
Basil: Breaking up BFT with ACID (transactions)
Florian Suri-Payer∗, Matthew Burke∗, Zheng Wang∗, Yunhao Zhang∗, Lorenzo Alvisi∗, Natacha Crooks†

∗Cornell University, †UC Berkeley

Abstract

This paper presents Basil, the first transactional, leaderless
Byzantine Fault Tolerant key-value store. Basil leverages
ACID transactions to scalably implement the abstraction of a
trusted shared log in the presence of Byzantine actors. Unlike
traditional BFT approaches, Basil executes non-conflicting
operations in parallel and commits transactions in a sin-
gle round-trip during fault-free executions. Basil improves
throughput over traditional BFT systems by four to five times,
and is only four times slower than TAPIR, a non-Byzantine
replicated system. Basil’s novel recovery mechanism further
minimizes the impact of failures: with 30% Byzantine clients,
throughput drops by less than 25% in the worst-case.

1 Introduction
This paper presents Basil, a leaderless transactional key-

value store that scales the abstraction of a Byzantine-fault
tolerant shared log.
Byzantine fault-tolerance (BFT) systems enable safe on-

line data sharing among mutually distrustful parties as they
guarantee correctness in the presence of malicious (Byzan-
tine) actors. These platforms offer exciting opportunities for
a variety of applications, including healthcare [93], financial
services [5, 6, 9], and supply chain management [7, 34]. Con-
sider the iPhone supply chain: it spans three continents and
hundreds of contractors [4] who may not trust each other,
yet must be willing to share product information. BFT repli-
cated state machines [24, 28, 43, 50, 101] and permissioned
blockchains [8, 13, 17, 23, 41, 49, 92] are at the core of these
new services: they ensure that mutually distrustful parties
produce the same totally ordered log of operations.
The abstraction of a totally ordered log is appealingly simple.

A scalable totally ordered log, however, is not only hard to
implement (processing all requests sequentially can become
a bottleneck), but also often unnecessary. Most distributed
applications primarily consist of logically concurrent oper-
ations; supply chains for instance, despite their name, are
actually complex networks of independent transactions.
Some BFT systems use sharding to try to tap into this par-

allelism. Transactions that access disjoint shards can exe-
cute concurrently but operations within each shard are still
totally ordered. Transactions involving multiple shards are
instead executed by running cross-shard atomic commit
protocols, which are layered above these totally ordered
shards [13, 49, 78, 79, 102]. The drawbacks of these sys-
tems are known: (i) they pay the performance penalty of

redundant coordination—both across shards (to commit dis-
tributed transactions) and among the replicas within each
shard (to totally order in-shard operations) [75, 103, 104];
(ii) within each shard, they give a leader replica undue control
over the total order ultimately agreed upon, raising fairness
concerns [46, 101, 105]; (iii) and often they restrict the expres-
siveness of the transactions they support [78, 79] by requiring
that the read and write set be known in advance.
In this paper, we advocate a more principled, performant, and

expressive approach to supporting the abstraction of a totally
ordered log at the core of all permissioned blockchain systems.
We make our own the lesson of distributed databases, which
successfully leverage generic, interactive transactions to im-
plement the abstraction of a sequential, general-purpose log.
These systems specifically design highly concurrent protocols
that are equivalent to a serial schedule [21, 80]. Byzantine
data processing systems need be no different: rather than
aiming to sequence all operations, they should decouple the
abstraction of a totally ordered sequence of transactions from
its implementation. Thus, we flip the conventional approach:
instead of building database-like transactions on top of a
sharded, totally ordered BFT log, we directly build out this
log abstraction above a partially-ordered distributed database,
where total order is demanded only for conflicting operations.
To this effect, we design Basil, a serializable BFT key-value

store that implements the abstraction of a trusted shared log,
whose novel design addresses each of the drawbacks of tra-
ditional BFT systems: (i) it borrows databases’ ability to
leverage concurrency control to support highly concurrent
but serializable transactions, thereby adding parallelism to
the log; (ii) it sidesteps concerns about the fairness of leader-
based systems by giving clients the responsibility of driving
the execution of their own transactions; (iii) it eliminates re-
dundant coordination by integrating distributed commit with
replication [75, 104] so that, in the absence of faults and con-
tention, transactions can return to clients in a single round trip;
and (iv) it improves the programming API, offering support
for general interactive transactions that do not require a-priori
knowledge of reads and writes.
We lay the foundations for Basil by introducing two comple-

mentary notions of correctness. Byzantine isolation focuses
on safety: it ensures that correct clients observe a state of the
database that could have been produced by correct clients
alone. Byzantine independence instead safeguards liveness:
it limits the influence of Byzantine actors in determining
whether a transaction commits or aborts. To help enforce
these two notions, and disentangle correct clients from the
maneuvering of Byzantine actors, Basil’s design follows the

1

principle of independent operability: it enforces safety and
liveness through mechanisms that operate on a per-client and
per-transaction basis. Thus, Basil avoids mechanisms that
enforce isolation through pessimistic locks (which would al-
low a Byzantine lock holder to prevent the progress of other
transactions), adopting instead an optimistic approach to con-
currency control.
Embracing optimism in a Byzantine setting comes with its

own risks. Optimistic concurrency control protocols [19, 53,
86, 97, 104] are intrinsically vulnerable to aborting transac-
tions if they interleave unfavorably during validation, and
Byzantine faults can compound this vulnerability. Byzantine
actors may, for instance, intentionally return stale data, or
collude to sabotage the commit chances of correct clients’
transactions. Consider multiversioned timestamp ordering
(MVTSO) [19, 86], which allows writes to become visible
to other operations before a transaction commits. While this
choice helps reduce abort rates for contended workloads, it
can cause transactions to stall on uncommitted operations.
Basil’s ethos of independent operability is key to mitigating

this issue. The system implements a variant of MVTSO that
prevents Byzantine participants from unilaterally aborting
correct clients’ transactions and includes a novel fallback
mechanism that empowers clients to finish pending trans-
actions issued by others, while preventing Byzantine actors
from dictating their outcome. Importantly, this fallback is a
per-transaction recovery mechanism: thus, unlike traditional
BFT view-changes, which completely suspend the normal
processing of all operations, it can take place without blocking
non-conflicting transactions.
Our results are promising: on TPC-C [94], Retwis [3] and

Smallbank [35]), Basil’s throughput is 3.5-5 times higher than
layering distributed commit over totally ordered shards run-
ning BFT-SMaRt, a state-of-art PBFT implementation [22]
and HotStuff [101] (Facebook’s Libra’s core consensus proto-
col). BFT’s cryptographic demands, however, still cause Basil
to be 2-4 times slower than TAPIR, a recent non-Byzantine
distributed database [104]. In the presence of Byzantine
clients, Basil’s performance degrades gracefully: with 30%
Byzantine clients, Basil’s throughput drops by less than 25%
in the worst-case. In summary, this paper makes the following
three contributions:
• It introduces the complementary correctness notions of

Byzantine isolation and Byzantine independence.
• It presents novel concurrency control, agreement, and fall-

back protocols that balance the desire for high-throughput
in the common case with resilience to Byzantine attacks.
• It describes Basil, a BFT database that guarantees Byz-

serializability while preserving Byzantine independence.
Basil supports interactive transactions, is leaderless, and
achieves linear communication complexity.

2 Model and Definitions
We introduce the complementary and system-independent

notions of Byzantine isolation and Byzantine independence,
which, jointly formalize the degree to which a Byzantine actor
can affect transaction progress and safety.

2.1 System Model
Basil inherits the standard assumptions of prior BFT work.

It assumes that the number of faulty replicas within a shard
does not exceed a threshold f and that an arbitrary num-
ber of clients may be faulty. But for this bound, we make
no further assumption about the pattern of failures across
shards. We assume that applications authenticate clients and
can subsequently audit their actions. Faulty clients and repli-
cas may deviate arbitrarily from their specification; a strong
but static adversary can coordinate their actions but cannot
break standard cryptographic primitives. Similar to other BFT
systems [23, 24, 28, 39, 50], Basil makes no synchrony as-
sumption for safety but for liveness [38] depends on partial
synchrony [37]. Basil also inherits some of the limitations of
prior BFT systems: it cannot prevent authenticated Byzantine
clients, who otherwise follow the protocol, from overwriting
correct clients’ data. It additionally assumes that, collectively,
Byzantine and correct clients have similar processing capa-
bilities, and thus Byzantine clients cannot cause a denial of
service attack by flooding the system.

2.2 System Properties
To express Basil’s correctness guarantees, we introduce the

notion of Byzantine isolation. Database isolation (serializabil-
ity, snapshot isolation, etc.) traditionally regulates the interac-
tion between concurrently executing transactions; Byzantine
isolation ensures that, even though Byzantine actors may
choose to violate ACID semantics, the state observed by cor-
rect clients will always be ACID compliant.
We start from the standard notions of transactions and histo-

ries introduced by Bernstein et al. [20]. We summarize them
here and defer a more formal treatment to the Appendix B.
A transaction T contains a sequence of read and write opera-
tions terminating with a commit or an abort. A history H is
a partial order of operations representing the interleaving of
concurrently executing transactions, such that all conflicting
operations are ordered with respect to one another. Addition-
ally, let C be the set of all clients in the system; Crct ⊆ 𝐶 be
the set of all correct clients; and 𝐵𝑦𝑧 ⊆ 𝐶 be the set of all
Byzantine clients. A projection 𝐻 |C is the subset of the partial
order of operations in 𝐻 that were issued by the set of clients
C . We further adopt standard definitions of database isolation:
a history satisfies an isolation level I if the set of operation
interleavings in H is allowed by I. Drawing from the notions
of BFT linearizability [65] and view serializability [20], we
then define the following properties:
Legitimate History History 𝐻 is legitimate if it was gener-

ated by correct participants, i.e., 𝐻 = 𝐻Crct .

2

Correct-View Equivalent History 𝐻 is correct-view equiv-
alent to a history 𝐻 ′ if all operation results, commit decisions,
and final database values in 𝐻 |𝐶𝑟𝑐𝑡 match those in 𝐻 ′.
Byz-I Given an isolation level 𝐼 , a history 𝐻 is Byz-I if there

exists a legitimate history 𝐻 ′ such that 𝐻 is correct-view
equivalent to 𝐻 ′ and 𝐻 ′ satisfies 𝐼 .
This definition is not Basil-specific, but captures what it

means, for any Byzantine-tolerant database, to enforce the
guarantees offered by a given isolation level 𝐼 . Informally,
it requires that the states observed by correct clients be ex-
plainable by a history that satisfies I and involves only correct
participants. It intentionally makes no assumptions on the
states that Byzantine clients choose to observe.
Basil specifically guarantees Byz-serializability: correct

clients will observe a sequence of states that is consistent
with a sequential execution of concurrent transactions. This is
a strong safety guarantee, but it does not enforce application
progress; a Byz-serializable system could still allow Byzan-
tine actors to systematically abort all transactions. We thus
define the notion of Byzantine independence, a general system
property that bounds the influence of Byzantine participants
on the outcomes of correct clients’ operations.
Byzantine Independence For every operation 𝑜 issued by

a correct client 𝑐, no group of participants containing solely
Byzantine actors can unilaterally dictate the result of 𝑜.
In a context where clients issue transaction operations,

Byzantine independence implies, for instance, that Byzan-
tine actors cannot collude to single-handedly abort a correct
client’s transaction. This is a challenging property to enforce.
It cannot be attained in a leader-based system: if the leader
and a client are both Byzantine, they can collude to prevent
a transaction from committing by strategically generating
conflicting requests. In contrast, Basil can enforce Byzan-
tine independence as long as Byzantine actors do not have
full control of the network, a requirement that is in any case
a precondition for any BFT protocol that relies on partial
synchrony [39, 72]. We prove in Appendix B that:

Theorem 1. Basil maintains Byz-serializability.

Theorem 2. Basil maintains Byzantine independence in the
absence of a strong network adversary.

Basil is designed for settings where Byzantine attacks can
occur, but are infrequent, consistent with the prevalent as-
sumption for permissioned blockchains today; namely, that
to maintain standing in a permissioned system, clients are
unlikely to engage in actively detectable Byzantine behav-
ior [44] and, if they cannot break safety undetected, it is
preferable for them to be live [67]. We design Basil to be
particularly efficient during gracious executions [28] (i.e.,
synchronous and fault-free) while bounding overheads when
misbehavior does occur. In particular, we design aggressive
concurrency control mechanisms that maximize common case

performance by optimistically exposing uncommitted oper-
ations, but ensure that these protocols preserve independent
operability, so that Basil can guarantee continued progress
under Byzantine attacks [28]. We confirm this experimentally
in Section 6.

3 System Overview

Execution Phase

2 Phase Commit

Begin Read Write
Try

Commit

Prepare Phase Writeback Phase

Stage 1 Stage 2
(Optional)

Writeback
(Async)

Transaction Processing

Client Latency Start Client Latency End

Return to Client

Figure 1. Basil Transaction Processing Overview

Basil is a transactional key-value store designed to be scal-
able and leaderless. Our architecture reflects this ethos.
Transaction Processing Transaction processing is driven

by clients (avoiding costly all-to-all communications amongst
replicas) and consists of three phases (Figure 1). First, in
an Execution phase, clients execute individual transactional
operations. As is standard in optimistic databases, reads are
submitted to remote replicas while writes are buffered locally.
Basil supports interactive and cross-shard transactions: clients
can issue new operations based on the results of past opera-
tions to any shard in the system. In a second Prepare phase,
individual shards are asked to vote on whether committing
the transaction would violate serializability. For performance,
Basil allows individual replicas within a shard to process such
requests out of order. Finally, the client aggregates each shard
vote to determine the outcome of the transaction, notifies the
application of the final decision, and forwards the decision
to the participating replicas in an asynchronous Writeback
phase. Importantly, the decision of whether each transaction
commits or aborts must be preserved across both benign and
Byzantine failures. We describe the protocol in Section 4.
Transaction Recovery A Byzantine actor could begin exe-

cuting a transaction, run the prepare phase, but intentionally
never reveal its decision. Such behavior could prevent other
transactions from making progress. Basil thus implements a
fallback recovery mechanism (§5) that can terminate stalled
transactions while preserving Byz-serializability. This proto-
col, in the common case, allows clients to terminate stalled
transactions in a single additional round-trip.
Replication Basil uses 𝑛 = 5𝑓 + 1 replicas for each shard.

