ) =

∫
R+

N(y|µ+A(p)v,σB(p)v)Exp(v|σ)dv

where A(p) = 1−2p
p(1−p) , B(p) = 2

p(1−p) and Exp(v|σ) denotes the exponential distribution with
mean σ. Although the representation enables closed form posterior conditional distributions,
the AL is known to have several limitations. Most notably, the skewness and quantile are fully
dictated by choice of p, thus for a fixed quantile the skewness of the distribution is fully de-
termined. In particular, when p= 0.5 the distribution is symmetric. Further, for any quantile,
the mode of the distribution occurs at µ resulting in rigid tails for extreme percentiles.

To address the shortcomings of the AL parametrically, Yan and Kottas (2017) develop an
extension of the AL which overcomes the restrictive aspects of the distribution. The new
family of error distributions is constructed from an extension of the location-scale mixture
representation of the AL in Equation (2). More specifically, replacing the Gaussian kernel in
the mixture with a skew-normal distribution introduces an additional skewness parameter γ.
When γ = 0, the model reduces to the AL. The skew-normal density can also be written as
a location normal mixture with mixing distribution given by the standard normal truncated
to the positive real numbers, facilitating posterior simulation (Henze, 1986). Thus, the full
mixture representation of the proposed family of error densities, exAL(y|µ,σ, γ), is

(3)
∫ ∫

R+×R+

N(y|µ+C(p, γ)σ|γ|s+A(p)v,σB(p)v)Exp(v|σ)N+(s|0,1)dvds

where N+(s|0,1) denotes a normal distribution truncated to the positive reals with mean
0 and variance 1. Note that in this parameterization µ no longer corresponds to the p-th
quantile of the distribution. To preserve the ability to fix the quantile of interest, which we
will now denote to as p0, Yan and Kottas (2017) define the previously fixed parameter p such
that p = p(p0, γ) = I(γ < 0) + {[p0 − I(γ < 0)]/g(γ)} where g(γ) = 2Φ(−|γ|)exp(γ2/2)
and Φ(·) denotes the standard normal CDF. The parameter γ has bounded support over the
interval (L,U) where L is the negative root of g(γ) = 1 − p0 and U is the positive root
of g(γ) = p0. Further, A(p) and B(p) are functions of p as defined in Equation (2) and
C(p, γ) = [I(γ > 0) − p]−1. Thus, by construction µ corresponds to the fixed quantile p0
such that

∫ µ
−∞ exAL(y|µ,σ, γ)dy = p0.

Figure 1 illustrates the flexibility induced by the additional skewness parameter γ for fixed
quantiles p0 = 0.05, 0.5, and 0.85. Recall γ has bounded support on the interval (L,U)
which is dependent on γ, thus γ = 0 is the only skewness parameter which appears in all
fixed quantiles of Figure 1. It can be seen that, when the median is fixed, γ enables both
left and right skewness. The additional parameter controls the tail behavior allowing both
heavier and lighter tails than the AL. Flexibility is also seen in the mode, which is no longer
fixed at µ. Thus, the exAL is substantially more versatile than the AL while the hierarchical
mixture representation preserves straight-forward posterior inference, making it a robust error
distribution for our dynamic quantile model. While the exAL improves upon current methods
which are well known to suffer from model misspecification (Komunjer, 2005), it remains
important that we caution the reader of utilizing the exDQLM beyond quantile estimation. For
closed form representation as well as other properties of the new family of error distributions,
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FIG 1. Density functions of exALp0(y|γ,µ,σ) defined in Equation (3) with µ= 0, σ = 1 and different values of γ
for fixed quantiles p0 = 0.05, 0.5, and 0.85. The black solid line corresponds to the AL density, which is a special
case when γ = 0.

see Yan and Kottas (2017). Note also that Yan and Kottas (2017) refers to the extension as
the generalized asymmetric Laplace distribution, however we will refer to the distribution
as the extended AL (exAL) to avoid confusion with the generalized asymmetric Laplace
distribution defined in Kotz, Kozubowski and Podgorski (2001).

2.2. The exDQLM. Consider a set of time-evolving responses, yt, for times t= 1, . . . , T .
For each t, a general dynamic model can be defined by

Observation equation: yt = F′tθt + εt(4)

System Equation: θt = Gtθt−1 +ωt.(5)

Here Ft is the q × 1 regression vector of the covariates corresponding to the q × 1 regres-
sion parameter vector θt at time t, and Gt is the q-dimensional evolution matrix defining the
structure of the parameter vector evolution in time. We propose an extended dynamic quantile
linear model (exDQLM) for inference on a single p0-th quantile by specifying the observa-
tional errors of a dynamic linear model to be distributed from the exAL, which we denote
exALp0 . That is, εt in Equation (4) are distributed independently from the exAL with quan-
tile p0 fixed such that

∫ 0
−∞ exALp0(εt|0, σ, γ)dεt = p0. Utilizing a Gaussian time-evolving

structure on the system error vector, i.e. ωt ∼N(0,Wt) where Wt is the evolution variance
matrix, our exDQLM model can be written

yt|θt, γ, σ ∼ exALp0(F
′
tθt, σ, γ)(6)

θt|θt−1,Wt ∼N(Gtθt−1,Wt)(7)

where the normal distribution according to which θt evolves is q-variate. The mixture rep-
resentation of the exAL in Equation (3) can be exploited to rewrite the exDQLM as the
following hierarchical model for t= 1, . . . , T :

yt|θt, σ, γ, vt, st ∼N(yt|F′tθt +C(p, γ)σ|γ|st +A(p)vt, σB(p)vt)(8)

vt, st|σ ∼ Exp(vt|σ)N+(st|0,1)(9)

θt|θt−1,Wt ∼N(Gtθt−1,Wt).(10)

Here, A(p), B(p), C(p, γ) are the functions of p and γ defined with Equation (3). A q-variate
prior θ0 ∼ N(m0,C0) is used at the initial stage. It is possible to place an inverse Wishart
prior on the evolution covariance matrix Wt, however for our analyses we utilize discount
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factors, which we discuss in Section 2.6. Yan and Kottas (2017) suggest a inverse-gamma
prior for σ denoted IG(aσ, bσ) and uniform prior for γ over the interval (L,U) denoted
Uni(L,U). Further discussion of the prior selection and posterior inference of σ and γ can
be found in Section 2.7.

2.3. Markov chain Monte Carlo algorithm. The construction of the exAL through a
structured mixture of normal distributions facilitates Bayesian posterior simulation using
Markov Chain Monte Carlo (MCMC) with a Metropolis-Hastings (MH) step for the skew-
ness parameter γ. Conditional on the latent variables v = {v1, . . . , vT } and s = {s1, . . . , sT },
scale parameter σ and skewness parameter γ, the dynamic regression coefficients can be
sampled using a forward filtering backwards sampling (FFBS) algorithm (Carter and Kohn,
1994; Frühwirth-Schnatter, 1994). Full details of our FFBS can be found in the Supplemental
Material Section S1.1. MCMC posterior simulation is summarized in Algorithm 1.

Note that if a point mass prior at zero is used for skewness parameter γ, the model simpli-
fies to the DQLM with fixed quantile p = p0. The DQLM models the p-th quantile alterna-
tively by specifying the observational errors εt in Equation (4) to be distributed independently
from an AL (Gonçalves, Migon and Bastos, 2017). Similar to the exDQLM, a mixture repre-
sentation can be exploited to rewrite the DQLM a hierarchical model to facilitate a MCMC
algorithm for posterior inference. Such algorithm will follow very closely Algorithm 1 with
a few changes: the posterior of σ reduces to an inverse gamma and all terms with skewness
γ will simplify to 0. We compare the exDQLM with this special case in Section 3.

