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Abstract—The awareness of edge computing is attaining em-
inence and is largely acknowledged with the rise of Internet of
Things (IoT). Edge-enabled solutions offer efficient computing
and control at the network edge to resolve the scalability and
latency-related concerns. Though, it comes to be challenging for
edge computing to tackle diverse applications of IoT as they pro-
duce massive heterogeneous data. The IoT-enabled frameworks
for Big Data analytics face numerous challenges in their existing
structural design, for instance, the high volume of data storage
and processing, data heterogeneity, and processing time among
others. Moreover, the existing proposals lack effective parallel
data loading and robust mechanisms for handling communication
overhead. To address these challenges, we propose an optimized
IoT-enabled big data analytics architecture for edge-cloud com-
puting using machine learning. In the proposed scheme, an edge
intelligence module is introduced to process and store the big
data efficiently at the edges of the network with the integration
of cloud technology. The proposed scheme is composed of two
layers: IoT-edge and Cloud-processing. The data injection and
storage is carried out with an optimized MapReduce parallel
algorithm. Optimized Yet Another Resource Negotiator (YARN)
is used for efficiently managing the cluster. The proposed data
design is experimentally simulated with an authentic dataset
using Apache Spark. The comparative analysis is decorated with
existing proposals and traditional mechanisms. The results justify
the efficiency of our proposed work.

Index Terms—Internet of Things (IoT), Big Data Analytics,
Edge Computing, Backpropagation (BP) Neural Network, Ma-
chine Learning, Yet Another Resource Negotiator (YARN)

I. INTRODUCTION

THE Internet of Things (IoT) is consist of software utilities
along with hardware. The hardware involves of sensor-

embedded devices connected with each other. The software
utilities, on the other hand, comprise data storage and analytics
programs that provide assistance in presenting information to
the users [1]. The idea of edge computing is gaining significant
attention with the rise of IoT [2]–[4]. Edge-enabled solutions
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offer efficient computing and provide the control near the
edge of the network to resolve the scalability and latency
issues [5], [6]. The IoT applications generate massive data, i.e.,
big data1, which require effective aggregation, intelligent pro-
cessing, and robust analysis to realize optimum outcomes for
decision-making [7], [8]. In an IoT-enabled edge computing
environment, the data is growing rapidly, and the computation
relies heavily on this massive data. Moreover, the fast speed
at which the data is generated make it become infeasible to
stockpile the data into any explicit server. It is a challenging
task to hold a gigantic amount of big data, which continues
to raise exponentially at an extraordinary speed [9], [10]. In
IoT-enabled edge computing environments, major sources of
Big Data are the embedded sensors [11], [12].

With the rise of Big Data in IoT-enabled edge environments,
the notion of Machine Learning (ML) model development
is gaining prominence [13]–[15]. Moreover, the federated
learning concept is also introduced at the edges of the network
[16]. ML-based models deliver enriched performance in the
market by utilizing the huge data [17], [18]. In this context,
low-cost computing devices, sensors, and storing mechanisms
integrated with convincingly speedy wireless equipment pro-
vide the foundation for managing the big data [19], [20].
However, an accessible substructure is still required to deal
with the massive set of devices. Big Data analytics has the
ability of providing massive opportunities to resolve problems
related to various applications dealing with plethora of data
[21], [22]. The future of this universe lies with ML-enabled
IoT paradigms that aim to bring intelligence to the real-world
physical objects [23]. Various IoT applications seem to be
progressively integrated with ML techniques.

For edge computing, it becomes challenging to manage the
diverse IoT applications as they produce massive amount of
big data. Edge computing is the future of big data analytics.
The domain of big data has undertaken a huge revolution over
the decade. This revolution is creating a shift in computing
infrastructure; where the computing is moving out of the data
center to the edge. The architectures of IoT-enabled Big Data
analytics face numerous challenges, such as the storage and
processing of high volume of data, latency, data heterogeneity,
inconsistent data patterns, and so forth, in their existing
structural design. Moreover, the existing proposals lack an ef-
ficient parallel data ingestion and incur a high communication
overhead [24]. The major challenges and problems that need to
be undertaken are inadequate data ingestion into the traditional
cluster supervision frameworks, e.g. Apache Hadoop/Spark.

