ON CONTACT TYPE HYPERSURFACES IN 4-SPACE

THOMAS E. MARK AND BULENT TOSUN

ABSTRACT. We consider constraints on the topology of closed 3-manifolds that can arise as hyper-
surfaces of contact type in standard symplectic R*. Using an obstruction derived from Heegaard
Floer homology we prove that no Brieskorn homology sphere admits a contact type embedding in
R*, a result that has bearing on conjectures of Gompf and Kollar. This implies in particular that no
rationally convex domain in C* has boundary diffeomorphic to a Brieskorn sphere. We also give
infinitely many examples of contact 3-manifolds that bound Stein domains in C? but not domains
that are symplectically convex with respect to the standard symplectic structure; in particular we
find Stein domains in C? that cannot be made Weinstein with respect to the ambient symplec-
tic structure while preserving the contact structure on their boundaries. Finally, we observe that
any strictly pseudoconvex, polynomially convex domain in C? having rational homology sphere
boundary is diffeomorphic to the standard 4-ball.

1. INTRODUCTION

Let (X, w) be a symplectic manifold. A smooth submanifold Y C X is said to be a hypersurface
of contact type if it is of codimension 1, and there exists a vector field v defined in a neighborhood
of Y and transverse to Y, which is Liouville in the sense that £L,w = w, where £, denotes the
Lie derivative. In this situation the 1-form o = ¢,w|y is a contact form on Y, inducing a contact
structure £ = kera C TY. Contact type hypersurfaces were introduced by Weinstein [69], who
conjectured that the characteristic (Reeb) vector field on a compact contact type hypersurface
must always admit a closed orbit. This conjecture was proved for hypersurfaces in standard
R?™ by Viterbo [68], but Weinstein’s conjecture and generalized versions thereof sparked a long
series of new ideas in symplectic and contact geometry that are still under exploration.

We are concerned with the question of which smooth, closed, oriented manifolds can be realized,
up to diffeomorphism, as contact type hypersurfaces in X = R?™ with the standard symplec-
tic structure. When m > 2, there are many diffeomorphism types of hypersurfaces arising this
way. Indeed, work of Cieliebak-Eliashberg [6] implies that if W C R?™ is a smooth, compact,
codimension-0 submanifold that admits a defining Morse function having no critical points of
index greater than m, then W is isotopic to a Weinstein domain symplectically embedded in
(R?™ wyq), and therefore in this case the boundary W is a hypersurface of contact type. In
other words, when W admits a smooth embedding in R*™, and satisfies some basic topological
constraints necessary to admit a Weinstein structure, it can be realized as such inside R2™, When
m = 2, which is our focus in this paper, the situation is rather different. The first examples of this
difference are due to Nemirovski-Siegel [47], whose results are discussed further below. Here
we introduce an obstruction to contact type embeddings of 3-manifolds derived from Floer ho-
mology, which applies in much greater generality than Nemirovski-Siegel’s argument (though
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curiously it does not apply to the examples in [47]). We use this obstruction to further demon-
strate that, in contrast to the higher-dimensional situation, there are subtle obstructions to contact
type embeddings in R, including cases of contact integer homology 3-spheres that can embed
as the boundary of contractible Stein domains, but not as contact type hypersurfaces. In par-
ticular, while such Stein domains admit Weinstein structures, the Weinstein structure cannot be
embedded symplectically in (R, wy).

The main result of this paper is the following, which rules out a large class of 3-dimensional
homology spheres from arising as contact type hypersurfaces.

Theorem 1.1. Let Y = ¥(ay,...,ay) be a 3-dimensional Brieskorn integer homology sphere, oriented
as the link of a Brieskorn complete intersection singularity. Then there is no orientation-preserving diffeo-
morphism between Y and any hypersurface of contact type in (R*, wgq).

Recall that a 3-dimensional Brieskorn sphere Y = 3(ay, ..., a,) is the link of a certain complex
surface singularity, and the diffeomorphism type of Y is determined uniquely by a collection of
integers (a1, ...,a,), where n > 3 and a; > 2 (see Section 3, or [64] for example). The manifold
Y(a1,...,ay)is an integer homology sphere if and only if a1, . . ., a,, are pairwise relatively prime
[50, Theorem 4.1]. We will use the term “integer homology sphere” or just “homology sphere”
to mean a 3-manifold with the integral homology of S3, and “rational homology sphere” for the
same condition with rational coefficients.

To put Theorem 1.1 in a broader context, consider the following sequence of increasingly
strong conditions on a closed, oriented 3-manifold Y (an integer homology sphere) concerning
4-manifolds that may have Y as their boundary.

Bl. There is a smooth 4-manifold W having H,(W;Z) =0, with OW 2 Y.
B2. There is a smooth embedding Y — R4,
B3. There is an embedding of Y into (R*, wgrq) as a hypersurface of contact type.

Certainly B3 = B2 = B1, where for the second implication one can simply take W to be the
closure of the bounded component of R* — Y.

The question of which 3-manifolds satisfy Bl is of great interest in smooth low-dimensional
topology, and is far from settled even among Brieskorn spheres: many Brieskorn spheres satisfy
Bl (and also B2), many do not, and for many the answer is unknown. For example, several
infinite families of Brieskorn homology spheres arise as the boundaries of smooth, contractible
4-manifolds that admit Morse functions with a single critical point of each index 0,1 and 2,
as constructed by Casson and Harer [3]. Any 4-manifold with these properties admits a smooth
embedding in R* (see [42], or [27, Example 3.2]). Thus such Brieskorn spheres satisfy both B1 and
B2. On the other hand, a great many Brieskorn spheres are known not to satisfy B1 or B2 [20,21];
the general classification of Brieskorn spheres satisfying these properties is unknown. Under the
additional geometric condition of a contact type embedding, however, we find that the problem
becomes tractable and Theorem 1.1 gives a uniform answer. Moreover, in light of Casson-Harer’s
constructions and the higher-dimensional results of Cieliebak-Eliashberg mentioned above, the
theorem illustrates the contrast between dimension 4 and higher dimensions.

The preceding conditions concern only the smooth and symplectic features of R* = C2, but
one can also study embedding questions from the point of view of complex geometry. Of par-
ticular interest are Stein domains, by which we mean compact domains' W C C2 described as a

1Following [6], by a compact domain we mean a compact set that is the closure of a connected open set.
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sub-level set {¢ < c}, where ¢ is a proper, strictly plurisubharmonic function defined on a neigh-
borhood of W with regular value c. By definition, a choice of such ¢ determines a Kidhler form
wy = —dd°¢ on W, and the gradient of ¢ is a Liouville field for wy inducing a contact structure
on the boundary Y. Work of Gompf [27] provides many examples of contact 3-manifolds that
embed in C? as the boundaries of Stein domains, including many homology spheres.

However, there is no need for w, to agree with the standard symplectic form on R?, and in
particular the boundary of a Stein domain need ot be a contact type hypersurface in (R*, wgq).
To put this another way, in general the form w, need not extend to a symplectic form on R*:
this extension property characterizes a rationally convex domain W. Recall that a compact do-
main W C C? is rationally convex if for every point z € C? — W, there exists a rational function
r such that |r(z)| > sup{|r(w)|, w € W}. By a result of Duval and Sibony [12], (see also Ne-
mirovski [48]), a Stein domain W is rationally convex if and only if it admits a strictly plurisub-
harmonic function ¢ such that w, extends to a Kdhler form on all of C2. In this case, one may ad-
ditionally assume that the extended form is standard outside of a compact subset (cf. [6, Lemma
3.4]). By a classical result of Gromov [30], a symplectic form on R* that is standard at infinity in
this sense is symplectomorphic to the standard one. Thus from this point of view, one can think
of rational convexity (loosely) as the intersection between the Stein condition and the condition
of contact type boundary in (R%, wgy), up to ambient symplectomorphism. We note that our
terminology departs slightly from standard usage in several complex variables. Our “Stein do-
mains” correspond to the closures of strictly pseudoconvex domains, while for us a “rationally
convex domain” means the closure of a strictly pseudoconvex domain, which is also rationally
convex.

With these considerations in mind we can add two additional conditions to our previous list:

B3’. There is an embedding of Y into C? as the boundary of a Stein domain.
B4. There is an embedding of Y into C? as the boundary of a rationally convex domain.

Thus we have the chain of implications:

B3

(cont. type)

B4 B2 YELHS® gy

(rat. conv.) (smooth emb.) (homol. ball)

N S

B3’
(Stein)

(1)

An obvious consequence of Theorem 1.1 is therefore:

Corollary 1.2. No Brieskorn homology sphere is orientation-preserving diffeomorphic to the boundary of
a rationally convex domain in C2.

On the other hand, our results leave open the following tantalizing conjecture of Gompf [27,
Conjecture 3.3]:

Conjecture 1.3 (Gompf). No nontrivial Brieskorn sphere, with either orientation, arises as the boundary
of a Stein domain in C2.
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While Conjecture 1.3 concerns Brieskorn spheres with either orientation, Theorem 1.1 applies
only to the standard orientation. Note that a symplectic manifold is canonically oriented, and if
Y is a contact type hypersurface then a choice of Liouville vector field v induces an orientation on
Y. On the other hand, if Y is a closed, compact hypersurface in R*™, then Y is the boundary of a
compact domain W C R*™ and hence inherits an orientation from W. We will generally assume
that these orientations agree, which is the same as saying that the Liouville field near Y = 0W is
directed out of W, and always holds if H!(Y;R) = 0 (this follows from a simple argument using
Stokes’ theorem, similar to [4, Lemma 2.1]). A symplectic manifold with an outward-pointing
Liouville vector field near its boundary is called symplectically convex; with this terminology a
hypersurface of contact type in (R*™, ws4) having vanishing first Betti number is the same as the
boundary of a symplectically convex domain.

Besides Brieskorn spheres that do not satisfy B2, or those for which the classification of contact
structures has been obtained and shows that no fillable structure has the correct homotopy class
to be filled by a homology ball (such as the family —(2, 3, 6n + 1) found in [41]), the only direct
evidence for Conjecture 1.3 was given in [41]. There it was shown that a certain contractible
domain in C?, having boundary the Brieskorn manifold ¥(2,3,13), is not diffeomorphic to a
Stein domain. Yet this does not show ¥(2, 3, 13) does not satisfy B3’, since it is still conceivable
that a different embedding of (2, 3, 13) in C? bounds a Stein domain not diffeomorphic to the
one considered in [41].

Remarkably, the only Brieskorn spheres ¥(a,...,a,) known to satisfy B1 have n = 3. In
fact, the following is a longstanding conjecture appearing in a paper of Kollar, who explains its
relationship to the Montgomery-Yang problem concerning the classification of circle actions on
S°, as well as the Bogomolov-Miyaoka-Yau inequality.

Conjecture 1.4. (see [36, Conjecture 20], also [19]) No Brieskorn sphere ¥(a1, . .., a,) withn > 4 is the
boundary of a smooth integer homology ball.

One could consider a weaker version of this conjecture, in which the condition that ¥(ay, ..., a,)
bounds a homology ball is replaced by the condition that it embeds in R*. Our results then con-
firm a symplectic version of this weaker conjecture, ruling out an embedding as a contact type
hypersurface (and this version holds for the case n = 3 as well).

