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Abstract—We consider the problem of communication efficient
secure distributed matrix multiplication. The previous literature
has focused on reducing the number of servers as a proxy for
minimizing communication costs. The intuition being that the
more servers are used, the higher is the communication cost. We
show that this is not the case in general. Our central technique
relies on adapting results from the literature on repairing Reed-
Solomon codes in which, instead of downloading the whole output
of a computing task, a user downloads field traces of it. We
present Field Trace Polynomial (FTP) codes, a family of codes,
that leverage this technique and characterize regimes for which
they outperform existing codes in the literature.

Index Terms—security, distributed computation, coding theory

An extended version of this paper, including all proofs, is
accessible at: https://arxiv.org/abs/2108.08798

I. INTRODUCTION

We consider the problem of secure distributed matrix
multiplication (SDMM) in which a user has two matrices,
A ∈ Fa×bq and B ∈ Fb×cq , and wishes to compute their product,
AB ∈ Fa×cq , with the assistance of N servers, without leaking
any information about either A or B to any server. We assume
that all servers are honest but curious (passive), in that they
are not malicious and will faithfully follow the pre-agreed
upon protocol. However, any T of them may collude to try
to eavesdrop and deduce information about either A or B.

We follow the setting proposed in [1], with many follow-up
works [2]–[13]. The performance metric initially used was the
download cost, i.e., the total amount of data downloaded by
the users from the server. Subsequent work has also considered
the upload cost [11], the total communication cost [14], and
computational costs [9].

Different partitionings of the matrices lead to different
trade-offs between upload and download costs. In this pa-
per, we consider the inner product partitioning given by
A =

[
A1 · · · AL

]
and Bᵀ =

[
Bᵀ

1 · · · Bᵀ
L

]
such that

AB = A1B1 + · · · + ALBL, where all products A`B` are
well-defined and of the same size. Under this partitioning,
a polynomial code is a polynomial h(x) = f(x) · g(x),
whose coefficients encode the submatrices AkB`. The N
servers compute the evaluations h(α1), . . . , h(αN ) for certain
α1, . . . , αN . The next step is where the scheme we propose
differs from previous works. In previous works, the servers
send these evaluations to the user. The polynomial h(x) is

constructed so that no T -subset of evaluations reveals any
information about A or B (T -security), but so that the user
can reconstruct AB given all N evaluations (decodability). In
order to contrast them with our approach, we refer to these
schemes as traditional polynomial schemes.

Examples of traditional polynomial schemes for the inner
product partitioning are the secure MatDot codes in [6] and
the codes in [11]. The main focus in the literature was on
minimizing the minimum amount of helping servers N , also
known as the recovery threshold, in order to reduce the
communication cost. The intuition being, that the more servers
used, the higher the communication cost. We show that this
is not generally the case, i.e., in some cases it is possible to
reduce the total communication by contacting more servers.

In this paper, we present field trace polynomial (FTP) codes,
a non-traditional polynomial scheme inspired by techniques
from the repair literature, specifically the trace-based methods
for repairing Reed-Solomon codes, first introduced in [15]. In
the Reed-Solomon codes repair setting, servers store different
evaluations of a polynomial h(αi), some of which may be lost
due to node failures. The repair problem consists of finding
schemes to recover any lost evaluation while minimizing the
download bandwidth (referred to as the repair bandwidth in
that setting) [16]. The key tool utilized is the field trace. If E
is a finite algebraic extension of a field F, then the field trace
trE/F : E → F is a linear functional over the extension field
E when seen as a vector space over F. Instead of sending full
evaluations of h(αi) ∈ E, the servers can repair an evaluation
by sending traces trE/F(h(αi)) ∈ F. Since F is a sub-field
of E, this results in a smaller download cost. Indeed, the
download cost decreases as more servers are used.