1Big Data and big data are used interchangeably
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The customary data ingestion is time wasting, requires more
storage, contains commands that are difficult to understand,
has no appendage, and has no partial ingestion [25]. Similarly,
the processing of traditional big data analytics platforms based
on conventional cluster management face challenges such as
difficult scheduling, inefficient load balancing, non-scalability,
and responsibility unification.

This research aims to design a specific framework using
edge computing to evaluate the huge data proficiently and
overcome the data ingestion and computation issues. We adopt
the optimization of YARN framework to customize for edge
computation. The major contributions of this paper include:

• A framework for data analytics at the edge including
parameter selection for modules affecting the distributed
files for edge data availability, efficient pre-processing
to prepare the data for quick processing and accurate
prediction, and efficient technique to concurrently store
the data at the edges.

• An algorithm for parallel data ingestion, an edge-map-
reduce algorithm for parallel processing at every edge, an
edge-yarn algorithm for efficient cluster resource manage-
ment by optimizing the YARN, and an enhanced weighted
BP algorithm for model parallelism.

• Simulation of the proposed scheme and its algorithms
performed using the open-source Apache Spark 3.0
framework. We preferred the open source platform to
achieve the cross platform applicability.

The rest of this paper is organized as follows. In Section II,
we provide a comprehensive literature review. In Section III,
we present our proposed IoT-enabled big data analytics frame-
work. In Section IV, the experimental results and analysis are
provided to validate our framework. Finally, we conclude this
article in Section V.

II. LITERATURE REVIEW

Superfast network connectivity and novel frameworks of
IoT are just some of the things transforming applications
around the globe. This sort of transformation does not happen
in isolation and overnight. It is easy to lose the benefits of
IoT with the presence of Big Data, but connectivity at the
network edges offer alternative transmission options to the
end users. Nevertheless, there are challenges faced by Big
Data and IoT in the edge computing paradigm related to in-
teroperability issues, heterogeneity problems, data preparation
and cleaning, data format challenges, normalization of data,
data filtration, and loading data into processing frameworks.
Researchers have been working to tackle the challenges of
big data in complex environments for over a decade now. A
summary of existing proposals for big data processing of IoT
is provided in Table I. The related works are tabulated along
with the key challenges. A specific solution is suggested to
process the Big Data in a healthcare domain that contains
the separation of dynamic data into subgroups, which are
based on the hypothetical data fusion working in Hadoop to
improve computational effectiveness [26]. The key challenges
identified for the proposed scheme are the use of customary
Map Reduce (MR) mechanism, insufficient data loading, and

TABLE I
STATE-OF-THE-ART MODELS FOR IOT DATA PROCESSING

Proposals Challenges

[26]
• Used Traditional Cluster management

• Data loading efficiency is ignored in the architecture
• Only health dataset is evaluated

[27]

• Causes delay in processing
• Data accumulation prior to data ingestion is highlighted

while data ingestion proficiency is overlook
• Classical map-reduce framework used

[28] • Computation at edge is overlooked during processing

[29]
• The data ingestion proficiency is overlooked and

the utilization of MRV1 framework
• Limited architecture

[31] • Conceptual and logical framework
• Implementation is not performed

[32]

• It causes additional delay This scheme is also insufficient
to load data efficiently to the Hadoop

• Conventional cluster resource handling
• Only transportation dataset are evaluated

[33] • Customary and conventional cluster resource handling
• It fails to load data efficiently

[34]
• Data loading mechanism exist but delay in loading

• Another issue is the utilization of classical map-reduce
framework

[35]

• This scheme is also insufficient to load data to the
Hadoop

• Traditional cluster resource handling is utilized
in this scheme

[36]

• Data collection is preferred and data ingestion
prior to analysis is overlooked

• Only health dataset is evaluated to test the proposed
system

impalpable structure. The data loading efficiency is ignored
in the architecture and only the health dataset is evaluated. A
scheme is proposed for data management, which is composed
of different tiers [27]. Tiers are liable for different steps of
data processing. Nevertheless, it is a comprehensive design
that consists of four tiers from big data gathering to analysis
of big data, it also causes computation delays, and the use of a
legacy MR framework slows down the performance. Moreover,
the focus is mainly on data aggregation before data ingestion,
while data loading competence is overlooked [28].