It is natural to ask whether any of the implications in the diagram (1) can be reversed, or
whether any hold between B3 and B3'. In this direction, recall that in [47], Nemirovski and Siegel
classified those disk bundles over compact surfaces that admit rationally convex embeddings in
C2. In particular they found two cases (certain disk bundles over RP? and the Klein bottle) that
embed in C? as Stein domains, but not as rationally convex domains. In fact, the arguments
of [47] imply that if M is the boundary of the disk bundle over RP? having Euler number —2,
then M satisfies B3’, but not B3. Each of the conditions B3, B3’, B4 can be considered with respect
to a particular contact structure on Y, and if the contact structure is fixed, it is not difficult to
give many more examples of manifolds satisfying B3’ but not B3. We give an infinite family of
such examples in Section 5 (Nemirovski-Siegel’s argument is also specific to a particular contact
structure, but in their case there is only one relevant contact structure to consider). Even with
a fixed contact structure, it seems an interesting and delicate question whether there exist 3-
manifolds satisfying B3 but not B3’; see Section 5.3 for additional remarks.

Returning to symplectic topology, Weimin Chen conjectured in [4, Conjecture 5.1] that the
only rational homology sphere arising as the boundary of a rationally convex domain in C? is
the 3-sphere. In this direction, faced with the current lack of examples, we can ask:
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Question 1.5. Does any rational homology 3-sphere, other than S®, admit an embedding in (R*, wgq) as
a contact type hypersurface?

Chen was motivated by questions in smooth 4-dimensional topology, particularly whether
there exist smooth 4-manifolds homeomorphic but not diffeomorphic to the projective plane
CP?. He shows that such an exotic 4-manifold would result if one were able to find a suitably
“small” concave filling or “cap” of the circle bundle Myg over RP? considered by Nemirovski-
Siegel—essentially by attaching such a cap to the Stein domain bounded by My g. The proof that
the result would not be diffeomorphic to CP? relies on the fact that Mg cannot be realized as a
hypersurface of contact type in CP?, which is a generalization of Nemirovski-Siegel’s result that
My s does not bound a rationally convex domain in C? (with nearly the same proof). While con-
struction of small concave caps remains an open problem, and our techniques apply to domains
in C? rather than CP?, one may hope that the examples of Stein domains not having contact type
boundary given here may allow some additional flexibility in this effort.

Remark 1.6. As a partial response to Chen’s conjecture concerning rationally convex domains
with rational homology sphere boundary, we point out the following consequence of results in
the literature:

Theorem 1.7. If W C C? is a polynomially convex domain whose boundary is a rational homology
sphere, then W is diffeomorphic to B* and in particular OW = S3.

Here, the definition of polynomial convexity is identical to that of rational convexity with
rational functions replaced by polynomials (with the same caveat regarding terminology as be-
fore). To prove the theorem, note that it is a consequence of work of Oka [51] (see also [6, Remark
3.3]) that if I is as in the statement then one can add handles of index < 2 to W in C? to obtain
a 4-ball B* C C?. Then B* — Int(W) is a rational homology cobordism from W to S3, which
is ribbon in the sense of [10]. By [10, Theorem 1.14] (which is essentially a result of Gordon [29]
combined with Perelman’s geometrization theorem) it follows that W 22 $3, and in particular
W is a Stein filling of S3. It was proved by Eliashberg [14] that any such filling is diffeomorphic
to B*. O

Our obstruction to contact type embeddings can be described as follows. Recall that the Hee-
gaard Floer homology of a compact, oriented 3-dimensional manifold Y is a vector space over
the field F = Z/2Z, written HF*(Y'). This vector space is always infinite-dimensional over F,
but has a natural finite-dimensional quotient HF! ,(Y'), the reduced Heegaard Floer homology. If
¢ is a contact structure on Y, there is an associated element ¢ (¢) € HF*(-Y) that is an invari-
ant of £ up to contact isotopy, where —Y denotes the 3-manifold Y with the opposite orientation.
If ¢ is overtwisted then ¢™(§) = 0 while if £ is strongly fillable then ¢ (¢) # 0. Theorem 2.1
below (particularly Corollary 2.2) shows that if (Y, &) is embedded in (R?*, wyy) as the bound-
ary of a symplectically convex domain then, although ¢ (¢) is nonzero, its image in HF.,(-Y")
vanishes. Our proof of Theorem 1.1 amounts to showing that, for any symplectically fillable
contact structure on a Brieskorn sphere that bounds a 4-manifold with the integer homology of
the 4-ball, this condition is not satisfied.

Unfortunately, the typical Brieskorn sphere admits many inequivalent fillable contact struc-
tures, and the obstruction just described applies to only one at a time. A key difficulty in the
proof of Theorem 1.1 is that there is currently no general classification of contact structures on
Brieskorn spheres. We take an approach that allows us to detect when the image of ¢ (&) in



6 THOMAS E. MARK AND BULENT TOSUN
HF! (—Y) is nonzero, without particular assumptions on a symplectic filling of £. Our strategy
is to study two numerical invariants associated to knots K embedded in 3-manifolds: one, writ-
ten 7,,, depends only on the (smooth) topology of (Y, K), while the other, 7¢, reflects aspects of
the contact geometry. We observe that, from their definitions, if ¢ (¢) vanishes in HE! (-Y),
then these two invariants satisfy an inequality (Lemma 2.8). Using a new estimate on the twisting
number of any contact structure on a Brieskorn sphere (Theorem 4.6), we show that this inequality
is violated for any contact structure on a Brieskorn sphere that bounds a homology ball.

The paper is organized as follows. In Section 2.1 we give the details of the obstruction to
rational convexity mentioned above, and in Section 2.2 describe the invariants 7;,, and 7¢. Section
3 contains estimates on 7, and 7¢ for the regular Seifert fiber in a Brieskorn sphere. In Section
4 we obtain a lower bound for the twisting number of any contact structure on a Brieskorn
homology sphere, and this combined with results of Sections 2 and 3 proves Theorem 1.1. In
Section 5.1 we deduce some additional consequences of our results for two questions that, it
turns out, can be addressed by similar methods: namely, whether a contact structure is supported
by an open book with pages of genus 0, and the existence a strong symplectic cobordism to the
3-sphere. The remainder of Section 5 provides some further details and examples regarding the
relations between the conditions B1, B2, B3, B3" and B4, including illustrations of the use and
limitations of our methods. The reader with particular interest in these questions, including
examples of Stein domains in C? that cannot be made Weinstein with respect to w4, may read
Sections 5.2 through 5.4 first.
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2. FLOER INVARIANTS AND CONTACT TYPE EMBEDDINGS

2.1. An obstruction to contact type embedding. Recall [57,58] that a closed, connected, oriented
3-manifold Y, equipped with a spin® structure s, gives rise to a chain complex CF~ (Y, s) which
is a finitely generated free complex over the polynomial ring F[U]. Here F denotes the field
with two elements; the theory can be developed with more general coefficients but we will not
need this. Note that the Heegaard Floer chain complex CF~ (Y, s) depends on certain auxiliary
choices, notably a Heegaard decomposition of Y, but is independent of such choices up to chain
homotopy equivalence. In particular, the homology of CF~ (Y, s) is a topological invariant of the
pair (Y,s) denoted HF~ (Y, s), and is a module over F[U]. The sense in which this module itself
(rather than its isomorphism type) is an invariant of (Y s) is explored in [34].
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Localizing with respect to the variable U gives rise to a short exact sequence
0 —— CF (Y,s) —— CF>®(Y,s) —— CF*(Y,5) —— 0

of complexes over F[U], where CF>* = CF~ @ F[U,U~'] and CF* = CF>~/CF~. In obvious
notation, the associated long exact sequence in homology reads

@) - —— HF®(Y,s) —— HF(Y,s) —— HF~(Y,s) —— HF®(Y,s) —> ---
where the connecting homomorphism § induces an isomorphism ¢ : HF! ,(Y,s) — HF_,(Y,s)

between the reduced groups defined by
HE', = HF* /Im(HF>* — HF') and HF,=ker(HF~ — HF™),

The induced action of U on CF is surjective, and we have another short exact sequence
3) 0 —— CF(Y,s) —— CF*(Y,s) —Y» CF*(Y,s) —— 0
where CF = ker(U). The associated sequence in homology is
(4) oo —— HF(Y,s) —— HF(Y,s) —Y— HF(Y,s) — ---

Heegaard Floer homology is functorial under cobordisms, in the following sense. By a cobor-
dism W : Y7 — Y3 we mean a smooth, compact, connected, oriented 4-manifold with OW =
—Y7 U Y5 as oriented manifolds, where Y7, Y5 are closed oriented 3-manifolds as above and —Y;
means the 3-manifold Y; with its orientation reversed. In this situation, a choice of spin® structure
t on W (together with some auxiliary choices) gives rise to F[U]-chain maps between Heegaard
Floer complexes for Y7 and Y5, compatible with the sequences above, whose associated homo-
morphism on homology depends only on the diffeomorphism type of (W,t). Specifically, we
have F[U]-homomorphisms

Fy o HF®(Y1,81) — HF°(Y2,52)

where ° indicates any of the flavors —, oo, + and where s; = t|y,. By changing the roles of ¥; and
Yy, the same manifold W can also be thought of as a cobordism from —Y5 to —Y;, which we write

W . Hence:
FC’W7t : HF°(—Ya,89) — HF°(—Y1,51).

Now suppose Y is equipped with a (co-oriented, positive) contact structure £. In [59], Ozsvath

and Szab¢6 defined an element ¢(§) € ﬁ(—Y, s¢) that is an invariant of the isotopy class of
contact structures determined by {. Here s; is the spin® structure naturally determined by the
oriented plane field £ C T'Y; note that spin® structures on Y and —Y are in natural bijection. This
invariant, which we call the contact invariant associated to £, has led to remarkable progress in
3-dimensional contact topology, and it plays a key role in our study of symplectic convexity.
Recall that a strong symplectic cobordism between contact manifolds (Y7,&;1) and (Y>2,&2) is a
cobordism W : Y1 — Y5 in the sense above, equipped with a symplectic form w such that:
e There is a vector field v defined near OV and transverse to W, pointing into W along Y;
and out of W along Y5, which is Liouville for w.
e The 1-forms a; € Q!(Y;) given by the restrictions of ¢,w to Y;, which are contact forms by
the Liouville condition, define the contact structures &;.
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In the following, we write ¢t () for the image of ¢(¢) under the map HF (-=Y) - HFT(-Y)
(4), and (53, &) for the 3-sphere with its standard isotopy class of tight contact structure.

Theorem 2.1. Let (Y, &) be a contact 3-manifold, and &, the standard contact structure on the 3-dimensional
sphere. If there is a strong symplectic cobordism from (Y, &) to (S3, &), then the contact invariant ¢+ (&)
lies in the image of the map HF (=Y, s¢) — HF (=Y, s¢).