This choice allows Basil to (i) preserve Byzantine indepen-
dence (ii) commit transactions in a single round-trip in the
absence of contention, and (iii) reduces the message complex-
ity of transaction recovery by a factor of 𝑛, all features which
would not be possible with a lower replication factor.

3

4 Transaction Processing
Basil takes as its starting point MVTSO [19], an aggres-

sive multiversioned concurrency control, and modifies it in
three ways: (i) in the spirit of independent operability, it has
clients drive the protocol execution; (ii) it merges concurrency
control with replication; and finally (iii) it hardens the proto-
col against Byzantine attacks to guarantee Byz-serializability
while preserving Byzantine independence.
Traditional MVTSO works as follows. A transaction 𝑇 is

assigned (usually by a transaction manager or scheduler) a
unique timestamp ts𝑇 that determines its serialization order.
As MVTSO is multiversioned, writes in 𝑇 create new ver-
sions of the objects they touch, tagged with ts𝑇 . Reads instead
return the version of the read object with the largest times-
tamp smaller than ts𝑇 and update that object’s read timestamp
(RTS) to ts𝑇 . Read timestamps are key to preserving serial-
izability: to guarantee that no read will miss a write from a
transaction that precedes it in the serialization order, MVTSO
aborts all writes to an object from transactions whose times-
tamp is lower than the object’s RTS.
MVTSO is an optimistic protocol, and, as such, much of its

performance depends on whether its optimistic assumptions
are met. For example, it uses timestamps to assign transac-
tions a serialization order a-priori, under the assumption that
those timestamps will not be manipulated; further, it allows
read operations to become dependent on values written by
ongoing transactions under the expectation that they will com-
mit. This sunny disposition can make MVTSO particularly
susceptible to Byzantine attacks. Byzantine clients could use
artificially high timestamps to make lower-timestamped trans-
actions less likely to commit; or they could simply start trans-
actions that write to large numbers of keys and never commit
them: any transaction dependent on those writes would be
blocked too. At the same time, by blocking on dependencies
(rather than summarily aborting, as OCC would do) MVTSO
leaves open the possibility that blocked transactions may be
rescued and brought to commit. In the remainder of this sec-
tion, we describe how Basil, capitalizing on this possibility,
modifies MVTSO to harden it against Byzantine faults.

4.1 Execution Phase
Begin() A client begins a transaction 𝑇 by optimistically

choosing a timestamp 𝑡𝑠 B (Time, ClientID) that defines a
total serialization order across all clients. Allowing clients to
choose their own timestamps removes the need for a central-
ized scheduler, but makes it possible for Byzantine clients to
create transactions with arbitrarily high timestamps: objects
read by those transactions would cause conflicting transac-
tions with lower timestamps to abort. To defend against this
attack, replicas accept transaction operations if and only if
their timestamp is no greater than 𝑅T𝑖𝑚𝑒+𝛿 , where 𝑅T𝑖𝑚𝑒 is the
replica’s own local clock. Neither Basil’s safety nor its live-
ness depend on the specific value of 𝛿 , though a well-chosen

value will improve the system’s throughput. In practice we
choose 𝛿 based on the skew of NTP’s clock.
Write(key,value) Writes from uncommitted transactions

raise a dilemma. Making them readable empowers Byzantine
clients to stall all transactions that come to depend on them.
Waiting to disclose them only when the transaction commits,
however, increases the likelihood that concurrent transactions
will abort. We adopt a middle ground: we buffer writes lo-
cally until the transaction has finished execution, and make
them visible during the protocol’s Prepare phase (we call such
writes prepared). This approach allows us to preserve much
of the performance benefits of early write disclosure while
enforcing independent operability (§4.2).
Read(key) In traditional MVTSO, a read for transaction 𝑇

returns the version of the read object with the highest times-
tamp smaller than ts𝑇 . When replicas process requests inde-
pendently, this guarantee no longer holds, as the write with
the largest timestamp smaller than ts𝑇 may have been made
visible at replica 𝑅, but not yet at 𝑅′: reading from the latter
may result in a stale value. Hence, to ensure serializability,
transactions in Basil go through a concurrency control check
at each replica as part of their Prepare phase (§ 4.2). Further
care is required, as Byzantine replicas could intentionally
return stale (or imaginary!) values that would cause trans-
actions to abort, violating Byzantine independence. These
considerations lead us to the following read logic:

1: C→ R: Client C sends read request to replicas.

C broadcasts an authenticated read request 𝑚 =

⟨READ, 𝑘𝑒𝑦, t𝑠𝑇 ⟩ to ≥ 2𝑓 + 1 replicas for shard 𝑆 .

2: R→ C: Replica processes client read and replies.

Each replica 𝑅 verifies that the request’s timestamp is smaller
than 𝑅T𝑖𝑚𝑒 + 𝛿 . If not, it ignores the request; otherwise, it up-
dates key’s RTS to ts𝑇 . Basil may evict clients with a history of
reading but never committing the transaction. Then 𝑅 returns
a signed message ⟨Committed, Prepared⟩𝜎𝑅

that contains, re-
spectively, the latest committed and prepared versions of key
at 𝑅 with timestamps smaller than ts𝑇 . Committed ≡ (ver-
sion, C-CERT) includes a commit certificate C-CERT (§ 4.3)
proving that version has committed, while Prepared ≡ (ver-
sion, 𝑖𝑑𝑇 ′ , Dep𝑇 ′) includes a digest identifier for𝑇 ′ (§ 4.2) and
the write-read dependencies Dep𝑇 ′ of the transaction 𝑇 ′ that
created version. 𝑇 ′ cannot commit unless all the transactions
in Dep𝑇 ′ commit first.

3: C← R: Client receives read replies.

A client waits for at least 𝑓 + 1 replies (to ensure that at least
one comes from a correct replica) and chooses the highest-
timestamped version that is valid. For committed versions, the
criterion for validity is straightforward: a committed version
must contain a valid C-CERT. For prepared versions instead,
we require that the same version be returned by at least 𝑓 + 1
replicas. Both the validity and timestamp requirement are

4

important for Byzantine independence. Message validity pro-
tects the client’s transaction from becoming dependent on a
version fabricated by Byzantine replicas; and, by choosing the
valid reply with the highest-timestamp, the client is certain
to never read a version staler than what it could have read by
accessing a single correct replica.
The client then adds the selected (key, version) to ReadSet𝑇 .

If version was prepared but not committed, it adds a new write-
read dependency to the dependency set Dep𝑇 . Specifically,
the client adds to Dep𝑇 a tuple (version, id𝑇 ′), which will be
used during 𝑇 ’s Prepare phase to validate that 𝑇 is claiming a
legitimate dependency.
After 𝑇 has completed execution, the application tells the

client whether it should abort 𝑇 or instead try to commit it:
Abort() The client asks replicas to remove its read times-

tamps from all keys in ReadSet𝑇 . No actions need to be taken
for writes, as Basil buffers writes during execution.
Commit() The client initiates the Prepare phase, discussed

next, which performs the first phase of the multi-shard two-
phase commit (2PC) protocol that Basil uses to commit 𝑇 .

Algorithm 1 MVTSO-Check(𝑇)

1: if 𝑡𝑠𝑇 > 𝑙𝑜𝑐𝑎𝑙𝐶𝑙𝑜𝑐𝑘 + 𝛿 then
2: return Vote-Abort
3: if ∃ invalid 𝑑 ∈ 𝐷𝑒𝑝𝑇 then
4: return Vote-Abort
5: for ∀𝑘𝑒𝑦, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ∈ ReadSet𝑇 do
6: if 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 > 𝑡𝑠𝑇 then return MisbehaviorProof
7: if ∃𝑇 ′ ∈ 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ∪ 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 : 𝑘𝑒𝑦 ∈ WriteSet𝑇 ′

∧ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 < 𝑡𝑠𝑇 ′ < 𝑡𝑠𝑇 then
8: return Vote-Abort, optional: (𝑇 ′, 𝑇 ′.C-CERT)
9: for ∀𝑘𝑒𝑦 ∈ WriteSet𝑇 do

10: if ∃𝑇 ′ ∈ 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ∪ 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 :
ReadSet𝑇 ′[key].version < 𝑡𝑠𝑇 < 𝑡𝑠𝑇 ′ then

11: return Vote-Abort, optional: (𝑇 ′, 𝑇 ′.C-CERT)
12: if ∃𝑅𝑇𝑆 ∈ 𝑘𝑒𝑦.𝑅𝑇𝑆 : 𝑅𝑇𝑆 > 𝑡𝑠𝑇 then
13: return Vote-Abort
14: 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑.𝑎𝑑𝑑 (𝑇)
15: wait for all pending dependencies
16: if ∃ 𝑑 ∈ 𝐷𝑒𝑝𝑇 : 𝑑.𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐴𝑏𝑜𝑟𝑡 then
17: 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑇)
18: return Vote-Abort
19: return Vote-Commit

4.2 Prepare Phase
To preserve independent operability, Basil delegates the re-

sponsibility for coordinating the 2PC protocol to clients. For
a given transaction 𝑇 , the protocols begins with a Prepare
phase, which consists of two stages (Figure 1).
In stage ST1, the client collects commit or abort votes from

each shard that 𝑇 accesses. Determining the vote of a shard
in turn requires collecting votes from all the shard’s replicas.

To avoid the overhead of coordinating replicas within a shard,
Basil lets each replica make its determination independently
by running a local concurrency control check. The flip side is
that, since transactions may reach replicas in different orders,
even correct replicas within the same shard may not necessar-
ily reach the same conclusion about𝑇 . Client𝐶 tallies replica
votes to learn the vote of each shard and based on how shards
voted, determines whether 𝑇 will commit or abort.
Stage ST2 ensures that 𝐶’s decision is made durable (or

logged) across failures. 𝐶 logs the evidence on one shard
only. In the absence of contention or failures, Basil’s fast
path guarantees that 𝑇 ’s decision is already durable and this
explicit logging step can be omitted.
Stage 1: Aggregating votes

1: C→ R: Client sends an authenticated ST1 request to
all replicas in 𝑆 .

The message format is ST1 B ⟨PREPARE,𝑇 ⟩, where 𝑇

consists of the transaction’s metadata B ts𝑇 , ReadSet𝑇 ,
WriteSet𝑇 , Dep𝑇 , and of its identifier id𝑇 . To ensure Byzantine
clients neither spoof the list of involved shards nor equivocate
𝑇 ’s contents, id𝑇 is a cryptographic hash of 𝑇 ’s metadata.

2: R← C: Replica receives a ST1 request and executes
the concurrency control check.

Traditional, non-replicated, MVTSO does not require any
validation as transactions are guaranteed to observe all the
writes that precede them in the serialization order (any "late"
write is detected by read timestamps and the corresponding
transaction is aborted). This is no longer true in a replicated
system: reads could have failed to observe a write performed
on a different replica. Basil thus runs an additional concur-
rency control check to determine whether a transaction 𝑇

should commit and preserve serializability (Algorithm 1). It
consists of seven steps:
1 𝑇 ’s timestamp is within the 𝑅’s time bound (Lines 1-2).
2 𝑇 ’s dependencies are valid: 𝑅 has either prepared or com-

mitted every transaction identified by 𝑇 ’s dependencies, and
the versions that caused the dependencies were produced by
said transactions (Lines 3-4).
3 Reads in 𝑇 did not miss any writes. Specifically, the al-

gorithm (Lines 7-8) checks that there does not exist a write
from a committed or prepared transaction 𝑇 ′ that (i) is more
recent than the version that 𝑇 ’s read and (ii) has a timestamp
smaller than ts𝑇 (implying that 𝑇 should have observed it).
4 Writes in 𝑇 do not cause reads in other prepared or com-

mitted transactions to miss a write (Lines 9-11).
5 Writes in 𝑇 do not cause reads in ongoing transactions to

miss a write: 𝑇 is aborted if there exists an RTS greater than
ts𝑇 (Lines 12-13).
6 𝑇 is prepared and made visible to future reads (Line 14).
7 All transactions responsible for 𝑇 ’s dependencies have

5

reached a decision. 𝑅 votes to commit 𝑇 only if all of its de-
pendencies commit; otherwise it votes to abort (Lines 15-19).

3: R→ C: Replica returns its vote in a ST1R message.

After executing the concurrency control check, each replica
returns to 𝐶 a Stage1 Reply ST1R B ⟨𝑇, 𝑣𝑜𝑡𝑒⟩𝜎𝑅 . A correct
replica executes this check at most once per transaction and
stores its vote to answer future duplicate requests (§5).

4: C← R: The client receives replicas’ votes.

