800 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 3, MARCH 2022

Private Multi-Group Aggregation

Carolina Naim

, Graduate Student Member, IEEE, Rafael G. L. D’Oliveira

, Member, IEEE,

and Salim El Rouayheb, Senior Member, IEEE

Abstract— We study the differentially private multi-group
aggregation (PMGA) problem. This setting involves a single
server and n users. Each user belongs to one of k distinct
groups and holds a discrete value. The goal is to design schemes
that allow the server to find the aggregate (sum) of the values
in each group (with high accuracy) under communication and
local differential privacy constraints. The privacy constraint
guarantees that the user’s group remains private. This is moti-
vated by applications where a user’s group can reveal sensitive
information, such as his religious and political beliefs, health
condition, or race. We propose a novel scheme, dubbed Query
and Aggregate (Q&A) for PMGA. The novelty of Q&A is that
it is an interactive aggregation scheme. In Q&A, each user is
assigned a random query matrix, to which he sends the server
an answer based on his group and value. We characterize the
Q&A scheme’s performance in terms of accuracy (MSE), privacy,
and communication. We compare Q&A to the Randomized
Group (RG) scheme, which is non-interactive and adapts existing
randomized response schemes to the PMGA setting. We observe
that typically Q&A outperforms RG, in terms of privacy vs.
utility, in the high privacy regime.

Index Terms— Differential privacy, data privacy, estimation.

I. INTRODUCTION

E CONSIDER the problem of distributed aggregation
Win which a centralized server wishes to compute the
aggregate (sum) of the data (values) held by several users.
Privacy is a significant concern since participants have to
share their data, which can be personal and sensitive. This has
motivated works on private and secure distributed aggregation
in many applications such as medical studies [1] or, more
recently, federated learning [2]-[5].

In this work, we focus on the setting depicted in Figure 1,
in which users belong to different groups. The server wants
to find the aggregate for each group separately. As opposed
to finding the aggregate over the whole population, as in
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Fig. 1. An instance of the private multi-group aggregation problem with n
users. Each user 7, for i € {1, .. ,n}, has a scalar value, v;, and belongs to
one of the k = 3 distinct groups. The server’s goal is to estimate the sum of
the values in each of the groups.

typical distributed aggregation problems, e.g., [2], [6]. The
users’ groups can be based, for example, on their political
views, immigration status, health condition, or race, to name a
few. This raises additional privacy concerns since participating
users may be rightfully wary of revealing their group.

Consider, for example, medical or clinical trials conducted
to determine how having a certain illness, say diabetes, affects
the efficacy of a new vaccine. A volunteer may want to
contribute his vaccine test results, but does not want to reveal
his medical condition (diabetes), i.e., the group he belongs
to. Another application is population polling during elections,
where pollsters want to estimate how different groups of the
population vote. Such groups could depend on race, gender,
age, or income bracket. The poll participants want to indicate
which political candidate they will vote for while keeping their
group private.

Motivated by these examples, we present the problem of
Private Multi-Group Aggregation (PMGA), where local dif-
ferential privacy [7], [8] guarantees are given over a user’s
group. We are interested in schemes that scale well with the
number of groups since more groups allow the server more
refined statistics about the population. Our main objective is
to design schemes with low communication costs per user,
as users can have limited bandwidth. In particular, we focus on
schemes that offer communication costs that are constant or at
most logarithmic in the number of groups. Moreover, we study
the trade-offs they offer between privacy (measured using
local differential privacy) and accuracy, i.e., the aggregate
estimator’s mean square error.

A. Related Work
The classical setup for secure and private aggregation in
the literature does not distinguish among groups, and the
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Privacy Parameter: €

(@) p1(1) = 0.5 and py(1) = 0.5.

(b) p1(1) = 0.6 and pa(1) = 0.3.

Privacy Parameter: €

Privacy Parameter: €

(©) p1(1) = 0.9 and py(1) = 0.01.

Fig. 2. Comparison of the Q&A and RG schemes for k = 2 groups, binary alphabet, i.e., v € {—1,1}, and fixed total communication cost equal to 500
bits, i.e., 500 bits communicated by all the users to the server. The Q&A scheme requires less communication cost per user compared to the RG scheme;
therefore, for fixed total communication cost, the Q&A scheme has more users. The subfigures (a), (b) and (c) illustrate accuracy vs. privacy of the Q&A
and RG schemes for different user’s value distributions, p1(1) and p2(1). The dashed (or dotted) curves represent the performance of the schemes with an
additional layer of privacy that hides the user’s values, i.e., A > O for the Q&A scheme, and A,; > 0 for the RG scheme. We present a more detailed

comparison is in Section VI.

privacy guarantees are on the users’ data (values). Differ-
entially private schemes and bounds for private aggregation
were studied in [6], [9]-[12]. In [2], secure aggregation based
on information-theoretic (secret sharing) and cryptographic
techniques was developed for applications to federated learn-
ing (FL) [13]. Secure aggregation algorithms for FL with
improved communication and computation overhead were
proposed in [14], [15], and with robustness against adversarial
users in [16]. These schemes have a per-user communication
cost that grows with the number of users.

Although in this paper we focus on estimating the sum,
other works have focused on different estimation problems.
For instance, distributed empirical mean estimation under
communication constraints has been looked at in [17], [18].
Beyond estimating the mean, discrete distribution estimation
under communication constraints has been studied in [19],
[20], and under privacy constraints in [21]-[26]. Moreover,
heavy hitters (most frequent items) estimation has been studied
in [27], [28] under privacy and communication constraints.
Recent work in [29] devises schemes that achieve optimal pri-
vacy and communication for mean and frequency estimation.

Another related problem is federated submodel learn-
ing [30]-[32]. In this setting, one or multiple servers hold var-
ious submodels (vectors) and each user wants to train (update)
a private subset of these submodels. The notion of submodels
in this setting is similar to the notion of groups in our
problem; however, a user’s update depends on the submodels
at the server in addition to his data. The proposed solutions
in [31], [32] use information-theoretic private information
retrieval (PIR) to privately download and update the submod-
els. Thus, they require multiple servers, and the communi-
cation cost per user is linear in the number of submodels
(groups). Moreover, in [30] differentially private techniques
were used to allow a user to download the required submodels,
and update it using secure aggregation. The resulting scheme
has a communication cost per user that grows with the total
number of users.

B. Contributions

We introduce the problem of private multi-group aggrega-
tion (Figure 1), where n users communicate with a central
server. Each user holds a value and belongs to a private group.
The goal is for the server to accurately compute the sum of
values per group while keeping the user’s group private. The
notion of privacy we use is local differential privacy.

Our main contribution is a novel scheme for PMGA that
we call the Query and Aggregate (Q&A) scheme that provides
local differential privacy guarantees on the users’ groups. The
Q&A scheme is interactive in that the user is assigned a query
matrix and sends the server an answer based on his group and
value. This allows to shift the bulk of the total communication
cost to the query stage (server-to-user) which can be done
offline since it does not depend on a user’s group and value.
Thus, the online user-to-server communication cost does not
depend on the number of groups and users, as typically
occurs in secure aggregation problems, e.g., [2]. In Theorem 1,
we characterize the performance of the Q&A scheme in terms
of privacy, communication cost, and accuracy.

We compare Q&A to a non-interactive scheme which we
call the Randomized Group (RG) scheme. RG is an adap-
tation of standard randomized response [33] schemes from
the literature and consists of each user reporting a noisy
version of his group and value to the server. For a fixed total
communication cost, we observe that in general Q&A offers
better accuracy in high privacy regimes (small ¢), as illustrated
in Figure 2.

C. Paper Organization

The rest of the paper is organized as follows. In Section II,
we describe the formulation of the Private Multi-Group Aggre-
gation problem. In Section III, we present our main results,
which consist of the Query and Aggregate (Q&A) scheme
and its performance (Theorem 1) compared to our proposed
Randomized Group (RG) scheme. We present the details of
the Q&A scheme in Section IV, and those of the RG scheme
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in Section V. We compare the two schemes in Section VI.
Finally, we conclude and give future directions in Section VII.