2.4. Importance sampling variational Bayes algorithm. The addition of two latent pa-
rameters per observation in the hierarchical representation of the exDQLM elicits both high
computational and memory costs. In particular, any sort of model selection is completely in-
tractable when using only the MCMC algorithm. For example, a daily IVT magnitude time
series at a single location from 1979 through 2019 consist of 14965 time points. For this
length of time series, the personal laptop used for computations in Section 5 was not able
to produce results when using the MCMC algorithm due to the significant memory storage
required. Further, even with enough memory, model selection with the MCMC algorithm
is not a realistic option as it can take a full day or more for the algorithm to converge for
each model configuration. Amidst our efforts to address these issues, we found many of the
standard methods for fast inference of a non-Gaussian state space model (i.e., an expecta-
tion maximization algorithm, or state-space augmentation scheme) were unable to provide
accurate inference or compromised the ability to fix the quantile of interest due to the com-
plex structure of our exDQLM. To relieve the computational burden and memory storage
requirements induced by the MCMC algorithm while preserving the underlying parameter
estimation problem, we present an efficient importance sampling variational Bayes (ISVB)
algorithm.

Variational Bayes (VB) is an optimization method for fast, approximate posterior infer-
ence (Ostwald et al., 2014). Let ξ = {θ1:T , σ, γ,v, s} denote the set of all parameters in the
exDQLM. Within the VB framework, we approximate the posterior distribution f(ξ|y1:T )
with an arbitrary variational distribution r(ξ) which minimizes the Kullback-Leibler (KL) di-
vergence (Kullback and Leibler, 1951) and equivalently maximizes the evidence lower bound
(ELBO). For a full review of the VB approach, see Ostwald et al. (2014).

A common choice for the family of variational distributions over which we optimize the
ELBO is a factorization over different sets of variables known as a mean-field approximation
(Beal, 2003). In our particular model, we factorize as follows

(11) r(ξ) = r(θ1:T )r(σ,γ)r(v)r(s).
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Algorithm 1: exDQLM MCMC

Initialize σ(0), γ(0),v(0), s(0),θ(0)1:T ;
for i = 0, . . . , I-1 do

1. Sample σ(i+1)|θ(i)1:T ,v
(i), s(i), γ(i) from a generalized inverse Gaussian, denoted GIG(λσ , χσ ,ψσ)

where

λσ =−(aσ + 1.5T ), χσ = 2bσ + 2

T∑
t=1

v
(i)
t +

T∑
t=1

(yt −F′tθ
(i)
t −A(p)

(i)v
(i)
t )2

B(p)(i)v
(i)
t

,

ψσ =

T∑
t=1

(C(p)(i)|γ(i)|s(i)t )2

B(p)(i)v
(i)
t

.

2. Sample γ(i+1)|θ(i)t ,v(i), s(i), σ(i) using a Metropolis-Hastings step with a Gaussian random walk
proposal on the logit scale.

3. for t=1,. . . ,T do
Sample v(i+1)

t |θ(i)t , s
(i)
t , σ(i), γ(i) ∼GIG(λvt , χvt ,ψvt) where λvt = 1/2,

χvt =
(yt −F′tθ

(i)
t − σC(p)(i)|γ(i)|s(i)t ))2

σ(i)B(p)(i)
, ψvt =

2

σ(i)
+

A(p)(i)
2

σ(i)B(p)(i)
.

end
4. for t=1,. . . ,T do

Sample s(i)t |θ
(i)
t , v

(i)
t , σ(i), γ(i) ∼N+(µst , σ

2
st), where

σ2st =

C(p)(i)
2
γ(i)

2
σ(i)

B(p)(i)v
(i)
t

+ 1

−1 ,

µst = σ2st

C(p)(i)|γ(i)|(yt −F′tθ
(i)
t −A(p)

(i)v
(i)
t )

B(p)(i)v
(i)
t

 .
end

5. for t=1,. . . ,T do
Sample θt|v(i), s(i), γ(i), σ(i) via FFBS. The forward part of the FFBS algorithm uses the

forecast distribution p(yt|Dt−1) = N(ft,Qt) where Dt−1 = {y1, . . . , yt−1},

ft =F′tat +C(p)(i)σ(i)|γ(i)|s(i)t +A(p)(i)v
(i)
t , Qt =F′tRtFt + σ(i)B(p)(i)v

(i)
t .

end

end

Note, this reflects an assumption of stochastic independence between sets of variables. It has
been shown that for each component of the factorization, the ELBO is maximized by the
following

(12) r(ξc)∝ exp

{∫
log f(y1:T ,ξ−c)r(ξ−c)dξ−c

}
where ξc denotes the set of variables in the component being maximized and ξ−c the vari-
ables not in that component of the partition (Tuckerman, 2010).

To implement this VB approach, we initialize the partitioned variational distributions seen
in Equation (11) and iteratively maximize the ELBO using Equation (12) until convergence.
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For the exDQLM, the variational distribution updates at each iteration are recognizable,
closed-form distributions with the exception of r(σ,γ). Therefore, we propose to approxi-
mate the update of r(σ,γ) at each iteration using importance sampling (IS). ISVB posterior
inference for the exDQLM is summarized in Algorithm 2. For simplicity, we will use the
following short-hand notation where ξc and ξ−c are as defined in Equation (12)

〈g(ξc)〉=
∫

log g(ξc)r(ξ−c)dξ−c.

The resulting closed form integrals as well as complete details of the Forward Filtering Back-
wards Smoothing (FFBSm) and IS algorithms used to update the variational distributions can
be found in the Supplemental Material Section S2.

2.5. Comparison criteria. To evaluate the quantile inference and predictive performance
of the exDQLM, we define several measures for comparison. Consider first the setting in
which we know the true p0 quantile, µtruet , for all t. To measure the fit of the quantile esti-
mates, we compute the 95% credible interval (CrI) for the mean check loss (MCL),∑

t

ρp0(µ
true
t −F′tθ̃t)/T,(13)

where θ̃t is a sample from the posterior distribution.
To evaluate the predictive ability of the exDQLM, we consider the Gelfand and Ghosh

(1998) posterior predictive loss criterion (pplc) with check loss function ρp0 . Given the pos-
terior replicate distribution of yt, p(y

rep
t |DT ),

pplc =
∑
t

E[ρp0(y
obs
t − y

rep
t )|DT ](14)

where DT = {y1, . . . , yT }.
Lastly, as in Huerta, Jiang and Tanner (2003) and Prado, Molina and Huerta (2006) we

use the one-step-ahead predictive distribution function introduced by Rosenblatt (1952) as a
model diagnostic tool. If we define ξ−θ1:T

= {v, s, σ, γ}, this distribution is given by

ut = Φ(yt|Dt−1,ξ−θ1:T
) = Pr(Yt ≤ yt|Dt−1,ξ−θ1:T

).(15)

Here ut defines an independent sequence which is uniformly distributed on the interval (0,1)
(Rosenblatt, 1952). Conditional on ξ−θ1:T

, the predictive distribution of yt is normally dis-
tributed with mean ft and variance Qt seen in Algorithms 1 and 2, thus ut = Φ(yt|ft,Qt)
where Φ denotes the normal CDF. We can obtain a point estimate for ut conditionally on a
posterior summary of ξ−θ1:T

from the MCMC or ISVB posterior samples. A diagnosis of
the model performance can be done through the correlation of the estimated sequence {ût}
and their distribution shape. More specifically, transforming the values with a standard nor-
mal inverse CDF allows for examination of the distribution shape with a normal QQ-plot.
To quantify the divergence from the standard normal distribution, we consider the KL di-
vergence KL(h,φ) =

∫∞
−∞ h(x) log h(x)

φ(x)dx. We estimate the integrals using the numerically
approximated densities of our transformed sample, which we denote h, and the standard nor-
mal density, φ.