𝐶 waits for ST1R messages from the replicas of each shard 𝑆

touched by𝑇 . Based on these replies,𝐶 determines (i) whether
𝑆 voted to commit or abort; and (ii) whether the received ST1R
messages constitute a vote certificate (V-CERT) that proves 𝑆’s
vote to be durable. A shard’s vote is durable if its original out-
come can be independently retrieved and verified at any time
by any correct client, independent of Byzantine failures or
attempts at equivocation. If so, we dub shard 𝑆 fast; otherwise,
we call it slow. Votes from a slow shard do not amount to a
vote certificate, but simply to a vote tally: to be certified, they
need to be made explicitly durable during stage ST2 of the
Prepare Phase. Specifically,𝐶 proceeds as follows, depending
on the set of ST1R messages it receives:
(1) Commit Slow Path (3𝑓 + 1 ≤ Commit votes < 5𝑓 + 1):
The client has received a 𝐶𝑜𝑚𝑚𝑖𝑡𝑄𝑢𝑜𝑟𝑢𝑚(𝐶𝑄) B 𝑛+𝑓 +1

2 =

3𝑓 +1 of votes in favor of committing𝑇 . Intuitively, the size of
CQ guarantees that two conflicting transactions cannot both
commit, since the correct replica that is guaranteed to exist in
the overlap of their CommitQuorums will enforce isolation.
However,𝐶 receiving a CQ of Commit votes is not enough to
guarantee that another client𝐶 ′, verifying 𝑆’s vote, would see
the same number of Commit votes: after all, 𝑓 of the replicas
in the CQ could be Byzantine, and provide a different vote if
later queried by 𝐶 ′. 𝐶 thus adds 𝑆 to the set of slow shards,
and records the votes it received in the following vote tally:
⟨i𝑑𝑇 , 𝑆,𝐶𝑜𝑚𝑚𝑖𝑡, {ST1R}⟩. Note that, though a vote tally has
the same structure of a V-CERT, the information it contains is
not sufficient to guarantee that 𝑆’s vote is durable.
(2) Abort Slow Path (𝑓 +1 ≤ Abort votes < 3𝑓 +1): A collec-
tion of 𝑓 + 1 Abort votes constitutes the minimum AbortQuo-
rum (AQ), i.e., the minimal evidence sufficient for the client
to count 𝑆’s vote as Abort in the absence of a conflicting C-
CERT. Requiring an AbortQuorum of at least 𝑓 + 1 preserves
Byzantine independence: Byzantine replicas alone cannot
cause a transaction to abort as a correct replica must have
found 𝑇 to be conflicting with a prepared transaction. The
client records the votes collected from 𝑆 in the following vote
tally: (i𝑑𝑇 , 𝑆, 𝐴𝑏𝑜𝑟𝑡, {ST1R} and adds 𝑆 to the slow set for 𝑇 .
(3) Commit Fast Path (5𝑓 + 1 Commit votes): No replica
reports a conflict. Furthermore, a unanimous vote ensures that,
since correct replicas never change their vote, if some client𝐶 ′

were to step in for𝐶, it would be guaranteed to observe at least
a CQ of 3𝑓 + 1 Commit votes. 𝐶 records the votes collected

from 𝑆 in the following V-CERT: ⟨i𝑑𝑇 , 𝑆,𝐶𝑜𝑚𝑚𝑖𝑡, {ST1R}⟩
and dubs 𝑆 fast.
(4) Abort Fast Path (3𝑓 +1 ≤ Abort votes):𝑇 conflicts with
a prepared, but potentially not yet committed transaction. 𝑆’s
Abort vote is already durable: since a shard votes to commit
only when at least 3𝑓 + 1 of its replicas are in favor of it, once
𝐶 observes 3𝑓 + 1 replica votes for Abort from 𝑆 , it is certain
that 𝑆 will never be able to produce 3𝑓 +1 Commit votes, since
that would require a correct replica to change its ST1R vote
or equivocate.𝐶 then creates V-CERT ⟨i𝑑𝑇 , 𝑆, 𝐴𝑏𝑜𝑟𝑡, {ST1R}⟩,
where {ST1R} is the set of matching ST1R replies, and adds
𝑆 to the set of fast shards.
(5) Abort Fast Path (One Abort with a C-CERT for a
conflicting transaction 𝑇 ′): 𝐶 validates the integrity of
the C-CERT and creates the following V-CERT for 𝑆:
⟨i𝑑𝑇 , 𝑆, 𝐴𝑏𝑜𝑟𝑡, i𝑑𝑇 ′, C-CERT⟩. It indicates that 𝑆 voted to abort
𝑇 because 𝑇 conflicts with 𝑇 ′, which, as C-CERT proves, is
a committed transaction. Since C-CERT is durable, 𝐶 knows
that the conflict can never be overlooked and that 𝑆’s vote
cannot change; thus, it adds 𝑆 to the set of fast shards.
After all shards have cast their vote, 𝐶 decides whether to

commit (if all shards voted to commit) or abort (otherwise).
Either way, it must make durable the evidence on which its
decision is based. As we discussed above, the votes of fast
shards already are; if there are no slow shards, then, 𝐶 can
move directly to the Writeback Phase (§4.3): this is Basil’s
fast path, which allows 𝐶 to return a decision for 𝑇 after a
single message round trip. If some shards are in the slow
set, however, 𝐶 needs to take an additional step to make its
tentative 2PC decision durable in a second phase (ST2).
Discussion When 2PC is layered above shards that already
order transactions internally using state machine replication,
then within every shard every correct replica has logged the
vote of every other correct replica. Basil’s design avoids this
indiscriminate cost: if all shards are fast, then their votes
are already durable without requiring replicas to run any
coordination protocol; and if some shards are slow, as we
discuss below, only the replicas of a single shard need to
durably log the decision.
Stage 2: Making the decision durable

5: C→ R: The client attempts to make its tentative 2PC
decision durable.

𝐶 makes its decision durable by storing an (authenticated)
message ST2 B ⟨𝑖𝑑𝑇 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, {SHARDVOTES}, 𝑣𝑖𝑒𝑤 = 0⟩
on one of the shards that voted in Stage 1 of the Prepare
phase; we henceforth refer to this shard, chosen deterministi-
cally depending on 𝑇 ’s id, as 𝑆l𝑜𝑔. The set {SHARDVOTES}
includes the vote tallies of all shards; the value of view indi-
cates whether this ST2 message was issued by the client that
initated 𝑇 (view= 0) or it is part of a fallback protocol. We
discuss view’s role in detail in §5.

6

6: R→ C: Replicas in 𝑆𝑙𝑜𝑔 receive the ST2 message and
return ST2R responses.

Each replica validates that 𝐶’s 2PC decision is justi-
fied by the corresponding vote tallies; if so, the replica
logs the decision and acknowledges its success. Specif-
ically, it replies to 𝐶 with a message of the form
ST2R:⟨i𝑑𝑇 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⟩𝜎𝑅 . We once
again defer discussion of what a view is to §5.

7: C ← R: The client receives a sufficient number of
matching replies to confirm a decision was logged.

𝐶 waits for 𝑛 − 𝑓 ST2R messages whose decision and
𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 match, and creates a single shard certificate
V-CERT𝑆l𝑜𝑔 : ⟨i𝑑𝑇 , 𝑆, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, {ST2R}⟩ for the logging shard.

4.3 Writeback Phase
𝐶 notifies its local application of whether 𝑇 will commit

or abort, and asynchronously broadcasts to all shards that
participated in the Prepare phase a corresponding decision
certificate (C-CERT for commit; A-CERT for abort).

1: C→ R: The client asynchronously forwards decision
certificates to all participating shards.

𝐶 sends to all involved shards a decision certificate (C-
CERT:⟨i𝑑𝑇 , C𝑜𝑚𝑚𝑖𝑡, {V-CERT𝑆 }⟩ for a Commit decision, A-
CERT: ⟨i𝑑𝑇 , A𝑏𝑜𝑟𝑡, {V-CERT𝑆 }⟩ otherwise). We distinguish
between the fast, and slow path: On the fast path, C-CERT con-
sists of the full set of Commit V-CERT votes from all involved
shards, while an A-CERT need only contain one V-CERT vote
for Abort. On the slow path, both C-CERT and A-CERT simply
include V-CERT𝑆l𝑜𝑔 .

2: R ← C: Replica validates C-CERT or A-CERT and
updates store accordingly.

Replicas update all local data structures, including apply-
ing writes to the datastore on commit and notifying pending
dependencies.

4.4 Further Optimizations
To amortize the cost of signature generation and verification,

Basil batches messages. Unlike leader-based systems, Basil
has no central sequencer through which to batch requests.
Basil instead implements batching at the replica after process-
ing messages. To amortize signature generation for replies,
Basil replicas create batches of 𝑏 request replies, generate a
Merkle tree [70] for each batch, and sign the root hash. They
then send, to each client, the signed root hash, along with
its request reply and all intermediate nodes necessary to re-
construct the hash (reducing signature generation by a factor
of 𝑏 at the cost of 𝑙𝑜𝑔(𝑏) additional messages). To amortize
signature verification, Basil uses caching. When a replica
successfully verifies the root hash signature in a client mes-
sage 𝑚, it caches a map between the corresponding root hash
value and the signature. If the replica later receives a message

𝑚′ carrying the same root hash and signature as 𝑚 (indicat-
ing that 𝑚 and 𝑚′ refer to the same batch of replies), it can,
upon verifying the correctness of the root hash, immediately
declare the corresponding signature valid.

5 Transaction Recovery
For performance, Basil optimistically allows transactions to

acquire dependencies on uncommitted operations. Without
care, Byzantine clients could leverage this optimism to cause
transactions issued by correct clients to stall indefinitely. To
preserve Byzantine independence, transactions must be able
to eventually commit even if they conflict with, or acquire
dependencies on, stalled Byzantine transactions. To this ef-
fect, Basil enforces the following invariant: if a transaction
acquires a dependency on some other transaction 𝑇 , or is
aborted because of a conflict with T, then a correct partici-
pant (client or replica) has enough information to successfully
complete 𝑇 .
Specifically, Basil clients whose transactions are blocked or

aborted by a stalled transaction 𝑇 try to finish 𝑇 by triggering
a fallback protocol. To this end, Basil modifies MVTSO to
make visible the operations of transactions that have prepared
only. As 𝑇 ’s ST1 messages contain all of 𝑇 ’s planned writes,
any client or replica can use this information to take it upon
itself to finish 𝑇 . A correct client is guaranteed to be able
to retrieve the ST1 for any of its dependencies, since 𝑓 + 1
replicas (i.e., at least one correct) must have vouched for
that ST1 during 𝑇 ’s read phase. Likewise, a correct client’s
transaction only aborts if at least 𝑓 +1 replicas report a conflict.
Basil’s fallback protocol starts with clients: any client

blocked by a stalled transaction 𝑇 can try to finish it. In
the common case, it will succeed by simply re-executing the
previously described Prepare phase; success is guaranteed
as long as replicas within the shard 𝑆𝑙𝑜𝑔 that logged shard
votes in Stage 2 of 𝑇 ’s Prepare phase store the same decision
for 𝑇 . The divergent case, in which they do not, can occur
in one of two ways: (i) a Byzantine client issued 𝑇 and sent
deliberately conflicting ST2 messages to 𝑆𝑙𝑜𝑔; or (ii) multiple
correct clients tried to finish 𝑇 concurrently, and collected
Prepare phase votes that led them to reach (and try to store
at 𝑆𝑙𝑜𝑔) different decisions. Fortunately, in Basil a Byzantine
client cannot generate conflicting ST2 messages at will: its
ability to do so depends on the odds (which §6 suggests are
low) of receiving, from the replicas of at least one shard, votes
that constitute both a CQ and an AQ (i.e., 3f+1 Commit votes
and f+1 Abort votes). Whatever the cause, if a client trying to
finish𝑇 observes that replicas in 𝑆l𝑜𝑔 store different decisions,
it proceeds to elect a fallback leader, chosen deterministi-
cally among the replicas in 𝑆l𝑜𝑔. Through this process, Basil
guarantees that clients are always able to finish dependent
transactions after at most 𝑓 +1 fallback leader elections (since
one of them must elect a correct leader).

7

Vote

C
o

m
m

it
 Q

u
o

ru
m

A
b

o
rt

 -

S2S1 RPS1R Decision

n
-f

Eq
u
iv
!

St
al
l!
!

RPR InvokeFB ElectFB DecFb

maj

…

RPR

n
-f

?

?

?

?

?

?

Writeback
1 2 3 4 5 6 7

Figure 2. Fallback Scenario. A Byzantine client equivocates ST2R decisions and stalls. An interested client invokes the FB

Though Basil’s fallback protocol is reminiscent of the tradi-
tional view-change protocols used to evict faulty leaders, it
differs in three significant ways. First, it requires no leader
in the common case; further, if electing a fallback leader be-
comes necessary, communication costs can be made linear
in the number of replicas using threshold signatures [43], as
in HotStuff [101] . Second, the fallback election is local, and
affects only transactions that access the same operations as
the stalled transaction: when a fallback leader is elected for
𝑇 , the scope of its leadership is limited to finishing 𝑇 . In
contrast, a standard view-change prevents the system from
processing any operation and the leader, once elected, lords
over all consensus operations during its tenure. Finally, Basil’
fallback leaders have no say on the ordering of transactions
or on what they decide [105].
As in traditional view-change protocols, each leader operates

in a view. For independent operability, views are defined
on a per-transaction basis. Transactions start in 𝑣𝑖𝑒𝑤 = 0;
transactions in that view can be brought to a decision by any
client. A replica increases its view number for 𝑇 each time it
votes to elect a new fallback leader.
We now describe the steps of the fallback protocol triggered

by a client 𝐶 wishing to finish a transaction 𝑇 , distinguishing
between the aforementioned common and divergent cases.
Common case In the common case, the client simply re-

sends a ST1 message (renamed for clarity Recovery Prepare
(RP)) in this context) to all the replicas in shards accessed by
𝑇 . Replicas reply with an RPR message which, depending the
progress of previous attempts (if any) at completing 𝑇 corre-
sponds to either (i) a ST1R message; (ii) a ST2R message; or
(iii) a C-CERT or A-CERT certificate. Based on these replies,
the client can fast-forward to the corresponding next step in
the Prepare or Writeback protocol. In the common phase,
stalled dependencies thus cause correct clients to experience
only a single additional round-trip .
Divergent case If, however, the client only receives non-

matching ST2R replies, more complex remedial steps are
needed. ST2R can differ (i) in their decision value and (ii) in
their view number 𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . The former, as we saw, is the
result of either explicit Byzantine equivocation or of multiple

clients attempting to concurrently terminate𝑇 . The latter indi-
cates the existence of prior fallback invocations: a Byzantine
fallback leader, for instance, could have intentionally left the
fallback process hanging. In both scenarios, the client elects
a fallback leader. The steps outlined below ensure that, once
a correct fallback leader is elected, replicas can be reconciled
without introducing live-lock.