D. Notation

We represent random variables by upper case letters, e.g.,
X, realizations of these random variables by lower case
letters, e.g., x, and the alphabets of the random variables by
calligraphic letters, e.g., X. We use log(z) = log,(z) and
In(z) = log,(x). Also, for any positive integer n, we denote
[n] := {1,...,n}. Moreover, we use a colon to refer to
whole rows or columns in a matrix or vector. For instance,
A(:3) = (A(1,4), A(2,4), ..., A(n,i)) T is the i** column of
A. The La-norm of a vector x is denoted by ||x|].

II. PROBLEM FORMULATION

We consider the setting depicted in Figure 1 in which there
are n users, indexed from 1 to n, and a single server. The
users can communicate with the server but not among each

other. Each user i € [n] := {1,...,n} belongs to one of k
groups, indexed from 1 to k. Moreover, user ¢ € [n] holds a
value v; € V := {£1,...,£m}. We assume that the server

knows each user’s index but does not know his value or group.
We assume that the users are not adversarial and faithfully
participate in the scheme.

We denote by G; the random variable representing the group
that user 7 belongs to. We assume that the G;, for all ¢ €
[n], are identical and independent random variables from the
alphabet G = {1,...,k}, where k > 2. The probability that
any user ¢ € [n] belongs to group g € G is denoted by 6, :=
Pr(G; = g). We denote by 6 := (01, ...,0) the realization
of the random vector O.

Each user ¢ in group g holds an independent random scalar
value V; drawn from the alphabet V := {+£I,...,+tm}
according to the distribution p4(v) = Pr(V; = v|G; = g).
The values of the users in the same group are independent
and identically distributed. We represent the users’ value
distributions by a k x 2m matrix

pi(—-m) ... pi(m)
Pk (m)

pi(=m)
The matrix p is unknown, to both the users and the server, and
is assumed to be the realization of a random matrix P. Given
their group g € G, for all v € V), the users behave identically,
i.e., pg(v) =Pr(V; =v|G; = g) for any i € [n].

User ¢ knows the realizations of the random variables
G; and V; representing his group and value. However, the
distribution of the random variables P and ©, and their
realizations, are not necessarily known neither to the server
nor to the user.

The goal is to design a scheme that allows the server to
compute an estimate of the sum of values per group, i.e., to
estimate the aggregate vector S € ZF with

S(g) = Z Vi,

i€[n]:gi=g

for all g € G.

We consider schemes where each user ¢ can be assigned a
query ¢; € Q, which is also known to the server. In response

to the query, the user sends the server an answer a; € A.
Upon receiving the answers from all users, the server finds an
estimate S of S. We characterize the efficiency of a scheme
according to (i) communication, (ii) accuracy, and (iii) privacy.
(i) Communication: We characterize the communication
cost by the number of bits communicated between the
server and the user. We look at the communication cost
from two vantage points: (i) user-centric, that measures
the communication per user, i.e., the number of bits com-
municated between a user and the server; and (ii) server-
centric, that measures the total communication the server
receives from all the users. We refer to the latter as the
total communication cost.
(ii) Accuracy: We use the relative mean square error to
measure the accuracy of a scheme m. The risk of the
estimator S,r is

1 ~
£ := —MSE(S,), (1)

where MSE(S;) = E [||S7T —S|}|P=p,6= 9] For
ease of notation, the conditioning on P and © is implicit
in the rest of the paper. The relative mean square error
captures the accuracy of our estimate relative to the
expected true aggregate S. Since I [|[S[[?] grows as
O(n?), we normalize by n?.

(iii) Privacy: We keep a user’s group private. We use local

differential privacy [7], [8] as our measure of privacy for
a user’s group. Since a user’s value and group can be
correlated, it is sometimes necessary (depending on the
required privacy parameter) to also hide a user’s value
in addition to his group. To that end, a user’s answer
to the server is the output of a randomized mechanism
M : G xV x Q — A that outputs a user’s answer a
belonging to an alphabet .4 based on his group, value,
query and local randomness.
Definition 1: Let € be a positive real number, and M
be a randomized mechanism. We say M is e-locally
differentially private with respect to the group if for any
9,9 €3G, g€ Q, and a € A,

Pr(M(G,V,Q) = alG =9,Q =q, P =p,0 =10)
< e Pr(M(G,V,Q) =a|G = ¢,
Q=qP=p0=0), 2

where the probability is taken over the randomness of
the mechanism and the random variable V.

The probabilities in the local differential privacy defi-
nition are taken given the realizations of the random
variables P and ©. Even though the server does not
necessarily know these realizations, the privacy definition
above assumes this knowledge. This is needed because,
with enough answers collected from users, the server
might infer information about the distributions of P
and O.

We note that if a randomized mechanism is ¢ locally
differentially private, then it is also locally differentially
private for all € > ¢y motivating the following definition.
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A block diagram representing the Q&A scheme for a binary alphabet, VV = {—1, 1}. The user is assigned a query matrix ¢g. He sends the server an

answer, a, which is an index of a column of this matrix. His answer is based on his group, g, and his randomized value, v. To randomize his value, the user

applies randomized response, parameterized by .

Definition 2: The privacy level of a scheme (randomized
mechanism) is the smallest ¢ > 0 such that (2) is
satisfied.

III. MAIN RESULTS
A. Query and Aggregate (Q&A) Scheme

We propose a new scheme for PMGA, which we refer
to as the Query and Aggregate (Q&A) scheme. Q&A is
characterized by its low communication cost per user, which
is independent of the number of groups k£ and number of
users n. It also offers an advantageous accuracy for the high
privacy regime. Figure 3 summarizes this scheme, which
mainly consists of two blocks:

1)  Query/Answer block: The user is assigned a query
matrix.! His answer is an index of a column of this
matrix, and is determined by his value and group. This
leverages the randomness in the user’s value to hide his
group and already provides a level of privacy over the
user’s group.

2) Randomized Response block: Here, the user adds noise
to his value parameterized by A > 0. This block is not
always necessary, except for some cases, such as when
the users’ groups and values are highly correlated.

Theorem 1 characterizes the communication cost, privacy, and
accuracy achieved by the Q&A scheme.

Theorem 1 (Q&A Scheme): Given a PMGA instance with n
users, k groups, alphabet V = {£1,...,+m}, and the users’
value distribution py(v) for all g € G,v € V; the Query and
Aggregate scheme (Q&A) satisfies the following properties.

1) The Q&A scheme has a communication cost of log(2m)

bits per user.
2) The Q&A scheme is eqa-LDP with

2m(1 =) —1)py(v) + A

. G
e {<2m<1—A>—1>pg/<v'>+A} &
9.9'€G.,9'#g

et =

where the randomization parameter A € [O, 23’17;1)

3) The estimator of the Q&A scheme is unbiased and has
relative mean square error

“)

5QA = anil,

I'The assigned query matrix, g, is independent of the user’s group and value,
and is known to both the server and the user.

2mAE[V}?]
2m—2mA—1

+ (4m?*—1)(m+1D)[(2m—1)(k—1)+2m)]
6(2m—2mA—1)2 ’

4

The relative mean square error is O kT

We explain the Q&A scheme in more details in Section IV.

where a=

B. Randomized Group (RG) Scheme

To better understand the performance of the Q&A scheme
described in Theorem 1, we compare it to the Randomized
Group (RG) scheme which adds noise directly to the group.
With probability )., the user sends the server his true group
(log(k) bits) and true value or a noisy version of it (log(2m)
bits). Otherwise, the user lies about his group and sends a
mean zero random value that is independent of his true value.

This scheme is an adaptation of the randomized
response [21], [33] method used in the differential privacy
literature. In Theorem 2 in Section V we present the details
and analysis of the RG scheme.

C. Comparison (Q&A vs. RG)

The Q&A scheme requires log(2m) bits per user, while the
RG scheme requires log(2km) bits per user. Therefore, from a
user-centric perspective, the Q&A scheme always outperforms
the RG scheme in terms of communication cost. However, they
achieve different error and privacy trade-offs. We also look
at the communication cost from a server-centric perspective
by fixing the total communication cost at the server, and
comparing the relative error versus privacy. This allows for
a different number of users for each of the two schemes.?

Figure 2, gives an instance of this comparison for a fixed
communication cost. The key takeaway from this comparison
is that there are two regimes, (i) a high privacy regime where
for small values of the privacy parameter, ¢, Q&A outperforms
RG; (ii) a low privacy regime where for large enough privacy
parameter, ¢, RG outperforms Q&A. This is because, as ¢
goes to infinity, the error of the Q&A scheme converges to a
constant strictly bounded away from zero as we cannot further
tune the parameters of the scheme. On the other hand, the error
of the RG scheme converges to zero. We defer a more detailed
comparison to Section VI.