2.6. Discount factor selection. A standard approach which allows us to specify the time-
evolving covariance matrices Wt is the use of discount factors. (West and Harrison, 2006).
The structure and magnitude of Wt controls stochastic variation and stability of the evolution
of the model over time. More precisely, if the posterior variance of the state vector θt−1 at
time t− 1 is denoted as Var(θt−1|Dt−1) = Ct−1, the sequential updating equations produce
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Algorithm 2: exDQLM ISVB
Set k = 0 and initialize r0(st), r

0(vt), r
0(θt) and r0(σ,γ);

while convergence has not been achieved do
1. for t=1,. . . ,T do

Update r(k+1)(vt) = GIG(λ
(k+1)
vt , χ

(k+1)
vt ,ψ

(k+1)
vt ) where λvt = 1/2

χvt =

〈
1

σB(p)

〉(k)
(y2t − 2yt〈F′tθt〉

(k) + 〈(F′tθt)
2〉(k))

− 2〈st〉(k+1)
〈
C(p)|γ|
B(p)

〉(k)
(yt − 〈F′tθt〉

(k))

+ 〈s2t 〉
(k+1)

〈
C(p)2σ|γ|2

B(p)

〉(k)

ψvt = 2

〈
1

σ

〉(k)
+

〈
A(p)2

σB(p)

〉(k)

.

end
2. for t=1,. . . ,T do

Update r(k+1)(st) = N+(µ
(k+1)
st , σ2st

(k+1)
), where

σ2
(k+1)

st =

〈C(p)2σγ2

B(p)

〉(k)〈
1

vt

〉(k)
+ 1

−1

µ
(k+1)
st = σ2st

[
(yt − 〈F′tθt〉

(k))

〈
1

vt

〉(k)〈C(p)|γ|
B(p)

〉(k)
−
〈
C(p)|γ|A(p))

B(p)

〉(k)
]
.

end
3. for t=1,. . . ,T do

Update the smoothed distribution r(k+1)(θt) = N(ms
t ,C

s
t ) using a FFBSm algorithm with

forecast distribution r(k+1)(yt|Dt−1) = N(ft,Qt) where Dt−1 = {y1, . . . , yt−1},

ft =F′tat +

[〈
C(p)|γ|
B(p)

〉(k)
〈st〉(k+1) +

〈
A(p)

σB(p)

〉(k)/〈 1

vt

〉(k+1)
]/〈 1

σB(p)

〉(k)

Qt =F′tRtFt +

[〈
1

vt

〉(k+1)〈 1

σB(p)

〉(k)
]−1

.

end
4. Update r(k+1)(σ,γ) using IS with proposal distributions t(L,U)(0,1) and t(0,∞)(mσ , vσ)

for γ and σ, respectively, where mσ and vσ denote the mean and variance of the prior
distribution on σ. Further details of this IS step can be found in the Supplemental Material
Section S2.2.

5. Set k = k+ 1.

end

the prior variance of θt, Rt = Var(θt|Dt−1) = GtCt−1G
′
t +Wt. Between observations, the

addition of the error leads to an additive increase in the initial uncertainty GtCt−1G
′
t of

the system variance. Thus it is natural to write Rt as a fixed proportion of GtCt−1G
′
t such

that Rt = GtCt−1G
′
t/δ ≥GtCt−1G

′
t. Here δ is defined to be a discount factor such that
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0 < δ ≤ 1. This suggests an evolution variance matrix of the form Wt = 1−δ
δ GtCt−1G

′
t,

where the δ = 1 results in a static model with non time-varying parameters.
Selection of discount factors is typically done by optimizing some model checking cri-

terion. This criterion-based selection approach requires posterior inference for each set of
discount factors which can become computationally expensive very quickly especially for
large T . The ISVB algorithm makes this criterion-based selection approach computationally
feasible. We propose selecting the discount factor, or combination of discount factors (see
West and Harrison, 2006 for details on component discounting), that minimize the KL diver-
gence calculated from the one-step-ahead predictive distribution functions ut estimated using
the MAP estimates of ξ−θ1:T

from the ISVB algorithm, as discussed in Section 2.5. Fixing
the discount factors within each quantile ensures consistent signal-to-noise ratios between
differing models and algorithms.

2.7. Comments on prior selection and inference of σ and γ. We find that using a proper
prior distribution on the skewness parameter γ facilitates reliable posterior inference by alle-
viating some of the inferential problems known to arise when utilizing the skew-normal fam-
ily (Liseo and Loperfido, 2006). To this end, we implement a weakly informative Student-t
distribution truncated to the interval (L,U) as the prior for γ, i.e. γ ∼ t(L,U)(0,1) with one
degree of freedom, in contrast to the flat prior suggest by Yan and Kottas (2017). Further,
interaction between the parameters σ and γ can complicate posterior inference, particularly
for extreme quantiles. Joint sampling of σ and γ with a random-walk MH step facilitates
mixing and convergence within the MCMC algorithm.

The interaction between σ and γ is also prevalent within the ISVB algorithm, which com-
monly results in the variational distributions getting stuck in local optima. To facilitate fast
posterior estimation with the ISVB algorithm, we place a point-mass prior on σ. For the
simulation study in Section 3, we set the point-mass of this prior to the posterior mode of
σ estimated from the DQLM. That is, for any fixed quantile of interest p0, the prior on σ is
set to δσ̂p0γ=0

(σ) where δ denotes the Dirac delta function and σ̂p0γ=0 is the posterior mode of
σ under the DQLM for the p0 quantile. If convergence still proves difficult, a smaller scale
can be helpful and we suggest decreasing the location of the point-mass by approximately
twenty-five percent, as seen in the IVT analysis of Section 5. Although this approach results
in different posterior summaries for the skewness parameter γ obtained from the ISVB al-
gorithm and the MCMC algorithm, we find that the posterior error distributions and modes
(and therefore quantile estimates) are robust with respect to the prior placed on σ.

3. Simulation study. We present results from a simulation study to examine the
exDQLM for three different quantiles; 0.05, 0.50 and 0.85. We compare the flexibility of
the model to the special case of the DQLM as well as the standard DLM, for which we
can estimate posterior quantiles from the Gaussian observation equation using the smoothed
estimates (West and Harrison, 2006). For the underlying data-generating distributions, we
consider three scenarios with different types of tail behavior and skewness.

Dataset 1: Stochastic Volatility. Stochastic Volatility (SV) models are commonly used to
analyze returns (Kastner, 2016). These models are stochastic processes in which the log-
variance is randomly distributed and follows an autoregressive structure. The SV model for
t= 1, . . . ,1000, where yt denotes the return at time t, can be written as follows,

yt|xt ∼N(0, xt)(16)

logxt| logxt−1, µ,φ,σ ∼N(µ+ φ{logxt−1 − µ}, σ2)(17)

logx0|µ,φ,σ ∼N(µ,σ2/(1− φ))(18)
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FIG 2. Simulation study datasets. From left to right are the data simulated from the Stochastic Volatility (SV)
model, exDQLM, and generalized DLM (gDLM) described in Section 3.

Under SV models, posterior inference of the return distributions requires simulation of a
latent time-varying process which can sometimes be difficult. To explore the posterior per-
formance of our exDQLM with respect to this more complexly structured data, we generate
time series of length 1000 from a SV model using the stochvol package in Rwith the level
(µ), persistence (φ), and volatility (σ) of the log-variance to be 0, 0.95 and 0.5 (Hosszejni
and Kastner, 2018), respectively. We will utilize the exDQLM to model the p0 = 0.05,0.5,
and 0.85 posterior quantiles with a first-order polynomial evolution structure,

yt ∼ exALp0(θt, σ, γ)

θt ∼N(θt−1,Wt).

Dataset 2: exDQLM. Next, we consider synthetic data from an exDQLM, for t =
1, . . . ,1000,

yt ∼ exAL0.85(F
′θt, σ, γ)

θt ∼N2(Gθt−1,W).