(1: C → R): Upon receiving non-matching ST2R re-
sponses, a client starts the fallback process.

The client sends 𝐼𝑛𝑣𝑜𝑘𝑒𝐹𝐵 B ⟨i𝑑𝑇 , 𝑣𝑖𝑒𝑤𝑠⟩, where views is
the set of signed current views associated with the RPR re-
sponses received by the client.

(2: R → RFL): Replicas receive fallback invocation
𝐼𝑛𝑣𝑜𝑘𝑒𝐹𝐵 and start election of a fallback leader RFL
for the current view.

𝑅 takes two steps. First, it determines the most up-to-date
view 𝑣 ′’ held by correct replicas in 𝑆𝑙𝑜𝑔 and adopts it
as its current view 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . Second, 𝑅 sends message
ELECTFB: ⟨i𝑑𝑇 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⟩𝜎𝑅 to the replica with
id 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + (i𝑑𝑇 mod 𝑛) to inform it that 𝑅 now considers
it to be 𝑇 ’s fallback leader.
𝑅 determines its current view as follows: If a view 𝑣 appears

at least 3𝑓 +1 times in the current views received in InvokeFB,
then 𝑅 updates its 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to𝑚𝑎𝑥 (𝑣 + 1, 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡); oth-
erwise, it sets its 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the largest view 𝑣 greater than
its own that appears at least 𝑓 +1 times in current views. When
counting how frequently a view is present in the received cur-
rent views, 𝑅 uses vote subsumption: the presence of view 𝑣

counts as a vote also for all 𝑣 ′ ≤ 𝑣 .
The thresholds Basil adopts to update a replica’s current

view are chosen to ensure that all 4𝑓 + 1 correct replicas in
𝑆𝑙𝑜𝑔 quickly catch up to the same view, and thus agree on the
identity of the fallback leader. Specifically, by requiring 3𝑓 +1
matching views to advance to a new view 𝑣 , Basil ensures that
at least 2𝑓 + 1 correct replicas are at most one view behind
𝑣 at any given time. In turn, this threshold guarantees that
(i) a correct client will receive at least 𝑓 + 1 matching views
for 𝑣 ′ ≥ 𝑣 − 1 in response to its RP message and (ii) will
include them in its InvokeFB. These 𝑓 + 1 matching views are
sufficient for all 4𝑓 + 1 correct replicas to catch-up to view 𝑣 ′,

8

then (if necessary) jointly move to view 𝑣 , and send election
messages to the fallback leader of 𝑣 .

(3: RFL→ R): Fallback leader RFL aggregates election
messages and sends decisions to replicas.

RFL considers itself elected upon receiving 4𝑓 + 1 ELECTFB
messages with matching views 𝑣𝑖𝑒𝑤𝑒𝑙𝑒𝑐𝑡 . It proposes a new de-
cision 𝑑𝑒𝑐𝑛𝑒𝑤 = majority({decision}) and broadcasts message
DECFB:⟨(i𝑑𝑇 , 𝑑𝑒𝑐𝑛𝑒𝑤, 𝑣𝑖𝑒𝑤𝑒𝑙𝑒𝑐𝑡)𝜎𝑅FL , {ELECTFB}⟩, which in-
cludes the ELECTFB messages as proof of the sender’s lead-
ership. As in prior work [43, 101], Basil could use threshold
signatures to aggregate ELECTFB messages into a single sig-
nature, keeping the logic linear in both message size and
cryptographic costs.

(4: R→ C): Replicas sends a ST2R message to inter-
ested clients.

Replicas receive a DECFB message and adopt the mes-
sage’s decision (and 𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛) as their own if their cur-
rent view is smaller or equal to 𝑣𝑖𝑒𝑤𝑒𝑙𝑒𝑐𝑡 . If so, repli-
cas update their current view to 𝑣𝑖𝑒𝑤𝑒𝑙𝑒𝑐𝑡 and forward
the decision to all interested clients in a ST2R message:
⟨i𝑑𝑇 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⟩𝜎𝑅 .

(5: C: A client creates a V-CERT or restarts fallback.

If the client receives 𝑛 − 𝑓 ST2R with matching decision and
decision views, she creates a V-CERT𝑆l𝑜𝑔 and proceeds to the
Commit phase. Otherwise, it restarts the fallback using the
newly received 𝑣𝑖𝑒𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 messages to propose a new view.

We illustrate the full divergent case algorithm in Figure 2,
which for simplicity considers a transaction 𝑇 involving a sin-
gle shard. To begin the process of committing𝑇 , a Byzantine
client sends message ST1 and waits for all ST1R messages.
Since the replies it receives allow it to generate both a Commit
and Abort quorum, the client chooses to equivocate, sending
ST2 messages for both Commit and Abort. It then stalls. A
second correct client who acquired a dependency on 𝑇 at-
tempts to finish it. It sends RP messages (1) and receives
non-matching RPR messages (three Commit and two Abort
decisions, all from view 0) (2). To redress this inconsistency,
the correct client invokes a Fallback with view 0 (3b). Upon
receiving this message, replicas transition to view 1 and send
their own decision to view 1’s leader in an ELECTFB message
(4). In our example, having received a majority of Commit
decisions, the leader chooses to commit and broadcasts its
decision to all other replicas in an DECFB message (5). Fi-
nally, replicas send the transaction’s outcome to the interested
client (6), who then proceeds to the Writeback phase (7).

6 Evaluation
Our evaluation seeks to answer the following questions:
• How does Basil perform on realistic applications? (§6.1)
• Where do Basil’s overheads come from? (§6.2)

• What are the impacts of our optimizations in Basil? (§6.3)
• How does Basil perform under failures? (§6.4)
Baselines We compare against three baselines:

(i) TAPIR [104], a recent distributed database that
combines replication and cross-shard coordination for
greater performance but does not support Byzantine faults;
(ii) TxHotstuff, a distributed transaction layer built on top of
the standard C++ implementation [100] of HotStuff, a recent
consensus protocol that forms the basis of several commercial
systems [15, 17, 25, 33, 71], most notably Facebook’s
Libra Blockchain; and (iii) TXBFT-SMaRt, a distributed
transaction layer built on top of BFT-SMaRt [1, 22], a
state-of-the-art PBFT-based implementation of Byzantine
state machine replication (SMR) . HotStuff and BFT-SMaRt
support general-purpose SMR, and are not fully-fledged
transactional systems; we thus supplement their core con-
sensus logic with a coordination layer for sharding (running
2PC) and an execution layer that implements a standard
optimistic concurrency control serializability check [53] and
maintains the underlying key-value store. Additionally, we
augmented both BFT baselines to also profit from Basil’
reply batching scheme. This architecture follows the standard
approach to designing distributed databases (e.g. Google
Spanner [30], Hyperledger Fabric [92] or Callinicos [78, 79])
where concurrency control and 2PC are layered on top of

the consensus mechanism. Spanner and Hyperledger (built
on Paxos and Raft, respectively) are not Byzantine-tolerant,
while Callinicos does not support interactive transactions. 1

Experimental Setup We use CloudLab [2] m510 machines
(8-core 2.0 GHz CPU, 64 GB RAM, 10 GB NIC, 0.15ms
ping latency) and run experiments for 90 seconds (30s warm-
up/cool-down). Each system tolerates 𝑓 = 1 faults (𝑁 = 2𝑓 +1
for TAPIR, 3𝑓 + 1 for HotStuff and BFT-SMaRt).

6.1 High-level Performance
We first evaluate Basil against three popular benchmark

OLTP applications: TPC-C [94], Smallbank [35], and
the Retwis-based transactional workload used to evaluate
TAPIR [104] . TPC-C simulates the business logic of an
e-commerce framework. We configure it to run with 20 ware-
houses. As we do not support secondary indices, we create
a separate table to (i) locate a customer’s latest order in the
order status transaction and (ii) lookup customers by
last name in the order status and payment transac-
tions [32, 90]. We configure Smallbank, a simple banking
application benchmark, with one million accounts. Access is
skewed, with 1,000 accounts being accessed 90% of the time.
Users in Retwis, which emulates a simple social network, sim-
ilarly follow a moderately skewed Zipfian distribution (0.75).
Figures 3a and 3b reports results for the three applications.

1We discussed extensively our setup and implementation with the authors of
TAPIR and HotStuff. We corresponded with the authors of Callinicos who
were unfortunately unable to locate a fully functional version of their system.

9

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Tapir Basil TxHotstu� TxBFTsmart

P
e
a
k
 T

h
ro

u
g
h
p
u
t

(t
x
/s

)

TPCC
Smallbank

Retwis

19801

4862

924 1294

61445

23536

6401

8746

43286

24549

5159
6253

(a) Throughput in tx/s

 0

 10

 20

 30

 40

 50

 60

 70

 80

Tapir Basil TxHotstu� TxBFTsmart

M
e
a
n
 L

a
te

n
c
y
 (

m
s
)

a
t

P
e
a
k
 T

h
ro

u
g
h
p
u
t

TPCC
Smallbank

Retwis

7.3

30.7

73.1

59.4

2.3

11.7

42.6

18.7

2

10

48.9

23.3

(b) Latency in ms

Figure 3. Application High-level Performance

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

RW-U RW-Z

P
e
a
k
 T

h
ro

u
g
h
p
u
t

(t
x
/s

)

Basil
Basil - NoProofs

38241

4777

143880

21978

(a) Impact of signatures

 5

 10

 15

 20

 25

 30

 35

 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000

M
e
a
n
 L

a
te

n
c
y
 (

m
s
)

Throughput (tx/s)

one read
f+1 reads

2f+1 reads

(b) Impact of read quorums

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Basil Basil-NoProofs

P
e
a
k
 T

h
ro

u
g
h
p
u
t

(t
x
/s

)

Scale Factor 1
Scale Factor 2
Scale Factor 3

(c) Impact of shard count

Figure 4. BFT Overheads

TPC-C Basil’s TPC-C throughput is 5.2x higher than Tx-
Hotstuff’s and 3.8x higher than TxBFT-SMaRt’s – but
4.1x lower than TAPIR’s. All these systems are contention-
bottlenecked on the read-write conflict between payment
and new-order. Basil has 4.2x higher latency than TAPIR:
this increases the conflict window of contending transactions,
and thus the probability of aborts. Basil’s higher latency stems
from (i) its replicas need for signing and verifying signatures;
(ii) its larger quorum sizes for both read and prepare phases;
and (iii) its need to validate read/prepare replies at clients.
Throughput in Basil is higher than in TxHotStuff and TxBFT-

SMaRt. Basil’s superior performance is directly linked to its
lower latency (2.4x lower than TxHotstuff, 1.2x lower than
TxBFT-SMaRt). By merging 2PC with agreement, Basil al-
lows transactions to decide in a single round-trip 96% of the
time (through its fast path to commit or abort. TxHotstuff
and TxBFT-SMaRt, which layer a 2PC protocol over a black-
box consensus instance, must instead process and order two
requests for each decision (one to Prepare, and one to Com-
mit/Abort), each requiring multiple roundtrips. In particular,
Hotstuff and BFT-SMaRT incur respectively nine and five
message delays before returning the Prepare result to clients.
In a contention-heavy application like TPC-C, this higher
latency translates directly into lower throughput, since it sig-
nificantly increases the chances that transactions will conflict.
Indeed, for these applications layering transaction processing
on top of state machine replication actually turns a classic
performance booster for state machine replication—running
agreement on large batches—into a liability, as large batches

increase latency and encourage clients to operate in lock-step,
increasing contention artificially. In practice, we find that
TxHotstuff and TxBFT-SMaRt perform best with compara-
tively small batches (four transactions for TxHotStuff, 16 for
TxBFT-SMaRT).
Smallbank and Retwis Basil is only 1.8/2.6x slower than
TAPIR for these workloads, which are resource bottlenecked
for both systems. The lower contention in Smallbank and
Retwis (due to the relatively small transactions) allows Basil
to use a batch size of 16 for signature generation (up from
4 in TPC-C), thus lowering the cryptographic overhead
that Basil pays over TAPIR. With this larger batch, both
TAPIR and Basil are bottlenecked on message serializa-
tion/deserialization and networking overheads. Because of
their higher latency, however, TxHotStuff and TxBFT-SMaRt
continue to be contention bottlenecked: Basil’s commit rates
for Smallbank and Retwis are respectively 93% and 98%, but
for TxHotStuff they drop to 75% and 85% and for TxBFT-
SMaRt to 85% for both benchmarks. Even on their best con-
figuration (batch size of 16 for TxHotStuff and 64 for TxBFT-
SMaRt), Basil outperforms them, respectively, by 3.7x and
2.7x on Smallbank, and by 4.8x and 3.9x on Retwis.