IV. THE QUERY AND AGGREGATE (Q&A) SCHEME
In this section, we describe the Q&A scheme. We begin
by an example that illustrates the key ideas of this scheme

2This is motivated by the idea that, in practice, the server might be choosing
a batch of users from a larger population.

Authorized licensed use limited to: Rutgers University. Downloaded on June 07,2022 at 08:57:01 UTC from IEEE Xplore. Restrictions apply.



804 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 3, MARCH 2022

by focusing on the special case of two groups and a binary
alphabet. We then give the description of the general (Q&A)
scheme in Section IV-B.

A. 1-Bit Example: Two Groups and a Binary Alphabet

We focus on the special case of two groups, £ = 2, and a
binary alphabet, V = {—1,1}. In this case, the Q&A scheme
needs only a single bit of communication per user.

1) Scheme Description: The scheme is composed of the
following three steps.

1. Queries: Each user ¢ responds to a random query ¢; which
is a 2 by 2 matrix. More specifically, the query ¢; is
chosen uniformly at random from the set

o={[1 L[5 4.5 allh 5l
The user’s assigned query is independent of his group
and value. Moreover, it is assumed that the server knows
the queries assigned to each user.

2. User’s answer: Each user sends the server a 1-bit answer,
a;, depending on the query he received. The user only
looks at the row of the query matrix that corresponds
to his group, i.e., row 1 if he is in group 1 and row
2 if he is in group 2. He answers with the index
of the column that contains his value, ie, a; = 1
or a; = 2.

3. Server’s estimation: The server receives the 1-bit answer
a; from each user ¢. He maps the 1-bit answer into
the vector ¢;(:,a;), i.e., the a column of the query
matrix ¢;. This is possible because he knows the user’s
assigned query. Then, the server forms the estimates of
the aggregate for each group as follows:

n
Soa = > a¢i(:, ). ©)

i=1
For example, consider a user 7 in group 2 who has
value +1. If he receives the query ¢; = [ *]], then his
answer is a; = 1, which the server maps into the vector
qi(:,a;) = [ +1] Otherwise, if the user receives the query
¢ = [Z111]. then his answer is a; = 2, which is mapped

into ¢;(:,a;) = [ﬁ]

The key idea behind these queries is that they provide
different, and equally likely, pairings of a value for a particular
group with all possible values of the other group. For instance,
if we look at the first column of the query matrices, notice
that in the query [} T{], the value —1 for group 1 (first
row) is paired with the value +1 of group 2 (second row),
while in query [j iﬂ it is paired with the value —1 of
group 2.

Next we give a brief analysis of this scheme, and see how
it fairs on our three performance metrics: accuracy (MSE),
privacy, and communication cost.

2) Accuracy: We show that the relative mean square error
goes to zero as the number of users increases, allowing the
server a better estimate of the true aggregate S.

Without loss of generality, let us consider, S(1), the aggre-
gate corresponding to group 1. Then, its estimate is

Soal) = > ai(la)+ > ala)
i€[n]:gi=1 i€[n]:g;=2
= S(1) + Z (1, ;). (6)
True Aggregate i€[n]:g
for Group 1 /
Noise

Therefore, the estimate gQA(l) can be interpreted as the true
aggregate with an added noise term. The noise corresponds to
the contribution of the users who do not belong to group 1.
Since the queries were assigned uniformly at random, the
distribution of the answers corresponding to the noise is
uniform and independent of the true aggregate S(1). It follows
from our choice of query matrices that the contribution to the
estimate, of each user 4 in group 2, ¢;(1,a;), is a realization
of the random variable,

1
—1 with probability 2’

Qi(1,A;) = 1 (7
+1 with probability 3

The noise term can be interpreted as the position of a point
on the integer number line, Z, after n steps of a simple random
walk starting at zero. Alternatively, the noise is the sum of i.i.d.
random variables with bounded variance that converges to a
zero mean additive Gaussian noise. Either way, this implies
that the expectation of the norm of the noise grows as O(y/n).
And indicates that the relative mean square error, £qa, goes
to zero as O(n™1).

3) Privacy: We show that the Q&A scheme is ega locally
differentially private. From Definition 1,

Pr(A; = a|G: = 4,Qi = q)

ogeirey, Pr(A, —alG =g, Qi = q)
ac{1,2},q€Q

€
eQA_

®)

The first thing we notice is that the ratio in (8) is equal to 1
for g = ¢/, and the maximum is always greater than or equal
to 1 when g # ¢'. Therefore, we can limit the maximization
in (8) to g # ¢'. Moreover, a user’s value (+1 or —1) is a
deterministic function of the answer, the query, and the group.
Therefore, we can simplify (8) to

Pr(V;

max
9.9'€{1,2},9#¢" Pr(
v,v' €{-1,1},g€Q

=v|G;i =g,Qi =q)
'_UI|G _g QZ*Q)

€
eQA_

= max —pg(”,) : )
9.9’ €{1,2},9%9' Dy (V')
v e{-1,1}

which follows from the independence of the random variables
representing the user’s value, V;, and his assigned query, Q;,
and the definition p,(v) = Pr(V; = v|G; = g).*> Thus,
we obtain an expression of the privacy which only depends
on the users’ value distributions.

3To simplify our discussion, in the rest of this paper, we assume that the
probabilities pg(v) are in (0, 1), for all g € [k] and v € V.
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Fig. 4. Privacy for the Q&A Scheme. The values of p1(1) and p2(1) in the
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e = 2.5, ¢ = 1, and € = 0.5, respectively. The higher the privacy requirement,
i.e., smaller €, the smaller the region. We note that the indicated region is the
full interior of the polygon.

We refer to the privacy parameter ega, described in (9),
as the intrinsic privacy of the scheme. Notice that it depends
on the users’ value distributions, p1(-) and po(-); however,
neither the server nor the users know these pi(-) and po(-).
Therefore, they cannot directly calculate the privacy parameter
eoa. Nonetheless, the privacy parameter, ega, can be bounded
if the users have prior information about their value distrib-
utions. For example, suppose the users know that p;(1) and
p2(1) are bounded such that cpin < p1(1),p2(1) < Cmaxs
where the constants ¢min, ¢max € (0,1). In this case, we can

Cmax

upper bound the intrinsic privacy level ega < In (C

Next we give more insights about the relationship between
the users’ value distributions, p,(-), and the privacy parameter.
Let us fix a privacy level ¢, and define the region that describes
the users’ value distributions, pq(1),p2(1) € (0,1), which
guarantee that the scheme is e-LDP. In Figure 4, we plot this
region for different values of e. Looking at Figure 4 and (9),
we observe the following.

o The less privacy we require, i.e., the larger the privacy
level e, the larger the highlighted region, i.e., more values
of p1(1) and p2(1) can guarantee this level of privacy.

o The closer p;(1) and py(1) are to 0.5, the higher the
privacy guarantee. And perfect privacy, i.e., ¢ = 0, is only
guaranteed when p;(1) = pa(1) = 0.5. Intuitively, this
occurs because when pi(1) = pa(1) = 0.5, a user’s
answer to the query is independent of his group.

A takeaway from the above observations is that not all
privacy levels can be guaranteed for fixed user value distri-
butions p1(-) and po(-). In other words, the intrinsic privacy
of the scheme may not always be enough. The reason is that,
in its basic form, the Q&A scheme described above, does not
guarantee privacy over the user’s value. Thus, when the user’s
value and group are sufficiently correlated, the user’s value
might leak more information about his group than permitted
by the e-LDP requirement. In such cases, the general Q&A
scheme adds a second layer of privacy to the user’s value
to further hide his group. In addition, this provides flexible
privacy guarantees which do not depend only on the user’s
value distributions. This second layer of privacy is obtained
by adding a randomized response block, parameterized by

805

qi

Fig. 5. User 7 sends the answer a; based on his assigned query matrix g;,
his group g;, and his randomized value v;. His answer is the index of the
column that contains his randomized value. The server maps this answer to
the at” column of g;.

the probability of lying A, which hides a user’s value (see
Figure 3). We give a full description of the general Q&A
scheme in Section I'V-B.