With a slight abuse of notation, here F′θt denotes the p0 = 0.85 quantile of the synthetic
dataset at time t. The components F and G are specified with a second-order polynomial
trend (West and Harrison, 2006),

F = (1,0)′, G =

[
1 1
0 1

]
with

W =

[
0.01 0.001
0.001 0.001

]
,

σ = 1, and skewness parameter γ =−2.5 causing the mode to be below the p0 = 0.85 quan-
tile for all t. We model the p0 = 0.05,0.5,0.85 quantiles of this dataset (simulated with p0
fixed at 0.85) with the second-order polynomial evolutionary structure seen above. We ex-
pect to recover the values of σ and γ used to simulate the data for only the estimated 0.85
quantile.

Dataset 3: Generalized DLM. For a dataset with extreme observations, we generate data
from a non-Gaussian DLM (West and Harrison, 2006), for t= 1, . . . ,1000,

yt ∼ Cauchy(F′θt, τ
2)

θt ∼N4(Gθt−1,W).
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Again, with a slight abuse of notation, here F′θt denotes the mean of the synthetic dataset at
time t. The components F and G are specified with a second-order polynomial and Fourier
form represented seasonality at frequency ω = 2π/75 (West and Harrison, 2006),

F = (1,0,1,0)′, G = block-diag
{[

1 1
0 1

]
,

[
cos(ω) sin(ω)
− sin(ω) cos(ω)

]}
with τ2 = 4 and evolution covariance

W = block-diag
{[

0.05 0.01
0.01 0.001

]
,

[
2 0
0 2

]}
.

Again, we model the quantiles with the same trend and seasonal evolution structure.

DLM DQLM exDQLM

FIG 3. MCMC results. Smoothed posterior distributions of dynamic p0 = 0.05 quantile of the Stochastic Volatility
data. The lines indicate the mean estimate of the exDQLM (solid), the DQLM (dashed), and the DLM (dotted).
The surrounding shaded regions of each mean indicate the 95% CrIs.

3.1. Results. For all models, we set conjugate prior θ0 ∼N(m0,C0) and priors for σ and
γ as discussed in Section 2.7. Table 1 reports the posterior results, with bold text indicating
the model supported by the comparison criteria detailed in Section 2.5.

Overall, the exDQLM out-performs the standard DLM and DQLM. The exDQLM is fa-
vored with a lower MCL for all cases in which the true quantile is known with two exceptions
where the MCL of the exDQLM is comparable to the MCL of the DQLM: the medians of
the Stochastic Volatility and generalized DLM, both symmetric datasets. The one-step-ahead
predictions assessed using the KL divergence also overwhelmingly favor the exDQLM for all
quantiles except 0.5 of the symmetric datasets, in which the exDQLM is again comparable
to the DQLM. Similarly, the Gelfand and Ghosh pplc favors the exDQLM for all extreme
quantiles (0.05 and 0.85), and again is comparable to the DQLM for the median in the two
cases for which the data is symmetric. This parallel between the DQLM and exDQLM for the
median of the symmetric datasets is unsurprising, as the exAL reduces to the AL at the 0.5
quantile when the distribution is symmetric. However, we find the pplc for the 0.5 quantile of
the exDQLM dataset is also comparable between all three models and even slightly favors the
DLM. The exAL distribution used to generate the dataset (seen in Figure 1) is only slightly
left-skewed around the median with thin tails, therefore it is not unreasonable a normal ob-
servational distribution is able to produce equitable predictive results. With this exception,
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Model γ σ MCL KL pplc time
Stochastic Volatility (δ = 0.92,0.99,0.87 for p0 = 0.05,0.50,0.85, respectively)
p0 = 0.05
DLM — — — 3.644 839.7 0.1
DQLM — 0.178 (0.17,0.19) — 3.943 2012.6 19.6
exDQLM/MCMC 4.358 (3.96,4.77) 0.303 (0.29,0.32) — 3.641 697.5 46.2
exDQLM/ISVB 6.980 (6.93,7.03) 0.178 (fixed) — 3.911 774.3 4.1
p0 = 0.50
DLM — — 0.035 3.586 852.6 0.1
DQLM — 0.486 (0.46,0.52) 0.011 3.484 749.7 21.3
exDQLM/MCMC 0.037 (-0.03,0.09) 0.487 (0.46,0.52) 0.012 3.498 757.4 48.7
exDQLM/ISVB 0.017 (-0.02,0.05) 0.486 (fixed) 0.012 3.524 769.6 0.8
p0 = 0.85
DLM — — — 3.679 829.5 0.1
DQLM — 0.299 (0.28,0.32) — 3.979 1133.3 19.5
exDQLM/MCMC -1.384 (-1.53,-1.18) 0.401 (0.376,0.423) — 3.667 740.6 43.9
exDQLM/ISVB -2.610 (-2.65,-2.57) 0.299 (fixed) — 3.652 785.5 2.1
exDQLM (trend δ = 0.93 for all p0)
p0 = 0.05
DLM — — — 4.496 2282.7 0.1
DQLM — 0.456 (0.43,0.48) — 3.968 4276.3 18.6
exDQLM/MCMC 5.139 (4.75,5.52) 0.854 (0.81,0.94) — 3.910 1692.6 46.2
exDQLM/ISVB 8.058 (8.02,8.09) 0.456 (fixed) — 4.076 1799.9 4.6
p0 = 0.50
DLM — — — 4.169 2287.6 0.1
DQLM — 1.584 (1.49,1.68) — 3.578 2343.8 19.0
exDQLM/MCMC 0.362 (0.27,0.48) 1.377 (1.20,1.53) — 3.548 2328.8 45.9
exDQLM/ISVB 0.25 (0.21,0.28) 1.584 (fixed) — 3.674 2345.0 0.7
p0 = 0.85
DLM — — 0.214 4.384 2283.3 0.1
DQLM — 0.871 (0.82,0.93) 0.252 3.939 2963.1 18.9
exDQLM/MCMC -2.514 (-2.72,-2.39) 0.967 (0.87,1.03) 0.195 3.831 1489.7 46.2
exDQLM/ISVB -2.68 (-2.71,-2.65) 0.871 (fixed) 0.211 3.835 1510.2 0.7
Generalized DLM (trend δ = 0.98, seasonality δ = 0.95 for all p0)
p0 = 0.05
DLM — — 1.830 5.323 84242.3 0.1
DQLM — 3.164 (2.98,3.37) 1.410 3.729 45607.3 19.0
exDQLM/MCMC 3.469 (3.23,3.76) 3.492 (3.35,3.71) 0.472 3.603 10747.9 45.0
exDQLM/ISVB 1.534 (1.45,1.62) 3.164 (fixed) 1.046 3.609 19189.5 2.4
p0 = 0.50
DLM — — 2.723 5.401 84316.5 0.1
DQLM — 4.536 (4.26,4.84) 1.204 3.635 7400.3 18.9
exDQLM/MCMC 0.112 (0.06,0.18) 4.465 (4.21,4.71) 1.203 3.581 7278.6 45.5
exDQLM/ISVB 0.095 (0.06,0.13) 4.536 (fixed) 1.240 3.514 7616.1 0.7
p0 = 0.85
DLM — — 4.518 5.339 84347.7 0.1
DQLM — 3.149 (2.95,3.36) 0.979 3.531 13454.3 18.6
exDQLM/MCMC -1.139 (-1.24,-1.02) 3.703 (3.478,3.926) 0.823 3.516 8873.2 45.1
exDQLM/ISVB -0.497 (-0.57,-0.42) 3.149 (fixed) 0.828 3.491 9836.2 1.1

TABLE 1
Posterior summaries for γ and σ (where applicable): mean (95% CrI). Mean check loss of the MAP dynamic

quantile. KL divergences of the one-step-ahead distributions. Posterior predictive loss criterion (pplc) under the
check loss function. Computation run-time (min).
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exDQLM/MCMC exDQLM/ISVB