In [29], the authors proposed an IoT framework using
Hadoop-based Big Data analytics with different layers from
data acquisition to application. The major issue in the design
of this architecture is that data loading effectiveness was
overlooked. Some researchers proposed a model based on data
analytics that encourages the concept of smart and connected
societies (SCC), which is developing from the notion of smart
cities [30]. The SCC model is a theoretical structure that is
not yet implemented for the physical world. Likewise, the
authors in [31] presented a framework, however, this is also
a theoretical prototype. These researchers also overlooked the
data loading process in the context of a parallel and distributed
domain. There are few designs recommended to tackle the
challenges of Big Data analytics within a smart infrastructure
[32]–[34], but these solutions utilized the customary cluster
management mechanisms and unsatisfactory data ingestion
to Apache Hadoop. Furthermore, a design was proposed to
explore the data in an accessible and efficient transport envi-
ronment [35]. However, the proposed work causes additional
processing delay. Moreover, the proposed work was only
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verified using transport data, and data loading competence
was ignored during Big Data loading to Hadoop. A proposal
was presented that promotes the data aggregation of results
but the data loading before analysis was overlooked [36].
These studies conclude with the following challenges that need
careful consideration.

• Effective data loading into Hadoop Distributed File Sys-
tem (HDFS) for edge data availability is missing.

• Lack of efficient and improved method to load and store
the datasets at the edge.

• Lack of efficient cluster resource management.
• Lack of efficient processing for edge devices while taking

into consideration the parallel and distributed paradigm.
Architectures of Big Data analytics for complex environ-

ments e.g. edge-cloud, is a novel initiative to switch the
traditional form of services and facilities to a well-designed
mode [37]–[41]. This changeover seems to be challenging
as there are no predefined instructions available to construct
a robust architecture for Big Data computation. IoT offers
services using sensors and other objects that supply a huge
quantity of data for analysis. Big Data analytics using Hadoop
involves several varied phases including data loading and data
processing that bring issues and challenges. Although, numer-
ous research works exist to analyze the Big Data efficiently
and measure its performance, studies dealing with data loading
efficiency are exceedingly rare. The literature suggests that
several proposals have been presented to analyze the Big Data
in smart city environment using the Hadoop framework, but
significant challenges exist that need to be dealt with, e.g.
efficient data loading and processing using an effective cluster
management technique. Therefore, we discover the need for
a resourceful model of Big Data analytics and proposes an
improved architecture for this purpose.

III. AN IOT-ENABLED BIG DATA ANALYTICS FOR
EDGE-CLOUD

In this section, we design a big data processing scheme
using machine learning models. The machine learning models
are trained using the huge big data produced within the IoT-
Edge environment.

A. System Model

The system model of the proposed IoT-enabled Big Data
analytics framework is discussed in this section. The model is
composed of two different layers: IoT-Edge layer, and Cloud-
processing layer as depicted in Fig. 1.

The first layer is comprised of IoT sensors and embedded
devices integrated with edge servers. The second layer is
composed of cloud and processing units that perform various
activities, e.g. big data aggregation, distributed storage of
big data, and big data processing with model training. The
cloud storage is responsible for holding various sources of
data. The data is produced by various IoT sensors such as
environmental observing, security monitoring [42], facility
monitoring, traffic, power observing, and transportation ob-
serving sensors. The generated data is received by edge devices