6.2 BFT Overheads
Besides additional replicas (from 2𝑓 + 1 to 5𝑓 + 1), tolerance

to Byzantine faults requires both additional cryptography to
preserve Byz-serializability and more expensive reads to pre-
serve Byzantine independence. To evaluate these overheads,

10

we configure the YCSB-T microbenchmark suite [29] to im-
plement a simple workload of identical transactions over ten
million keys. We distinguish between a uniform workload
(RW-U) and a Zipfian workload (RW-Z) with coefficient 0.9.
We first quantify the cost of cryptography. To do so, we

measure the relative throughput of Basil with and without
signatures. Transactions consist of two reads and two writes.
Figure 4a describes our results. We find that Basil without
cryptography performs 3.7x better than Basil with cryptog-
raphy on the uniform workload, and up to 4.6x better on the
skewed workload. Without cryptography, Basil can use cores
that would have been dedicated for signing/ signature verifica-
tion for regular operation processing. This effect is more pro-
nounced on the skewed workload as reducing latency (through
increased operation parallelism, lack of batching, and absence
of signing/verification latency) reduces contention, and thus
further increases throughput.
In all sharded BFT systems, the number of signatures nec-

essary per transaction grows linearly with the number of
shards: each replica must verify that other shards also voted
to commit/abort a transaction before finalizing the transac-
tion decision locally. This requires a signature per shard. In
Figure 4c, we quantify this cost by increasing the number
of shards from one to three on the CPU-bottlenecked RW-U
workload (three reads/writes). Basil without cryptography in-
creases by a factor of 1.9 (on average, transactions with three
read operations will touch two distinct shards). In contrast,
Basil’s throughput increases by only 1.3x.
To guarantee Byzantine independence, individual clients

must receive responses from 𝑓 + 1 replicas instead of a single
replica. Reading from 2𝑓 + 1 replicas (thus sending to 3f+1)
increases the chances of a transaction acquiring a valid depen-
dency over reading outdated data. We measure the relative
cost of these different read quorum sizes in Figure 4b. We
use a simple read-only workload of 24 operations per trans-
action, and a batch size of 16. Unsurprisingly, increasing
the number of read operations increases the load on each
replica due to the (i) additional signature generations that
must be performed, and (ii) the additional messages that must
be processed. Throughput decreases by 20% when reading
from 𝑓 + 1 replicas (instead of one), and a further 16% when
reading from 2𝑓 + 1.

6.3 Basil Optimizations
We measure how Basil’s performance benefits from batching

and from its fast path option. We report results for YCBS-
T with and without fast path (NoFP) on a workload of two
reads and two writes (Figure 5a). For the uniform workload,
enabling fast paths leads to a 19% performance increase; the
ST2R messages that fast paths save contain a signature that
must be verified, but require little additional processing. For
a contended Zipfian workload, however, the additional phase
incurred by the slow path increases contention (as it increases
latency): adding the fast path increases throughput by 49%.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

RW-U RW-Z

P
e
a
k
 T

h
ro

u
g
h
p
u
t

(t
x
/s

)

Basil - NoFP
Basil

32027

2454

38241

4777

(a) Throughput with/without fast path

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

RW-U RW-Z

P
e
a
k
 T

h
ro

u
g
h
p
u
t

(t
x
/s

)

b=1
b=2
b=4
b=8

b=16
b=32

(b) Throughput vs. batch size

Figure 5. Basil Optimizations

Note that Byzantine replicas, by refusing to vote or voting
abort, can effectively disable the fast path option; Basil can
prevent this by removing consistently uncooperative replicas.
Next, we quantify the effects of batching. We report the

throughput for both workloads (transactions consist of two
reads and two writes) while changing the batch size from 1 to
32 ((Figure 5b). As expected, on the resource-bottlenecked
uniform workload, throughput increases linearly with in-
creased batch size until peaking at 16 (a 4x throughput in-
crease) – at which point additional hashing costs of the batch-
ing Merkle tree nullify any further reduction in signature costs.
On the Zipfian workload instead, throughput only increases
by up 1.4x, peaking at a small batch size of 4, and degrading
afterwards as higher wait times and batch-induced client lock
step increase contention (thus reducing throughput).

6.4 Basil Under Failures
Basil can experience Byzantine failures from both replicas

and clients. We have already quantified the effect of Byzantine
replicas preventing fast paths (Figure 5a) and, by being unre-
sponsive, forcing (2𝑓 +1)-sized read quorums (Figure 4b). We
then focus here on quantifying the effects of clients failing.
Byzantine clients can stall after sending ST1 messages (stall-

early), or before sending vote certificates V-CERT𝑆 (stall-late).
To equivocate, they must instead receive votes that allow them
to generate, and send to replicas, conflicting V-CERT certifi-
cates. We evaluate two scenarios: a worst-case, in which we
artificially allow clients to always equivocate (equiv-forced),
and a realistic setup where clients only equivocate when the
set of messages received allows them to (equiv-real). For both
scenarios, we report the throughput of correct clients (mea-
sured in 𝑡𝑥/𝑠/𝑐𝑙𝑖𝑒𝑛𝑡𝑐𝑜𝑟𝑟𝑒𝑐𝑡); we keep a constant number of
clients, a fraction of which exhibits Byzantine behavior (ev-
ery 𝑛𝑡ℎ transaction - we refer to those transactions as faulty).
Figures 6a and 6b report our results.
For the RW-U workload, the additional CPU cost of fallback

invocations on the CPU-bottlenecked servers causes correct
clients’ throughput to decrease slowly and linearly. Clients in-
voke fallbacks only rarely, as there is no contention. Moreover,
stalled transactions can be finished in a single round-trip (a
pair of RP, RPR) messages thanks to the fallback’s common
case and fast path. The small throughput drop over stall-late
is an artefact of Byzantine clients directly starting a new trans-
action before finishing the old one, increasing the throughput

11

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

T
p
u
t

/
C

o
rr

e
c
t

C
li
e
n
ts

 (
tx

/s
)

Failures (% of total tx)

stall-early
stall-late

equiv-forced
equiv-real

(a) Tput vs. Failures (RW-U)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45

T
p
u
t

/
C

o
rr

e
c
t

C
li
e
n
ts

 (
tx

/s
)

Failures (% of total tx)

stall-early
stall-late

equiv-forced
equiv-real

(b) Tput vs. Failures (RW-Z)

Figure 6. Basil performance under Client Failures

of malicious clients over correct ones. The cost of forced
equivocation is higher as it requires three rounds of message
processing (fallback invocation, election, and decision adop-
tion). In reality, equiv-real sees no throughput drop, as the
lack of contention makes equivocation impossible: Byzantine
clients cannot build the necessary conflicting V-CERT’s.
The RW-Z workload is instead contention-bottlenecked:

higher latency implies more conflicts, and thus lower through-
put. The impact of stall-late stalls remains small, as all af-
fected clients still recover the transaction on the common
case fast path (incurring only one extra roundtrip). The perfor-
mance degradation is slightly higher in stall-early, as stalled-
early transactions do not finish the transactions on which
they depend before stalling. Instead, affected correct clients
must themselves invoke the fallback for stalled dependent
transactions, which inceases latency. In practice, dependency
chains remain small: because of the Zipfian nature of the
workload, correct clients quickly notice stalled transactions
and aggressively finish them. We note that stalled transactions
do not themselves increase contention: Basil allows the stalled
writes of prepared but uncommitted transactions to become
visible to other clients as dependencies. A stalled transaction
thus causes dependency chains to grow, but does not increase
the conflict window. The throughput drop that results from
forcing equivocation failures is, in contrast, significant: equiv-
ocation requires three round-trip to resolve and may lead to
transactions aborting and to cascading aborts in dependency
chains. In practice, Byzantine clients in equiv-real are once
again rarely successful in obtaining the conflicting ST1R mes-
sages necessary to equivocate, even in a contended workload
(0.048% of the time for 40 % faulty transactions) as 99% of
transactions commit or abort on the fast path.

7 Related Work
State machine replication (SMR) [88] maintains a total order

of requests across replicas, both in the crash failure model
[26, 47, 54–57, 59, 62, 64, 76, 77, 95]) and in the Byzantine
setting [16, 22–24, 27, 28, 36, 42, 43, 50, 51, 58, 63, 67, 69,
84, 99, 101], where they have been used as a main building
block of Blockchain systems [8, 13, 14, 17, 23, 41, 49, 92]. To
maintain a total order abstraction, existing systems process all
operations sequentially (for both agreement and execution),
thus limiting scalability for commutative workloads. They

are, in addition, primarily leader-based which introduces addi-
tional scalability bottlenecks [73, 89, 104] as well as fairness
concerns. Rotating leaders [23, 28, 101] reduce fairness con-
cerns, and multiple-leader based systems [16, 60, 73, 89] in-
crease throughput. Recent work [46, 48, 105] discusses how
to improve fairness in BFT leader-based systems with sup-
plementary ordering layers and censorship resilience. Basil
sidesteps these concerns by adopting a leaderless approach
and addresses the effects of Byzantine actors beyond ordering
through the stronger notion of Byzantine Independence.
Fine-grained ordering Existing replicated systems in the

crash-failure model leverage operation semantics to allow
commutative operations to execute concurrently [52, 56, 61,
73–75, 81, 91, 98, 104]. This work is much rarer in the BFT
context, with Bilbos [18] and Zzyzyx [45] being the only
BFT protocol that seek to leverage commutativity. However,
unlike Basil, Bilbos is limited to a static transaction model
and introduces blocking between all potentially concurrent
transactions; while Zzyzyx resorts to a SMR substrate proto-
col under contention. Other existing Quorum-based systems
naturally allow for non-conflicting operations to execute con-
currently, but do not provide transactions [10, 31, 65, 68].
Sharding Some Blockchains rely on sharding to parallelize

independent transactions, but continue to rely on a total-order
primitive within shards [13, 49, 102]. As others in the crash-
failure model have highlighted [75, 103, 104], this approach
incurs redundant coordination and fails to fully leverage the
available parallelism within a workload.
DAGs Other permissionless Blockchains use directed

acyclic graphs rather than chains [83, 85, 87], but require
dependencies and conflicts to be known prior to execution.
Byzantine Databases Basil argues that BFT systems and

Blockchains are in fact simply databases and draws on prior
work in BFT databases. HRDB [96] offers interactive trans-
actions for a replicated database, but relies on a trusted coor-
dination layer. Byzantium [40] designs a middleware system
that utilizes PBFT as atomic broadcast (AB) and provides
Snapshot Isolation using a primary backup validation scheme.
Augustus [79] leverages sharding for scalability in the mini-
transaction model [12] and relies on AB to implement an
optimistic locking based execution model. Callinicos [78]
extends Augustus to support armored-transactions in a multi-
round AB protocol that re-orders conflicts for robustness
against contention. BFT-DUR [82] builds interactive transac-
tions atop AB, but does not allow for sharding. Basil instead
supports general transactions and sharding without a leader or
the redundant coordination introduced by atomic broadcast.
Byzantine Clients Basil, being client-driven, must defend

against Byzantine clients. It draws from prior work targeted at
reducing the severity and frequency of client misbehavior [40,
65, 66, 78, 79, 82] and extends Liskov and Rodrigues’ [65]
definition of Byz-Linearizability to formalize the first safety
and liveness properties for transactional BFT systems.

12

8 Conclusion
Basil shows BFT systems can offer the abstraction of a

totally-ordered ledger while supporting highly concurrent
transaction processing and ensuring Byz-serializability. Basil
clients make progress independently, while Byzantine Inde-
pendence limits the influence of Byzantine participants.

References
[1] Byzantine fault-tolerant (bft) state machine replication (smart) v1.2.

https://github.com/bft-smart/library.
[2] CloudLab. https://www.cloudlab.us.
[3] Retwis benchmark. http://retwis.redis.io/.
[4] Apple supplier list. https://www.apple.com/supplier-responsibility

/pdf/Apple-Supplier-List.pdf, 2019.
[5] State Farm and USAA Work Together to Test a Blockchain Solution.

https://newsroom.statefarm.com/blockchain-solution-test-for-
subrogation/, 2019.

[6] Calibra: A simple global payment system and financial infrastructure
that empowers billions of people. https://libra.org/en-US/, 2020.

[7] IBM food trust. A new era for the world’s food supply. https://www.
ibm.com/blockchain/solutions/food-trust, 2020.

[8] JP Morgan Quorum. https://www.goquorum.com/, 2020.
[9] Transform cross-border payments with IBM blockchain world wire.

https://www.ibm.com/blockchain/solutions/world-wire, 2020.
[10] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.

Wylie. Fault-scalable Byzantine fault-tolerant services. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP),
pages 59–74, 2005.

[11] A. Adya. Weak Consistency: A Generalized Theory and Optimistic
Implementations for Distributed Transactions. PhD thesis, 1999.

[12] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis.
Sinfonia: A new paradigm for building scalable distributed systems. In
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), pages 159–174, 2007.

[13] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis.
Chainspace: A sharded smart contracts platform. arXiv:1708.03778,
2017.

[14] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.
Hyperledger Fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the ACM European Conference on
Computer Systems (EuroSys), pages 1–15, 2018.

[15] J. Ansel and M. Olszewski. Bftree - scaling hotstuff to millions of
validators. https://storage.googleapis.com/celo_whitepapers/B
FTree%20-%20Scaling%20HotStuff%20to%20Millions%20of
%20Validators.pdf, 2019.

[16] B. Arun, S. Peluso, and B. Ravindran. ezbft: Decentralizing Byzantine
fault-tolerant state machine replication. In Proceedings of the IEEE
International Conference on Distributed Computing Systems (ICDCS),
pages 565–577, 2019.

[17] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino. State machine
replication in the libra blockchain. The Libra Association Technical
Report, 2019.

[18] R. Bazzi and M. Herlihy. Clairvoyant state machine replications.
In International Symposium on Stabilizing, Safety, and Security of
Distributed Systems, pages 254–268. Springer, 2018.

[19] P. A. Bernstein and N. Goodman. Multiversion concurrency control-
theory and algorithms. ACM Transactions on Database Systems
(TODS), 8(4):465–483, 1983.

[20] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control
and recovery in database systems, volume 370. Addison-wesley New

York, 1987.
[21] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal aspects of

serializability in database concurrency control. IEEE Transactions on
Software Engineering, 5(3):203–216, May 1979.

[22] A. Bessani, J. Sousa, and E. E. Alchieri. State machine replication
for the masses with BFT-SMaRt. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pages 355–
362, 2014.

[23] E. Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains. PhD thesis, 2016.

[24] M. Castro, B. Liskov, et al. Practical Byzantine fault tolerance. In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 173–186, 1999.