FIG 4. ISVB and MCMC comparison results. Smoothed posterior distributions of dynamic quantiles p0 =
0.05,0.5,0.85. MCMC exDQLM mean estimates indicated with solid lines, ISVB exDQLM mean estimates indi-
cated with dot-dashed lines. The surrounding shaded regions of each mean indicate the 95% CrIs.

p0 SV exDQLM gDLM
0.05 0.368 0.327 0.524
0.50 0.709 0.831 0.785
0.85 0.629 0.675 0.685

TABLE 2
Median proportion of coverage agreement between the 95% CrIs from the ISVB and MCMC algorithms. That is,
the proportion of the 95% CrIs from the MCMC algorithm covered by the 95% CrIs from the ISVB algorithm.

the exDQLM outperforms the other models in all cases for which the underlying distribution
is skewed or the quantile of interest does not align with the mode. Figure 3 supports these
findings where it can be seen that, due to the rigidity of their observational error distribu-
tions, the estimated dynamic quantiles of the DLM and DQLM are more affected by extreme
observations than the exDQLM. This is particularly evident for extreme quantiles, i.e., the
0.05 quantile of the SV data seen in Figure 3. Similar results to Figure 3 for all datasets and
quantiles can be found in the Supplemental Material Section S4. Our findings highlight the
two main advantages of our exDQLM for parametric quantile inference on non-Gaussian dy-
namic models; robust estimation of any dynamic quantile and superior predictive accuracy
for non-standard distributions.

The assessment criteria also illustrate the comparable accuracy of the ISVB exDQLM al-
gorithm to the MCMC exDQLM, but with a fraction of the computational time (see Table
1). Both algorithms were implemented in the R programming language on a personal com-
puter with a 2.5 GHz Intel Core i5 processor. The point-mass prior on parameter σ results
in different posterior summaries for γ from the MCMC and ISVB algorithms, as discussed
in Section 2.7 and seen in Table 1. It can been seen in Figure 4 that the credible intervals
(CrIs) of the ISVB algorithm are narrower than the CrIs of the MCMC algorithm. Figure 4
illustrates the comparision for the SV data, however the results for all datasets and quantiles
can be found in the Supplemental Material Section S4. The median proportion of coverage
agreement between the 95% CrIs from the ISVB and MCMC algorithms are reported in Ta-
ble 2. It can be seen that the median proportion of the 95% CrIs from the MCMC algorithm
contained within the 95% CrIs from the ISVB algorithm varies between approximately 0.33
and 0.83. This underestimation of the variability is a feature to be aware of when using varia-
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tional methods. However, the approximated posterior quantiles from the ISVB algorithm are
almost entirely contained with the MCMC posterior 95% CrIs.

4. Transfer Function exDQLM. Quantifying the relationship between a climatological
response and input at various quantiles is a non-trival task. In the mean-centric setting, trans-
fer functions are a simple way to incorporate variables which measure the combined effect
of current and past inputs or regression effects (West and Harrison, 2006). To capture both
the immediate and lagged effects of a climatological variable, we expand the use of trans-
fer functions to the dynamic quantile regression setting with the development of a transfer
function extension to our exDQLM.

For time t= 1, . . . , T and a single regression effect, Xt, a transfer function exDQLM with
exponential decay is as follows:

yt|θt, γ, σ ∼ exALp0(F
′
tθt + ζt, σ, γ)(19)

θt|θt−1,Wt ∼N(Gtθt−1,Wt)(20)

ζt|ζt−1,ψt−1, ωt ∼N(λζt−1 +Xtψt−1, ωt)(21)

ψt|ψt−1, νt ∼N(ψt−1, νt).(22)

Here ζt captures the effect of the current and past regression effects, as seen in Equation (21).
The parameter ψt determines the immediate effect Xt has on the quantile. Alternatively the
parameter λ is a quantity in the unit interval which represents the memory of the regression
effect up to time t. This effect decays at an exponential rate, reducing by a factor of λ at every
time step. To see this more explicitly we can derive the transfer function effect k steps ahead,
that is:

ζt+k = λkζt +

k∑
r=0

λk−rψt+r−1Xt+r + ∂ζt+k.(23)

Thus, the effect of Xt on the quantile at time t + k is λkψt−1Xt. This effect is negligible
when λk|ψt−1Xt| ≤ ε for small ε. Using this we can derive a series, kt, representing a lower
bound for the number of time steps until the effect of Xt is less than or equal to a fixed ε.
That is, for t= 1, . . . , T

kt ≥
log(ε)− log(|ψt−1Xt|)

log(λ)
.(24)

To complete the model, conjugate priors are available for the additional transfer function
parameters; normal conjugate priors for ζ0 ∼ N(mζ0 ,Cζ0) and ψ0 ∼ N(mψ0

,Cψ0
), and a

conjugate normal truncated to the unit interval prior for λ∼N(0,1)(mλ, vλ).

4.1. MCMC and ISVB Algorithm Augmentations. This transfer function exDQLM can
equivalently be rewritten in the form of a standard exDQLM

yt|γ,θt, σ ∼ exALp0(F̃
′
tθ̃t, σ, γ)(25)

θ̃t|θ̃t−1,W̃t ∼N(G̃tθ̃t−1,W̃t)(26)

where F̃′t = (F′t,1,0), θ̃
′
t = (θ′t, ζt,ψt), G̃t = blockdiag

{
Gt,

(
λ Xt
0 1

)}
, and

W̃t = blockdiag
{
Wt,

(
ωt 0
0 νt

)}
.

Using this representation, the exDQLM MCMC Algorithm 1 can easily be augmented
to incorporate the transfer function structure as follows: (1) Replace all {Ft,θt,Gt,Wt}
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with {F̃t, θ̃t, G̃t,W̃t}, where G̃t will be conditional on λ(i); (2) For each iteration i, add an
additional step to sample λ(i+1)|ζ(i+1),ψ(i+1) ∼N(0,1)(µλ, σ

2
λ) with

σ2λ = [

T∑
t=1

ζ
(i+1)2
t−1
ωt

+
1

vλ
]−1,

µλ = σ2λ[

T∑
t=1

ζ
(i+1)
t−1 (ζ

(i+1)
t −ψ(i+1)

t Xt)

ωt
+

1

vλ
].

Augmenting the ISVB algorithm is not as straight-forward. The random parameter λ
within the evolution matrix G̃t compromises our ability to update the state parameter vari-
ational distributions within the FFBS while using discount factors to specify W̃t. To pre-
serve the ability to utilize discount factors, we propose optimizing the parameter λ with
respect to the KL divergence of the one-step-ahead predictive distribution functions as dis-
cussed in Sections 2.5 and 2.6. For optimal λ, say λ̃, the ISVB algorithm can be augmented
to incorporate the transfer function structure by simply replacing all {Ft,θt,Gt,Wt} with
{F̃t, θ̃t, G̃t,W̃t} where G̃t = blockdiag

{
Gt,

(
λ̃ Xt
0 1

)}
.

5. Estimating the 0.85 quantile IVT threshold. The method presented in Guan and
Waliser (2015) for detection of ARs from the IVT is as follows. For each of the 12 months,
the 0.85 quantile IVT is calculated over all time steps during the 5 month windows centered
on that month over the period from 1997 to 2014 at a specific location. Comparison to the
estimated 0.85 quantile in combination with a minimum threshold is used to isolate regions
of enhanced IVT as possible ARs. Criteria are then applied to the length and width of these
regions, resulting in a defined set of ARs. Finally, the coastal location intersecting with an
AR at which the IVT magnitude is highest is defined as the cell in which the AR makes
landfall. For more details on the full AR detection algorithm, see Guan and Waliser (2015).
Although the primary dataset used to calculate IVT in the study by Guan and Waliser (2015)
is the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis
(ERA-Interim; Berrisford et al., 2011; Dee et al.,2011), we utilize the latest ECMWF ob-
servational product ERA5 in our analysis. ERA5 produces 1-hourly atmospheric fields at a
0.5◦×0.5◦ spatial resolution beginning in 1979 and is continuously updated at a 2 month lag
(Hersbach et al., 2020). The top panel of Figure 5 illustrates the average daily IVT magnitude
in Santa Cruz, CA, of which we examine the 0.85 quantile in this analysis. For illustration,
the times at which ARs detected to make landfall at that location and in the neighboring
coastal locations are illustrated in the middle panels of Figure 5 for two time periods; years
1982 to 1985 in which CA saw an exceptional amount of rain, and years 2012 to 2015 which
were exceptionally dry for CA.