and servers. The edge data is properly gathered by various so-
phisticated processes known as edge caching. Finally, the edge
data is collected by cloud that performs distributed storage.
The gathered data is feed into a distributed architecture for
parallel processing. It involves the overall data management
that includes collection, aggregation, and storage. The data
aggregation offers the grouped data with a precise shaping for
further analysis, which is useful for enormous data that lacks
valued information. The preferred technique for aggregation is
divide-and-conquer that divides the huge dataset into smaller
chunks and groups the similar data in the form of blocks.
The preprocessing mechanisms, e.g. normalization, filtration,
and queuing, are utilized to prepare the data for efficient pro-
cessing and training. The normalization of data is performed
using a min-max normalization method as depicted in Algo-
rithm 1. The filtration is performed using an optimized Kalman
Filter (KF) and the queuing is carried out using the hybrid
M/M/1 queuing model. Algorithm 2 depicts the working of
filtration process to speed the actual processing. KF provides
only the quality information to be processed. It filters the
inferiority information that affects the quality. Moreover, KF
is ideal for real-time processing that can easily be integrated
with the Apache Spark platform and avoids heterogeneity. The
message queue is also utilized to speed up the data processing.
The message queue functions in a particular operational mode
to obtain the message M at time t and then forwards it to the
resultant component. It is controlled by H (a specific handler).
This enhances the efficient exploitation of big data for better
results. The data is loaded to the processing server with parallel
loading using a map-only parallel algorithm. It speeds up the
overall computation time. The number of parallel channels
is kept balanced by optimizing the block size of processing
unit. The big data processing is performed by dividing the big
datasets into small chunks of fixed block sizes. The blocks
are processed by each node in parallel. The default block size
of Hadoop (the rationale of Apache Spark) takes more time
to be processed and provides less number of parallelism. The
default size is optimized and modified to enhance the data
ingestion efficacy. The default block size in the Hadoop latest
version is 128MB. The default size creates too many replicas
and communication overhead. Therefore, the default block size
is tuned using the block-size parameter.

Algorithm 1 Data Normalization.

BEGIN
Input: = Each value of data block

Max value of corresponding data block
Min value of corresponding data block

Output: = scaled value
Set upper and lower limits (m, n)
// specific range
Identify Max and Min values (Xmax, Xmin)
For each (data item) do
Y = (X−Xmin)

(Xmax−Xmin) (∗(n−m) +m
END

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 07,2022 at 08:22:50 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3157552, IEEE Internet of
Things Journal

4

Fig. 1. System Model of our IoT-enabled Data Analytics Framework

Algorithm 2 Filtration using KF.

BEGIN
Instantiation

instantiate transition model (T)
instantiate observation model (O)
instantiate noise co-variance (CN)
instantiate OBS co-variance (CO)
instantiate control input (CI)

Calculating first-hand DataSplit (D)
Search previous DataSplit (D1)
Search new DataSplit

Approximating standing DataSplit
DataSplit prediction (DP)
co-variance prediction (CP)

Merging present observation with prediction
Discover present observation (X)
Discover co-variance of observation (S)
Discover optimal gain (K)
Update DataSplit (PD)

Update co-variance
Prediction
Observation

END

The processing and computation of big data are performed
using the parallel and distributed framework of big data ana-
lytics. The proposed architecture is realized using the Apache
Spark 3.0 framework. The traditional Spark is customized
using an optimized YARN (Yet Another Resource Negotiator)
cluster manager. The execution time of the overall big data
computation using the proposed design is compared with the
state-of-the-art existing related works. The parallel processing
is equipped with a machine-learning algorithm of backpropa-
gation (BP) neural network. This module includes the training
and inference of BP neural network’s machine learning model.
The training of the model is performed with 70:30 ratio
of the dataset. This module provides the customization of
BP algorithm integrated with the proposed architecture. The
novelty of BP network is the model parallelism. The proposed
BP network is trained and validated in parallel with several
processing nodes. The partial results produced by the nodes
are merged using the ensemble learning for better results and
improvement.
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B. Hybrid M/M/1 Queue

To speed up the data processing for efficient exploitation of
big data, we optimized the M/M/1 queuing model. This model
performs various operations when it receives the Data Split D
at time t. At this time, a system is thought to be in the steady
state. Fig. 2 and Fig. 3 demonstrate the data processing and
transmission of an M/M/I queue.

Fig. 2. M/M/1 Queuing Process.

Fig. 3. M/M/1 Queue Computation.

The two splits, e.g. S1 and S2, are balanced during
the steady state. Here, S2, S3,....,Sk−1, Sk, Sk+1, can be
calculated as:

ΛS0 = µS1. (1)

ΛS1 = µS2. (2)

ΛSk−1 = µSk. (3)

hence,

Sn =
(
Λ/µ

)k
Sk − 1 =

(
Λ/µ

)k
S0 (4)

As the probability is equal to 1,

∞∑
j=0

Sj = 1 (5)

S0

(
1 +

(
Λ/µ

)1
+
(
Λ/µ

)2
+ ...