Proof. Recall that there is a parallel theory to Heegaard Floer homology, developed by Kron-
heimer and Mrowka [37] and called monopole Floer homology. Monopole Floer groups come
in three “flavors” HM(Y,s), HM(Y,s) and HM(Y,s) that are modules over F[U] related by a
long exact sequence analogous to (2). Deep work of Kutluhan, Lee and Taubes [38] and (inde-
pendently) of Colin, Ghiggini and Honda [9], relying on additional results of Taubes [66], shows
that there are U-equivariant isomorphisms

HM(Y,s) 2 HF®(Y,s) HM(Y,s)~HF~(Y,s) HM(Y,s)~ HF(Y,s),

and these maps commute with those in the long exact sequences. Moreover, there is an analog
of the invariant ¢* (¢) in monopole Floer homology, which we write simply as ¢(£), and the iso-

morphism HM (—=Y,s¢) - HFT(—Y,s¢) sends one contact invariant to the other. (This is stated
in [7, Theorem 8.1] where ¢(¢) is identified with a corresponding invariant in embedded contact
homology, and the invariant ¢t (£) corresponds as well by the results of [8]. That the contact
invariant in embedded contact homology corresponds to the monopole contact invariant ¢(§)
follows from work of Taubes [66].) In light of these correspondences, it suffices for the theorem
to prove the corresponding statement for the contact invariant in monopole Floer homology.
The essential input for that proof is a result of Echeverria [13], building on work of Mrowka
and Rollin [46]. According to the main result of [13], if (W,w) : (Y1,&1) — (Y2,&2) is a strong
symplectic cobordism, then the homomorphism HM(—Y, Se,) — HM(-Y, s¢, ) induced by W,
equipped with the spin® structure associated to w, carries the contact invariant of £ to that of &;.
The result now follows quickly for algebraic reasons, as observed in Corollary 10 of [13].
Let (W,w) be a strong cobordism to (S3,&) as in the statement. Since the homomorphism

o+ HM(—5%) — HM(—S3) vanishes we have 0 = j, Fyr(c(£wa)) = ju(c(€)), which is equiv-
alent to ¢(¢) lying in Im(HM (=Y, s¢) = HM(-Y,s¢)). Applying the isomorphism between the
monopole and Heegaard Floer theories in dimension 3 gives the conclusion. O

We remark that the equivalence between monopole and Heegaard Floer homology is not
known to extend to the maps induced by cobordisms. In particular, while it is known that
the Heegaard Floer contact invariant behaves naturally under Stein cobordisms, for example,
its behavior under a general strong symplectic cobordism has not yet been established.

Corollary 2.2. Let W be a compact domain in R* with smooth, connected boundary, and assume there
exists a Liouville field for wsq, defined near OW and directed transversely out of OW. Let (Y,€) be
the boundary of W with the induced contact structure and orientation. Then ¢t (&) is nonzero and in
the image of the homomorphism HF>(-Y,s¢) — HE1(=Y,s¢). Equivalently, the image of ¢*(§) in
HFT (-Y) is zero.

red

Proof. That ¢ (€) # 0 follows since ¢ admits a strong symplectic filling [23, proof of Theorem
2.13]). Choose a sufficiently large ball B}, C R?, so that W C int(B%), and let Z = B}, — int(W).
Then Z with the restriction of wg, is a strong symplectic cobordism from (Y ) to (S%, &), with
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the given Liouville field near OW together with the standard radial Liouville field near 513%. The
result follows from the previous theorem. 0

As in the introduction, we call a domain W C (R*, w4) with outwardly-oriented contact type
boundary as in the Corollary a symplectically convex domain.

We note that if Y is smoothly embedded in R?, then Y is the boundary of a smooth, compact
domain W ¢ R*. If the embedding is of contact type, and the Liouville field v near Y extends
across W as a Liouville field for w4, then an easy argument using Stokes” theorem implies that
v is directed out of OW. In other words, W is symplectically convex and the orientation on Y’
induced by v agrees with that induced by W. It is not hard to check that this condition holds
whenever Y is a rational homology sphere.

Remark 2.3. The condition of symplectic convexity is essential in the above corollary; in particu-
lar it is not equivalent to assuming that W is (strictly) pseudoconvex, i.e. Stein. Indeed, there are
many examples of contractible Stein manifolds that embed as Stein domains in C?, for which the
contact invariant of the induced contact structure on the boundary does not satisfy the conclu-
sion of Corollary 2.2 (see Section 5 below). Note that if IV is pseudoconvex then in the notation of
the proof above, the manifold Z = B4R — int(W), with the restriction of the standard Kéhler form
from C?, is a weak symplectic cobordism from (Y, ¢) to (52, &) and is strong at S3. In particular
the hypotheses of Echeverria’s naturality result cannot in general be relaxed to allow such weak
cobordisms.

Remark 2.4. If, in the situation of Corollary 2.2, the manifold Y is a rational homology sphere,
then it is not hard to show that the Liouville fields defined near 07 extend to a Liouville field
on all of Z. In other words, Z is a Liouville cobordism from (Y,¢) to (S%,&). If this Liouville
structure can always be strengthened to a Weinstein structure, then as in Theorem 1.7, work of
Gordon [29] as recast by Daemi-Lidman-Vela-Vick-Wong [10] implies that in fact Y must al-
ways be the 3-dimensional sphere: this would provide a negative answer to Question 1.5. There
exist examples of Liouville cobordisms that cannot be made Weinstein, however (see [22,44] for
example), and in general the distinction between the two is subtle. Indeed, if we suppose that W
is pseudoconvex, then the hypothesis in Corollary 2.2 is the same as asking that IV be isotopic
to a rationally convex domain. The distinction between a Liouville and Weinstein structure on Z
is then equivalent to the distinction between rational convexity and polynomial convexity of the
domain W.

Remark 2.5. While our proof of Theorem 1.1 makes use of the obstruction of Theorem 2.1 and
Corollary 2.2, it is worth pointing out that we do not prove that every fillable contact structure
¢ on an arbitrary Brieskorn sphere has the property that the image of ¢*(¢) in HF! , is nonzero.
Indeed, this condition is not satisfied by the unique tight contact structure on the Poincaré sphere
¥(2,3,5), which is Stein fillable. In that sense our arguments are specific to the embedding
problem we consider, but see Corollary 5.3 below.

Finally, we point out that the condition obtained in Theorem 2.1 has appeared in another con-
text: it was shown in [52] that this condition is necessary for a contact structure to be supported
by an open book decomposition having pages of genus zero. See Theorem 5.1 for our results on
this question.
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2.2. Floer invariants for knots. Our aim is to show that for certain classes of 3-manifolds Y the
conclusion of Corollary 2.2 does not hold for any fillable contact structure £, ruling out the exis-
tence of a symplectically convex domain with boundary Y. To facilitate the discussion, recall that
for any spin® rational homology sphere (Y, s), there is an isomorphism HF>(Y,s) = F[U,U ]
[57, Theorem 10.1], and in fact we have

Im(HEF*(~Y,s¢) — HF (=Y, 5¢)) = F[U, U] /F[U]

as F[U]-modules. Since ¢ (€) is the image of ¢(€) it is clear from (4) that for any contact structure
¢onY the contact invariant satisfies Uct(§) = 0. Let ©F € HF T (-Y, s¢) be the unique nonzero
element in ker(U) N Im(HF>°(-Y,s¢) — HF (=Y, s¢)). Then if ¢*(¢) is nonzero and different
from ©7, it follows from the preceding and Corollary 2.2 that £ does not arise as the induced
contact structure at the boundary of a symplectically convex domain in R*. Hence, our aim will
be to show that for any (relevant, e.g. fillable) contact structure £ on Y/, the contact invariant is
different from ©7.

Let K C Y be a knot, which is to say a smoothly embedded circle. To simplify the statements
to follow we assume that Y is an integral homology sphere; in particular there is a unique spin®
structure on Y. In this situation Ozsvath and Szabé [56] show how to associate to (Y, K) a
filtration on (a representative of the chain homotopy class of) CF~(Y'); this chain complex with
the data of the filtration is written CF K~ (Y, K). It is a (free, finitely generated) module over
F[U] as before, and its filtered chain homotopy type is an invariant of (Y, K).

Localizing with respect to U as before produces the variants CFK* (Y, K) and CFK* (Y, K),
and the latter gives rise to the complex CFK (Y,K) as in (3). In particular, C/‘ﬁ((Y, K)isa

complex homotopic to C/’]\?(Y), together with a filtration
(5) o C Fnet € Fon C Frpg1 C --- C CF(Y)
by subcomplexes F,, such that 7, = 0 for m < 0 and F,,, = CF (Y) for m > 0.

If we fix a nonzero class & € HE (Y"), then one obtains an integer-valued invariant 7; (Y, K) for
knots in Y by declaring
(6) #(Y, K) = min{m | & € Im(ip, : H.(Fn) — HF(Y))}

where i,, indicates the map in homology induced by the inclusion F,,, C CF (Y).
Similarly, if one fixes a class 7 € HF ™ (Y) we can define

(7) 75 (K) =min{m |z* € Im(p 0 iy, : Hi(Fn) - HF(Y))}
where

p: HF(Y) > HFH(Y)
is the homomorphism in the long exact sequence (4). The notation 7 (resp. 77) is meant to
suggest that the invariant is derived by considering the interaction between the knot filtration
and a fixed class in HF (resp. HF'"). Note that whenever p(%) is nonzero, we have

(®) T (VLK) < 5(Y, K)

for all K, with equality if p happens to be injective.
The invariant 7(K) for a knot in S® is defined (by Ozsvéath-Szab6 [53]; a similar construction
was considered by Rasmussen [63]) to be 7(K) = 74(5%, K) where O is the unique nonzero

element of HF(5%). More generally we have:
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Definition 2.6 (Raoux [62], Definition 2.2). For a knot K in an integer homology sphere Y the
smooth tau-invariant of K is defined to be

Tsm (Y, K) = T§+ (Y, K),

where O7 is the unique nonzero element of HF(Y) with UOT = 0and ©F € Im(HF>(Y) —
HE+(Y)).

Note that for the case Y = 3, the map HF(S3) — HFT(53) is injective and carries © to O,
and therefore 74,(S%,Y) = 7(K). We also remark that Raoux’s definition is more general than
the one we have given, in that it applies to knots in rational homology spheres, where moreover
the knot may not be nullhomologous. In this case the filtration (5) is more subtle to define, and in
particular filtration values may not be integral. Raoux addresses this issue by adjusting filtration
values by a number k; depending on the chosen spin® structure s on Y; when Y is an integer
homology sphere as in our situation, there is a unique spin® structure s and &, = 0.

Now observe that a knot K C Y can be regarded as a knot in —Y" by reversing the ambient
orientation. It therefore gives a filtration of ﬁ(—Y), and a nonzero class in HF (=Y) gives rise
to a 7-invariant as above.

Definition 2.7 (Hedden [31]). Let (Y, {) be a contact 3-manifold with the property that the contact

invariant ¢(§) € HF (—Y) is nonzero. For a knot K C Y/, the contact tau-invariant of K is defined
to be
(Y, K) = =74 (=Y, K).

This is not quite the definition Hedden gives, but by [31, Proposition 28], it is equivalent.

Lemma 2.8. Let Y be an integer homology sphere and & a contact structure on 'Y such that ¢t (&) =
O € HFT(=Y). Then for any knot K C Y, we have

’7’5(}/, K) § Tsm(Y, K)
Proof. From (8), we see that if & € ﬁ(Y) has p(2) = O7T, then 74, (Y, K) = Tg+(1/, K) <
7:(Y, K). According to [62, Proposition 3.10(1)], 74 (=Y, K) = —74x (Y, K), and therefore since
O = (£) = p(e(8)),
(Y, K) = =756 (=Y, K) < =78 (=Y, K) = T (Y, K).