Although many climate indices other than ELI have been studied as potential sources
of predictability for ARs, initial examination of several indices with our transfer function
exDQLM did not demonstrate significant associations. Therefore in this analysis, we focus
solely on the association between IVT and ELI. ELI is a single metric which captures the
spatial diversity of ENSO, created utilizing the monthly ECMWF twentieth century reanal-
ysis (ERA-20C). In particular, ELI is the average longitude at which tropical Pacific deep
convection occurs at a given month. For further details on the development ELI and the re-
lationship of ELI with precipitation see Williams and Patricola (2018) and Patricola et al.
(2020), respectively. The monthly ELI dataset is available online beginning in 1854 and is
frequently updated (Williams and Patricola, 2018). For our analysis, we interpolate the ELI
to the daily time scale and de-seasonalize the time series by removing the smoothed posterior
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FIG 5. Top panel: Average daily IVT magnitude in the grid cell containing Santa Cruz, CA. The dashed vertical
lines enclose the two time periods enlarged in the middle panel. Middle panel: A closer look at the two time pe-
riods highlighted in the top panel. Years 1982 to 1985 illustrate a time period which saw an exceptional amount
of rain. Years 2012 to 2015 illustrate a period which was exceptionally dry. ARs detected by the scheme pro-
posed in Guan and Waliser (2015) in the Santa Cruz grid cell are indicated with dark triangles. ARs detected in
neighboring coastal grid cells are indicated with lighter circles. Bottom panel: ELI anomalies resulting from the
de-seasonalization of the interpolated ELI. The dashed, horizontal line is at zero, for reference.

mean estimates from a standard DLM with constant trend, annual, semi-annual, and quar-
terly components. De-seasonalizing in this way ensures the variability in the 0.85 quantile
described by the ELI component of our model is not an artifact of the seasonality in the orig-
inal ELI time series. This de-seasonalization results in a time series of ELI anomalies, also
seen in Figure 5, which we use as the input in our analysis of the 0.85 quantile of the IVT
magnitude.

5.1. IVT analysis. We fit two separate models to estimate the 0.85 quantile of the IVT
magnitude. The first, M0, is a simplified version of the second, M1. The simplified M0 in-
cludes only a baseline level and seasonal effects without any input from the ELI time series.
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FIG6.Toppanel:IVTdatawithoverlaidsolidlineindicatingtheM1MAP0.85quantilethresholdoftheaverage
dailyIVTmagnitudeinSantaCruz,CA.Theverticaldashedlinesenclosethetwoperiodsenlargedinthebottom
panels.Bottompanels:Years1982to1985(left,exceptionalamountofrain)andyears2012to2015(right,
exceptionallydry).TheMAP0.85quantilefromM1andM0areseeninsolidanddashedlines,respectively.The
dottedlinessurroundingtheM1MAPestimateindicatethe95%CrIs.

Alternatively,M1includestheELIinpututilizingourtransferfunctionexDQLM.Ouranaly-
siswillfocusontheresultsofM1,onlyhighlightingfeaturesofM0forcomparisonpurposes.

Thestateparametersforthebaselinecomponentandtheseasonalcomponentsinboth

modelsaredenotedbyη1,t,(baseline)andα
(l)
1,t,α

(l)
2,t,forthelthharmonic(seasonal). Wede-

scribethebaselinecomponentinthemodel,η1,t,withasecondorderpolynomialasfollows:

(27)
η1,t
η2,t

= 11
01

η1,t 1
η2,t 1

+ωη
t, ωη

t∼N2(0,W η
t).

ThissecondorderpolynomialallowsthebaselinecomponentoftheIVTquantiletovary
linearlyovertheextendedtimeframe.Herethesystemevolutionerrorvectorsωη

t,areas-
sumedtobeindependentovertime. Wewilldenotethistrendcomponentevolutionmatrix

asGη=(11
01). Weincludeseasonalcomponentsα

(l)
1,tforharmonicsl=1,2,4foraperiod

of365days. Wefoundonlytheannual(l=1),semi-annual(l=2),andquarterly(l=4)
harmonicstobesignificant(detailsintheSupplemental MaterialSectionS3.1),andmodel
themusingFourierformseasonalcomponents(WestandHarrison,2006)asfollows,

(28)
α

(l)
1,t

α
(l)
2,t

=
cos(2π

365l)sin(2π
365l)

−sin(2π
365l)cos(2π

365l)

α
(l)
1,t−1

α
(l)
2,t−1

+ωα,l
t , ωα,l

t ∼N2(0,W α,l
t ).

WedenotethelthseasonalevolutionmatrixGα,l=
cos(2π

365
l) sin(2π

365
l)

−sin(2π

365
l)cos(2π

365
l)

.Again,itisas-

sumedthatωα,l
t areindependentovertime,aswellasindependentofωη

tfort=1,...,T.
Usingsuperpositiontheresultingstatevectorθt,F,G andW tinEquations(19)-(22)are
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FIG 7. Top panel: Effects of ELI captured by the transfer function component, ζt. Bottom panel: Instantaneous
effects of ELI, ψt. In both panels, dark grey lines indicate the MAP estimates. 95% CrI are indicated by the grey
shaded regions. Dashed horizontal dashed lines are at zero, for reference. Left vertical dashed lines enclose years
1982 to 1985 in which CA saw an exceptional amount of rain. Right vertical dashed lines enclose 2012 to 2015
in which CA was exceptionally dry.

defined, respectively, as follows:

θt = (η1,t, η2,t, α
(1)
1,t , α

(1)
2,t , α

(2)
1,t , α

(2)
2,t , α

(4)
1,t , α

(4)
2,t )
′,(29)

F′ = (1,0,1,0,1,0,1,0),(30)

G = blockdiag(Gη,Gα,1,Gα,2,Gα,4),(31)

Wt = blockdiag(Wη
t ,W

α,1
t ,Wα,2

t ,Wα,4
t ).(32)

We choose to model the baseline and seasonal components in both models as non-time-
varying, thus any variation in the 0.85 quantile from year to year will solely be attributed to
the effects of the ELI as input to our transfer function model. This is easily done utilizing
component discounting to specify Wt with discount factor values of 1 (West and Harrison,
2006), which also preserves our ability to update the state parameter using FFBSm. Note
that, under this modeling choice, the baseline and seasonal parameters in the state vector are
non-time-varying, thus we will omit subscripts t going forward where applicable.

