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Abstract

Machine Learning based designs provide an extensive
means to recognize patterns and do various kinds of
predictions. In this paper we apply machine learning to
the Internet of Things architecture to optimize access to
smart parking. We assume that the system will detect
which driver parked at which spot, and also will recognize
driver’s habit of returning to the car. This way we predict
that the spot of the driver walking towards the parking lot
or garage will soon be available for other drivers. Drivers
looking for a parking spot will receive such information
in advance, in a form of “Spot N will be available in X
minutes”. The design operates over the features offered
by smartphone devices: to determine the parking spot,
determine thewalking driver’s position and also serving as
a base for amobile application, so the system is convenient
to use and doesn’t require additional infrastructure.
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41.1 Introduction

Smart cities implementing Internet of Things design include
multiple components such as traffic light control, air quality
monitoring, emergency response, smart buildings and smart
parkings. Intense traffic and concentration of high number
of cars in the centers of the cities led to development of
various solution to minimize the time of finding an empty
spot; this way also reducing the emission and in-parking
traffic. Many solutions implemented already are based on
sensors that are mounted at the parking spot (one sensor per
one spot). Sensors are monitoring the presence of a vehicle at
the parking spot and then either locally control the red/green
indicator light, or are wired to a central control unit, that can
count number of available spots and display this information
to the drivers entering the parking garage. Smart parking
approaches can also feature more advanced options like
counting vehicles entering given floor, so number of available
spots could be updated before these vehicles reached their
spots. Other features are smart routing of exiting vehicles (for
garages having multiple exits) and balancing the distribution
of vehicles over the floors by the criterion of vicinity of free
spots to the elevators (so the more occupancy, the farther
available free parking spots are from elevators, regardless the
floor).

We propose the live prediction of free parking spots ahead
of time – for the optimization of traffic and parking time.
In our approach, each driver participating in the system has
a smartphone with our parking application installed (safe
to assume it’s obligatory for company parking garages, but
not only). Manual spot entering is used to recognize that a
particular driver has just parked in a spot of certain identifier
(identifier describes the location on the floor but also the floor
number). On the other hand, our design recognizes driver’s
habit of returning back to the car, so we can predict ahead of
time, that the certain driver will be freeing the parking spot
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within some estimated time. This information is presented
to drivers that are currently looking for a parking spot. Our
idea is flexible and can have multiple factors included, such
as different types of parking spots, different day times when
a certain spot is available, parking fees and many other. We
consider our system as easy to implement, as no other infras-
tructure like sensors, wiring etc. is required – smartphones,
application and active users is sufficient.

41.2 RelatedWork

Internet of Things, specifically its implementation to cities –
resulting in a concepts called Smart Cities faces multiple
challenges, at the same time solving many old problems
and providing numerous optimizations of city-related factors.
The trends for IoT-enabled smart cities were surveyed in
[1] – and included the confrontation of user approach and
technological approach, along with the overview of compo-
nents and their then presence on the market (in numbers) and
projections for the following years. Authors also included
the overview of IoT-Smart City applications, such as trans-
portation and mobility, smart homes, smart infrastructure,
IoT solutions for retail, healthcare, energy optimization and
brief discussion of other areas related with smart cities. The
technological look at the smart cities – in a perspective
of services being delivered – were described in [2]. Au-
thors specified the following services: building management,
automation and home automation (for buildings), remote
parkingmanagement, business fleet management and vehicle
telematics (for transportation), home security and people
protection (for security area), smart healthcare and hospitals
(for healthcare) and optimization of distribution and usage
of electrical energy (for electricity). The paper includes the
results of survey done among IoT experts regarding specified
IoT/Smart Cities aspects.

Aside of the research and engineering work being done
for IoT Smart Cities in general, a lot of attention is brought
to the transportation aspect of smart cities that is closely
related to our work presented in this paper. The systematic
analysis of transportation in smart cities was described in
[3]. The work includes the taxonomy and results of review
of 199 smart cities projects – geographically located around
the entire globe. Authors of [4] analyze the IoT technologies
selection to be applied into smart transportation. The analysis
includes considering specific requirements of the application.
Most of the technologies that are considered are IoT-specific
or closely related. The aspect of data propagation for the
smart city transportation was described in [5], where authors
analyze the communications between multiple participants
of Intelligent Transport System. Several factors are consid-

ered: latency, heterogeneous connectivity, mesh architecture,
cloud-based approach and many others. Similarly, as in our
work, authors included machine learning in the solutions –
for the goal of optimization and independent decision mak-
ing. Also the scenarios for smart cities and smart roads are in-
cluded. The mobile object authentication, being important in
the transportation areawas de-scribed in [6]. Authors propose
multilayer and hierarchical architecture for mobile objects,
including: perception layer (mainly sensors, but also other
typical IoT devices), network layer, mobility support layer
and application layer. The mobility support layer provides
the authentication of the mobile objects that are relocating
between different environments and systems.