4) Communication: Since the user’s answer is either 1 or 2,
i.e., a; € {1,2}, the scheme’s communication cost is one bit
per user. Moreover, we show in Theorem 1 that the general
scheme’s communication cost is always 1 bit per user when
the alphabet, V, is binary, irrespective of the number of groups.
This is the fundamental limit on the zero-error communication
cost if there were no groups and no privacy requirements.

Note that the query assignment must be known to both the
server and the user. This can be accomplished without incur-
ring communication cost. For instance, it can be implemented
as the output of a public hash function that takes as input the
user’s index i € [n], or simply considered part of the scheme
agreement that does not depend on a user’s group and value.

B. The General Q&A Scheme

In this section, we describe the general Q&A scheme, for
any number of groups k£ > 2, and alphabet parameter m € N.
This scheme is obtained by generalizing the query matrices of
the previous example and is presented in Figure 5. The Q&A
scheme includes an additional randomized response block for
improved privacy as described in Figure 3.

1) Queries: Each user is assigned a random query matrix of
dimension k x 2m and elements in V = {+1,...,+m}.
The query matrices assigned to each user are chosen
independently and uniformly at random from the set QO
defined as

Q= {q e V"*"|q(g,:) € Sym(V) for all g € [k]},
(10)

where ¢(g,:) = (¢(g,1),...,4(g,k)) and Sym(V) is the
set of all row vectors which are an ordered permutation
of the finite set V.* Each row of a matrix ¢ € Q is a
permutation of all the possible 2m values. Notice that
the values cannot be repeated within a row but rows
can be repeated. We denote by ¢; the query assigned to

4An ordered permutation of a set V' is a vector where each element
is a distinct element of V, e.g, Sym({£1,+2}) has 4! = 24 elements
including (—2,—1,1,2) and (1,2, -2, —1).
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user i. More details about the choice of set (10) are in
Appendix A-B.

We assume that the server also knows the query assigned
to the user. As previously mentioned, since the query does
not depend on the user’s group or value, it can be assigned
offline as part of the scheme agreement, or implemented
as the output of a public hash function.

2) User’s Answer: Given his assigned query, user ¢ hides his
value using the randomized response block parameterized
by A, as in Figure 3. That is, given his true value v;, the
user first chooses a randomized value v; according to the
distribution

) 1 -\ forv; =v;
Pr(V; = 0|V, = v;) =
(Vi il Vi i) {2"5‘1 for v; € V — {w;},
(1)
1

where A € [0,1— m) When A = 0, i.e., no privacy over
the user’s value, then V; = W
Then, user ¢ looks at the ¢! row (g; is the user’s group) of
the query matrix ¢;, and sends to the server the answer a;,
which is the index of the column that has his randomized
value ©;. More precisely, a; is such that ¢;(g;,a;) = v;
as explained in Figure 5.
Remark 1 (On Sending Columns and Not Rows): If the
user’s answer corresponded to a row of the query matrix,
instead of a column, then the server would obtain full
information about the user’s group and none about his
value, i.e., the scheme would fail in providing both
privacy and utility.

3) Server’s Estimation: Upon receiving user i’s answer, the
server maps it into the a'" column of query ¢;, i.e.,

qi(:yai) = (qi(1,a:),qi(2,a4), - . ., qi(k, ai))T.

The server sums the mapped answers from all the users,
and multiplies by an unbiasing term (see Appendix A-A
for more details), to find the estimate of the true aggre-
gate, S, i.e.,

N _ 2m — 1
A 9 —2mAr— 1

(12)

Z qi(:7 ai)-

1€[n]

Below we give examples of possible queries and answers.

Example 1: Consider the setting where there are k = 3
groups and the alphabet of values is V = {+1,42}. Let A = 0,
i.e.,, V; = V;. Suppose that user 1 has value v; = —1 and
belongs to group g1 = 2. For instance, if he is assigned the
query

-2 -1 +1 42
o= 1 3 &

then his answer is a; = 3, because his value, v; = —1, is the
third element of the second row (corresponding to his group
g1 = 2) of g;. Upon receiving this answer, the server decodes
it into the third column of ¢, i.e., q1(:,a1) = (+1,—1,-2)T.

If the user is assigned the query

gr=|+1 -2 +2 -1

—2 -1 +1 +2}
+1 -2 42 -1]’

his answer will be a; = 4, which the server decodes into
q1(:;a1) = (+2,—1,—1)T. In both cases q1(g1,a1) = v1.

We note a few characteristics of this design of queries and
answers. Since every row of any query matrix ¢ € Q contains
all possible values, the user’s value is always one of the ele-
ments of the row vector corresponding to his group. Moreover,
from the server’s perspective, looking at the mapped answer
qi(:,a;), i.e., a column vector of the user’s assigned query
qi, the user’s value (or randomized value) is in row g; of ¢;.
As for all the other elements of the vector, they are uniformly
distributed over V. This follows from the design of the query
alphabet Q and mirrors (7) from the previous section. It is
also the key idea for the accuracy proof of Theorem 1.

An interesting property of the Q&A scheme is that, depend-
ing on the required privacy, one can choose A = 0, i.e., no
randomized response block in Figure 3. The Q&A scheme still
guarantees local differential privacy with

v,v EV

{ pg(”) }
Py (v") ’
9,9'€G,9'#g

which follows from (3). As in the previous section, we refer to
this as the intrinsic privacy of the scheme, which corresponds
to the special case of A = 0. If the intrinsic privacy is not
enough because of a high correlation between the user’s group
and value, external noise can be added to the values through
the randomized response block with A chosen appropriately
depending on the required privacy e.

Remark 2 (The Choice of \): Given a required privacy
parameter €, the parameter )\ that can guarantee this given e
is determined using (3). However, this requires the knowledge
of the value distributions, p,(.) for all g € G. Nevertheless,
one can still use (3) to find a bound on A that is independent
of the users’ value distributions as follows,

2m —1
A22m+ef—1' (14
This bound can be tightened if some side information is known
about the users’ value distributions. For instance, suppose that
Cmin < Pg(v) < Cmax for all g € G and v € V, for some
constants Crmax, Cmin € [0, 1], Cmax > Cmin. In this case, the
following tighter bound can be shown

€ga =1n max (13)

(27’71 - 1)Cmax - Cmine€
Cmin€€) +e€ — 1"
Evidently, smaller values of \ are better for accuracy because
the mean square error is increasing in .

Remark 3 (Error Calculation): Computing the  mean
square error relies on generalizing the approach in the
example in Section IV-A. We have two types of errors in the
estimate of the aggregate per group, ie., SQA(Q). The first is
the error introduced by the users that are not in group g. This
can be approximated by a zero mean additive noise as shown
in (6). The second is the error introduced by the randomized
response block acting on the users’ value. This error biases
the sum > ¢;(:,a;). Therefore, to unbias the estimator we
multiply by (2m —1)/(2m — 2mA\ — 1) as seen in (12). The
details of the error calculation can be found in the proof in
Appendix A-A.

A>

~ 2m(Cmax —

15)
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Theorem 1, first stated in Section III, provides the perfor-
mance of the Q&A scheme with respect to communication
cost, privacy, and accuracy. For its proof see Appendix A-A.
Moreover, we elaborate on our choice of (10) and (11) for the
Q&A scheme in Appendix A-B.

V. THE RANDOMIZED GROUP (RG) SCHEME

To better gauge the performance of the Q&A scheme we
compare it to the Randomized Group (RG) scheme which
directly hides a user’s group by adding noise to it through a
randomized response step. In RG, each user 7 sends the server
an answer a; = (g;, 0;) of his privatized group and value. That
is, g; is chosen randomly according to the distribution

2y for g €[k] —

{gz}v
(16)

o 3 1— M\, for g; = g;
PI‘(G,L' =g; G’L :gz) E { Aor 9 gi gi

where g; is user i’s group and the parameter A\, € (0,1).
As for the value v;, there are two cases:
1) g; # gi: In this case, the user chooses v;, uniformly at
random, i.e.,

Pr(V; = 0:]g: # 9i) =
for all v; € V. This choice ensures that when users lie
about their groups, the aggregate of their contribution has
a zero mean.