FTP codes follow the same idea. By increasing the number
of servers and transmitting traces of the evaluations, instead of
the whole evaluations, FTP codes can obtain better download
costs. However, since the SDMM setting is a computation-
offload setting and not just an information storage one, we
must also account for the upload cost. Thus, care must be
taken so that the decrease in the download cost, obtained from
the use of the field trace, is not outgrown by the increase
in the upload cost, from having to contact more servers.
In Theorem 1, we characterize the total communication rate
achieved by FTP codes.
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Fig. 1: An example of an FTP code detailed in Section III. The
user computes carefully chosen evaluations of the polynomials
f(x) and g(x) and uploads them to the servers. Each server
then computes the product of their received evaluations, which
is itself an evaluation of the polynomial h(x) = f(x) · g(x).
In a traditional polynomial scheme, the servers would then
transmit these evaluations to the user. Utilizing an FTP code,
the servers compute the trace of theses evaluations and sends
them instead. Thus, decreasing the download cost.

Theorem 1. Let L and T be positive integers, p1, . . . , pL be
prime numbers, listed in increasing order, q0 be a prime power,
and set q = qp1p2...pL0 . Let A ∈ Fa×bq , B ∈ Fb×cq be two
matrices, and Ni = pi+2L+2T −2, for every i ∈ [L]. Then,
there exists an FTP code with partitioning parameter L and
security parameter T , which securely computes AB utilizing
NL servers with a total communication rate of

R =

(
NLb

L

(
1

a
+

1

c

)
+

L∑
i=1

Ni
pi

)−1
. (1)

In Theorem 2, we show that FTP codes outperform any
traditional polynomial scheme when the number of columns
in A (or rows in B) is sufficiently smaller than both the number
of rows in A and columns in B.

Theorem 2. For every traditional polynomial scheme with
partitioning parameter L and security parameter T , there
exists a constant K > 0, which depends on L and T ,
and an FTP code with communication rate higher than that
of the traditional polynomial scheme, whenever the matrix
dimensions a, b, and c are such that b

(
1
a + 1

c

)
< K.

The expression for the constant K is given in (5). Theorem 2
is proved by constructing a particular FTP code and comparing
it to the trivial lower bound on the recovery threshold of
a traditional polynomial scheme, namely that N > L. To
provide some context, the current state of the art for inner
product partitioning is given by the traditional polynomial
scheme in [11] which has a recovery threshold of N = L+2T
(or N = L+ T with precomputations).

A. Related Work

For distributed computations, polynomial codes were orig-
inally introduced in [17] in order to mitigate stragglers in
distributed matrix multiplication. This was followed by a series
of works, [18]–[21].

The literature on SDMM has also studied different varia-
tions on the model we focus on here. For instance, in [11],
[22]–[24] the encoder and decoder are considered to be
separate, in [22] servers are allowed to cooperate. In [25] the
authors consider a hybrid setup between SDMM and private
information retrieval where the user has a matrix A and wants
to privately multiply it with a matrix B belonging to some
public list. FTP codes can be readily used or adapted to many
of these settings as has been done with other polynomial
schemes (e.g., [12], [26]).

There is now a vast literature on the repair problem for
distributed storage systems (e.g., [16], [27]–[29]). The field
trace method relevant to us was developed in [15] and later
extended in [30]. Methods from repair were used in [31]–[33]
to construct communication-efficient secret sharing.

B. Main Contributions

Our main contributions are summarized below.
• We show a connection between SDMM and the repair

problem of Reed-Solomon codes for distributed storage.
This is done by treating the user as a repair node
wishing to restore a polynomial evaluation. The essential
difference between these settings is that in SDMM the
upload cost is important. This occurs because the SDMM
setting is a computation-offload setting and not just an
information storage one, in which the storage upload can
be amortized. Other differences include more flexibility
in choosing the amount of servers, in designing the code,
and in choosing the evaluation points.

• By adapting the techniques used in the repair of Reed-
Solomon codes, we present FTP codes for SDMM.
Contrary to traditional polynomial codes, FTP codes
achieve higher download rates by communicating with
more servers. We show that they are secure, decodable,
and present their total communication rate in Theorem 1.