)
= 1 (6)

Summing the series,

S = 1− Λ/µ (7)

As, S=1-S0, thus

S = 1−
(
1− Λ/µ

)
(8)

S = Λ/µ (9)

Sk =
(
Λ/µ

)k
S0 (10)

(
S
)
n
=

(
1− S

)
(11)

Sn = SRk
(
1− S

)
(12)

MS =
∞∑

m=0

m.Sj (13)

MS =
∞∑

m=0

m.Sn
(
1− S

)
(14)

MS =
(
1− S

)
S

d

ds

∞∑
m=0

Sm (15)

MS =
(
1− S

)
S

d

ds

(
1

1−S

)
=

1

1− S
(16)

The average is,

T =
N

λ
=

S

1− S

1

Λ
=

1

µ− Λ
(17)

As we know MQ = M-Tasks,

MQ = (
S

1− S
)× S =

S2

1− S
=

Λ2(
µ− Λ

)µ (18)

Hence, the waiting time is

WQ = T − 1

µ
=

1

µ− Λ
− 1

µ
=

Λ(
µ− Λ

)µ (19)

Finally, the average number of tasks in a system becomes

M =
S

1− S
= S +

S2

1− S
(20)

C. Map-Only Algorithm for Parallel Data Ingestion

The Apache Hadoop and Apache Spark process the data
available inside the Hadoop in HDFS format. The data inges-
tion is the key stage for both batch and stream processing.
The data can either be loaded in batch or stream form.
The data loading is dependent on the kind of processing
available inside the parallel and distributed platform. The data
must be loaded to the parallel processing platform before
processing. The traditional mechanism of data loading is
sequential and time-consuming. Therefore, the Map-Reduce
programming paradigm is optimized for parallel data loading.
The data loading also improves the overall data processing.
The data analysis within the big data platforms, e.g. Apache
Hadoop and Apache Spark, include the loading of data. The
big data analytics platforms carry the processing of data by
loading it in the required format. As a result, the data loading
efficiency improves the overall data processing. We integrate
the Sqoop utility with the map job of Map-Reduce paradigm
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and introduced a map-only algorithm. In addition, the split
size and replication factor of the traditional approach are also
tuned with the optimized map-only algorithm for parallel data
ingestion. The split size is defined using the unit byte. The
replication based on the file can also be modified accordingly.
First, we need to create a new directory at the root. Next, we
need to verify and add a file to the directory. Afterward, a
command is executed to change the replication. Similarly, the
replication of all files can be changed within a directory. For
this purpose, specific and generic arguments can be used to
control the operations of Sqoop tool.

The general command-line parameters of Hadoop must
precede any tool-specific parameters. This specific tool of
Sqoop utility is utilized in the proposed architecture to import
a particular table (source) to HDFS from an RDBMS. The
HDFS format for processing is mandatory as the processing is
carried out in the HDFS format by Hadoop and Apache Spark
in the proposed framework. Every table line is symbolized as a
separate (detach) record that can be saved as text files in HDFS
or it can also be saved in binary form as Avro or Sequence
Files. The –table argument is used to choose the table that is
about to be loaded. A specific subset of the columns can also
be selected and can be controlled using –columns argument if
required. Similarly, specific rows can also be imported using
the SQL WHERE clause. SQL WHERE clause is a very useful
tool that can enhance the utilization of Sqoop commands. One
of the most beneficial quality of Sqoop tool is the incremental
import. Sqoop offers –append argument that is used for loading
in an incremental import manner, which can be utilized to get
only newer records or data.

D. Map-Reduce for Parallel Data Processing

The parallel processing in the edge environment is achieved
by the Map-Reduce mechanism. It provides a parallel mech-
anism for data processing. Big data is huge and need to
be divided into blocks or splits for distributed storage and
parallel processing. Therefore, the map-reduce paradigm is
preferred. The map-reduce programming paradigm is preferred
as it is more scalable, flexible, cost-effective, fast, simple, and
resilient. The process of mapping and reducing is depicted in
Fig. 4. The traditional MapReduce paradigm is optimized for
edge data processing by introducing the edge-map and edge-
reduce phases. This edge-based MapReduce is introduced to
realize the edge-based big data processing. The traditional
cluster management is also replaced with optimized edge-
YARN. The edge-YARN performs only the resource man-
agement inside the cluster along with other operations in the
cluster. It is responsible for the overall cluster management.
YARN is optimized for the edges of the system. The previous
forms of distributed podiums, e.g. customary Hadoop by
Apache, utilized the MR for computation and the management
of clusters. Job dissemination in the YARN distributed cluster
management framework is performed with optimized and
tuned parameters. Earlier platforms, e.g. the previous versions
of traditional Hadoop and map-reduce were used for cluster
management along with parallel processing. However, they
generated higher communication overhead and reduces the