2) g; = g;: In this case, the user lies about his true value
with probability \,; € [0 1-— ) That is, he randomly
chooses a value, v;, according to the distribution

a7

2m

PI‘( —U1|V _ng’t _gz)
11—\, foro; =v;,
= Aol (18)
Sy— for v; € V — {v;}.

The server aggregates the received answers and re-scales the
aggregate to unbias the estimator, such that, for all g € [k] the
estimate of the true aggregate of group g, S(g), is

2m —1
a;(2).
(1= Agr)(2m(1 — Ayy) — 1) m%g i(2)
Note that there are no queries assigned to users in this scheme.
Theorem 2 characterizes the scheme’s performance with
respect to communication cost, privacy, and accuracy.
Theorem 2: Given a PMGA instance with n users, k
groups, alphabet V = {£1,...,+m}, and the users’ value
distribution pg(v) for all ¢ € G,v € V; the Randomized
Group scheme (RG) is parameterized by the randomization
parameters \gr € (0,1), and Ay € [0, 1- ﬁ) and satisfies
the following properties.

SRG(Q) =

1) The RG scheme has a communication cost of log(2km)
bits per user.
2) The RG scheme is erg-LDP with

1
e = max {Bl(pmaxﬁQ + )\'ul); 51(1) i 52 pY l) }a

19)
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where Pmax = Eéng?))(evpg( ) Pmin = gEér-lEiEEVpg(U)’
2m(k—1)(1—Xg, :

By = % and By = (2m(1 — Ay) — 1),

3) The estimator of the RG scheme is unbiased and has
relative mean square error

_ —1
Era = Pan 7,
2m—1

where (33 = [V12] ((1 Agr)(2m(1=Xy)—1)) _1) *

(4m2—=1)(m4+1)(2mAy; (1=Agr)+A T(Qm—l))
6(1—Agr)? (272(1 o) =1)? The
4k2

(20)

relative

mean square error is O
Proof: See Appendix B-A. 0
The following corollary characterizes the relationship
between the randomization parameters, Ag., Ay, and the
privacy parameter, egg.

Corollary 1: Let € > 0 be the required privacy parameter.
Then, the optimal parameters X\, and X, which guarantee
the required privacy and minimize the relative error of the
RG scheme are given below.

o Ife% < ’;"# and pmax 7 ﬁ then

* ( 1)(pmax 626pmin)
vl (2pmax ]-) (]- - 2pmin)e26
and
o= 2m(k—1)(Pmax—Pmin)e*

9 2m(k—1)(Pmax —Pmin) e +(1—2Pmin) €2 +2pmax—1"

then X}, =0 and

2e Pmax —
o Ifesf > pmin 07 Pmax = me

2m(k — 1)pmax
9" 2m(k — 1)pmax + €€
Proof: See Appendix C. 0
The above Corollary describes the choice of parameters \,;
and A, that minimize the error for a given required privacy
e > 0. It also shows that for a high privacy requirement,

*

i.e., privacy parameter ¢ < 5 In ’Z’)‘"d*

cannot be zero. Intuitively, since the user’s value and group
are correlated, applying a privacy preserving mechanism only
over the group is not always enough. This is similar to what
occurs with the Q&A scheme. In the RG scheme, the second
layer of privacy, that hides the user’s value, is characterized
by the parameter \,;.

the parameter \,;

VI. COMPARISON OF THE RG AND Q& A SCHEMES

From the user-centric perspective, the Q&A scheme has a
communication cost of log(2m) bits per user, i.e., it does not
depend on the number of groups k. However, the communica-
tion cost of the RG scheme is log(2km) bits per user. Thus,
the Q&A scheme can achieve a communication cost per user
that the RG scheme cannot.

From the server-centric perspective, to compare the accu-
racy vs. privacy trade-offs of the two schemes, we fix the total
communication cost, i.e., the number of bits communicated
by all the users to the server. We choose the parameter A
of the Q&A scheme that guarantees the required (given)
privacy parameter e (see Remark 2) and minimizes the error.
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We find this parameter A by solving the following optimization
problem numerically

mini)\mize Eoa
2m(1 =) —1)pg(v) + A

max ,
v,v €V, { (2m(1 - )\) - ]_)pg/ (1)/) + )\}
9,9'€G,9'#g

1
0<A<]l— —,
2m

subject to e <

where Ega is from (4). Similarly, for the RG scheme,
we choose the parameters, Ay and A, as in Corollary 1.

Figure 2 illustrates this comparison for a fixed total commu-
nication cost. Typically for a high enough privacy constraint,
i.e., small ¢, Q&A outperforms RG, while for a low enough
privacy constraint, RG outperforms Q&A. Thus, we have two
privacy regimes, a high privacy regime where Q&A should
be used, and a low privacy regime where RG should be used.
These observations are made rigorous in Theorem 3.

We begin by expressing the relative mean square error
as a function of the privacy parameter ¢ for a fixed total
communication cost of b > 2 bits. Since the Q&A scheme’s
communication cost per user is log(2m) bits, its number of
users is given by nga := b/ log(2m). Analogously, the number
of users for the RG scheme is given by ngg := b/ log(2km).>
Therefore, we normalize each scheme’s mean square error by
its respective number of users (squared), obtaining

& log(2m) 2
Eqnle,b) = MSE(Sqa)ng? = MSE(Sq )(T) @)
and

& om 2
Era(e, b) = MSE(Sgg)nge = MSE(Sgc) (%) 22)

With this notation we present the following theorem.
Theorem 3: LetV = {£1,...,£m} be the alphabet of val-
ues, G = [k| the set of possible groups, and fix the total com-
munication cost to b € {x € N|z/log(2m),x/log(2km) €
N} Unless k =2, m = 1 and p1(v) = p2(v') # 0.5 for all
v,v" € {—1,1}; then, there exists,
(i) an e, > 0, such that for all € < €y, the relative error
EQA(G, b) < 8RG(€; b), and
(ii) an €y > 0, such that for all € > ¢y, the relative error
EQA(Q b) > ERG(Q b)
Proof: See Appendix C. (]
For the special case of k = 2 groups, and a binary alphabet
of values, i.e., V = {—1,1}, and p1(v) = p2(v') # 0.5 for
some v, v’ € V, there exists an €y > 0 such that for all € < ¢,
the difference in relative errors Ega(€o, nga) — ErG (€0, NRG) =
where b is the total communication cost.
Remark 4 (User-Centric Accuracy vs. Privacy Trade-Off):
Since both the RG and Q&A schemes have a fixed
communication cost per user, restricting it can deem a
scheme infeasible. To elaborate, consider the case of 2 groups
and 2 values. If we fix the communication cost per user to 1
bit, the RG scheme cannot satisfy this constraint because it
requires 2 bits of communication per user. Whereas the Q&A
scheme directly satisfies the constraint. On the other hand,

b’

SWe assume that the parameter b is chosen such that nga, nrg € N.

if we fix the communication cost per user to 2 bits, then
the Q&A scheme would not utilize the full communication
allotment.

VII. CONCLUSION

In this paper, we formulated the problem of private multi-
group aggregation where the goal was to privately aggregate
the users’ values per group. Moreover, we used local differ-
ential privacy as our measure of privacy for a user’s group.
We characterized two schemes: Q&A and RG. The Q&A
scheme generally outperformed the RG scheme, in terms of
privacy vs. accuracy, in the high privacy regime.

Future work for this problem includes finding theoretic
bounds characterizing the best performance achievable for a
given privacy and total communication cost. Another direction
would involve mapping a larger alphabet of values V to a
smaller alphabet V’ to reduce communication costs.

APPENDIX A
THE Q&A SCHEME

A. Proof of Theorem 1

We separate the proof into three parts starting with commu-

nication, then privacy, and finally with the accuracy.

1) Communication: The user sends the server the index of
a column of the query matrix. Since the query matrix
has dimension k x 2m, the user sends log(2m) bits to
the server.