In addition to the baseline and seasonal components, in M1 we utilize the exponentially
decaying transfer function exDQLM as specified in Equations (19)-(22) to capture both the
immediate and lagged effects of ELI on the 0.85 quantile. We complete the models with
conjugate priors, where applicable; θ0 ∼ N(m0,C0) with m0 = 0 and C0 = 100Iq , ζ0 ∼
N(mζ0 ,Cζ0) and ψ0 ∼ N(mψ0

,Cψ0
) with mζ0 = mψ0

= 0 and Cζ0 = Cψ0
= 10, and γ ∼

t(−5.137,0.213)(0,1) with 1 degree of freedom. The parameter σ is fixed at a value of 15 to
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M0 M1

(δζ , δψ) — (0.97,0.97)
λ̃ — 0.38
γ -2.47 (-2.48,-2.46) -2.39 (-2.41,-2.38)
η1,1 137.82 (137.01,138.83) 127.18 (125.51,128.98)

η2 × 104 4.86 (3.61,5.75) 11.58 (9.68,13.57)
A1 22.97 (22.23,23.63) 20.97 (20.00,22.05)
P1 -0.45 (-0.48,-0.42) -0.39 (-0.45,-0.34)
A2 9.67 (8.93,10.38) 9.58 (8.66,10.47)
P2 1.53 (1.46,1.57) 1.52 (1.44,1.57)
A4 3.54 (2.92,4.17) 3.41 (2.63,4.15)
P4 -1.02 (-1.19,-0.80) -1.02 (-1.25,-0.81)

pplc 450214.7 447373.1
KL 0.856 0.614

run-time 6.87 7.92

TABLE 3
IVT analysis results for M0 and M1. Optimal δζ , δψ , and λ̃, as discussed in Section 2.7. Values of σ̂0.85γ=0 used

in the priors on scale parameter σ, also discussed in Section 2.7. Posterior summaries (format: mean (95% CrI))
for skewness parameter γ, baseline at t= 1 η1,1, the change in the baseline at each time step η2, annual

amplitude A1, annual phase P1, semi-annual amplitude A2, semi-annual phase P2, quarterly amplitude A4,
quarterly phase P4. pplc: Posterior predictive loss criterion under the check loss function. KL: Kullback-Liebler

divergences of the one-step-ahead distributions. Run-time: ISVB run-times in minutes.

facilitate convergence, as discussed in Section 2.7. Lastly, in M1, the parameter λ as well
as the discount factors for the evolution of ζt and ψt, δζ and δψ respectively, are optimized
using the KL divergence of the one-step-ahead predictive distribution functions as discussed
in Section 4.1. Optimal λ, δζ , δψ can be found in Table 3.

We apply our ISVB algorithm to estimate the 0.85 quantile of the daily IVT magnitude in
Santa Cruz, CA from 1979 to 2019. The ISVB algorithm was implemented in the R program-
ming language on a personal computer with a 2.5 GHz Intel Core i5 processor. For this time
series of length 14965 the ISVB computation times are under eight minutes for both models;
exact times can be found in Table 3. Also seen in Table 3, the CrIs of skewness parameter γ
are distinct from 0 for both M0 and M1, thus justifying the added flexibility of our exDQLM
versus the DQLM in this application. Similar to what was seen in the simulation study of
Section 3, the 0.85 quantile estimated using the DQLM will be substantially more affected
by extreme observations of IVT. This makes the quantile estimated by the DQLM generally
higher than that of the exDQLM and will exaggerate the effects of ELI. Our exDQLM pro-
vides a method for quantifying the relationship between IVT and ELI at the 0.85 quanitle that
is robust with respect to extreme observations. A full comparison of M1 with an analogous
transfer function DQLM can be found in Section S3.2 of the Supplemental Material.

Figure 6 illustrates the MAP 0.85 quantile of M1 for the entire time period, as well as
the MAP estimates from both models for the two time periods, 1982 through 1985 and 2012
through 2015, in which CA saw drastically different amounts of precipitation. It can be seen
that the CrI of M1 are often distinct from M0, with the M1 quantile generally higher than the
M0 quantile when CA experienced an exceptional amount of rain and the opposite true when
CA was exceptionally dry.

From the posterior estimates of the annual and semi-annual harmonic components

of the models we compute the amplitude and phase, Al =
√

(αl1)
2 + (αl2)

2 and Pl =

arctan (−αl2/αl1) respectively. Posterior summaries of these as well as the baseline param-
eters can be found in Table 3. It can be seen that the value of the second-order polynomial
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FIG 8. 60-step-ahead quantile forecast beginning November 2, 2019 through December 31, 2019 overlaid on the
IVT magnitude data. The vertical dot-dashed line is at the beginning of the forecast period, November 2, 2019,
for reference. From M1: Solid lines indicate mean estimates and dotted lines 95% CrI, with the filtered estimates
seen leading up to November 2nd and the forecast estimates beyond November 2nd. From M0: The dashed lines
indicate the mean estimates, again with the filtered and forecast estimates seen before and after November 2nd,
respectively.

trend component at t= 1, η1,1, is significantly larger in M0 than M1. Conversely, the param-
eter which describes the rate of change per time step (non-time-varying), η2, is significantly
smaller in M0 than M1. This suggests the inclusion ELI in M1 accounts for some of the
long-term variability seen in the 0.85 quantile from 1979 through 2019. Differences can also
be seen in the annual components where the amplitude of M0 is significantly larger than M1

and the phase of M0 is significantly smaller than that of M1. Alternatively, the semi-annual
and quarterly harmonic components are indistinct between the two models. This suggests
there is a substantial amount of variability in the 0.85 quantile that can be associated with
the ELI time series specifically on the annual time scale, with the distinction less clear at the
semi-annual and quarterly scales.

The amount of variability in the 0.85 quantile attributed to the effects of ELI captured with
transfer function component in M1, ζt, are seen in Figure 7. The effects of ELI are overall
significant and are dramatically more pronounced between 1982 and 1985 than between 2012
and 2015. In particular, a majority of the effects between 1982 and 1985 (in which CA re-
ceived heavy precipitation) are distinctly positive whereas the effects between 2012 to 2015
(when drought was severe) are negative or not significant. The instantaneous effects of ELI
at time t, ψt, also exhibit very different behavior in the two time periods, seen in Figure 7.
Upon computing the series kt from Equation (24) for ε = 1e−3 (not pictured), we find the
lagged effects of ELI persist for around 8.5 days, on average.

To assess the predictive value added by the transfer function component capturing the ef-
fects of ELI in M1, we compare the pplc and KL divergence of the one-step-ahead forecast
distributions for M1 to those of M0, seen in Table 3. M1 is favored with smaller values of
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both model comparison criterion, suggesting the inclusion of ELI improves both the predic-
tive and forecasting power of M1. As further model validation, a thorough examination of
the correlation and distributional shape of the one-step-ahead predictive distributions (dis-
cussed in Section 2.5) is presented in Section S3.3 of the Supplemental Material. To further
investigate the information added by ELI, we can examine the k-step-ahead quantile fore-
cast distributions. That is, for each time t the k-step-ahead future marginal distribution of the
quantile is

(33) F̃′t+kθ̃t+k|y1, . . . , yt ∼N(F̃′t+kat(k), F̃′t+kRt(k)F̃t+k)

where at(k) = G̃t+kat(k − 1), Rt(k) = G̃t+kRt(k − 1)G̃′t+k + W̃t+k, at(0) = mt, and
Rt(0) = Ct, with mt and Ct denoting the filtered mean and covariance of θ̃t, respectively.
The posterior means and 95% CrIs of these distributions for 60-steps-ahead can be seen in
Figure 8. The MAP quantile forecast of M1, which takes the ELI into consideration, sug-
gests the 0.85 quantile will be very similar to the seasonal average projected by M0 in this
particular time period.

6. Conclusion. Motivated by the need for versatile estimation of a single quantile over
time, we have presented several methodological and computational contributions for dynamic
quantile modeling. Our exDQLM has two main advantages; the model facilitates more flexi-
bility in the estimation of the quantile than standard Bayesian parametric quantile regression
approaches, and relevant features such as seasonality or structured long-term variability are
easily included in the evolution structure of the quantile. Further, the development of our effi-
cient ISVB algorithm facilitates fast posterior inference, making our methodology accessible
even in applications with very long time series data. Finally in contrast to current schemes,
our transfer function exDQLM develops a straight-forward method for quantifying non-linear
relationships between a response and input at a specified quantile. Our methodology is im-
mediately beneficial not only in climatological applications such as AR detection detailed in
this work, but more generally in any application with non-Gaussian time-varying models.