By Corollary 2.2, the preceding lemma implies:

Corollary 2.9. If the integer homology sphere (Y, &) is the contact boundary of a symplectically convex
domain in R*, then for any knot K C'Y we have

’7’5(}/, K) § Tsm(Y, K)
The same is true if, more generally, there exists a strong symplectic cobordism from (Y, €) to (S3,&).

Remark 2.10. Heuristically, the smooth tau-invariant is defined as the first filtration level j at
which ©7 is in the image of the homology of F;, while the contact tau-invariant is the first j for
which the contact invariant ¢(¢) is in that image. If ¢*(£) = ©7, one expects these invariants to
agree—and therefore, exhibiting a knot for which the two tau-invariants disagree suffices to show
¢t(¢) # ©F and hence ¢ is not filled by a symplectically convex domain. Lemma 2.8 gives only



12 THOMAS E. MARK AND BULENT TOSUN

an inequality because strictly Hedden’s contact tau-invariant is defined using ¢(&) rather than
its image ¢* (£) (and there is the attendant headache of the orientation reversal). This inequality
suffices for our purposes, so we work with Hedden’s definition. However, there is a modification
of Hedden’s invariant that is equal to 7, in the situation of Lemma 2.8. Namely, for a knot K in
a contact manifold (Y, £) with the property that ¢ (¢) is nonzero, we can define

Tgr(Y’ K) = —7';(5)(—3/, K)

in the notation of (7). It is then easy to check that when ¢ (€) is nonzero,
(1) Forany K in Y, we have 7¢(Y, K) < T;(K K).
(2) If ¢* () is in the kernel of the map HF*(-Y) — HF*,
O, then TQ_(Y, K) =1V, K).
In particular Tgr (Y, K) gives an upper bound for tb(K) + |rot(K)| for any Legendrian K, since
7¢ does (see below), which is the essential property used in our proof.

(=Y), or equivalently if ¢ (&) =

3. ESTIMATES FOR SEIFERT MANIFOLDS

We now turn to Brieskorn spheres to begin the proof of Theorem 1.1. By definition, the

Brieskorn sphere ¥ (a1, ..., ay) is the link of a complete intersection singularity described as fol-
lows. Choose a collection of complex constants {c¢; j} where 1 <i <nand 1 < j <n —2. Then
consider the algebraic surface V(aq,...,a,) C C" given by

Viai,...,an) ={(21,...2n) 120" + -+ cnjzpn =0,7=1,...,n— 2},

the intersection of n — 2 hypersurfaces. For sufficiently generic choice of coefficients ¢; ;, this

variety has an isolated singularity at the origin, and ¥(ay, . .., a,) is intersection of V' (ay, ..., ay)
with a sufficiently small sphere. The diffeomorphism type of ¥(ay,...,a,) depends only on
(a1,...,a,). From now on we suppose that n > 3 and each a; > 2, and moreover that a,,...,a,
are pairwise relatively prime. The latter condition is equivalent to the assumption that ¥ (a1, ..., a,)
is an integer homology sphere. See [45,49,50, 64] for additional details and references.

As the link of a weighted homogeneous singularity ¥(a1, ..., a,) carries an action of the circle,

leading to a description as a Seifert manifold and a surgery presentation, which are obtained as
follows. We can find integers (b, b1, . .., b,) such that

9 Cay, E—1+b-ay - an,

) air---a zk: ar +0-a1---a

and in fact the numbers b, by, . . ., by, are determined by (9) up to the simultaneous replacement of
any b; by b +a; and bby b+ 1. (Thus b; is uniquely determined modulo a;.) In particular, we can
arrange that b = 0, in which case the collection (a1,b1), ..., (an, b,) are said to be unnormalized
Seifert invariants for ¥(ay, ..., ay). Then X(ay, ..., a,) is diffeomorphic to the 3-manifold speci-

fied by the surgery diagram in Figure 1. (We are following the notation and conventions of [64].)

Alternatively, we can choose representatives l;j for each b; modulo a;, such that for each j the

quantity r; = —2—2 lies in the interval (0, 1), in which case (b, b1, ... ,b,) are uniquely specified
and correspond to the normalized Seifert invariants of ¥(ay, ..., a,). The integer b arising in the
normalized situation is an invariant of ¥(a4, ..., a,) that is written eg. In terms of Figure 1, one
applies Rolfsen twists to replace Z—j by g—jfor each j, so that g—j is the unique fraction of the form
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0
O ¥/Q
a1 an
by by
FIGURE 1. Seifert homology sphere ¥(ay,...,a,) with unnormalized Seifert in-

variants (a1,b1), ..., (an, by)-

o
b j +;m j
find that for the normalized invariants,

n

1
E r; = —€y — ’
- al..-an
J=1

that is less than —1, and then the resulting framing on the large unknot is ey. From (9) we

so thatey € {—1,...,—(n — 1)}. In terms of unnormalized invariants (a;, b;) we have
b .
(10) 60:ZL—G—;J.
In the above we have implicitly specified an orientation for ¥(ay, ..., a,), which is the same as

the one induced by identifying ¥(ay, ..., a,) with the link of a complex surface singularity. (The
oppositely oriented Seifert manifold can be described by a similar procedure, by replacing 1 with
—1 on the right side of (9).) In particular, with this orientation, a Seifert homology sphere can
be realized as the boundary of a negative definite plumbed 4-manifold diffeomorphic to a good
resolution of the corresponding singularity [50, Theorem 5.2 and Corollary 5.3]. A description
of this plumbed manifold can be obtained as follows: beginning with the normalized invariants

(eo, (a1, 51), ooy (ap, Bn)), consider the continued fraction expansion
a; 1
= k,l :[k'71,...,k-,g.]7
b] ] ]’{7‘7’2 _ ”._1 . J 75%5
7L
where each k;; < —2. Then ¥(ay, ..., ay) is orientation-preserving diffeomorphic to the bound-

ary of the 4-manifold obtained by plumbing disk bundles according to the graph I' in Figure
2.

We emphasize that in the arguments to follow, the condition that ¥(a, ..., a,) bound a nega-
tive definite plumbing is used repeatedly. In particular, our arguments do not obviously adapt to
the case of —X(ay, ..., ay), which by [50, Theorem 5.2] does not bound a negative definite plumb-
ing. In several statements to follow we consider “a Seifert homology sphere Y = (a1, ..., a,)":
this phrase simultaneously introduces the symbol Y for the manifold and emphasizes the chosen
orientation, since by [50, Theorem 4.1] a Seifert integer homology sphere is uniquely determined
up to orientation by the multiplicities a1, . .., ay,.

The structure of ¥(ay, ..., a,) as a Seifert manifold (that is, equipped with a circle action with
finite stabilizers) can be seen in Figure 1. Indeed, surgery along the unknot labeled 0 gives
rise to an S!-bundle over S? having Euler number 0, whose fibers appear as meridians to the
surgery circle. Dehn surgery along the remaining circles amounts to replacing n regular fibers
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ki1 ki ki 1y

e« o o — o

€ .

e o o — o

kml kn,? kn,l,,,

FIGURE 2. Graph I' describing a plumbing of disk bundles over 2-spheres. The
resulting 4-manifold Xt has boundary the Seifert homology sphere ¥(ay, - - - , ay).

by exceptional fibers of multiplicities ay, . . ., a,. In particular, a generic meridian to the 0-framed
circle is a regular fiber of the Seifert structure, and can be identified with the boundary circle of
a disk in the bundle of Euler number ¢ appearing in the plumbing of Figure 2.

3.1. Smooth tau for a regular fiber. Let X C Y = ¥(ay,...,a,) be a knot isotopic to a regular
Seifert fiber. The description above of K as the boundary of a disk in a plumbed manifold means
that K is slice in the negative-definite plumbed manifold Xt. This fact constrains the value of
Tsm (Y, K'), according to the following result of Raoux [62], generalizing [53, Theorem 1.1]. Again,
our formulation is simplified by the assumption that Y is an integer homology sphere.

Theorem 3.1 (Raoux [62]). Let X be a negative definite 4-manifold with boundary an integer homology
sphere Y, and K C 'Y a knot. Then for any smooth surface ¥ properly embedded in X with boundary K,
we have

{er(D), [2) + ] - [X] + 275m (Y, K) < 29(%),

for every sharp spin® structure t on X.

Here [X] indicates the homology class of ¥ in Hy(X,0X;Z), identified with Hy(X;Z) using
the fact that Y is a homology sphere, and [%] - [¥] indicates the intersection product of [¥] with
itself. Equivalently, this is the self-intersection number of the closed surface obtained from the
union of ¥ with a Seifert surface for the knot K in Y.

A sharp spin® structure on a negative-definite 4-manifold with integer homology sphere bound-
ary Y is one with a particular property with respect to the grading on Heegaard Floer homology,
which we now describe. The Floer homology HF*(Y) can be given an integer-valued grading
(more generally, there is a grading on HF (Y, 5) whenever c; (s) is a torsion element of H?(Y; Z),
though it may take values in Q), and the element O described previously is homogeneous with
respect to this grading. The degree of © is called the d-invariant of Y, and denoted d(Y") (more
generally, one gets a d-invariant d(Y, s) for any spin® structure on a rational homology sphere;
see [54]). As a concrete case, we have d(S%) = 0.

When W : Y] — Y3 is a cobordism between rational homology spheres, the homomorphism
on Floer homology Fyy is homogeneous for each spin® structure t on W, and has degree

deg(t) = 3(e1(0 = 30(W) = 2x(W)),
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where o(W) and x(W) are the signature of the intersection form and the (topological) Euler
characteristic, respectively.

Now suppose X is a negative definite 4-manifold with boundary a rational homology sphere
Y, and assume that b; (X) = 0. By removing a ball from the interior of X, we obtain a negative
definite cobordism W : S3 — Y. For a spin® structure t on such W, the degree formula reduces
to

deg(t) = 1(e1(8 + b)),

and in particular this number is the degree of the image Fi, (Ogs) € HF*(Y') for © 43 a generator

of degree zero in HF™(S3).
According to [54, Theorem 1.12], when Y is an integer homology sphere, we have the inequal-

ity
an deg(t) = (e (02 + b () < d(Y)

for each spin® structure t on W (more generally, when Y is a rational homology sphere a similar
inequality holds for d(Y, s), for any spin® structure t extending s).

Definition 3.2. A negative definite 4-manifold X having b;(X) = 0 and boundary a homology
sphere Y is sharp if there exists a spin® structure t on X realizing equality in (11). Any such tis
said to be a sharp spin® structure.

Proposition 3.3. Let Y = X(a1,...,ay) be a Seifert integer homology sphere oriented as the boundary
of the negative-definite plumbed 4-manifold Xt as above, and let D C Xr denote the disk normal to the
sphere corresponding to the vertex labeled e in Figure 2. Assume that the intersection form of Xr is
diagonalizable. Then Xt supports a sharp spin® structure t with the property that

(12) (e1(4), [D) > Var—a.

Remark 3.4. If Y is the boundary of an integer homology ball, then the assumption on the inter-
section form of X is satisfied. Indeed, gluing the homology ball (with appropriate orientation)
to X1, we obtain a smooth, closed, oriented 4-manifold with negative definite intersection form
isomorphic to that of Xr. By Donaldson’s theorem [11], the intersection form must be diagonal-
izable over Z.