[25] T.-H. H. Chan, R. Pass, and E. Shi. Pala: A simple partially synchro-
nous blockchain. IACR Cryptol. ePrint Arch., 2018:981, 2018.

[26] T. Chandra, R. Griesmer, and J. Redstone. Paxos made live – an
engineering perspective. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), pages 398–407, 2007.

[27] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche. Upright cluster services. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), pages 277–290,
2009.

[28] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making
Byzantine fault tolerant systems tolerate Byzantine faults. In Proceed-
ings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), page 153–168, 2009.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of
the ACM Symposium on Cloud Computing (SOCC), pages 143–154,
2010.

[30] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI ’12, pages 251–264.

[31] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ
replication: A hybrid quorum protocol for Byzantine fault tolerance.
In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 177–190, 2006.

[32] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and L. Alvisi.
Obladi: Oblivious serializable transactions in the cloud. In 13th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 727–743, Carlsbad, CA, Oct. 2018. USENIX
Association.

[33] Cypherium.io. Cypherium-whitepaper-2-0. https://www.cypherium.
io/whitepaper/cypherium-whitepaper-2-0/.

[34] Deloitte. Using blockchain & internet-of-things in supply chain trace-
ability. https://www2.deloitte.com/content/dam/Deloitte/lu/Docu
ments/technology/lu-blockchain-internet-things-supply-chain-
traceability.pdf, 2017.

[35] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. OLTP-
Bench: An extensible testbed for benchmarking relational databases.
In Proceedings of the VLDB Endowment (PVLDB), 2013.

[36] S. Duan, S. Peisert, and K. N. Levitt. hBFT: speculative Byzantine
fault tolerance with minimum cost. IEEE Transactions on Dependable
and Secure Computing, 12(1):58–70, 2014.

[37] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM), 35(2):288–323,
1988.

[38] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM),
32(2):374–382, 1985.

13

https://github.com/bft-smart/library
https://www.cloudlab.us
http://retwis.redis.io/
https://www.apple.com/supplier-responsibility/pdf/Apple-Supplier-List.pdf
https://www.apple.com/supplier-responsibility/pdf/Apple-Supplier-List.pdf
https://newsroom.statefarm.com/blockchain-solution-test-for-subrogation/
https://newsroom.statefarm.com/blockchain-solution-test-for-subrogation/
https://libra.org/en-US/
https://www.ibm.com/blockchain/solutions/food-trust
https://www.ibm.com/blockchain/solutions/food-trust
https://www.goquorum.com/
https://www.ibm.com/blockchain/solutions/world-wire
https://storage.googleapis.com/celo_whitepapers/BFTree%20-%20Scaling%20HotStuff%20to%20Millions%20of%20Validators.pdf
https://storage.googleapis.com/celo_whitepapers/BFTree%20-%20Scaling%20HotStuff%20to%20Millions%20of%20Validators.pdf
https://storage.googleapis.com/celo_whitepapers/BFTree%20-%20Scaling%20HotStuff%20to%20Millions%20of%20Validators.pdf
https://www.cypherium.io/whitepaper/cypherium-whitepaper-2-0/
https://www.cypherium.io/whitepaper/cypherium-whitepaper-2-0/
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/technology/lu-blockchain-internet-things-supply-chain-traceability.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/technology/lu-blockchain-internet-things-supply-chain-traceability.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/technology/lu-blockchain-internet-things-supply-chain-traceability.pdf

[39] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374–382, 1985.

[40] R. Garcia, R. Rodrigues, and N. Preguiça. Efficient middleware for
Byzantine fault tolerant database replication. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys), pages
107–122, 2011.

[41] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling Byzantine agreements for cryptocurrencies. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP), pages
51–68, 2017.

[42] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next 700
BFT protocols. In Proceedings of the ACM European Conference on
Computer Systems (EuroSys), pages 363–376, 2010.

[43] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. K. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu.
SBFT: A scalable decentralized trust infrastructure for blockchains.
arXiv:1804.01626, 2018.

[44] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Accountable
virtual machines. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), page 119–134,
2010.

[45] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter.
Zzyzx: Scalable fault tolerance through Byzantine locking. In Pro-
ceedings of the International Conference on Dependable Systems and
Networks (DSN), pages 363–372, 2010.

[46] M. Herlihy and M. Moir. Enhancing accountability and trust in dis-
tributed ledgers. arXiv:1606.07490, 2016.

[47] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-performance
broadcast for primary-backup systems. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks (DSN),
pages 245–256, 2011.

[48] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels. Order-fairness for
Byzantine consensus. In Proceedings of the International Cryptology
Conference (CRYPTO), 2020.

[49] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), pages 583–598, 2018.

[50] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
speculative Byzantine fault tolerance. ACM SIGOPS Operating Sys-
tems Review, 41(6):45–58, 2007.

[51] R. Kotla and M. Dahlin. High throughput Byzantine fault tolerance. In
Proceedings of the International Conference on Dependable Systems
and Networks (DSN), pages 575–584, 2004.

[52] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC:
Multi-data center consistency. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), pages 113–126, 2013.

[53] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems (TODS), 6(2):213–
226, 1981.

[54] L. Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems (TOCS), 16(2):133–169, 1998.

[55] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed
Computing Column), 32(4):51–58, 2001.

[56] L. Lamport. Fast Paxos. Technical Report Microsoft Research Tech-
nical Report MSR-TR-2005-112, 2005.

[57] L. Lamport. Generalized consensus and paxos. Technical Report
Microsoft Research Technical Report MSR-TR-2005-33, 2005.

[58] L. Lamport. Byzantizing paxos by refinement. In Proceedings of the
International Symposium on Distributed Computing (DISC), pages
211–224, 2011.

[59] B. Lampson. The ABCD’s of paxos. In Proceedings of the ACM Sym-
posium on Principles of Distributed Computing (PODC), volume 1,

page 13, 2001.
[60] B. Li, W. Xu, M. Z. Abid, T. Distler, and R. Kapitza. Sarek: Optimistic

parallel ordering in Byzantine fault tolerance. In Proceedings of the
European Dependable Computing Conference (EDCC), pages 77–88,
2016.

[61] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues.
Making geo-replicated systems fast as possible, consistent when neces-
sary. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 265–278, 2012.

[62] H. C. Li, A. Clement, A. S. Aiyer, and L. Alvisi. The paxos register.
In Proceedings of the IEEE International Symposium on Reliable
Distributed Systems (SRDS), pages 114–126, 2007.

[63] B. Liskov. From viewstamped replication to Byzantine fault tolerance.
In Replication, pages 121–149. Springer, 2010.

[64] B. Liskov and J. Cowling. Viewstamped replication revisited. Techni-
cal Report MIT-CSAIL-TR-2012-021, MIT, July 2012.

[65] B. Liskov and R. Rodrigues. Tolerating Byzantine faulty clients in a
quorum system. In Proceedings of the IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 34–34, 2006.

[66] A. F. Luiz, L. C. Lung, and M. Correia. Byzantine fault-tolerant trans-
action processing for replicated databases. In Proceedings of the IEEE
International Symposium on Network Computing and Applications
(NCA), pages 83–90, 2011.

[67] D. Malkhi, K. Nayak, and L. Ren. Flexible Byzantine fault tolerance.
In Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS), pages 1041–1053, 2019.

[68] D. Malkhi and M. Reiter. Byzantine quorum systems. In Distributed
computing, volume 11, pages 203–213. Springer, 1998.

[69] J.-P. Martin and L. Alvisi. Fast byzantine consensus. IEEE Transac-
tions on Dependable and Secure Computing, 3(3):202–215, 2006.

[70] R. C. Merkle. A digital signature based on a conventional encryption
function. In Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques (EUROCRYPT),
pages 369–378. Springer, 1987.

[71] meter.io. Supercharge ethereum for the financial internet. https:
//www.meter.io/.

[72] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey
badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 31–42,
2016.

[73] I. Moraru, D. G. Andersen, and M. Kaminsky. There is more consensus
in egalitarian parliaments. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 358–372, 2013.

[74] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more concur-
rency from distributed transactions. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 479–494, 2014.

[75] S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating concurrency
control and consensus for commits under conflicts. In Proceedings of
the USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 517–532, 2016.

[76] B. M. Oki and B. H. Liskov. Viewstamped replication: A new pri-
mary copy method to support highly-available distributed systems.
In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 8–17, 1988.

[77] D. Ongaro and J. Ousterhout. In search of an understandable con-
sensus algorithm. In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 305–319, 2014.

[78] R. Padilha, E. Fynn, R. Soulé, and F. Pedone. Callinicos: Robust
transactional storage for distributed data structures. In Proceedings
of the USENIX Annual Technical Conference (ATC), pages 223–235,
2016.

[79] R. Padilha and F. Pedone. Augustus: Scalable and robust storage for
cloud applications. In Proceedings of the ACM European Conference

14

https://www.meter.io/
https://www.meter.io/

on Computer Systems (EuroSys), pages 99–112, 2013.
[80] C. H. Papadimitriou. The Serializability of Concurrent Database

Updates. Journal of the ACM (JACM), 26(4):631–653, 1979.
[81] S. J. Park and J. Ousterhout. Exploiting commutativity for practical

fast replication. In Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), pages 47–64,
2019.

[82] F. Pedone and N. Schiper. Byzantine fault-tolerant deferred update
replication. Journal of the Brazilian Computer Society, 18(1):3–18,
2012.

[83] H. Pervez, M. Muneeb, M. U. Irfan, and I. U. Haq. A comparative
analysis of dag-based blockchain architectures. In Proceedings of
the IEEE International Conference on Open Source Systems and
Technologies (ICOSST), pages 27–34, 2018.

[84] M. Pires, S. Ravi, and R. Rodrigues. Generalized paxos made Byzan-
tine (and less complex). Algorithms, 11(9):141, 2018.

[85] S. Popov and Q. Lu. IOTA: feeless and free. IEEE Blockchain
Technical Briefs, 2019.

[86] D. P. Reed. Implementing atomic actions on decentralized data. ACM
Transactions on Computer Systems (TOCS), 1(1):3–23, 1983.

[87] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer. Scal-
able and probabilistic leaderless BFT consensus through metastability.
arXiv:1906.08936, 2019.

[88] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299–
319, 1990.

[89] C. Stathakopoulou, T. David, and M. Vukolić. Mir-BFT: High-
throughput BFT for blockchains. arXiv:1906.05552, 2019.

[90] C. Su, N. Crooks, C. Ding, L. Alvisi, and C. Xie. Bringing modular
concurrency control to the next level. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD
’17, pages 283–297, 2017.

[91] P. Sutra and M. Shapiro. Fast genuine generalized consensus. In Pro-
ceedings of the IEEE International Symposium on Reliable Distributed
Systems (SRDS), pages 255–264, 2011.

[92] The Linux Foundation. An introduction to Hyperledger. https:
//www.hyperledger.org/wp-content/uploads/2018/07/HL_White
paper_IntroductiontoHyperledger.pdf, 2018.

[93] The Linux Foundation. Change healthcare using Hyperledger Fabric
to improve claims lifecycle throughput and transparency, 2019.

[94] Transaction Processing Performance Council. The TPC-C home page.
http://www.tpc.org/tpcc.

[95] R. Van Renesse, N. Schiper, and F. B. Schneider. Vive la différence:
Paxos vs. viewstamped replication vs. zab. IEEE Transactions on
Dependable and Secure Computing, 12(4):472–484, 2014.

[96] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating
Byzantine faults in transaction processing systems using commit bar-
rier scheduling. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 59–72, 2007.

[97] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang. High-
performance ACID via modular concurrency control. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP),
2015.

[98] X. Yan, L. Yang, H. Zhang, X. C. Lin, B. Wong, K. Salem, and
T. Brecht. Carousel: Low-latency transaction processing for globally-
distributed data. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 231–243, 2018.

[99] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin.
Separating agreement from execution for Byzantine fault tolerant
services. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 253–267, 2003.

[100] M. Yin. libhotstuff. https://github.com/hot-stuff/libhotstuff.

[101] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. Hot-
Stuff: BFT consensus with linearity and responsiveness. In Proceed-
ings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 347–356, 2019.

[102] M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: Scaling
blockchain via full. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), pages 931–948, 2018.

[103] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R.
Ports. When is operation ordering required in replicated transactional
storage? IEEE Data Engineering Bulletin, 39(1):27–38, 2016.

[104] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports. Building consistent transactions with inconsistent replication. In
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), pages 263–278, 2015.

[105] Y. Zhang, S. Setty, Q. Chen, L. Zhou, and L. Alvisi. Byzantine ordered
consensus without Byzantine oligarchy. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 633–649, 2020.

15

https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://github.com/hot-stuff/libhotstuff

A Correctness Sketch
We sketch the main theorems and lemmas necessary to show

safety and liveness for Basil. Full proofs can be found in
Appendix B We proceed in two steps: we first prove safety
without the fallback protocol. We then extend our correctness
argument to handle fallback cases.
First, we prove that each replica generates a locally serializ-

able schedule.
Lemma 1. On each correct replica, the set of transactions

for which the MVTSO-Check returns Commit forms an acyclic
serialization graph.
We then show that decisions for transactions are unique.
Lemma 2. There cannot exist both an C-CERT and a A-CERT

for a given transaction.
Next, we define a notion of conflicting transactions: a trans-

action 𝑇𝑖 conflicts with 𝑇𝑗 if adding 𝑇𝑗 to a history containing
𝑇𝑖 would cause the execution to violate serializability.
Lemma 3. If𝑇𝑖 has issued a C-CERT and𝑇𝑗 conflicts with𝑇𝑖 ,

then 𝑇𝑗 cannot issue a C-CERT.
Given these three lemmas, we prove that Basil satisfies Byz-

Serializability.
Theorem 1. Basil maintains Byzantine-serializability.
Finally, we show that Basil preserves Byzantine indepen-

dence under non-adversarial network assumptions.
Theorem 2. Basil maintains Byzantine independence in the

absence of network adversary.
We now explicitly consider the fallback protocol. We first

show that certified decisions remain durable.
Lemma 4. Fallback leaders cannot propose decisions that

contradict existing slow path C-CERT/ A-CERT.
Additionally, we show that any reconciled decision could

have been proposed by a client.
Lemma 5. Any decision proposed by a fallback leader was

proposed by a client.
Given these two Lemmas we conclude:
Theorem 3. Invoking the fallback mechanism preserves The-

orem 1 and Theorem 2.
Next we show that, given partial synchrony [37] and the

existence of a global stabilization time (GST), Basil’s fallback
mechanism guarantees progress for correct clients.
Theorem 4 A correct client can reconcile correct replicas’

views in at most two round-trips and one time-out.
We use this result to prove that:
Lemma 6. After GST, and in the presence of correct inter-

ested clients, a correct fallback leader is eventually elected.
Given this lemma, we show that Basil allows correct clients

to complete their dependencies during synchronous periods.
Theorem 5. A correct client eventually succeeds in acquir-

ing either a C-CERT or A-CERT for any transaction of interest.