• In Theorem 2, we show that FTP codes outperform
any traditional polynomial scheme when the number of
columns in A (or rows in B) is sufficiently smaller than
both the number of rows in A and columns in B.

II. PRELIMINARIES

In this section, we introduce some notation and concepts
needed for the rest of the paper. For example, we define
[M,N ] = {M,M + 1, . . . , N} and [M ] = [1,M ].

Definition 1. Let C be a linear code of length n over a finite
field Fq . The dual code of C is the linear subspace

C⊥ =

{
d ∈ Fnq :

n∑
i=1

dici = 0 ∀c ∈ C

}
.
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Definition 2. Let V = (v1, v2, . . . , vn) ∈ Fnq be a vec-
tor with non-zero entries and Ω = {α1, α2 . . . , αn} ⊂
Fq a set of distinct elements. The Generalized Reed-
Solomon Code with parameters n, k,Ω, and V is given by
GRSFq

(n, k,Ω, V ) = {(v1f(α1), v2f(α2), . . . , vnf(αn)) :
f(x) ∈ Fq[x] and deg(f) < k}.

If V = (1, 1, . . . , 1), then GRSFq (n, k,Ω, V ) is the Reed-
Solomon Code RSFq

(n, k,Ω). In addition, the dual code of
an RSFq

(n, k,Ω) is GRSFq
(n, n − k,Ω, V ′), where V ′ =

(v′1, . . . , v
′
n) and (v′i)

−1 =
∏

1≤j≤n
j 6=i

(αi − αj).

Let E be a finite algebraic extension of a field F. The degree
s = [E : F] of a field extension E/F is the dimension of E
as a vector space over F. Thus, any element v ∈ E can be
expressed as a vector (v0, v1, . . . , vs−1) ∈ Fs.

Definition 3. Let E be a finite algebraic extension of a field
F. The field trace trE/F : E → F is the F-linear functional
trE/F(x) = x+ x|F| + x|F|

2

+ · · ·+ x|F|
s−1

.

Note that the codomain of the field trace is the subfield
F. It is this fact that allows savings in the download cost. We
also note that, given an F-basis {λ0, λ1, . . . , λs−1} of E, there
exists a trace-dual F-basis {µ0, µ1, . . . , µs−1} of E, i.e., such
that trE/F(λiµj) equals 1 if i = j, and equals 0 otherwise.

The next proposition plays a crucial role in proving the
decodability of FTP codes in Lemma 1.

Proposition 1 (Page 759 in [34]). Let {λ0, λ1, . . . , λs−1} and
{µ0, µ1, . . . , µs−1} be trace-dual F-bases of E. Then, given an
element β ∈ E, the coefficients of its expansion in the basis
{µ0, µ1, . . . , µs−1} are given by trE/F(λiβ), so that

β =

s−1∑
i=0

trE/F(λiβ)µi. (2)

III. A MOTIVATING EXAMPLE: L = T = 1

We begin our description of FTP codes with the following
example, which we present in as much detail as possible in
order to showcase the essential ingredients of the scheme.
We compare the traditional polynomial scheme using N ′ = 3
servers with an FTP code using N = 4 servers.

In this example, a user wishes to multiply two matrices
A ∈ Fa×b16 and B ∈ Fb×c16 with the assistance of non-colluding
helper servers. The solution to this via traditional polynomial
schemes utilizes N ′ = 3 servers and involves picking two
random matrices R ∈ Fa×b16 and S ∈ Fb×c16 and constructing
the polynomials f ′(x) = A+Rx and g′(x) = B+Sx. The user
then selects three distinct non-zero elements β1, β2, β3 ∈ F16

and uploads both f ′(βi) and g′(βi) to Server i. Each server
then computes the product f ′(βi) · g′(βi). This is equivalent
to computing an evaluation h′(βi) of the polynomial h′(x) =
AB + (AS + RB)x+ RSx2. The user then downloads each
h′(βi), obtaining three evaluations of a polynomial of degree
two. Therefore, the user can retrieve the polynomial h(x) and
compute h(0) = AB as desired.