Proof. Let X be an oriented 4-manifold, either closed or with integer homology sphere boundary,
and let S(X') denote the set of spin® structures on X. Recall (see, e.g., [28, Section 2.4]) that there is
a natural function S(X) — H?(X;Z) given by t — c;(t), whose image is the set of “characteristic
elements” of H?(X;Z). By definition, an element o € H?(X;Z) is characteristic if and only if
the equality o(z) = x -  holds modulo 2 for each homology class € H(X;Z). Furthermore,
if X is simply connected (or, more generally, if H?(X;Z) contains no elements of order 2), then
t — c1(t) is injective. This applies in particular to the manifold Xt of the Proposition.

Consider a diagonalizing basis {ei, ..., ey} for Hy(Xr;Z) with dual basis {e,..., €y} for
H?*(Xr;Z) (Where m = by(X)): then e; - e; = —4;;. For any spin® structure t on Xt the coefficient
of each ¢; in the basis expansion of ¢; (t) must be odd by the condition that ¢, (t) is characteristic,
hence a spin® structure maximizes the quantity 1 (c1(t)?+b2(Xr)) if and only if ¢1 () = > ESI
(and any element of this form is the first Chern class of a unique spin® structure).
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Moreover, by [55, Corollary 1.5], the manifold Xr admits some sharp spin® structure, and in
particular d(Y) = max 3 (c1(t)? 4 b2(Xr)). Thus d(Y) = 0, and the sharp spin® structures are
exactly those with ¢1(t) = > (+1)e;.

We infer that there are exactly 2™ sharp spin® structures; the corresponding Chern classes
are called sharp characteristic vectors. We must see that (12) can be realized. Let {v,..., vy} be
the basis of Hy(Xt;Z) represented by the spheres in the plumbing (the zero-sections of the disk
bundles). The intersection form @ on Hz(X) can be expressed in this basis by a matrix (Q;;),
where

Qij = Q(vi, vj) = vi - vj.
Thus the off-diagonal entries of @) are 1 or 0 depending whether the corresponding vertices of I'
are connected by an edge, and the diagonal entries ();; are the Euler numbers of the disk bundles
(equivalently, the self-intersections of the spheres). We number the vertices so that v; is the vertex
labeled e in Figure 2.

The element D] is characterized by the intersection properties Q([D], v;) = 61 ;. Clearly, then,
we can write [D] = > (Q71)1;v;. We wish to estimate the maximum value of (x, [D]), where & is
a sharp characteristic vector. If we write x = ) _ k;v; for {v;} the basis hom-dual to {v;}, then

(13) (5, [D]) = > kjQui'0i = > kiQi} = Q" (k,11),
,J J

where @Q* is the dual intersection form on H?(X), represented in the basis {v;} by the inverse of
Q.
If we now express the vectors x and v, in the diagonalizing basis {¢;} then the coefficients of
k are all 1, and the maximum value obtained on the right of (13) is clearly the L'-norm of v; in
this basis:

Hrg}g}gp@i, [D]> = HylHLl(ej)'

Consider the transition matrix B between the bases {v;} and {¢;}, i.e.,
vV = Z Bjkfj-
J

Thus the kth column of B gives the coefficients of v, in terms of {¢}, and we are interested in
estimating the L'-norm of the first column.
In terms of matrices, we have that B! diagonalizes the dual form Q*:

(BH'QB™ =1,

or equivalently Q* = —BTB. It follows that the (1,1) entry of the matrix Q* inverse to the
intersection form @ (in the basis {v;}) is minus the square of the L?-norm of the first column of
B. The proposition follows from two observations:

(1) The L? norm is a lower bound on the L! norm, and
(2) The (1,1) entry of the inverse of the intersection matrix @ is —ay - - - ay.

Both of these are elementary; the first is the triangle inequality and the second can be seen, for
instance, from Cramer’s rule.
g
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Observe that in the notation of the above proof, the self-intersection [D] - [D] is exactly equal
to the (1,1) entry of Q*, so that [D] - [D] = —ay - - - a,. With this and using the spin® structure
obtained in the Proposition, Theorem 3.1 gives:

Corollary 3.5. If Y = X(ay, ..., ay) is a Seifert integer homology sphere that bounds an integer homol-
ogy ball (or more generally if the plumbed manifold Xt has diagonalizable intersection form), then a knot
K isotopic to a reqular fiber in the Seifert structure satisfies

2Tsm (Y, K) < ay---an —+/ai - ap.

3.2. Contact tau for a regular fiber. LetY be an integer homology sphere, and consider a contact
structure £ on Y. We imagine that ¢ is induced by a symplectically convex domain bounded by
Y, so in particular we may assume that ¢ is strongly symplectically fillable. This implies that ¢(&)
is nonzero, so the invariant 7¢(Y, K') for knots K C Y is defined.

Recall that any knot in a contact manifold is smoothly isotopic to (many different) Legendrian
knots, which are knots everywhere tangent to the contact distribution. If K is a Legendrian, then
the contact planes provide a framing of K, and if K is nullhomologous then a (choice of) Seifert
surface for K defines a second framing, the Seifert framing. The difference between the contact
framing and the Seifert framing is called the Thurston-Bennequin invariant of K and is written
tb(K). Having chosen a Seifert surface S for K, the rotation number rot(K) of K is defined to
be the relative Euler number of ¢ restricted to S, relative to the trivialization of £ over 0S5 = K
provided by the tangents to K. We have the following fundamental inequality due to Hedden,
generalizing a result of Plamenevskaya [60] for knots in S 3,

Theorem 3.6 (Hedden [31]). Let (Y, &) be a contact 3-manifold with ¢(&) # 0. Then for any nullhomol-
ogous Legendrian knot K in'Y we have

th(K) + | rot(K)| < 27¢(Y, K) — 1.

Now suppose Y is a Seifert manifold. A regular Seifert fiber in Y inherits a natural framing
from the Seifert structure, called the fiber framing: indeed, thinking of a framing of a knot as
specified by an equivalence class of pushoff, a the fiber framing of a regular fiber is given by a
second nearby regular fiber. A knot isotopic to a regular fiber receives, once such an isotopy is
chosen, a fiber framing as well.

Definition 3.7. Let £ be a tight contact structure on a Seifert 3-manifold, L a Legendrian knot
smoothly isotopic to a regular fiber, and ¢ a choice of such an isotopy. The twisting number
tw(L, ¢)) is the difference between the contact framing and the fiber framing induced by ¢. The
maximal twisting number tw(§) of £ is
tw(§) = sup{tw(L, ¢)},
L,
the maximum taken over all such Legendrians L and all choices of isotopy ¢.

It can be seen that on a Brieskorn sphere tw(L, ¢) is independent of ¢, see [24]. Moroever if £
is a tight contact structure then tw(¢) is finite.

Lemma 3.8. For a Seifert homology sphere Y = X(a1,...,ay), the fiber framing of a reqular fiber is
equal to ay - - - ay, (when measured with respect to the Seifert framing).

Proof. 1t is elementary that if K is a knot in an integer homology sphere Y, then the manifold
obtained by p-framed surgery along K (with respect to the Seifert framing) has first homology
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of order |p|. In the surgery diagram of Figure 1, the fiber-framed regular fiber is represented
by a meridian of the circle labeled 0, with framing 0 (in the diagram). Performing surgery on
this meridian with fiber framing therefore cancels the 0-framed circle and leaves a surgery di-
agram for a connected sum of lens spaces L(ai,b1)# - - - #L(an,b,). The latter 3-manifold has
tirst homology of order a; - - - a,,, which proves the lemma up to sign. That the fiber framing is
positive can be seen, for example, by performing +1-framed surgery on the meridian (framing
measured in the diagram), and noting that the resulting manifold has first homology of order
aj ---an + 1. For the latter calculation, one can use the fact that a 3-manifold described by the
surgery diagram of Figure 1, with arbitrary aj; and by, has first homology of order equal to the
absolute value of a; - - - an >, Z—i (indeed, this quantity is easily seen to equal the absolute value
of the determinant of a presentation matrix for the first homology; see [64, Section 1.1.4], com-
pare equation (9)). In this light, performing +1 surgery on an additional meridian amounts to

replacing (%’ ce Z—Z) with (‘g—ll, Y 1), from which the result immediately follows. Note, of
course, that this depends on our chosen orientation for Y. O]

Corollary 3.9. Let Y = X(ay, ..., ay), £ a contact structure on' Y with ¢(€) # 0, and K a knot smoothly
isotopic to a regular fiber. Then

27 (Y, K) > tw(§) +a1---a, + 1.

Proof. We may suppose that K is chosen to be Legendrian with twist number equal to tw(¢).
Then this is Theorem 3.6, after discarding the nonnegative |rot(K)| and observing that for this
choice of K,

tb(K) = (contact framing) — (Seifert framing)

(contact framing) — (fiber framing) + (fiber framing) — (Seifert framing)
= tw(K,¢)+ar---ap
= tw(&)+a--ap.

Combining this with Corollary 3.5 gives:

Corollary 3.10. Suppose Y = ¥(aq, ..., ay) is a Seifert integer homology sphere that bounds an integer
homology ball (or assume just that the plumbed manifold Xr has diagonalizable intersection form), and
let & be a contact structure on 'Y with ¢(§) # 0. Then there exists a knot K C Y (isotopic to a regular
fiber) such that

2re(Y, K) — 7o (Y, K)) > tw(€) + /a1 —an + L.

Corollary 3.11. Let Y = X(ay,...,a,) be a Seifert integer homology sphere. If £ is a contact structure
on'Y with tw(§) > —\/a1 - - an, then (Y, ) does not admit a contact type embedding in (R*, wea).

Proof. By the remarks after Corollary 2.2, if (Y, ) admits a contact type embedding then it is
contactomorphic to the boundary of a symplectically convex domain in R* with the homology
of a ball. Hence we may assume that ¢*(£) # 0, and that Y bounds a homology ball. Then
the given inequality combined with the previous corollary shows that there is a knot K in Y’
with 7¢(Y, K) — 74, (Y, K) > 0. By Corollary 2.9, (Y, &) does not bound a symplectically convex
domain. O
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4. TWISTING NUMBERS FOR SEIFERT HOMOLOGY SPHERES

In light of Corollary 3.11, our goal is now to derive a lower bound on the twisting number.
To achieve this we apply certain techniques standard in the classification problem for contact
structures on Seifert manifolds [18,25,32].

Consider the Seifert homology sphere Y = ¥(ay, ..., a,) asin Figure 1, so that (a1, b1), . . ., (an, by)
are the unnormalized Seifert invariants, satisfying (9) with b = 0. We first spell out topological
conventions that are standard in this situation and are implicit in Figure 1.

Let Fy, Fy, ..., F, be the exceptional Seifert fibers of Y, and fori = 1,...,nlet V; = D? x 1
denote a fixed solid torus. In particular we identify 9V; with R?/Z? such that (1,0)” corresponds
to the meridian 0D? x pt, and (0,1)7 the longitude pt x S'. On the other hand, let S be the
complement of n disjoint open disks embedded in the 2-sphere: then each component of the
boundary of S x S! can then be identified with R?/Z? such that (0, 1) corresponds to pt x S!,
and (1,0)7 is identified with a component of —9(pt. x S). We choose the orientation so that
the standard orientation of R?/Z? is identified with the opposite of the induced orientation on
(S x Sh).