The convergence of Internet of Things and Machine
Learning, being applied to transportation in smart cities
was described in [7]. Authors describe multiple solutions
in which Intelligent Transportation Systems operate using
ML, also pointing out the trends and directions that possibly
need more work (also mentioning smart parking). Extensive
information is provided about ML techniques applied to
the smart transportation. Applications considered in that
work are: Route-Optimization-Navigation, Parking, Lights,
Accident Detection, Road Anomalies and Infrastructure.
Each application is analyzed against the ML solutions
applied, including the ML-related details.

41.3 Proposed System

The proposed system predicts the time when a parking space
is to become available. This system is most useful in places
with high parking density, for example, a university parking
lot or garage. The prototype of this system aims to leverage a
user’s smartphone as much as possible and limit the amount
of physical hardware needed in the actual parking structures.
Example execution:

(i) An individual is returning to the parking lot where their
car is parked.

(ii) The machine learning model predicts that the person
is indeed returning to the parking lot – and a time
prediction to return is generated.

(iii) Patrons seeking a parking space can view the estimated
time for a vacant spot through a mobile application.

Architecture consists of: Frontend Client (Mobile Appli-
cation), Backend Server, REST API, Machine Learning
Pipeline and Database. The Backend Server is the main focus
of this paper. However, details about the role of the mobile
application and some potential features it could include are
discussed.
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41.3.1 Mobile App

The main interface for users of the system would be through
a mobile application. There are a few different purposes that
the mobile application would serve:

• Provide GPS coordinates to the Backend Server: The
Backend Server utilizes GPS coordinates in the Machine
Learning Pipeline. Using the GPS API provided with
many smartphone application frameworks, the individ-
ual’s current location can be sent to the server and pro-
cessed as needed

• Allow users to pick their spot and checkout: One barrier
to using GPS coordinates to track a user’s location is the
loss of precision when inside buildings, including parking
garages. Because of the limitation, precise GPS informa-
tion could not determine which spot a user chooses. Since
the system uses as minimal extra hardware as possible,
users manually select the parking spot and “check out”
when they leave. From a user experience standpoint, this
area would benefit most from having an automatic system
in place.

• Display helpful information to those looking for a parking
spot: The mobile app can display beneficial information –
such as a map of the parking lot, which spots are currently
open, and the times for spots that are estimated to be
available.

Specific implementation details and features to be included
can be tweaked to suit individual needs. For example, in
a university setting where there are many different parking
spots for varying roles, it would be beneficial to have addi-
tional permissions for each user and potentially only display
locations they have access to. Furthermore, existing systems
such as parking passes and metered pay could be integrated
into the mobile app for a comprehensive experience for the
user. Depending on the parking lot provider’s exact needs,
a network of different parking lots could also be connected
and integrated into the application. However, in this system
prototype, the three features outlined above are essential to
the application (Fig. 41.1).

41.3.2 Database

Google’s Firebase databases were chosen for this system.
This database service contains many benefits such as devel-
opment speed, client syncing, and ease of use [8]. Further-
more, with Firebase’s two different types of databases – the
Real-Time Database and Firestore, and the tight integration
with Google Cloud Platform services like data analytics, it
can be quite valuable with IoT systems [9].

Fig. 41.1 Example mobile UI

• Real-Time Database: The Real-Time Database contains
the state of the parking lot. Individual spots are mapped in
the database with information such as an identifier, type
of spot, and relative location. The RTDB also contains the
time predictions for spots to open – which can be queried.

• Firestore: The Cloud Firestore database contains all other
data for the system. This includes information such as
users and their permissions and useful information such
as coordinate information for system users.

41.3.3 Machine LearningModel

41.3.3.1 Purpose
The goal of the machine learning model is to determine
whether a set of coordinates is returning to the parking lot.
The model receives a list of GPS coordinates as input and
outputs a binary classification of 0 (does not return) or 1 (does
return).

41.3.3.2 Dataset
The dataset used consists of GPS coordinates (latitude and
longitude pairs) that simulate individuals’ trajectories when
traveling near the parking garage. The parking lot chosen for
the system is a heavily trafficked garage at the University of
Nevada, Las Vegas [10]. Entrances to the different locations
were labeled and are shown in Fig. 41.2.
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Fig. 41.2 Garage entrance
labels

Fig. 41.3 Trajectories

The trajectories were created using Google Earth’s path
creation tool. The dataset consists of 776 simulated trajecto-
ries that are each four coordinates long. Each trajectory was
labeled as entering the garage or missing the garage (Fig.
41.3).