Fig. 4. MapReduce operation for parallel processing.

overall performance. To overcome these challenges, YARN is
favored and optimized as it achieves the separate function-
alities for cluster management. We considered three major
parameters: number of replicas, block size, and the level of
parallelism. The big data is processed using the parallel and
distributed platform. Here, the data is distributed into several
blocks (distributions) and each block is inserted in parallel
fashion. It is mandatory to choose the amount of parallelism,
i.e., how many nodes (blocks) are required to be inserted for
processing and computation. This concept is known as level of
parallelism. The YARN framework is furnished with dynamic
programming (DP) for job distribution and managing the
cluster. DP is used for the recursion function. The enormous
dataset is repeatedly distributed into various blocks. In this
context, DP is preferred as it is an ideal algorithm for recursive
problems by breaking the problem into simpler sub-problems
to produce an optimal solution. YARN operation in an edge
computing paradigm is reflected in Fig. 5. The MRAppMaster
delivers the implementation of Application Master (AM) in the
YARN-enabled framework. Besides, interweaving is probable
among map and reduce stages; hence, the reduce stage may
start prior to the mapping stage ends.

The Resource Manager (RM) allocates a container (CON)
when required by the Application Master (AM). Any specific
request is entertained by the CON to exploit the required
resources on a particular host. AM requests the Node Manager
(NM) accountable for controlling the host (holding the CON)
to take off the dedicated task of an application. This task could
be any Map Reduce (MR) task. NM only assesses the resource
usage and destroys any resource that utilizes extra memory
than originally assigned. AM pays out its entire existence by
negotiating various CONs to initiate request(s) to complete its
application. AM is also accountable for restarting the job in
new containers (CONs) if the previous one fails. It provides
the progress back to the user. AM ends the job and relieves
its CON on completion of the job. However, RM does not
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Fig. 5. Tailored YARN for Edge.

carry out checking of the tasks in an application; it endorses
the strength of AM. A demand for a specific resource is
simply a request for few CONs to guarantee several resource
provisioning.

The execution of EdgeMapTask includes the INIT, EX-
ECUTION, SPILLING, and SHUFFLE phases. The INIT
phase of EdgeMapTask is responsible for the overall setup
of EdgeMapTask. The EXECUTION step of EdgeMapTask is
carried out by a specific method of Mapper class, known as
the run method, which is customized according to the required
edge information. After the setup of the system, the edge-
map () method is called for every < k, v > tuple enclosed in
the split. Therefore, map () accepts a specific key, a specific
value, and a specific mapper context. The outcome of the edge-
map process is stocked in a specific buffer with the context
function. When the complete edge-mapping fragment has been
processed, the clean function is executed by a run command.
Therefore, no action is carried out by default but the manager
may choose to override this method. This scenario is shown
in Fig. 6.

E. Tailored BP Machine Learning Algorithm

The BP network can learn and store a huge number of inputs
and mapping relations of the expected outcome. The cus-
tomization of BP algorithm includes the customized training
and inference of BP neural network. It can automatically fine-
tune the network weights and threshold limit values (TLVs).
The TLVs adjustment is performed via error approximation
and error backpropagation. Therefore, it is preferred to train

Fig. 6. EdgeMapTask Executions.

Fig. 7. Hybrid BP Neural Model Structure.

the received big data. The innovation in traditional BP model
is the model-building parallelism. The proposed optimized
BP model is trained and validated in parallel using various
processing nodes. The fractional results produced by each
processing node are merged using ensemble learning for
improved results. The BP model is composed of the input
layer, the hidden layer, and the output layer as depicted in
Fig. 7.

The preferred variant of BP network is the additional
momentum technique, which is designed for building a parallel
model by introducing the coefficient of momentum µ, using
the algorithm of gradient descent. The coefficient along with
weights can be shown as follow.