There is then a diffeomorphism

(14) Y:E(ah,an)g(sxsl)ud(ml—lI—IVn)a
where V; is attached to the i-th component 9;(S x S!) by maps 4; : dV; — —9;(S x S') given by

a; Uj
(o).

Here u;, v; are integers that may be chosen arbitrarily so long as the resulting A; is an orientation-
preserving homemorphism, the ambiguity in the choice reflecting the freedom in choosing the
identification between a neighborhood of F; and the solid torus V; = D? x S1. The identification
(14) depends on this choice, and hence so does the numerical value of the twisting number (for
Legendrian representatives of the exceptional fibers) defined below. To eliminate the ambiguity,
we specify u;, v; uniquely by the requirements a;v; — b;u; = 1 and 0 < u; < a; for each i. Note
that the case u; = 0 does not arise since each a; > 2.

Now suppose that Y is equipped with a contact structure £. Then we can isotope each singular
fiber F; to be Legendrian, and by stabilizing Legendrian representatives we may assume the
contact framing of F; is arbitrarily small. The identification (14) provides a framing of F; when
the latter is identified with the core of the solid torus V;, and the contact framing of a Legendrian
representative of F; compared to this framing is called the twisting number of the representative.
Taking the twisting number to be k; < 0, we can then adjust (14) by an isotopy so that V; is a
standard contact neighborhood of F;, having convex boundary and dividing set I'y; consisting
of two simple closed curves of slope k%

With our framing conventions above, slope k% on 0V, corresponds to the vector (k;, 17T, so
that each component of I'5y; is homotopic to a concatenation of one longitude and &; meridians.
When measured in —9;(S x S'), that is after multiplying the matrices A; with the vectors (k;, 1)7,
these slopes become

biki + v;
15 P My
(15) ° aik; + u; !
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The denominator of s; is never zero by our choice of u;, so that the dividing slope on —9;(S x S 1
is not infinite. Hence, according to the flexibility theorem of Giroux, we can arrange by a small
isotopy of the contact structure near 9V; that the characteristic foliation on —9;(S x S!) is by
parallel circles of infinite slope, which is to say that —9;(S x S') has a Legendrian ruling by
“vertical” circles isotopic to pt x S*.

We wish to apply the following “twist number lemma” of Honda [32] to the Legendrian ex-
ceptional fibers F;.

Lemma 4.1. Consider a Legendrian curve L, and suppose that with respect to some framing the twisting
number of L is k. Let V be a standard neighborhood of L, so that in the given framing OV is convex with
two dividing curves having slope . If there exists a bypass D which is attached to OV along a Legendrian
ruling curve of slope r, and X > k + 1, then there exists a Legendrian curve with twisting number k + 1
smoothly isotopic to L.

In our situation the ruling curves have infinite slope on —9;(S x S1), corresponding to the
vector (0,1)7. Passing to 9V; using A; !, the ruling slope is then given by the vector (—u;, a;),
ie. r; = —{L. Since T% = — 4t € (=1,0), we see that as long as suitable bypasses can be found,
we can replace F; by smoothly isotopic Legendrians having sequentially larger twist numbers,
implicitly adjusting the neighborhoods to be convex with infinite ruling slope as before, until the

twist number k; reaches —1.

Lemma 4.2 (Congruence Principle). Let £ be a tight contact structure on a Seifert manifold Y as in
(14), and suppose there exists a Legendrian reqular fiber in (Y, &) having twist number t < 0. Then for
any pair i, j, there exist Legendrian representatives of the exceptional fibers F;, F; with twist numbers
ki, k;j < 0, such that either:
(1) One of k; or kj is equal to —1, or
(2) There is an integer d with t < d < 0 such that d = w; modulo a; and d = u; modulo a;, and
there is a Legendrian regular fiber in (Y, ) having twist number d. Moreover, in this case

d = a;k; +u; = ajkj + u;.

Proof. Consider a vertical annulus A; ; between —9;(S x S') and —9;(S x S'), which is to say
that A, ; is isotopic to an annulus of the form a x S! for an arc a between boundary components
iand j of S. In particular, we take the boundary circles 9;A; ; and 0;A; ; of A; ; to be Legendrian
ruling curves on the boundary tori. Since the twisting numbers of the boundary circles are nega-
tive, we can make A; ; convex by a small isotopy. In more detail, recall that the twisting number
tw(L, X) of a Legendrian L lying on a surface ¥ is equal to the difference between the framing on
L induced by the contact structure and that induced by X (equivalently, the framing induced by a
vector field along L normal to the contact structure or the surface, respectively). If a compact ori-
entable surface has Legendrian boundary where each boundary circle has nonpositive twisting
number, then [32, Proposition 3.1] shows that the surface can be made convex by a small pertur-
bation fixing the boundary. In the case at hand the framing induced by the annulus is the same
as that induced by the boundary torus, so that tw(9;A; j, A; ;) = tw(9;.A; ;, —0;(Sx S1)). Observe
that —9;(S x S!) is already convex, and recall that on a convex surface the twisting number of a
Legendrian L in general position is given by —% times the number of geometric intersections of
L with the dividing set. This already shows the twisting numbers of the boundary circles of A; ;
are nonpositive, so 4; ; can be made convex. We can also suppose that A; ; is chosen to contain



ON CONTACT TYPE HYPERSURFACES IN 4-SPACE 21

a curve c isotopic to pt x S! having a Legendrian realization isotopic to the regular fiber of twist
number ¢ as in the statement.

To understand the twisting numbers of the boundary circles of A; ; concretely, recall that in our
case the dividing set on one boundary torus consists of two parallel circles, and the Legendrian
ruling curves intersect them minimally. Moreover, a dividing curve on —;(S x S') has slope s;.
The algebraic intersection number between a curve of slope s; and the infinite slope ruling curve
is given by a;k; + u;, which is negative and thus equal to the twisting number, and similar for s;.

Now, the dividing set on A, ; is a disjoint union of properly embedded arcs (there are no closed
components since ¢ is tight, using Giroux’s criterion [32, Theorem 3.5]), whose endpoints on the
boundary alternate with points of intersection between the boundary and the dividing set on
—0;(S x SY) (or —0;(S x S1)). Moreover, since A; j contains a vertical arc with twist number ¢,
we can assume that at most |2t| dividing curves of A; ; connect different boundary components
of the annulus. Hence if either |a;k; + u;| or |a;k; + u;| is greater than [t|, there exists a dividing
arc on A; ; that connects two points on the same boundary component, and an innermost such
arc determines a bypass for the corresponding torus. (This is essentially Honda’s “Imbalance
Principle.”) Attaching these bypasses sequentially and applying the twist number lemma, we
can suppose that either k; can be increased to —1 or that k; satisfies ¢ < a;k; + uv; < 0, and
similarly for j.

Now, if at this point we have a;k; +u; # a;k; +u;, then by the imbalance principle there exists
a bypass on one side or the other of the annulus. Thus, as long as a;k; + u; # ajk; + u;, and
k;,kj < —1, we can add bypasses to either OV; or dV; and thereby assume that the new solid tori
are standard neighborhoods of Legendrian exceptional fibers of increasing twist number.

By continuing this process, either one of k;, k; becomes —1, or we reach a point at which
a;k; + w; = ajk; + u;j, which in particular says that the number d = a;k; + u; satisfies the two
congruences d = u; mod a; and d = u; mod a;. In the latter case, a ruling curve on either
9i(S x S1) or 9;(S x S1) is isotopic to a regular fiber, and is a Legendrian with twist number d as
desired.

g

Observe that in the situation at the end of the preceding proof, it may happen that the inter-
section numbers a;k; + u; and ajk; + u; are equal, yet there is still a dividing arc on A; ; with
endpoints on the same boundary component. In this case there must actually be bypasses on
both sides of A; j, and hence both k; and %; can be increased. The process then resumes until one
of k;, k;j reaches —1, or the congruence of part (2) of the Lemma is again realized, and there are
no further bypasses on A, ;.

Definition 4.3. Let Y be a Seifert manifold with singular fibers F1,...,F,, and I C {1,...,n}.
A collection of Legendrian representatives for {F; },c is twist-balanced, or simply balanced, if for
each i, j € I and any convex vertical annulus 4; ; connecting standard neighborhoods of F; and
F; avoiding the singular fibers, there are no boundary-parallel dividing arcs on either side of

A j.
Applying the congruence principle repeatedly yields:

Corollary 4.4. For any subset {F;}icr of singular fibers in the Seifert manifold Y, either there exists
i € I and a Legendrian representative of F; having twist number —1, or {F;};c; admit twist-balanced
representatives.
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In the twist-balanced case, the balanced representatives of F; have twist numbers k; satisfying
aik; +u; = ajk:j + u;

foralli,j € 1. If there is a Legendrian reqular fiber in Y having twist number t < 0, then the common
value d = a;k; + u; can be taken to satisfy t < d < 0.

Proposition 4.5. Let Y = X(ay,...,a,) be a standardly-oriented Brieskorn homology sphere with a
given tight contact structure, let I = {1,...,n — 1}, and assume that {F;},c; admit twist-balanced
Legendrian representatives. Then there exists a Legendrian regular fiber in Y having twist number
—ay -+ an—1. Furthermore, at least one of the F, ..., F, admits a Legendrian representative of twist
number —1.

Proof. The twist-balanced condition means that for appropriate Legendrian representatives of
Fy, ..., F,_1, their twist numbers k; satisfy a1k1 +uy = -+ = ap—1kn—1 + up—1 =: d. Moreover,
we can find a pairwise disjoint collection of convex vertical annuli A, ;+1,j = 1,...,n — 2, s0
that 4 ;11 connects F; and Fj;1, and contains no boundary-parallel dividing curves. Writing
Vj for the standard neighborhood of F};, the boundary of a regular neighborhood of the union of
Vi,..., Va—1 with these annuli becomes, after smoothing corners, a convex torus T¢ g parallel to
0V, (but oriented oppositely). Here “CR” stands for “cut-and-round,” which is a standard term
for this procedure.

The slope of the dividing curves on T¢r can be calculated with the help of the “edge-rounding
lemma” of Honda [32, Lemma 3.11]: writing s, as in (15) for the slope of —9;(S x S!), the slope
of Tcr is given by

s(Tor) = s1+ -+ + sn—1 — 252,

where the last term arises since each rounding of a corner contributes a slope of —- and there
are 4(n — 2) corners to round (for more on this procedure and the calculation of the resulting
slope, we refer to [25, Lemma 4.5] or [18, Lemma 7]). We calculate:

S(TCR> = é(blklﬁ-’l}l+"'+bn—1kn—1+vn—1_n+2)
_ é<%(d_ul)+...+Zz:i(d—un,1)+vl+..-+vn,1—7”L+2>

b bn— 1 (1 1
= &4+ 1+3< + ot —n+@

An—1 (lil an—1
where we have used that a;v; — bju; = 1. Since n > 3, and the a; are relatively prime and at
least 2, it is easy to see that in the last line the term in parentheses is strictly negative. Since each
k; < —1,d = ajk;j + u; is also negative and we infer

b by—
s(Teg) > -+ + -+ ==L
a

an—l'
Furthermore, using (9) with b = 0 we have that
b by b bk
(16) PLygnml g Oy Dnfttn
a1 Ap—1 an, ankn + up

where it is easy to check that the inequality holds for any &, < —1. This last fraction is just the
slope of the boundary of a standard neighborhood of a Legendrian representative of F}, having
twist number k,,, measured in the coordinates on 9,,(S x S'), with a change in sign to account
for the orientation change.
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It follows that the region between T g and 9,(S x S1), being diffeomorphic to Teg x [0, 1]
with convex boundaries having slopes s(T¢r) and —s,, contains a boundary-parallel convex
torus having slope L% +- 4 ZZ . A dividing curve on this torus intersects the vertical ruling
curve aq - - - a,—1 times, hence this Vertlcal Legendrian has twist number —a; - - - ap—1.