The decision to use four long coordinate trajectories was
not arbitrary. If the trajectories are too long – the predictions

may not be made as frequently as needed. If the trajectories
are too short – say, every one or two coordinates, it would
be more challenging to train the model to make proper pre-
dictions. Four coordinates is a happy medium for achieving
frequency in polling and accuracy.

The distributions of the different trajectories are shown
in Table 41.1. A unique coloring is given to each category
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Table 41.1 Trajectory distributions

Location Entered garage Missed garage

A 136 (Red) 131 (Blue)

B 149 (Green) 130 (Yellow)

C 82 (White) 74 (Dark Orange)

D 38 (Light Orange) 36 (Purple)

Total 405 371

of trajectories to distinguish them visually. It is essential to
note the decision-making process behind the distribution of
trajectories. For this specific garage, entrances A and B are
more heavily trafficked than entrances C and D due to their
location on campus. This bias towards locations A and B
is reflected in the data – however, simulated data can never
capture the actual traffic of the entrances to this garage. In
a production environment, collecting actual traffic distribu-
tions to the garage entries would be crucial for accurate time
prediction results.

41.3.3.3 Model Parameters
Each input to the model consists of four pairs of latitude and
longitude coordinates (eight inputs total). The dataset is par-
titioned to a 70/30 training and testing split. Once partitioned,
the data is scaled using the MinMaxScaler found in the
Sklearn Python library. TheMinMaxScaler is fit transformed
to the training data, and then the testing data is subsequently
transformed. Once the data is scaled, it is ready to be fed into
the model for training.

41.3.3.4 Model Architecture and Training
The model is sequential with three dense layers: an input,
a hidden, and an output layer. Eight neurons in the first
layer correspond to the four pairs of latitude and longitude
coordinates. The input layer uses the Rectified Linear Unit
(ReLU) activation function [11]. The single hidden layer
contains six neurons and as well uses the ReLU activation
function. A single neuron and the sigmoid activation function
are used for the output layer. The goal of the output layer is
the binary classification of whether the coordinates enter the
garage or miss the garage.

Loss for the model is calculated using the Binary Crossen-
tropy function [12]. A learning rate of 0.01 is specified for the
Adam optimizer, and the model is trained using 200 epochs
as the limit. An early stopping callback function is declared,
which monitors the validation loss for the model. It has a
15 epoch patience parameter and aims to prevent potential
overfitting of the model.

41.3.3.5 Model Results
Valuable insights can be extracted from the results of the
model training. The model accuracy steadily increases

throughout 198 epochs, concluding at an average of about
95% accuracy on the training and validation data. A large
gap between the training and validation data curves is
absent, which suggests no significant amount of overfitting
in the accuracy plot. For the model loss plot, the gradual
decrease in the curve of both the training and validation
data indicates that no considerable overfitting of the model
occurs. The decline rate suggests that the model’s learning
rate is appropriate and does not learn too slow or too fast.
The training and validation loss concludes at approximately
a 15% loss. Although the accuracy and loss plots suggest that
the model is not overfitting to the data during the training
phase, testing on unseen data is essential for gauging the
model’s actual performance (Figs. 41.4, 41.5 and 41.6).

A separate testing dataset was created for testing the
trained model. It contains 27 trajectories that miss the garage
and 31 trajectories that enter the garage. In Fig. 41.7, the
trajectories entering the garage are colored purple, and those
missing are blue (Fig. 41.8).

We get precision results of 96% when the model predicts
coordinates are not returning to the garage and precision of
97% when the model predicts they will. This is about on
par with the results of the training data seen in the accuracy
plot. These are promising results – the model is performing
just as well with unseen data as it did with the training data.
A relatively simple model (recall this model only has three
layers) can accurately predict whether a set of coordinates
is returning to a location. This finding could extend to other
systems trying to determine some type of user intent where
coordinates are the primary input. In this system, it is being
used for predicting user intent to return to a location, how-
ever, this approach could be shaped for other types of intent
depending on the specific goals of that system. Comparisons
to similar models will be completed in future work.

41.3.4 Backend Server

The Backend Server is where the main work of the system
takes place. The goal of the Backend Server is to have a
scalable API that the front end (mobile application) can
efficiently reference. The API follows the REST architecture
and uses the FLASK web framework [13]. The benefits
of using FLASK for the REST API were the development
speeds, ease of use, and future scalability for features and
traffic (Fig. 41.9).