∆ω
(
n+ 1

)
= µ∆ω

(
n
)
+ Λ

(
1− µ

) gx

gw
(21)

where, ∆ω(n+ 1) and ∆ω(n) symbolize the weights after
(n+1)th and nth iteration. The value of µ must be between 0
and 1. The gx/gw denotes the negative value of gradient, e.g.
error sum of squares to ω in the BP model. We utilized the
variable learning rate approach for self-adaptive adjustment
according to the variation in error. The adjustment of learning
rate in the self-adaptive adjustment can be calculated as:
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Λ
(
n+ 1

)
=


m++ Λ

(
n
)
, X

(
n+ 1

)
< X

(
n
)

m−− Λ
(
n
)
, X

(
n+ 1

)
> X

(
n
)

Λ
(
n
)

(22)
where, the incremental factor m++ is greater than 1 and the

decremental factor m−− is between 0 and 1. Here, X(n+1) and
X(n) denotes the total error sum of squares after the (n+1)th

and nth iteration. Finally, the ∆ symbolizes the learning rate.
The philosophy managing the learning directions of BP is the
adjustment to the weight and threshold of network should be
performed with the direction of gradient.

Si+1 = Si − Λigi (23)

where, Si denotes the matrix of existing weight TLV, gi
denotes the gradient of current operation, and ∆i denotes the
learning rate. Suppose the three-layer BP model with input
node is yj , the node of hidden layer is xj , and the node of
output layer is zi, then we can have,

xj = f

∞∑
m=0

wjmyj − θj = f
(
NETj

)
(24)

where,

NETj =

∞∑
m=0

wjmyj − θj (25)

The computational output of the output node is

zj = f
∞∑

m=0

vjmyj − θj = f
(
NETj

)
(26)

The output node’s error is

ERROR =
1

2

∞∑
m=0

(
tm − zm

)2
(27)

ERROR =
1

2

∞∑
m=0

(
tm − F

)2
(28)

where,

F =
(∑∞

m=0 vjmyj − θj
)2

(29)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the experimental results are discussed in
detail. The proposed scheme is implemented using the Apache
Spark 3.0 parallel and distributed framework. Spark is cus-
tomized using an optimized YARN cluster management ap-
proach. The Spark MLlib library is utilized for the execution of
machine learning neural network model. The MLLib library is
provided by Spark. We used the MLLib for ML model execu-
tion with a 70-30 ratio of training and testing. We can also split
the dataset for training and testing using 80-20 ratio, but most
of the research studies follow 70-30 ratio of split. Training
a model with 80 percent of the dataset can affect the model

performance. The efficiency of the ML model is assessed using
the key parameters including accuracy, specificity, precision,
recall, F-score, specificity, and sensitivity, respectively. The
values of the parameters are calculated based on the confusion
matrix. The data ingestion results are carried out using the
traditional as well as the proposed approaches. The data
loading results are compared with the traditional approach
of data ingestion. The execution time and throughput results
are compared with state-of-the-art existing proposals. The BP
model evaluation is performed using the confusion matrix
values to find the accuracy of the customized model. Authentic
IoT-enabled datasets with big data characteristics are utilized
to evaluate the applicability and performance of the system.
The datasets include the IoT-enabled health, traffic, pollution,
and water datasets [43]–[46]. The selected parameters, e.g.
selection criteria for the results and validation section, is the
selection criteria utilized by the base paper. We used similar
setup of the existing studies. Moreover, we used identical
datasets for evaluation and comparative analysis. Furthermore,
the identical configuration (including CPU, storage, nodes, and
cluster) is favored for evaluation. The proposed framework is
interoperable and supports the cross-platform applicability as it
is implemented in the Apache Spark, which is an open source
framework.

A. Data Ingestion

The data ingestion is performed using an optimized map-
ping algorithm of MapReduce paradigm to load the data in
parallel and speed up the overall execution time of big data
processing and training module. We optimized the map-reduce
programming paradigm and proposed an optimized map-only
algorithm for data ingestion. The map-only algorithm is in-
tegrated with proposed architecture for data loading. In map-
only algorithm, all the tasks in the system are performed in
parallel that improves the data ingestion competence of our
proposed system. It is observed that it gets approximately no
time to load the data split into the distributed mechanism of
Spark when the size of the data is small, e.g. up to 2GB. The
data loading efficiency is highlighted in Fig. 8 that reveals
drastic changes when the data size increases. It is evident
from the figure that the proposed data loading is better than the
traditional, i.e., classical approach. The proposed method loads
the data with less time at each processing node of the cluster.
The overall efficiency and improvement of the proposed big
data ingestion module with a comparison to the traditional
approach is also depicted in Fig. 9. In addition, the threshold
value is highlighted in Fig.10. The Threshold Limit Value
(TLV) is a specific range where the effect of the proposed
approach is noticed. The TLV of the proposed approach is
approximately 2 gigabytes. The data loading efficiency is
revealed when the data exceeds the 2 gigabytes size.