. by ke v T . .
Moreover, since — »pne- decreases as ky, decreases, by initially choosmg k, very negative

the preceding shows that there is also a convex torus parallel to Tcr having slope —=2attn

Reversing the orientation of this torus, we see that it bounds a solid torus nelghborhood U, of
F,,, which is convex and has slope (in coordinates associated to V},) equal to —1. It follows from
Honda'’s classification of contact structures on solid tori that U, is a standard neighborhood of a
Legendprian isotopic to F}, and having twist number —1. O

Theorem 4.6. Let Y = ¥(ay, ..., ay) be a standardly-oriented Brieskorn homology sphere, with contact
structure €. Let Fy, ..., F, be the multiple fibers in the Seifert structure, having multiplicities ai, . . ., ay.
Then the twist number of £ satisfies

tw(&) > —y/a1 - an.

Proof. We can assume that tw(§) < 0.

We have seen that if F; admits a Legendrian representative with twist number k; < 0, then
a vertical ruling curve on a convex neighborhood of F; intersects a dividing curve |a;k; + u;|
times. In particular, since the ruling curves are Legendrians isotopic to a regular fiber, we have

Suppose that there exist distinct ¢, j € {1,...,n} such that both F; and F; have representatives
with twist number —1. Then tw(¢) is greater than or equal to both —a; + u; and —a; + u;, hence
tw(§) is strictly larger than both —a; and —a;. Therefore tw(£)? < a;aj < ai - --ap as required.

It follows from Corollary 4.4 and Proposition 4.5 that at least one multiple fiber admits a rep-
resentative with twist number —1. Assume now that there is only one such multiple fiber, and
renumber the fibers so that this is F},. Then from the remark above, we find tw(§) > —a,, + u, >
—ap,.

Since we assume no other multiple fibers can have twist number —1, it must be that { ¥, ..., F,—1}
admit twist-balanced representatives. From Proposition 4.5, we have tw(§) > —a; - - - ap—1.

Combining these two estimates gives

tw(€)? < (a1 an_1)(an —up) < ay---an
O
Theorem 1.1 now follows immediately: for Y = X(ay,...,a,) and £ a contact structure on Y,

by Theorem 4.6, the twisting number of ¢ is greater than —,/a; -~ a,. By Corollary 3.11, (Y, ¢)
does not admit a contact type embedding in (R, wstq).

5. FURTHER APPLICATIONS

5.1. Planar open books and strong cobordisms to S3. It is worth noting that, while our obstruc-
tion to bounding a symplectically convex domain is the same as the obstruction in [52] for a £ to
be supported by a planar open book, we have not proved that no tight structure on a Brieskorn
homology sphere is planar. In that direction, we have the following.

Theorem 5.1. Let Y be a Brieskorn homology sphere with contact structure £, and let Xt be the negative
definite plumbed 4-manifold with boundary Y as in Section 3. Assume that ¢t (£) is nonzero, and either
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(a) There is a symplectic structure on Xr that is a filling of , or
(b) The intersection form of Xr is diagonalizable.

Then & is not supported by a planar open book decomposition. Moreover, if (b) holds, then the contact

invariant ¢ (&) has nonzero image in HF L (=Y.

Proof. If (X1, w) is a symplectic filling of (Y, &), and the intersection form of Xr is not diagonal-
izable, then ¢ is not supported by a planar open book by [17, Theorem 1.2].

Hence, we now assume Xt has diagonalizable intersection form. By Corollary 3.10 combined
with Theorem 4.6, we have 7¢(Y, K) > 74, (Y, K) for K a regular fiber of the Seifert structure on
Y. By Lemma 2.8 the contact invariant ¢*(§) € ker(U) C HF(-Y) is a nonzero element not
equal to ©F, the unique nonzero element in the image of HF> — HF* and in the kernel of U.
Hence ¢ (¢) has nonzero image in the quotient HF.L ,(-Y) = HF T (-Y)/Im(HF>(-Y)), so ¢

is not planar by [52, Theorem 1.2]. O

Observe that the two cases in Theorem 5.1 are necessary, as seen in the case of ¥(2, 3, 5). This
Brieskorn sphere has a unique tight contact structure, which is filled by a Stein structure on the
plumbed manifold X1, where I' is the (non-diagonalizable) negative-definite E graph. More-
over, since HF! ,(—%(2,3,5)) = 0, the last line of Theorem 5.1 does not hold in this case.

On the other hand, the authors are not aware of a fillable contact structure on a Brieskorn
homology sphere where neither of the two conditions in the preceding theorem hold, nor yet of
a tight structure on a (correctly-oriented) Brieskorn sphere that is not fillable.

Conjecture 5.2. No tight, positive contact structure on a Brieskorn homology sphere is supported by a
planar open book decomposition.

Combining Theorem 5.1 with Theorem 2.1, we obtain:

Corollary 5.3. If Y is a Brieskorn homology sphere such that the negative definite plumbed manifold Xr
bounding Y has diagonalizable intersection form, and £ is a contact structure on' Y with ¢t (£) nonzero,
then there is no strong symplectic cobordism from (Y, &) to S3.

Note that the contact structure on S? is immaterial: the cited theorems rule out the standard
structure &, while every other contact structure on S? is overtwisted and hence has vanishing
contact invariant. Such contact structures cannot be reached by a strong cobordism from a con-
tact structure with nonzero contact invariant by Echeverria’s naturality result. Also note that, as
in (b) of Theorem 5.1, it is not assumed that X1 admits any symplectic structure filling &; in fact
¢ is not assumed fillable.

However, as mentioned above, we do not know of an example of a positive tight contact
structure on a Brieskorn homology sphere that is not fillable. In the fillable case, the existence of
a strong cobordism to S is “nearly” equivalent to the existence of a contact-type embedding in
(R*, wgq) in the sense of the Proposition below, which is probably known to experts.

Proposition 5.4. Let Y be an oriented 3-manifold and & a strongly symplectically fillable contact struc-
ture on Y. There is a strong cobordism from (Y, &) to (S3, &) if and only if there exists an integer k > 0

and a symplectic structure wy, on a k-fold blowup X, = R4#k@2 of (R, wira), equal to wgq outside a
compact set, such that (Y, &) embeds as the boundary of a symplectically convex domain in Xj,.

Moreover, the preceding holds if and only if for every strong symplectic filling (W, ww ) of (Y, &) there
exists k and a symplectic embedding (W, ww ) — (X, wi) with wy, as before.
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Proof. Thinking of X as the blowup of R* at points p1, ..., px, the hypothesis on wy, means that
the blowdown map X — R* is a symplectomorphism when restricted to the complement of the
preimage B of any sufficiently large ball B C R%. If (V,£) is the boundary of a symplectically
convex domain W C X, then for B large enough we have W C B, and B — Int(W) is a strong
cobordism from (Y, €) to (S3,&).

Conversely, suppose (W, wy) is a strong filling of (Y,¢) and that (Z,wz) is a strong cobor-
dism from (Y,€) to (S%,&). Then a standard argument shows there is a smooth symplectic
form on W Uy Z agreeing with the given forms on W and Z, and therefore strongly filling
OW Uy Z) = (S3,&). It is well known by work of McDuff [43] that every strong symplectic
filling of S3 is diffeomorphic to the k-fold blowup of B* for some k, hence attaching the pos-
itive symplectization of (S3,&)) to d(W Uy Z) yields a symplectic manifold (Xj,wy) as in the
statement, containing (Y, £) as the boundary of the symplectically convex domain W'. O

This gives an analog of Theorem 5.1 for the question of strong cobordisms to S3:

Corollary 5.5. Let Y be a Brieskorn integer homology sphere and & a contact structure with ¢t (§)
nonzero. Assume that either condition (a) or (b) of Theorem 5.1 holds. Then there is no strong sym-
plectic cobordism from (Y, ) to S3.

Indeed, if (a) holds and there is a strong cobordism to S3, then by Proposition 5.4 it must be
that Xr embeds in a blowup Xj, of R*. Such a blowup has negative-definite, diagonalizable
intersection form, and since Y is an integer homology sphere the intersection form of Xr is a
direct sum factor of that of X}. Hence the intersection form of Xr is also diagonalizable, which
is to say (b) of Theorem 5.1 holds as well. This contradicts Corollary 5.3.

5.2. Additional examples. Here we provide some examples and discussion relevant to the ques-
tions mentioned in the introduction, particularly the implications in (1). Sometimes we will relax
the condition that Y be an integer homology sphere.

As a first question, one can ask if the implication B2 = B1, that a homology sphere that
embeds in R? bounds a homology ball, can be reversed. If we consider homology with rational
coefficients then the answer is “no,” which we can see as follows. For any rational homology
sphere Y, the connected sum Y# — Y bounds a rational homology ball, namely (Y — B?) x
I. But the connected sum need not embed in R*: taking Y = L(p,q) to be a lens space, it
is a consequence of work of Zeeman [71] and Epstein [16] that L(p,q) — B? admits a smooth
embedding in R* if and only if p is odd. Hence L(2p, ¢)#L(2p, 2p — q) satisfies B1 but not B2. The
authors are unaware of such an example among integer homology spheres.

There are many examples of 3-manifolds (including integer homology spheres) that satisfy B2
but neither B3 nor B3'. Indeed, if (Y,¢) is a contact homology sphere embedded in C? either
as a hypersurface of contact type or as the boundary of a Stein domain, then ¢ is strongly sym-
plectically filled by the bounded component W of the complement of Y, which is a homology
ball. Recall that the homotopy class of £ as a tangent plane field is captured by the numerical
invariant 6(¢), which by definition equals c¢(W, J) — 3a(W) — 2x(W) for any almost-complex
4-manifold (W, J) with boundary Y, such that £ is J-invariant. In our case ¢; (W, J) is neces-
sarily zero, so 6(¢) = —2. However, there are many examples of homology spheres that embed
smoothly in R* but do not carry any symplectically fillable contact structure ¢ having 6(¢) = —2,
such as —M), for p > 2, where M,, is the Seifert rational homology sphere considered in Section
5.4 (see [67, Lemma 21]). Irreducible integer homology spheres not carrying fillable structures
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with § = —2 include —X(2,3,12n + 1) for n > 1 [41], though for n > 3 is unknown if these
manifolds admit smooth embeddings in R*.

In light of Theorem 1.1, Gompt’s Conjecture 1.3 would imply that all Brieskorn spheres fail
to satisfy both B3 and B3’, for reasons that in many cases must be deeper than these homotopy
considerations.