2) Privacy: From Definition 2, the privacy of user ¢ is

e
_ Pr(A; =a|G; =g,Qi = q)
=max ma; 1
ggeggaég PI‘(A*G|G*9 Qz*Q)
aE[Qm],qEQ
_ e DAi=alGi=90i=qg) oy

9,9'€G,97#9', Pr( —a‘G =q.,Q; = )

aE[Qm,],qEQ

where Q is as defined in (10). Notice that if g = ¢/, the
ratio of probabilities is equal to 1, and if g # ¢/, the
maximum of the ratio of probabilities is greater than or
equal to 1. Consider

Pr(4; = a|Gi = 9,Qi = q)

(QZPr fv‘G—g ZPr( 7v|V7v)

veY vEY

Pr(4i=a|Gi=9,Qi = a,Vi =)
® Zpg(v)Pr (VZ :1)*|Vi :1))

%
1 *
2m 1( pg('U ))a

(C) (1 _ )\)pg(v*) +
where (a) follows from the law of total probabil-
ity and the random variable relationships. As for
(b), it follows from definition p,(v) := Pr(V; =
v|G; = g), and noticing that given a user’s randomized
value V;, his group G, and assigned query ();, the
user’s answer A; is deterministic. So, the probability

(24)
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Pr (Ai = a‘Gi =g,Q; = q,f/i = i}) = 1 only for one
realization of V; which we denote by v* = ¢(g, a), other-
wise Pr (Ai = a‘Gi =g,Q; =q, Vi = 13) = 0. Finally,
(c) follows from (11). Substituting (24) in (23), we obtain
e~ max { @2m(1 =) —1)pg(v) + A } 7
9:9'€G,9'#9, 2m(1 =) = pg (v') + A

PRONSAY

where we replaced v*,v'* € V by v,v’ € V.

3) Accuracy: We start by finding probabilities relating to the
user’s assigned queries. User 7 is assigned query Q); = ¢,
which is chosen uniformly at random from the set Q
defined in (10). Therefore, for fixed row j and column
a, the probability Pr(Q;(j,a) = v) = 5 for all v € V.
Note that if user i’s answer is A;, and given his assigned
query, the server maps the user’s answer into the vector
Qi(:, A;). Given user i’s group G; = ¢ and group V; = v,
we find the distribution of Q;(j, A;) for all j € [k].
That is, for all j # g, j,9 € G, and v,v’ € V, we have

1

P (Qu(jA) = V]Gi = 0.V =) = o

Otherwise, for all j =g, j,g € G, and v,v' € V,
Pr (Ql(gvAl) = v/‘Gi =9, Vi = ’U)
1—-X  forv' =w

B A for v € V — {v}. (22

2m —

For all ¢ € [n], we introduce the auxiliary random
variables X; and Y; for ease of notation. For all i € [n],
user 7’s group GG; and his value V; are random variables as
described in Section II. We define an auxiliary random
variable X; that functions as an indicator for both the
user’s group and value. More precisely, X; is a random
k dimensional vector (where k is the number of groups),
such that X;(j) = 01if j # G, and X;(j) = V; if j = G;.
Then one readily obtains, for all j € [k],

- Oip;(v) forve,
Pr(X;(j) =v) = {1]_]6() -) forv=0 20
j - Y

and,
EXi()] = Y vp;(v)0; = BVi|G: = j)6;. 27)
veY
Since the X;’s are i.i.d. for all ¢ € [n], we have

2
E ) Xi()
1€[n]

=nE[V?|G1 = jl0; + (n* - n)E[V1|G1 = j]*65.
(28)

For every user ¢ € [n], we define an auxiliary random
variable Y; = Q;(:, A;), which is a k dimensional random
vector. Given user i’s group G; = g; and his value
Vi = v;, the ¢;" coordinate of the vector Y; contains
user 7’s randomized value. All the other coordinates of

809

the vector Y; are randomly chosen from the alphabet V.
More precisely,

Pr(Yi(j) = v|G; = g, Vi = vy)
1—A for v =v; and j = g;,

A .
- 2{n—1 forveV —{v;} and j =g, (29)
— forv eV and j # g,
2m
where A IS [O, 1-— ﬁ) Then, following
from (29), we obtain, Pr(Yi(j) = wv) =
0; (1= Ny (v) + U522 ) 4 OZ) Then,
2m —2mA — 1
ElY;(j)] = ——E =7]0;, (30
V()] = 2B VAIG = )6, 60)
Since Y7, ...,Y, are i.i.d., we have
2
E[[> Y0)
i€[n]

2m 2m —1
veEV
2m — 2mA — 1 A2
+(n* —n) (W@E[Vﬂal =J]>
2m — 2mA — 1
EV2|G, =410, [ Z——222 7). 1
snEvRIG = i (252 ). e

Note that - .y, v> = sm(m + 1)(2m + 1).

One readily obtains IE SQA —S} = 0 by substitu-
ting (27) and (30), and observing that Xy,..., X, are
i.i.d. and Y7, ...,Y, are i.i.d.. Then, the estimator SQA is
unbiased.

Next we calculate the expectation E[> " | Y;(j)
> Xi(5)] which will be helpful later in the proof.
Notice that given user i’s group, G; = g¢;, and value,
V; = wvj, the product X;(g;)Yi(g:) is equal to v? with
probability A, and equal to v;v with probability 21;_’\1
for all v € V—{v;}. And since X;(j) = 0 for all j # g;,
then X;(j)Yi(j) = 0 for all j # g;. Following these
observations,

. , 2m —2mA -1
E[X;(7)Yi(5)] = W‘%E[Vﬂ@ = ¢/(32)
which follows from > v’ = —uv. Then,
v'evV—{v}

E

> Yi() ZXz(j)]
=1 =1

2 N EMOGIEXG]+ Y ENi()X()
i=1

il€n] izl
® 2m —2mA — 1 )
ey (= NG =i
+n8,EB[VE|Gy = j]] 33)

We have that (a) follows from that fact that if i # [,
then Y;(j) is independent of X;(j). And (b) follows from
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substituting (27), (30), and (32). Then,
2mA\

for = n(2m — 2mA\ — 1)E[V12]
(4m? —1)(m + 1) (2m — 1)k
6n(2m — 2mA — 1) (zm— 2mA—1 1) ’

(34)

follows from substituting (28), (31), and (33) in (1).

Now we have the exact expression of £ga in terms of
A. To characterize the accuracy vs. privacy trade-off, one
might be interested in the expression of £ga in terms
of the privacy parameter e. We can get a loose upper
bound on &£ga, as a function of €, by substituting A =
(2m — 1)/(2m — 1 + €°), from Remark 2, in (34), and

Em?
n

we get Ega = (’)(

B. On the Choice of Parameters for the Q&A Scheme

We consider the class of schemes in which the user is
assigned a random query matrix and in turn sends the server
an answer, corresponding to a column of this matrix, based
on his group and randomized value.

1) On the Choice of Queries: In the Q&A scheme we
considered queries chosen uniformly at random from the set
(10). Below we discuss variations on this set (10), and some
of their disadvantages.

o Suppose the rows do not have all possible values from
the set V. Then, if the user’s value does not exist in the
corresponding row (group), he is not able to answer the

query. For example, consider an assigned query matrix

[ 1 1] This is asking a user of group 1 (row 1): “Which

of these is your value: —1 or —17?”. If the user has value
+1, he cannot answer the question.

o If the rows have extra values that are not in V), i.e., the
set of possible user values, this can lead to breaking the
privacy requirement because the server knows that no user
will have that value. To clarify, consider the example
of 2 groups and 2 values, ie., V = {—1,+1}. Let’s
assume the user is in group 1, has value +1, and is
assigned the query matrix T3~} T7]. If he sends the
server the answer corresponding to column 1, the server
knows with certainty that the user is in group 1, since he
cannot assume the value +3. On the other hand, if both
the additional numbers are in the same column, e.g.,
[ 121 3], then this column can effectively be removed
because no user will answer it.

e One could also restrict to a subset of (10). Depending
on the choice of subset this could perform equivalently
or result in a biased estimator. For example, consider the
case of 2 groups and 2 values. The query set defined in
(10) for this case is

o={[n Al.[2 L[5 wl.[H =)
— We note that if a query is a result of permuting
the columns of another query, then they convey the

same information. For example, the following two
queries, [I_} fﬂ and [ﬂ ;H are equivalent. This

is because the server’s interpretation of the user’s
answer will be the same irrespective of which of
these two queries is assigned. Therefore, restricting
to a subset Q' C Q, such that,

o={[n Ll.[5 &l
results in a scheme equivalent to Q&A.