41.3.5 Geofences

A geofence acts as a virtual perimeter around a physical
location [14]. To create the geofences necessary for the
system, polygons are made using Google Earth by defining
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Fig. 41.4 Early stopping
callback triggered

Fig. 41.5 Model accuracy Model Accuracy
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Fig. 41.6 Model loss
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bounds around a region. The goal of the geofences is to limit
unnecessary processing (Fig. 41.10).

Two geofences play critical roles in the pipeline.

• Inner Geofence – The inner geofence is a polygon defined
by coordinates that encompass the garage. If coordinates
are found within this geofence, we know that the person
has returned to the garage.

• Outer Geofence – The outer geofence denotes the region
around the garagewhere themodel can reasonably predict.
The perimeter defined by the outer geofence is based on
several factors, such as the paths leading back to the lot,

the traffic, and the buildings or structures surrounding the
lot.

It is simple to determine whether a coordinate is inside the
bounds of a geofence. Since a geofence is just a polygon
defined by a set of coordinates (latitude and longitude pairs),
a coordinate is inside the geofence if it exists inside the
polygon. Using the Pythonmath library Shapely, a polygon is
defined using the coordinates from Google Earth [15]. Once
the polygon object is created, coordinates can then be tested
for if they are contained within the polygon.



41 IoT Machine Learning Based Parking Management System with Anticipated Prediction of Available Parking Spots 347

Fig. 41.7 Testing trajectories

Fig. 41.8 Test set results

With the pipeline, the last coordinate provided in the
request is first used to determine whether it is inside the inner
geofence. If it is, the user is in the garage, so quit. If the user is
not in the inner geofence and is not in the outer geofence, quit.
The machine learning model runs when the user is within
the outer geofence but outside of the inner geofence. The
purpose of this again is to maintain reasonable predictions by
the model. It is only desirable to run the model when there is
a likely chance they are returning to the garage instead of just
polling continuously.

41.3.6 Model Prediction Consequences

As the model is a binary classification model, there are only
two prediction possibilities – a prediction that the coordinates

are going to the garage or not. If the model predicts the
coordinates will not return to the garage, then there is nomore
processing that needs to be done, and the backend will wait
for another POST request withmore coordinates. If themodel
does predict that the coordinates will return to the garage,
however, then the time prediction part of the pipeline can
occur.

41.3.7 Time Prediction

Time predictions will only occur when the model predicts
a return to the garage. The approach to predicting time is
made as simple as possible in the first iteration of the system.
Placemarks are created in Google Earth that define arbitrary
“regions” in the garage. Spots are assigned to these different
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Fig. 41.9 Backend pipeline diagram

Fig. 41.10 Outer geofence
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Fig. 41.11 Regional placemarks

regions based on their location. These placemarks are used to
calculate the distance from a user’s current location and their
parking spot location.

Time = Distance

Speed

Description:

• Take the user’s current location (provided in the POST
request) and the regional location of their parking spot and
calculate the distance.

• Set speed as a constant – to an average walking speed of
1.5 m/s

• Calculate the time using distance and speed

After calculating the time prediction, the database is then
updated.

41.3.7.1 Multi-floor Garages
Although this system focused only on the first floor of the
parking garage, other floors can be easily scaled using this
approach by including a constant travel time tomove between
floors.

41.3.7.2 Dynamically Calculating Speed
It is not the case that everyone travels at the same speed – es-
pecially at a university setting where there are manymodes of

transportation used to get around. Instead of setting speed as a
constant, an individual’s speed could be calculated using the
coordinate data and time stamps. With this information, we
can calculate the movement speed unique to every individual
to create more precise time predictions.

41.3.7.3 Accounting for Uncertainties
To account for uncertainties when patrons arrive back at their
car and leave the parking lot – a buffer time can be added on
top of the prediction time. A buffer time would help account
for individuals’ time to settle and leave their parking spot
(Fig. 41.11).

41.4 Conclusions

The work presented in this paper addresses the problem
of congestion in parking garages. It describes the machine
learning based approach to predict the availability of parking
spot ahead of time – using driver’s geographical position,
walking path, geofences and other aspects. The proposed
system delivered high accuracy of predictions. Once the
system detects that a driver walks towards the parked car, it
notifies driver(s) currently looking for available spots – that
the parking spot with a specified symbol will be available in
a certain amount of time. In this preliminary work, the time at
which the spot is going to be available is estimated indepen-
dently of a certain driver, but in the future work the personal
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data is going to be included to get more precise individual
time predictions. Other elements planned are parking spot
selection preferences, different categories of parking spots
and consideration of reserved parking spots with flexible time
schedule.
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