Further examples relating to B3, B3” and B4 will make repeated use of the following result of
Gompf.

Theorem 5.6 (Gompf [27]). Let W be a compact 4-manifold with boundary, (X, Jx) a complex surface
with complex structure Jx, and p : W — X a smooth embedding. If the induced complex struc-
ture *(Jx) is homotopic through almost-complex structures to a Stein structure Jy on W, then 1 is
smoothly isotopic to a holomorphic embedding + : (W, Jw) — (X, Jx). In particular, »(W) is a Stein
domain in X biholomorphic to (W, Jw).

We use the term “Stein embedding” for a map satisfying the properties of ¢ in this theorem.

As a special case, note that if W is an integer homology ball, then W carries a unique homotopy
class of almost-complex structure. Thus if W admits a Stein structure .J (as an abstract manifold),
then any smooth embedding of W into a complex manifold is isotopic to a Stein embedding of
(W, J).

5.3. Hyperbolic examples. Here we provide a family of examples of integer homology spheres
satisfying B3’ but not B3, when the contact structure is fixed. For an integer n > 0, consider the
smooth 4-manifold W, whose handle description is given in Figure 3.

FIGURE 3. Contractible manifold W,,. The box indicates n full left-handed twists.

For n = 1, this is the well-known Mazur cork considered by Akbulut in [1]. In general, it
is easy to see that W, is contractible, and embeds in R* (this holds by the general principle
mentioned after Conjecture 1.4, or here by observing that the double of W,, is S* using handle
calculus [28]). Furthermore, it is straightforward to convert the diagram of Figure 3 to a Stein
diagram: one realizes the 0-framed circle as a Legendrian with Thurston-Bennequin number 2,
so after a single stabilization we obtain a Stein structure J,, on W), (see [35, Figure 3]). Write
&y for the associated contact structure on Y,, = 0W,,. Strictly there is a choice involved in the
stabilization, but the resulting contact structures are contactomorphic; we fix one such choice.

According to [35, Theorem 1.2(2)] (see also [2]), the contact invariant ¢* (¢,,) has nonzero image
in HF.,(-Y,). By Corollary 2.2 this fact obstructs (Y, &,) from being a symplectically convex
boundary, and using Theorem 5.6 we obtain:

Proposition 5.7. There exists an infinite family (Y, &,,) of contact structures on hyperbolic integer ho-
mology 3-spheres such that Y, embeds smoothly in C? as the boundary of a contractible Stein domain
W,, C C? with induced contact structure &,, but &, does not arise from a contact type embedding of Y,
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in (R* wgq). In particular, W, is not isotopic to a symplectically convex domain by any isotopy that
preserves the contact structure on the boundary.

The fact that the Y}, are hyperbolic is given in [35, Theorem 1.2(3)].

In particular, (W,,, J,,) is not Stein equivalent to any rationally convex domain in C2. Moreover,
recall that a Stein domain (W, J) (not necessarily in C?) has a unique corresponding homotopy
class of compatible Weinstein structure (W, wyy, v) where wyy is a symplectic structure and v a
“gradient-like” Liouville field [5] (indeed, one can take wy, = —dd°¢ for a defining strictly J-
convex Morse function ¢, and v the gradient of ¢ with respect to the K&hler metric induced by J
and wyy). Since a Weinstein domain is symplectically convex, we infer:

Corollary 5.8. There is no compatible Weinstein structure (wy, ,v) on (Wy, J,,) that embeds symplecti-
cally in (R*, wyq).

Again, these examples indicate that B3 need not imply B3. Consider the converse, whether
the condition B3 (Y embeds in R* as a hypersurface of contact type) implies B3’ (Y embeds as
the boundary of a Stein domain). If the symplectically convex region W bounded by a contact
type hypersurface admits a Weinstein structure, then it also admits a homotopic Stein structure,
and hence by Theorem 5.6 it is isotopic to a Stein domain. But from the above corollary, we see
that should such a Weinstein structure exist, it need not be apparent in the ambient symplectic
structure—one may need to modify the symplectic structure on the domain.

To add further interest to this family of examples, Karakurt-Oba-Ukida [35] proved that the
manifold W,, carries another Stein structure, and for this structure the situation regarding an iso-
topy to a symplectically convex domain is not clear. Indeed, those authors construct an “allow-
able” symplectic Lefschetz fibration on W,,, having fibers of genus 0. This structure determines
a deformation class of Stein structure .J/, on W,, and in particular a contact structure &/, on Y,
supported by a genus 0 open book on the boundary. It follows [52, Theorem 1.2] that ¢*(£],)
vanishes in H F;g 4(=Y3), so we gain no information on whether £/, can arise as a symplectically
convex boundary.

By Theorem 5.6, the smooth embedding of W,, in C? is isotopic to Stein embeddings with
respect to either J,, or J),. The images of these embeddings are then smoothly isotopic contractible
Stein domains that induce different contact structures on their boundaries; one of these domains
cannot be symplectically convex. It seems an interesting problem to determine whether (W,,, J,)
can be made symplectically convex.

5.4. Unobstructed Seifert examples. We now examine a family of examples (Seifert rational
homology spheres) generalizing the manifold shown by Nemirovski-Siegel not to bound a sym-
plectically convex domain. For an integer p > 2, consider the Seifert fibered manifold M, =
M(-1; p—;l, %, }%) This manifold has a surgery description similar to that in Figure 1, with the co-
efficient 0 replaced by —1, and three meridional surgery curves with coefficients —£;, —p, and
—p. Itis not hard to see that M), is diffeomorphic to the boundary of the 4-manifold Z,, (a rational
homology ball) with handle description given in Figure 4. Moreover, Z; is the disk bundle over

R P? with Euler number —2, which was considered by Nemirovski-Siegel [47].

Proposition 5.9. For every integer p > 2, the manifold Z, admits a Stein structure J, and an embedding
of (Zp, Jp) as a Stein domain in C2. The symplectic structure corresponding to J,, is compatible with an
allowable Lefschetz fibration on Z,, having fibers of genus 0, and the corresponding contact structure on
M, is supported by a planar open book.
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p strands
k {

—op L

FIGURE 4. On the left is the 4-manifold Z,, and on the right is the Stein domain (Z,, J, i).

Since the contact structure £, induced by J, is planar, our obstruction gives no information on
whether Z, can be rationally convex (in fact, as noted below, H F;g 4(=M,) = 0). However, for
p = 2, Nemirovski-Siegel showed that (M3, &) is not the boundary of a rationally convex domain
in C?, in particular in the terminology of [5], (Z2, .J2) is i-convex but not symplectically convex.

The above implies that in general the condition that a Stein domain in C? admit a genus 0
Lefschetz fibration compatible with its symplectic structure is not sufficient to ensure that the
Stein domain is isotopic to a symplectically convex domain. Hence the symplectic convexity of
the examples (W), J}) from the previous subsection cannot be decided by a general argument

based on planarity.

Proof. First note that for any p, the manifold M, admits a smooth embedding in R*: this was
observed by Casson and Harer (part (3) of the main theorem in [3]). In fact, Z, also embeds
in R*. To see this, it is convenient to modify the diagram on the left of Figure 4 by dragging
the undercrossing strand around one attaching ball of the 1-handle, causing it to pass over the
remaining strands. This requires the framing coefficient to change from —2p to 0. Now add a
2-handle along a trivial circle passing over the 1-handle with framing 0. Then we can cancel
the 1-handle of Z, with the new handle, leaving behind a 2-handle attached along a O-framed
unknot. Adding a 3-handle then yields the 4-ball B* C R%. So Z, embeds in R? smoothly.

We wish to apply Theorem 5.6 above. For this we observe that almost-complex structures on
Z, are classified up to homotopy by their induced spin® structure, and the set of spin® struc-
tures is in bijection with H?(Z,; Z) = Z/pZ. We claim that all these homotopy classes of almost-
complex structure are realized by Stein structures derived from Figure 4. To see this, observe that
the —2p-framed circle K in Z, can be realized as a Legendrian knot with Thurston-Bennequin
number —p and rotation number 1. Therefore after p — 1 stabilizations we obtain a Legen-
drian representative of K having Thurston-Bennequin number —2p + 1. Since this is one greater
than the smooth framing coefficient, the (unique) Stein structure on the 1-handle extends across
the 2-handle [15,26]. Now, there are p choices in how to perform the stabilizations: for each
k € {0,...,p — 1} we can make k negative and p — 1 — k positive stabilizations as shown on
the right of Figure 4. It is straightforward to check, using the methods of [26] or [28, Section
11.3] (see particularly Example 11.3.12 of the latter), that the Stein structures J, ; arising from
different choices of k are not homotopic: indeed, they induce non-homotopic contact structures
on the boundary M,. Thus as k varies, the Stein structures J, ;. give representatives of each ho-
motopy class of almost-complex structure on Z,,. It follows that if ¢ : Z, — C? is the embedding
constructed above, the induced complex structure ¢*(Jsq) is homotopic to some Stein structure
Jp 1, and by Gompf’s result ¢ is isotopic to a Stein embedding of this (W), J,, ;). Below we simply
write J), for this distinguished Stein structure.
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Recall that a rational homology sphere Y is an L-space if HF! ,(Y) = 0, and Y is an L-space
if and only if —Y is. According to work of Lisca-Stipsicz [40, Theorem 1.1], a small Seifert man-
ifold such as M, is an L-space exactly when either M, or —M,, fails to admit a contact structure
transverse to the Seifert structure. Furthermore, a criterion of Lisca-Mati¢ [39] shows that the
Seifert manifold M (—1;71,72,73) admits a transverse contact structure if and only if there exist
relatively prime integers a and m, with 0 < a < m, such that

mry <a<m(l—ry) and mrg <1,

where we have arranged r; > ro > r3. It is easy to see that this condition does not hold for
M(-1; p—;l, %, %), so that the latter is an L-space. It now follows from [40, Corollary 1.7] that every
contact structure on M), is planar, in particular the the contact structure §, induced by (Z,, J,).
In [70, Theorem 1], Wendl shows that a planar open book can always be extended to an allowable
Lefschetz fibration over any minimal symplectic filling. Hence, Z,, admits an allowable Lefschetz

fibration having fibers of genus 0. O

Remark 5.10. Clearly the induced complex structure ¢*(Js4) has vanishing first Chern class.
When p is odd, the homotopy class of J, ;. is uniquely determined by the Chern class, and in
particular the Stein structure arising when k£ = 0 is the only one with trivial Chern class (see [26,

Proposition 2.3]). When p is even there is a second such Stein structure, namely the one with

_>p
.

One can explicitly construct planar open books for (all) contact structures on M, using the fact
that any such contact structure is given by a contact surgery diagram of the form in [40, Figure
2]. Such techniques are used, for example, in [61,65], and indeed give the proof of [40, Corollary
1.7] cited above.

Finally, we point out a generalization of the manifolds M, studied above. In [33, Theorem 1.1],
Issa-McCoy found a two parameter family of rational homology spheres

M, = M(— ;1’1771717... 77’71’1),
p p P p p
having 2/ + 1 singular fibers, and proved that for every p > 2,/ > 1, M,, , embeds smoothly in
R%. In this notation, M,, above is M, ;.

With the single exception of p = 2, £ = 1, it remains an open question whether M, , embeds as

a hypersurface of contact type in R*.
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