B. ML Model Performance Evaluation

The ML model is implemented using the Apache Spark
MLlib library. The evaluation of the ML model is performed
using the confusion matrix. The parameters include accuracy,
precision, recall, and F-measure. In addition, sensitivity, and
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Fig. 8. Execution Time of Proposed Data Loading Approach.

Fig. 9. Execution Time Comparison.

Fig. 10. Execution Time TLV.

specificity, are also considered. Accuracy is a ratio of the
correctly classified records to the total number of records.
Precision is a ratio between the correctly predicted positive
records over the total positive predicted records. Recall is a
ratio between correctly predicted positive records over the total
related records. A combination of weighted average precision
and recall indicators tell about the overall measured accuracy.
F1 score of 1 is considered the perfect and the model is
considered failed if the score is equal to 0.

The accuracy and precision of the proposed system are
presented in Fig. 11. The figure highlights the comparative
analysis of accuracy and precision between different process-
ing nodes. The recall and F-measure of the system for multiple
nodes are also depicted in Fig. 12. Similarly, the comparison
of all the KPIs is provided in Fig. 13. Moreover, we provided
the sensitivity and specificity of the proposed system model
in Fig. 14. The proposed optimized learning model is also
realized without Spark. The model accuracy can be further
enhanced by expending dissimilar batch-size and progressively

Fig. 11. BP Model Accuracy and Precision.

Fig. 12. BP Model Recall and F-Measure.

Fig. 13. KPIs Comparison.

Fig. 14. Sensitivity and Specificity of Weighted Model.

increasing the epochs number. It is revealed that we achieve
81.07% accuracy on batch size 200 and the number of epochs
170 as depicted in Fig. 15. The accuracy refers to how often
the model’s predicted results are correct. Accuracy is the ratio
between correctly classified images to the total number of
images.
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Fig. 15. Epoch-Batch Size-Accuracy Comparison.

C. Optimized YARN

The experimental results of our proposed architecture for
execution time and throughput are presented in Fig. 16 and
Fig. 17, respectively. The customization in the YARN cluster
management improves the processing time as shown in Fig.
16. The processing time in the context of parallel nodes are
also elaborated in Fig. 17. The throughput increases with a
reduction in the computation time. The computation time re-
duces as the parallel and distributed framework is customized
with optimized replica number, block sizes, and the usage of
a aligned utility, as shown in Fig. 18.

Fig. 16. Tailored YARN execution time.

Fig. 17. Processing Time Comparison.

V. CONCLUSION

The massive data generated by IoT devices grow at an expo-
nential rate at the network edge. Edge-enabled solutions offer
efficient computing and control nearer to the network edge to
resolve the scalability and latency challenges for IoT devices.

Fig. 18. Throughput Comparison.

The existing solutions face numerous challenges in their
structural design, for instance, the high volume of data storage
and processing, data heterogeneity, and processing time among
others. Moreover, parallel data ingestion and robust mecha-
nism for handling communication overhead is also missing
in the existing approaches. To address these challenges, this
article proposes an IoT-enabled big data analytics framework
for edge-centric computing. In the proposed scheme, an edge
intelligence module is introduced and equipped with an opti-
mized weighted-tuned ML model. To process and store the big
data efficiently at the network edges, the optimized processing
module is introduced with the integration of cloud platform.
The proposed scheme is composed of two layers, i.e., IoT-
edge and cloud-processing. The data injection and storage are
carried out with an optimized MapReduce parallel algorithm.
Optimized YARN is used for efficient management of the
cluster. The proposed data design is simulated based on a real-
world dataset using the Apache Spark and has much better
results as compared to the traditional approaches.
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