— On the other hand, consider restricting to a subset
Q" C Q, such that,
o"={[71 Tl.[Z1 fl.[h 3l
where the queries are chosen uniformly at random
from Q. Then, the noise term in (6) will not have
zero mean, and thus the estimate will be biased.
Therefore, a reduction to a subset of Q needs to be done
carefully, and can complicate the definition in (10).

2) Randomizing the User’s Value: One could consider a
more general scheme in which the probability assigned to
each possible random value (v € V and v # v;) is arbitrarily
different. However, this can lead to a biased estimator, that
cannot be unbiased without the knowledge of the parameters
pg(v) and 6, (which the server and user do not know).

Let us elaborate by considering the following modification
to (11). Given his true value v, the user first chooses a
randomized value v according to the distribution

l forv =w
by forveV—{v},

such that Zﬁev,f;;ﬁv lys = 1—/( for all v € V. Note that
the ¢ and /,, ; have to be constants, and not a function of the
problem parameters p,(v) or 6,. Otherwise, because the user
does not know these problem parameters, he would not be
able to perform the randomization.

Following the same procedure described in the Accuracy
discussion of Appendix A-A, we define the k-dimensional

Pr(V; = 0|Vi = v) = { (35)

random vector Y; whose coordinates are randomly chosen
from the alphabet V), such that,

Pr(Y;(j) = v|G; = gi, Vi = vi)

/ for v =wv; and j = g;,

=l forveV—{v;}andj=g,
1
— forv eV and j # g;.
2m

Then, the expected value of Y;(j), for all i € [n] and j € [],

E{ﬁ(j)}:ﬂE[VAGi:j]Hj—i—Hj S i),
V,DEV,VFED
(36)

Therefore, following from (27) and (36), we have

E[Y YVi-> X

1€[n] i€[n]
= SR - X
i€[n]

=n(l—-1)E Z Xi| +nb, Z 0pg(V)ly,5-
i€[n

] v, HEV, VD
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Notice that the server does not know the parameters p,(v)
and 0, for ¢ € [k] and v € V. Therefore, the server,
in general, cannot unbias the estimator. However, the Q&A
scheme considers a special case of (35), where we have ¢, ; =
W/\fl for all v,v € V. Therefore, we unbias the estimator by
multiplying the aggregate by the constant 5—272—1
did in (12).

Moreover, there exists other special cases where the server
can unbias the estimator without the knowledge of py(v)
and 6,, for example if Zﬁev,ﬁ;ﬁv 0ly 5 = 0 for all v € V.
We chose the first method for the Q&A scheme, as it simplifies
its presentation, and is an adaptation of randomized response
from the literature. The analysis of other methods, including
their privacy analysis, remains open.

On an additional note, in general, the randomization of
the user’s value could be done such that the incorrect values
are chosen based on the mean square error of the scheme.
However, this error is a function of the parameters 6, and
py(v) for g € [k] and v € V (see (4)). Therefore, implementing
the scheme would require the user (and the server) to know
these parameters, which is inconsistent with our model. Thus,
the Q&A scheme does not depend on this error.

as we

APPENDIX B
THE RANDOMIZED GROUP (RG) SCHEME

In Section B-A of this appendix we prove Theorem 2, and
in Section B-B we prove Corollary 1.

A. Proof of Theorem 2

We separate the proof into three parts starting with commu-

nication, then privacy, and finally the accuracy.

1) Communication: Each user ¢ sends the server an answer
a;, which is a 2 dimensional vector. The first coordinate
has information about the user’s group, ie., ¢ € G, and
the second coordinate has information about the user’s
value, i.e., v € V. Therefore, to represent the user’s
answer, a;, we need log(|V|) +log(|G]) = 1+ log(m) +
log(k) bits.

2) Privacy: To prove (19), we consider user ¢ and
look at the distribution Pr(4; = a|G; = g) =
Pr (Gz =4,V =|G; :g), forallv € V and g,¢’ €
G. We separately consider the two cases of ¢’ = g and
g’ # g mirroring the two cases described in Section V.
For all v € V and g, ¢’ € G such that ¢’ = g,

Pr (Gz :g,f/i =v|G; :g)

(1 (1 = pg(v)Aui
= (= amo) + B2
X (1= Agr), (37)
which follows from (16), (18), and
Pr (‘u/; = 1)|él = g,Gi = g)

(1 = pg(v)Aut

= (1= Au)pg(v) + om — 1

3

811

However, for all v € V and g, ¢’ € G such that ¢’ # g,

Pr (Gz =gV, =0|G; = g) = LT_ (33)

2m(k — 1)’
which follows from (16) and (17).
From Definition 1, we drop @ from the conditioning
because there are no queries assigned to the users in this
scheme, also the conditioning on P and O is implicit.
Therefore, by substituting (37) and (38) in (2), we get

GERG
- 2m(1 — Aot) — 1) + Aot
max {pgggg)évpg(v)( m(l = Au) = 1) + Au
—1
(o, auin o)1 =) -1+ ),
where p= 2m(k—=1)(1=Xgr)
Xor :
) Accuracy: For all ¢ € [n], user i sends the server the

answer A; =

o

group, G, is described in (16), and his randomized value,
‘D/i, is described in equations (18) and (17).

We define an auxiliary random variable Z; that functions
as an indicator for both user i’s randomized group and
randomized value. More precisely, Z; is a random k
dimensional vector (where k is the number of groups),
such that Z;(j) = V; if j = G; and Z;(j) = 0 otherwise,
ie, j # G;. For all j € [k] and v € V, one readily
obtains

Pr(Zi(j) = v)
— (1 — 99)>‘9T
- 2m(k—1)

0,01 Ay) ((1 — A)ps () +

Gi,Vi), where the user’s randomized

(1 —pj(v)))\vl)
2m — 1 '
(39)

Since 71, Zo, ..., Z, are i.i.d., then following from (39)
for all j € [k] and ¢ € [n] the expectation

E | Y Zi())
i€[n]

B nly (1 — Agr)(2m(1 — Ayy) — 1)]E
- 2m —1

W11G1 = j].
(40)

Then, E [Sgg — S| = 0, which follows from (27) and
(40). Thus, the estimator of the RG scheme is unbiased.
Moreover, (41), as shown at the bottom of the next page.
Consider the random variables X;, for all ¢ € [n],
described in (26). For all i € [n] and j € [k], notice that
the product X;(j)Z;(j) can take on one of these values:

Xi(3)Zi(7)
v Yo eV, if X;(5) = Zi(j) = v,
v’ Yo, v € Vo' £, if Xi(j) = v,
and Z,;(j) =/,
0 Voo eV, if X;(j)=0or Z;(j) =0,
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Then, we can use this to find the expectation

E[X;(5)Z:i(5)]
= 20 A L (1216, = 1] 0,00 Age).
(42)

Moreover, since Z1,...,Z, are iid., Xi,...,
ii.d., and Z; is independent of X, if i # ¢,

ZZ ZXg

X, are

i€[n] Le(n]
= Z E[Zi(7)X:(j)] + (nQ —n)

i€[n]

x Y EIZG)] X))

i,0€[n],iF#L
_ (2= n)(1 = Agy)2m(1 = Ay) — 1)
2m — 1
E[V1|G; = j]*6?
+n(1 = Agr)(1 = A E[V2|G1 = j]0,, (43)

which follows from the substitution of (27), (40),
and (42).
Notice that SRG( j) =

and S(j) = >

2mAui(1 — Agr) + Agr (2 — 1) ( vl

= )\g,)(2m(1 Xo0-1) > Zi(d),
X;(j). This implies in

Era = n(1— Agr)(2m(1 — Ay) — 1)

(4m? = 1)(m+ 1)
T g @m(1 =) — 1)) @D

which follows from substituting (28), (41), (43) in (1),
and noting that Y, .\, v* = 2m(m +1)(2m + 1).