B Proofs
B.1 Byzantine-Serializability
Lemma 1. On each correct replica, the set of transactions
for which the MVTSO-Check returns Commit forms an acyclic
serialization graph.

Proof. We use Adya’s formalism here [11]. An execution of
Basil produces a direct serialization graph whose vertices
are committed transactions and whose edges are one of three
types:
• 𝑇𝑖

𝑤𝑤−−−→ 𝑇𝑗 if 𝑇𝑖 writes the version of object 𝑥 that precedes
𝑇𝑗 in the version order.
• 𝑇𝑖

𝑤𝑟−−→ 𝑇𝑗 if 𝑇𝑖 writes the version of object 𝑥 that 𝑇𝑗 reads.
• 𝑇𝑖

𝑟𝑤−−→ 𝑇𝑗 if 𝑇𝑖 reads the version of object 𝑥 that precedes
𝑇𝑗 ’s write.

We assume, as does Adya, that if an edge exists between 𝑇𝑖
and 𝑇𝑗 , then 𝑇𝑖 ≠ 𝑇𝑗 .

First, we prove that if there exists an edge 𝑇𝑖
𝑟𝑤/𝑤𝑟/𝑤𝑤
−−−−−−−−−→ 𝑇𝑗 ,

then 𝑖 < 𝑗 . We consider each case individually.
𝑤𝑤−−−→ case. Assume that there is a 𝑇𝑖

𝑤𝑤−−−→ 𝑇𝑗 edge. This
means that 𝑇𝑖 writes a version of object 𝑥 that precedes 𝑇𝑗
in the version order. MVTSO’s version order for each object
is equivalent to the timestamp order of the transactions that
write to the object. Note that the order in which versions are
added to the list may not match the timestamp order, but the
versions are added to the appropriate indices in the list such
that the timestamps of all preceding versions are smaller and
the timestamps of all subsequent versions are larger than the
new version’s timestamp. This implies that 𝑖 < 𝑗 .
𝑤𝑟−−→ case. Assume that there is a 𝑇𝑖

𝑤𝑟−−→ 𝑇𝑗 edge. This means
that 𝑇𝑗 reads a version of object 𝑥 written by 𝑇𝑖 . MVTSO’s
algorithm returns, for a read in 𝑇𝑗 , the latest version of an
object whose version timestamp is lower than 𝑗 . This implies
that 𝑖 < 𝑗 .
𝑟𝑤−−→ case. This case is the most complex. We prove it by

contradiction. Assume that there is a 𝑇𝑖
𝑟𝑤−−→ 𝑇𝑗 edge such that

this edge is the first edge where 𝑖 ≥ 𝑗 . 𝑇𝑖
𝑟𝑤−−→ 𝑇𝑗 means that

𝑇𝑖 reads the version of object 𝑥 that precedes 𝑇𝑗 ’s write. Let
that version be 𝑥𝑘 . By the assumption that 𝑇𝑖 ≠ 𝑇𝑗 , 𝑖 > 𝑗 . By
the definition of the direct serialization graph, 𝑇𝑘

𝑤𝑟−−→ 𝑇𝑖 and
𝑇𝑘

𝑤𝑤−−−→ 𝑇𝑗 . The previous cases imply that 𝑘 < 𝑖 and 𝑘 < 𝑗 .
Consider a replica that ran the MVTSO-Check for both 𝑇𝑖

and 𝑇𝑗 . There are two subcases: either the check for 𝑇𝑖 was
executed before the check for 𝑇𝑗 or vice versa.
1. 𝑇𝑖 before 𝑇𝑗 . 𝑇𝑖 must have committed because it exists in

the DSG. This implies that𝑇𝑖 was in the Prepared set when
the check was executed for 𝑇𝑗 (Line 14 of Algorithm 1.
When the check for 𝑇𝑗 reached Line 10 of Algorithm 1 for
𝑇𝑗 ’s write of 𝑥 𝑗 , the condition was satisfied by 𝑇𝑖’s read
of 𝑥𝑘 because 𝑘 < 𝑗 and 𝑗 < 𝑖. Therefore, the check for

16

𝑇𝑗 returned Vote-Abort. However, this is a contradiction
because 𝑇𝑗 committed.

2. 𝑇𝑗 before 𝑇𝑖 . 𝑇𝑗 must have committed because it exists
in the DSG. This implies that 𝑇𝑗 was in the Prepared set
when the check was executed for 𝑇𝑖 . When the check for
𝑇𝑖 reached Line 7 of Algorithm 1 for 𝑇𝑖’s read of 𝑥𝑘 , the
condition was satisfied by 𝑇𝑗 ’s write of 𝑥 𝑗 because 𝑘 < 𝑗

and 𝑗 < 𝑖. Therefore, the check for 𝑇𝑖 returned Vote-Abort.
However, this is a contradiction because 𝑇𝑖 is committed.

In all cases, the preliminary assumption leads to a contradic-
tion. This implies that 𝑖 < 𝑗 .

Next, we use the fact that if there exists an edge𝑇𝑖
𝑟𝑤/𝑤𝑟/𝑤𝑤
−−−−−−−−−→

𝑇𝑗 , then 𝑖 < 𝑗 to prove that the set of transactions for which
MVTSO-Check returns Commit is serializable.

Acyclicity. The set of transactions is serializable if the DSG
has no cycles. Assume for a contradiction that there exists a
cycle consisting of 𝑛 transactions𝑇ts1 , ...,𝑇ts𝑛 . By the previous
fact, this implies that ts1 < ... < ts𝑛 < ts1. However, transac-
tion timestamps are totally ordered. This is a contradiction.
Thus, the DSG has no cycles.

□

Lemma 2. There cannot exist both an C-CERT and a A-CERT
for a given transaction.

Proof. There are two ways that the client can form a
C-CERT/A-CERT: through the single phase fast-path, and
through the two-phase slow path. We consider both in turn.
Recall, that on the fast path a C-CERT contains a list of ST1R
as evidence for each shard, while an A-CERT contains a list
of ST1R for a single shard (that voted to abort). On the slow
path instead, both a C-CERT and an A-CERT contain only a
list of ST2R only for the logging shard 𝑆𝑙𝑜𝑔. The intuition for
this difference is that on the fast path the two-phase commit
decision is yet to be validated, while on the slow path, the
two-phase commit decision was already taken and logged in
an effort to reduce redundant logging.
In the following, we show that for all possible combinations

of certificates, no C-CERT and A-CERT can co-exist.
Commit Fast Path, Abort Fast Path Assume that a client

generates both a C-CERT and an A-CERT for 𝑇 and that both
went fast path. A fast C-CERT requires 5𝑓 +1 replicas (commit
fast path quorum) to vote commit 𝑇 on every shard, while a
fast A-CERT requires either 1 vote (abort fast path quorum,
case (1)) if a C-CERT is present to prove the conflict, or 3𝑓 + 1
votes (abort fast path quorum, case(2)) on a single shard
otherwise. We distinguish abort fast path quorum cases 1
and 2: (i): If a C-CERT exist for a conflicting transaction,
then by definition of a C-CERT, at least 3𝑓 + 1 (commit slow
path quorum) replicas of the shard in question must have
voted to commit a transaction 𝑇 ′ that conflicts with 𝑇 . Since
correct replicas never change their vote, by Lemma 1, at
least 2𝑓 + 1 correct replicas must vote to abort 𝑇 . Yet, this

scenario would require that on this shard, at least one correct
replica equivocated (2𝑓 + 1 correct and 3𝑓 + 1 must overlap
in at least one correct replica). We have a contradiction. (ii):
Correct replicas never change their vote, yet this scenario
would require that on one shard, at least one correct replica
equivocated (5𝑓 + 1 and 3𝑓 + 1 must overlap in at least one
correct replica). We have a contradiction.
Abort Fast Path, Commit Slow Path Assume that a client

generates both a C-CERT that went slow path and an A-CERT
that went fast path for 𝑇 . A slow C-CERT requires 𝑛 − 𝑓

matching ST2R replies from the logging shard. In order for a
correct replica to send a commit ST2R message, it must have
received a vote tally of at least 3𝑓 + 1 commit votes created
on every shard. Instead, a fast A-CERT requires either 1 vote
(abort fast path quorum, case (1)) if a C-CERT is present to
prove the conflict, or 3𝑓 + 1 votes (abort fast path quorum,
case(2)) on a single shard otherwise. We distinguish abort
fast path quorum cases 1 and 2: (i): If a C-CERT exist for
a conflicting transaction, then by definition of a C-CERT, at
least 3𝑓 + 1 (commit slow path quorum) replicas of the shard
in question must have voted to commit a transaction 𝑇 ′ that
conflicts with 𝑇 . Since correct replicas never change their
vote, by Lemma 1, at least 2𝑓 + 1 correct replicas must vote
to abort 𝑇 . Yet, this scenario would require that on this shard,
at least one correct replica equivocated (2𝑓 + 1 correct and
3𝑓 + 1 must overlap in at least one correct replica). We have a
contradiction. (ii): Correct replicas never change their vote,
yet this scenario would require that on one shard, at least one
correct replica equivocated (3𝑓 + 1 and 3𝑓 + 1 must overlap
in at least one correct replica). We have a contradiction.
Commit Fast-Path, Abort Slow-Path. Assume that a client

generates a C-CERT that went fast path, and a A-CERT that
went slow path for a transaction 𝑇 . A fast C-CERT requires
5𝑓 +1 replicas (commit fast path quorum) to vote to commit𝑇
on every shard, while a slow A-CERT requires 𝑛 − 𝑓 = 4𝑓 + 1
ST2R messages with decision to abort. In order for a correct
replica to send an abort ST2R message, it must have received a
vote tally of at least 𝑓 +1 abort votes created on a single shard.
Correct replicas never change their vote, yet this scenario
would require that on one shard, at least one correct replica
equivocated (5𝑓 + 1 and 𝑓 + 1 must overlap in at least one
correct replica). We have a contradiction.
Commit Slow-Path, Abort Slow-Path. Assume that a

client generates a C-CERT and an A-CERT, both of which
went slow path. Recall that each slow path certificate requires
𝑛 − 𝑓 matching ST2R replies from the logging shard. As cor-
rect replicas never change their decision, assembling two sets
of 𝑛− 𝑓 matching ST2R replies would require correct. replicas
to equivocate. We have a contradiction.
In all cases, we show that there cannot be both a C-CERT and

A-CERT for a given transaction 𝑇 .
□

17

From Lemma 2 it follows that no two correct replicas
can ever process a different outcome (commit/abort) for a
transaction 𝑇 . Thus, given a fixed set of total transactions, all
replicas are eventually consistent.

Lemma 3. If 𝑇𝑖 has issued a C-CERT and 𝑇𝑗 conflicts with 𝑇𝑖 ,
then 𝑇𝑗 cannot issue a C-CERT.

A transaction𝑇𝑗 conflicts with𝑇𝑖 if adding𝑇𝑗 to the serializa-
tion graph would create a cycle. If𝑇𝑖 is in𝐶𝑜𝑚𝑚𝑖𝑡∪𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑
at a replica, the MVTSO concurrency control check will re-
turn abort (Lemma 1).

Proof. As 𝑇𝑖 has committed, a client has generated a C-CERT

If a client generates a C-CERT for 𝑇 , then at every involved
shard at least 3𝑓 + 1 replicas voted to commit the transaction
(the slow path requires 3f+1 votes, the fast path 5f+1), and
consequently at least 2𝑓 + 1 correct replicas.
Assume by way of contradiction that a client𝐶 has created a

C-CERT for 𝑇𝑗 . There are two ways of achieving this: either
𝐶 generates a C-CERT through the fast path or it does so
through the slow path. Note, that since 𝑇𝑖’s and 𝑇𝑗 ’ conflict,
their involved shards must intersect in one common shard
𝑆𝑐𝑜𝑚𝑚𝑜𝑛 .
Fast Path If this C-CERT was created through the fast path,

then there must exist at least 4𝑓 +1 correct replicas on 𝑆𝑐𝑜𝑚𝑚𝑜𝑛

that voted to commit 𝑇𝑗 . But, at least 2𝑓 + 1 correct replicas
have already voted to commit𝑇𝑖 , and would thus vote to abort
𝑇𝑗 . We have a contradiction. 𝐶 cannot generate a C-CERT
through the fast path.
Slow Path If this C-CERT was created through the slow

path, then there must exist at least 2𝑓 + 1 correct replicas on
𝑆𝑐𝑜𝑚𝑚𝑜𝑛 (out of 3𝑓 + 1) that voted to commit 𝑇𝑗 (ST1R). But,
at least 2𝑓 + 1 correct replicas had already voted to commit𝑇𝑖
(and thus should vote to abort 𝑇𝑗). As there are only a total of
4𝑓 +1 correct replica, this means that one correct replica voted
to commit 𝑇𝑗 despite it creating a cycle in the serialization
graph with 𝑇𝑖 (violating Lemma 1). We have a contradiction,
𝐶 cannot generate a C-CERT through the fast path.