We illustrated the utility of our methods in the analysis of the ERA5 IVT magnitude 0.85
quantile threshold in Santa Cruz, CA; an analysis made possible by our ISVB algorithm.
In contrast to many current thresholding approaches, estimating the 0.85 quantile with our
model provides rich inference about the structure of the time series and thus enhances the
tools for characterization of ARs. The results demonstrated not only significant long-term
variability and seasonality, but also a significant non-linear relationship with the climate in-
dex ELI captured by the transfer function component of our model. Through several model
checking criteria, we were able to show the inclusion of ELI in the model was advantageous
both in forecast and predictive accuracy. We saw the effects of ELI on the 0.85 quantile var-
ied substantially between two time periods which experienced drastically different amounts
of precipitation; results that are relevant to understanding the roll of IVT magnitude and ARs
in the global water cycle and regional weather.

The results seen in this paper are from just one of many data products available. Per-
forming similar analyses on other data products could be an interesting future application of
our methods. Further, we consider only univariate dynamic quantile modeling in this work.
However, multivariate and spatial interaction between the IVT magnitudes at various loca-
tions motivate the extension of our exDQLM to consider multiple time series simultaneously
and jointly estimate the specified quantile for each series. Non-time-varying multivariate and
spatial quantile regression has been considered, non-parametrically (Reich, Fuentes and Dun-
son, 2011) and parametrically (Lum et al., 2012). Some work has been done in the spatio-
temporal setting, both parametric (Neelon et al., 2015) and semi-paramteric (Reich, 2012),
however again, the parametric approaches are exclusively based on the AL. Our more flexi-
ble methodology naturally scales to the multivariate and spatial time-varying settings, making
this the clear next step in our work.
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Supplemental Material. The R code of Algorithms 1 and 2, as well as the Santa Cruz
IVT and ELI time series data used to estimate the 0.85 quantile IVT thresholds in Section 5
are available in the Supplemental Material. Additional figures, algorithm details, the model
selection and validation discussed in Section 5, as well as comparison to the 0.85 quantile
IVT estimated using the DQLM can also be found in the Supplemental Material.

Acknowledgements. The authors wish to thank Bin Guan and Duane Waliser at NASA
Jet Propulsion Laboratory for sharing their IVT and AR datasets. The AR database is avail-
able at https://ucla.app.box.com/v/ARcatalog and the ERA5 dataset is avali-
able at https://cds.climate.copernicus.eu. We also thank Christina Patricola
at Lawrence Berkeley National Laboratory for helpful conversation about the ELI. The
ELI is available at https://portal.nersc.gov/archive/home/projects/
cascade/www/ELI. The third author acknowledges National Science Foundation award
DMS-1513076 for partially funding this research.

REFERENCES

BACKES, T. M., KAPLAN, M. L., SCHUMER, R. and MEJIA, J. F. (2015). A climatology of the vertical structure
of water vapor transport to the Sierra Nevada in cool season atmospheric river precipitation events. Journal of
Hydrometeorology 16 1029–1047.

BARBER, D. and CHIAPPA, S. (2007). Unified inference for variational Bayesian linear Gaussian state-space
models. In Advances in Neural Information Processing Systems 81–88.

BEAL, M. J. (2003). Variational algorithms for approximate Bayesian inference, PhD thesis, UCL (University
College London).

BERNARDI, M., CASARIN, R., MAILLET, B. and PETRELLA, L. (2016). Dynamic Model Averaging for
Bayesian Quantile Regression. arXiv preprint arXiv:1602.00856.

BERRISFORD, P., KÅLLBERG, P., KOBAYASHI, S., DEE, D., UPPALA, S., SIMMONS, A., POLI, P. and
SATO, H. (2011). Atmospheric conservation properties in ERA-Interim. Quarterly Journal of the Royal Mete-
orological Society 137 1381–1399.

BERRY, L. R. and WEST, M. (2020). Bayesian forecasting of many count-valued time series. Journal of Business
& Economic Statistics 38 872–887.

BLEI, D. M., KUCUKELBIR, A. and MCAULIFFE, J. D. (2017). Variational inference: A review for statisticians.
Journal of the American statistical Association 112 859–877.

CARTER, C. K. and KOHN, R. (1994). On Gibbs sampling for state space models. Biometrika 81 541–553.
CHEN, W. Y., PETERS, G. W., GERLACH, R. H. and SISSON, S. A. (2017). Dynamic quantile function models.

arXiv preprint arXiv:1707.02587.
DEE, D. P., UPPALA, S., SIMMONS, A., BERRISFORD, P., POLI, P., KOBAYASHI, S., ANDRAE, U., BAL-

MASEDA, M., BALSAMO, G., BAUER, P. et al. (2011). The ERA-Interim reanalysis: Configuration and per-
formance of the data assimilation system. Quarterly Journal of the royal meteorological society 137 553–597.

FOTI, N. J., XU, J., LAIRD, D. and FOX, E. B. (2014). Stochastic variational inference for hidden Markov
models. arXiv preprint arXiv:1411.1670.

FRÜHWIRTH-SCHNATTER, S. (1994). Data augmentation and dynamic linear models. Journal of time series
analysis 15 183–202.

GELFAND, A. E. and GHOSH, S. K. (1998). Model choice: a minimum posterior predictive loss approach.
Biometrika 85 1–11.

GONÇALVES, K., MIGON, H. S. and BASTOS, L. S. (2017). Dynamic quantile linear model: a Bayesian ap-
proach. arXiv preprint arXiv:1711.00162.

GUAN, B. and WALISER, D. E. (2015). Detection of atmospheric rivers: Evaluation and application of an algo-
rithm for global studies. Journal of Geophysical Research: Atmospheres 120 12514–12535.

GUAN, B., WALISER, D. E., MOLOTCH, N. P., FETZER, E. J. and NEIMAN, P. J. (2012). Does the Madden–
Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Monthly
Weather Review 140 325–342.

GUAN, B., MOLOTCH, N. P., WALISER, D. E., FETZER, E. J. and NEIMAN, P. J. (2013). The 2010/2011 snow
season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water
Resources Research 49 6731–6743.

HANSON, T. and JOHNSON, W. O. (2002). Modeling regression error with a mixture of Polya trees. Journal of
the American Statistical Association 97 1020–1033.

https://ucla.app.box.com/v/ARcatalog
https://cds.climate.copernicus.eu
https://portal.nersc.gov/archive/home/projects/cascade/www/ELI
https://portal.nersc.gov/archive/home/projects/cascade/www/ELI


24

HENZE, N. (1986). A probabilistic representation of the ‘skew-normal’ distribution. Scandinavian journal of
statistics 271–275.

HERSBACH, H., BELL, B., BERRISFORD, P., HIRAHARA, S., HORÁNYI, A., MUÑOZ-SABATER, J., NICO-
LAS, J., PEUBEY, C., RADU, R., SCHEPERS, D. et al. (2020). The ERA5 global reanalysis. Quarterly Journal
of the Royal Meteorological Society 146 1999–2049.

HOSSZEJNI, D. and KASTNER, G. (2018). Approaches toward the Bayesian estimation of the stochastic volatility
model with leverage. In International Conference on Bayesian Statistics in Action 75–83. Springer.

HUERTA, G., JIANG, W. and TANNER, M. A. (2003). Time series modeling via hierarchical mixtures. Statistica
Sinica 1097–1118.

JOHNSON, M. and WILLSKY, A. (2014). Stochastic variational inference for Bayesian time series models. In
International Conference on Machine Learning 1854–1862. PMLR.

KASTNER, G. (2016). Dealing with Stochastic Volatility in Time Series Using the R Package stochvol. Journal
of Statistical Software, Articles 69 1–30.

KOENKER, R. (2005). Quantile regression.
KOENKER, R. and XIAO, Z. (2006). Quantile autoregression. Journal of the American Statistical Association

101 980–990.
KOMUNJER, I. (2005). Quasi-maximum likelihood estimation for conditional quantiles. Journal of Econometrics

128 137-164.
KOTTAS, A. and GELFAND, A. E. (2001). Bayesian semiparametric median regression modeling. Journal of the

American Statistical Association 96 1458–1468.
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