This proves how we obtained the expression of Erg
as a function of Ay and A,;. Moreover, one could be
interested in the error as a function of a given required
privacy € > 0. We give an upper bound of &g as a
function of e. We substitute g, and A,; that minimize

the error from Corollary 1, in (44). Then, the error Erg
m* k>

is upper bounded by O

B. Proof of Corollary 1
1

We first assume that ppax > 5, and pmin <
consider the special case of pyax

1
S and

= Pmin = 5 separately in

the end. For ease of notation define

F(Agr» Aot) = MSE(Skra)
C2mAun(l = Agr) + Agr(2m — 1)
(=) 2m(1 = Ay) — 1)
(4m* — 1)(

2 m+1)
X<]E[V1]+6(1 g ) (2m(1 — sz)-1)>”

which follows directly from (20). To minimize the error of the
RG scheme we solve the following optimization problem,

minimizef (Mg, Avt)

vlsAgr

Prn(h—1)(1-Agr) (pmas (2m (1= M)~ 1)+ Aut)

subject to e“=max Agr(2m—1)

Agr(2m—1)
2m(k—1)(1—=Xgr) (Pmin Cm(I=Xy) = 1)+ A1) [

0<>\vl<2m

0 < Agy < 1. (45)

To solve it, we consider two optimization problems. Consider
this first optimization problem, assume its optimal value is
attained, and let /\élr) and /\S) be its optimal points,

minimize f(Agr, Aut)

vl Agr

2m(k—1)(1—=Xgr) (Pmax (2m(1—=Xy) — 1)+)‘v7)

subject to e =

Agr(2m—1)
Qm(k71)(17/\g'7')(pmaX(2m(1 )‘vl) 1)+)\vl)
Agr(2m—1)
> Agr(2m—1)
- 2m(k71)(17)‘g7')(pmin(Qm(lf)‘vl)71)+/\1)l)’
0 <=L, <1 (46)

Consider this second optimization problem, assume its optimal
value is attained, and let /\_gﬁ) and Afj) be its optimal points,

minimize f(Agr, Aui)

AvlsAgr
: 3 Agr(2m—1)
subject 10 € = 5o A= Y (pam En =) =D Fx0)
Agr(2m—1)

zm(k—1)(1—Agr)(pmin(2m(1—m)—1)+kvz)

> 2m(k=1) (A= Agr) (Pmax (2m 1 =Av) =D+ Au1)
- Agr(2m—1) ’

1
0<Ay<1l——,
2m

0< Agr < 1. (47)

Then, the solution of (45) is min {f()\“) /\(1)) f(A<2> Affﬂ)}
Therefore, to solve (45), we first solve (46) and (47).

o Solution of (46): Since 0 < A\, < 272”;11, we have the
following two cases.

2m —1
" ((1 ) m(l—

n 2
)
’Ll

— A

gv")/\vl + )\g,«(Zm

D = 0y)]

_ n(4m? —1)[2mb, (k 1)(1
6(k—1)(1 — Xgr)2(2m(1 —
nb,(2m — 1)

T @mI =) — 1)

Noi) -
E[V2IGr = ] +

1)2(m+1)~1

(n* —n)02E[V1|Gy = j]*. (41)
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o If e2¢ < Bmax from the first condition directly follows

Pmin

(1) 2m(k—1)(pmax(Cm(1=Xy)—=1)4+Xy1)
Agr = Qm(kj—l)(pnix(Qm(l—Avl)L1)+Avl)j~_eg- (48)
Since €2¢ < Emax then (2m — 1)(Pmax — Pmin€>) >

0, and by subgi‘iliuting (48) in the conditions of (46),
we get

(2m—1)Pmax —(2m—1)pmine>® 1
0< (1=2mpmin)e?c +2mpmax—1 < Au < 2°
Since f ()\!(]T), Ay1) is increasing in A,;, then its min-
imum is at achieved at the boundary of the domain,
ie.,

(2m—1)pmax—(2m—1)pmine>*
(I—2mpmin)e?c+2mpmax—1 °

Then substituting this back in (48), we get

(1)
A'ul =

)\(1) _ 2m(k—1)(Pmax —Pmin)e*
97 7 2m(k—1)(Pmax—Pmin) € +(1—2pPmin) €2 +2mpmax—1"
2 max 2
o If e-* Z %» then (27’71 - 1)(pmax — Pmin€ E) S 07
and
(2m—1)pmax—(2m—1)pmine* 1
(I—2mpmin)e?+2mpmax—1 S0<Au < 2"

Similarly, since f ( or ,/\UZ) is 1ncreasmg in \,;, then

(1 2m(k—1)pmax
)\ = 0. And we have that Agr = D pmaxtet’

. Solunon of (47): The solution of (47) follows similarly
as that of (46), and we have the following two cases.

. 2 2m—1)pmax—(2m—1)pmine>*
o If 2 < Busx A3 _ Cm—Upumax=(2m—1)pmine

Pmin v (1-2mpmin)e?¢+2mpmax—1 7
and
A2 2m(k—1) (Pmax —Pmin)e
97 7 2m(k—1)(Pmax—Pmin) e +(1—2Pmin ) €2¢ +2MPmax—1 °
\ 2 2
o If e%¢ > DBmax thep )\il) = 0, and )\g,«) =

2m(k—1)pmine’
2m(k—1)pminec+1°
o Combining the two solutions: We also have to look at the

two cases separately as follows. leftmargin=+.3in

o If e* < M, the solution is straightfor-

Pm
ward. The optlmal pomts for (45) are A\, =
(2m—1)pmax —(2m—1)pmine>*
(1—-2mpmin)e?¢+2mpmax—1 ’

and

= 2m(k—1)(Pmax —Pmin)e®

™ 7 2m(k—1)(Pmax —Pmin) e +(1—2pmin) €2 +2mpmax—1"

o If e?¢ > M, one readily obtains f( S),)\(l)) <

f ()\(2) )\(2)). Therefore, for this case, the opti-

vl

mal points for (45) are A\;; = 0 and A}, =
2m(k—1)pmax
2m(k—1)pmax+e”
Th1s completes the proof for pyax > 5= ] priax = Pmin =

, then the second condition of (45) reduces to

(k— 1)(1 Agr) Agr }
Agr P (k=1)(1=Agr)

et = max{

i.e., e is not a function of \,;. Therefore, for this case,
the optimal points for (45) can be readily obtained such that
Ay =0and A}, = = — + =. Combining all the described cases
completes the proof.

Remark 5: In Corollary 1, we minimize the relative error
subject to a fixed privacy parameter e. Because of the

813

monotonicity of the relative error as a function of €, an increase
in privacy, i.e., smaller €, cannot decrease the error. Thus,
minimizing the error subject to

¢ < max { 2m<k—1)(1—&»;52372277731—%1>—1)+Avl>7

Agr(2m—1)
2m(k—1)(1—=Xgr) (Pmin Cm(I=Xy)—1)+Xu1) [

is equivalent to solving the optimization (45).

APPENDIX C
COMPARISON: PROOF OF THEOREM 3
We start by sketching the proof of (i) in Theorem 3.

o For k=2, m =1, and p1(v) # p2(v') or p1(v) = p2(v) =
0.5 for all v,v’ € V = {—1,1}, we can easily find the
exact value of \ that satisfies (3); therefore, we can find
the expression for the error of the Q&A scheme Ega (e, b).
Moreover, the minimum error of the RG scheme Erg (€, b)
follows from Corollary 1. We find that the limit of the
difference of the errors, Erg (€, b) — Egale, b), as € goes to
zero, is positive.

o Fork >2and m=1or k> 2 and m > 1, the minimum
error of the RG scheme Erg (¢, b) follows from Corollary 1.
From Remark 2, to guarantee a required privacy €, we can

choose any A > 27§L2(m71)_p"‘a,"751"i“f€_ . We use this A to
Pmax —Pmine®)+ec—1

bound the error of the Q&A scheme. Finally, we find that the

bound on the limit of the difference of the errors, Erg (€, b)—

Eonle,b), as € goes to zero, is positive.

Now we prove (ii) of Theorem 3 by showing that there
exists an e, > 0, such that for all € > €, we have Ega(e,b) >
Era(€, b). We first consider the Q&A scheme. From Remark 2,
there exits an ey > 0, such that for all € > ¢, the parameter
A = 0 guarantees privacy level ¢p. And the error of the Q&A
scheme, as defined in (21), for A =0, i.e., all € > ¢, is

Eqaleb) =

o log(2m)(2m -+ 1)(m + 1) (5~ 1) > 0.

Let €, > €9 >, /L22=, then from Corollary 1, the parameters
Ay =0and A\p, = %% minimize the error of the

RG scheme. Thus, there exists ey, such that for all € > ¢y,

log(2m)(2m + 1)(m + 1) (k — 1)
6b ’

Eoaler, b) — Eraler, b) =

>0,

which completes the proof.
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