□

Theorem 1. Basil maintains Byzantine-serializability.

Proof. Consider the set of transactions for which a C-CERT
could have been assigned. Consider a transaction𝑇 in this set.
By Lemma 2, there cannot exist an A-CERT for this transac-
tion. By Lemma 3, there cannot exist a conflicting transaction
𝑇 ′ that generated a C-CERT. Consequently, there cannot exist
a committed transaction 𝑇 ′ in the history. The history thus
generates an acyclic serialization graph. The system is thus
Byz-Serializable. □

B.2 Byzantine Independence
Theorem 2. Basil maintains Byzantine independence in the

absence of network adversary.

We show, that once a client submits a transaction for valida-
tion, the transaction’s result cannot be unilaterally decided by
any group of (colluding) Byzantine participant, be it client or
replica.

Proof. First, we observe that a Byzantine client may never
independently choose the result of a transaction. It requires
evidence (through SHARDVOTES and V-CERT) supplied by
replicas.
Second, and as a direct consequence, once a client has pre-

pared a transaction, it cannot unilaterally cause dependent
transactions to abort.
Third, both abort and commit quorums contain at least one

correct replica. Fast-path commits/aborts also necessarily con-
tain at least one correct replica. Consequently, if a transaction
commits (or aborts), at least one correct node voted to commit
(or abort). A set of Byzantine replicas cannot, on their own,
decide the outcome of a transaction.
Finally, a set of Byzantine replicas cannot force a client to

read an 1) imaginary read 2) a stale read. Specifically, a client
reads committed reads only if there are associated with a valid
C-CERT. Moreover, clients read from the 𝑓 + 1th latest read
version returned. This ensures that the returned version is at
least as recent as what could have been written by an correct
node. □

We note that this is not sufficient to guarantee Byzantine
independence when an adversary controls the network. A
network adversary could systematically reorder transactions
at all replicas such that these transactions could abort for
instance.

B.3 Fallback Safety
In the absence of an elected leader (Phase 1 and 2 of the

Fallback protocol), clients are simply echoing ST1 or ST2
messages and follow the same rules as the traditional execu-
tion. Byzantine clients equivocating are further indistinguish-
able from concurrently active clients. As such, all theorems
in continue to hold.
We further note that a fallback leader is only elected when a

client detects inconsistent ST2R messages, i.e., when a trans-
action decision was logged on the slow path. Thus we only
need to consider the effects of the fallback protocol on deci-
sions that were generated through the slow path. Moreover,
slow-path C-CERT and A-CERT consist exclusively of mes-
sages sent by the logging shards (fallback replicas operate
only on the logging shard). We thus consider this shard only
in the rest of our proofs. We show that 1) if a slow path A-
CERT or C-CERT already exists, the fallback protocol never
produces a conflicting decision certificate) and that b) if no
decision certificate exists, any decision C-CERT/V-CERT cre-
ated respects a decision made by some client (i.e. the decision
respects the transaction’s original two-phase commit shard
votes).

18

For convenience, we re-state the decision reconciliation rule
used by the fallback: the fallback replica proposes a decision
dec𝑛𝑒𝑤 = maj({ELECTFB.decision}). We note that matching
views are not required here.
We start by showing:

Lemma 4. Fallback leaders cannot propose decisions that
contradict existing slow path C-CERT/ A-CERT.

Proof. First, we note that, if a correct replica sends an
ELECTFB message for view 𝑣 , it has necessarily adopted
a view 𝑣 ′ ≥ 𝑣 and thus will never accept a decision for a
smaller view (1).
For any existing slow path C-CERT/A-CERT, the associated

decision must have been adopted and logged by at least 3𝑓 +
1 correct replicas (through ST2 and ST2R messages) in a
matching decision view 𝑣 . Without loss of generality, let the
decision be Commit (the reasoning for Abort is identical) and
the corresponding decision certificate be a C-CERT. Let 𝑅𝐹𝐵
be the first fallback leader to be elected for a view 𝑣 ′ > 𝑣 .
At least 3𝑓 + 1 correct replicas must be in 𝑣 ′, since 4𝑓 + 1
ELECTFB messages are required for a leader to be elected in
view 𝑣 ′ (2).
We note first that any existing C-CERT with view 𝑣 ≤ 𝑣 ′ must

have been constructed from ST2R messages sent by correct
replicas before moving to view 𝑣 ′. This follows directly from
(1): correct replicas do not accept a decision for a smaller
view. As 4𝑓 + 1 matching replies are necessary to form the
C-CERT, it follows that at least 3𝑓 + 1 correct nodes have
responded Commit in the ST2R message (3).
Correct replicas never change their vote. By (1) we have that
3𝑓 +1 correct replicas must be in view 𝑣 ′ and by (2) that 3𝑓 +1
correct replicas voted Commit in view 𝑣 < 𝑣 ′. It follows that
at least 2𝑓 + 1 correct replicas provided a Commit decision to
the fallback leader 𝑅𝐹𝐵 in view 𝑣 ′.
Given the decision reconciliation rule, the fallback leader

is guaranteed to receive 2𝑓 + 1 Commit decisions, the only
new decision that 𝑅𝐹𝐵 in view 𝑣 ′ may propose is therefore
Commit.
By induction, this holds for all consecutive views and fall-

back leaders: if there ever existed a 3𝑓 +1 correct replicas that
logged decision 𝑑𝑒𝑐𝑣 = 𝑑 in view 𝑣 , then those same replicas
will only ever log 𝑑𝑒𝑐𝑣′ = 𝑑 for views 𝑣 ′ > 𝑣 , since a fallback
leader will always see a majority of decision 𝑑 .
Consequently Basil fulfills Lemma 4. □

Next, we show:

Lemma 5. Any decision proposed by a fallback leader was
proposed by a client.

Proof. Let 𝑅𝐹𝐵 be the first elected fallback leader that pro-
poses a decision (let its view be 𝑣).

By design, a correct replica only sends a message ELECTFB
once it has logged a decision. Thus 𝑅𝐹𝐵 is guaranteed to re-
ceive a quorum of 4𝑓 + 1 ELECTFB messages all containing
decisions. As the fallback waits for 4𝑓 + 1 messages, one de-
cision must be in the majority. By the decision reconciliation
rule, 𝑅𝐹𝐵 proposes the majority decision.
By assumption, 𝑅𝐹𝐵 is the first fallback leader to propose

a decision. Thus, all decisions included in correct replicas’
ELECTFB messages were a) made by a client, and b) are
consistent with the provided shard votes (correct replicas will
verify that ST2 messages have sufficient evidence for the
decision).
Since any majority decision comprises at least ≥ 2𝑓 + 1

ELECTFB messages, it follows that at least one was created
by a correct client, and is hence valid. Consequently, any
decision that 𝑅𝐹𝐵 can propose must have been issued by a
client.
It follows that all correct replicas will receive valid decisions.

In view 𝑣 + 1, all decisions from correct replicas forwarded to
the next fallback leader will also be valid. The same reasoning
held above regarding the decision rule applies. By induction it
follows that for all future views and respective fallback lead-
ers, any (valid) proposed decision must have been proposed
by a client.
Aside: Note, that if 𝑅𝐹𝐵 instead is Byzantine, it may collect

two ELECTFB message quorums with different majorities,
and equivocate by sending different (valid) DECFB messages
to different replicas. In this case, different correct replicas may
not adopt the same decision (thus precluding the generation
of a decision-certificate), but any decision is nonetheless valid
as it was originally proposed by some client.

□

We conclude our proof:

Theorem 3. Invoking the fallback mechanism preserves The-
orem 1 and Theorem 2.

Proof. Lemma 5 states, that a fallback leader can only pro-
pose decisions that were proposed by clients. Lemma 4 ad-
ditionally guarantees, that once slow path C-CERT/A-CERT
exist, the fallback mechanism cannot change them. It follows
that Lemma 2 still holds. Consequently, since any C-CERT/A-
CERT generated through the fallback mechanism are indis-
tinguishable from normal case operation, Theorems 1 and 2
remain valid. □

B.4 Fallback Liveness
We first show that during sufficiently long synchronous

periods, the election of a correct fallback leader succeeds.
Concretely, we say that after some unknown global synchro-
nization time (GST), an upper bound Δ hold for all message
delays.

19

We note that replicas enforce exponential time-outs on each
new view: a replica will not adopt a new view and start a new
election until the previous view leader (whether client(s) or
Fallback replica) has elapsed its time-out.
For convenience, we re-iterate the view change rules (§5,

box 4b): (i) If a view 𝑣 appears at least 3𝑓 + 1 times among
the current views received in InvokeFB (and 𝑣 is larger
than the replicas current view), then the replica adopts
a new current view 𝑣𝑛𝑒𝑤 = 𝑣 + 1. (ii) Otherwise, it sets
its current view to the largest view that appears at least
𝑓 + 1 times among current views and is larger than the
replicas current view. When counting how frequently a
view is present in current views, R uses vote subsump-
tion: the presence of view 𝑣 counts as a vote also for all 𝑣 ′ ≤ 𝑣 .

Theorem 4. A correct client can reconcile correct replicas’
views in at most two round-trips and one time-out.

Proof. A client must provide 3𝑓 + 1 matching view responses
in the InvokeFB message (rule (i)) in order for replicas to
adopt the next view and send a ELECTFB message. This
implies that if a correct replica is currently in view 𝑣 , there
must exist at least 2𝑓 + 1 correct replicas in a view no smaller
than 𝑣 − 1 (A). If a client cannot receive such a quorum, e.g.
due to temporary view inconsistency, it must reconcile the
views first. This is possible in a single additional step: By (A)
any set of 4𝑓 + 1 replica responses must contain at least 𝑓 + 1
correct replicas’ votes for a view 𝑣 ′ ≥ 𝑚𝑎𝑥 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 .𝑣𝑖𝑒𝑤𝑠) −
1. Using rule (ii) a replica may skip ahead to 𝑣 ′. We point
out, that while only two round-trips of message delays are
required, a client may still have to wait out the view time-out
between 𝑣−1 and 𝑣 (where 𝑣 is the highest view of any correct
replica).
If only a few replicas are in the highest few (i.e. less than
𝑓 + 1 - in which case we could potentially catch up), and
4𝑓 + 1 replicas are in the same view after using rule (ii), then
a client does not even need another roundtrip (and a time-
out) in order to guarantee the successful leader election (if
all 4𝑓 + 1 replicas send an ELECTFB message. If some are
Byzantine, this might not happen of course).
Thus it follows, that a correct client requires at most two

round-trips and one time-out to bring all correct replicas to
the same view. □

Next, we show that during sufficiently long periods of
synchrony, a correct fallback is eventually elected.

Lemma 6. After GST, and in the presence of correct inter-
ested clients, a correct fallback leader is eventually elected.

Proof. In the presence of a correct interested client, Byzantine
clients cannot stop the successful election of a new Fallback
by continuously invoking a view-change on only a subset

of replicas. This follows straightforwardly from the fact that
after GST, once the time-outs for views grow large enough to
fall within Δ, a correct client will (i) bring all correct replicas
to the same view, and (ii) there is sufficient time for the
fallback replica to propose a decision before replicas move to
the next view (and consequently reject any proposal from a
lower view).
Moreover, election is non-skipping, as a correct client will

broadcast a new-view invocation to all replicas.
Since fallback leader election is round-robin, it follows that

a correct fallback replica will be elected after at most 𝑓 + 1
view changes, with a sufficiently long tenure to reconcile a
decision across all correct replicas. □

Theorem 5. A correct client eventually succeeds in acquiring
either a C-CERT or A-CERT for any transaction of interest.

Proof. First, we note, that a timely client can trivially com-
plete all of its own transactions that have no dependencies.
However, if a client is slow, or its transaction has dependen-
cies, it may lose autonomy over its own transaction. For a
given client c, we define the set Interested𝑐 to include its own
transactions and all their dependencies, as well as any other
arbitrary transactions whose completion a client is interested
in.
We distinguish two cases for each 𝑇𝑋 ∈ 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑𝑐 that

has timed out on its original client: (i) An interested client
manages to receive a C-CERT/A-CERT by either issuing a RP
message and receiving a Fast-Path Threshold of ST1R mes-
sages for all involved shards, or by issuing a new ST2 message
and receiving 𝑛 − 𝑓 ST2R messages from the logging shard.
In this case, a client is able to complete the transaction inde-
pendently as any client may broadcast C-CERT’s/A-CERT’s to
the involved shards. Theorems 1 and 2 are maintained as this
case follows the normal-case protocol operation.
(ii) An interested client cannot obtain decision certificates

and starts a Fallback invocation. By Lemma 6, during a suf-
ficiently long synchronous period and the presence of an
interested client a correct Fallback replica will be elected
after at most 𝑓 + 1 election rounds. Such a Fallback replica
will reconcile a consistent decision across all correct replicas
in the log-shard, thus allowing the interested client to receive
a 𝑛 − 𝑓 matching ST2R messages. This allows it to construct
the respective C-CERT/A-CERT, allowing it to complete the
Writeback Phase.

□

20

	Abstract
	1 Introduction
	2 Model and Definitions
	2.1 System Model
	2.2 System Properties

	3 System Overview
	4 Transaction Processing
	4.1 Execution Phase
	4.2 Prepare Phase
	4.3 Writeback Phase
	4.4 Further Optimizations

	5 Transaction Recovery
	6 Evaluation
	6.1 High-level Performance
	6.2 BFT Overheads
	6.3 Basil Optimizations
	6.4 Basil Under Failures

	7 Related Work
	8 Conclusion
	References
	A Correctness Sketch
	B Proofs
	B.1 Byzantine-Serializability
	B.2 Byzantine Independence
	B.3 Fallback Safety
	B.4 Fallback Liveness