Security of the traditional scheme follows from the fact
that I(f ′(βi), g

′(βi);A,B) = 0. As for the communication

costs, first the user uploads f ′(βi) and g′(βi), which cost ab
and bc, symbols respectively, three times. Thus, the upload
cost is 3(ab+ bc) symbols of F16. Then, the user downloads
h(βi), which costs ac symbols of F16, three times, obtaining a
download cost of 3ac symbols of F16. Since the user retrieves
AB ∈ Fa×c16 , which consists of ac symbols of F16, the total
communication rate is given by R′ = ac

3ab+3bc+3ac .
Based on techniques from the literature on repairing Reed-

Solomon codes for distributed storage, we present an FTP code
which obtains a lower download cost by utilizing N = 4
servers. Let α ∈ F16 be an algebraic element of degree 4 such
that α4 + α+ 1 = 0. Then, the finite field F2(α), constructed
by extending the binary field with the algebraic element α, is
identified by F16. Let f(x) = A+R(x−α) and g(x) = B+
S(x−α), where R and S are the same random matrices used
in the traditional polynomial scheme above. Then, h(x) =
f(x) · g(x) is such that h(α) = AB.1

Our scheme, illustrated in Figure 1, works as follows.
First, the user uploads the evaluations f(yi) and g(yi) to
each Server i. Then, each Server i computes tr(α−jih(yi)),
where (j1, j2, j3, j4) = (1, 2, 8, 4) and (y1, y2, y3, y4) =
(0, α5, α10, α15), and sends it back to the user.2 To show that
the user is able to decode AB, we denote the answer of each
Server i by Si. Then,

α4(S1 + S2 + S3 + S4) + α5S2 + α10S3 + α15S4

= α4 tr(α−1h(0) + α−2h(α5) + α−8h(α10) + α−4h(α15))

+ tr(α3h(α5) + α2h(α10) + α11h(α15))

= α4 tr(h(α)) + tr(αh(α)) = h(α) = AB

The first equality follows from the F4-linearity of the field
trace together with the fact that α5, α10, α15 ∈ F4. The second
equality follows from utilizing the equation h(x) = h0+h1x+
h2x

2 and the facts that α15 = 1 and α4 +α+1 = 0. The third
equality follows from utilizing the equation tr(x) = x + x4

and the fact that α4 + α+ 1 = 0.
Security follows by showing that I(f(yi), g(yi);A,B) = 0,

as is done in Lemma 2. As for the communication costs,
first the user uploads f(yi) and g(yi), which cost 2ab and
2bc, symbols respectively, four times. Thus, the upload cost
is 4(2ab + 2bc) symbols of F4. Then, the user downloads
tr(α−jih(y)), which costs ac symbols of F16, four times,
obtaining a download cost of 4ac symbols of F4. Since the
user retrieves AB ∈ Fa×c16 , which consists of 2ac symbols of
F4, the total communication rate is given byR = ac

4ab+4bc+2ac .
We note that the download cost of the FTP code is lower

than that of the traditional polynomial code, and that the
opposite is true for the upload cost. In terms of total communi-
cation, the FTP code outperforms the traditional one whenever
R > R′. This occurs whenever the matrix dimensions satisfy
the inequality b

(
1
a + 1

c

)
< 1.

1Unlike in the repairing Reed-Solomon codes setting, in the SDMM setting,
we have more freedom to design the code and choose the evaluation points.

2Here, we denote the field trace by tr := trF16/F4 : F16 → F4 given by
tr(x) = x+x4. We apply the trace function element-wise on matrices which
is equivalent to an element-wise exponentiation.
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We note that this FTP code could also outperform any
traditional polynomial scheme with N ′ = 2 servers, if such
a scheme existed. Indeed, the only way for a traditional
polynomial scheme to outperform the FTP code for all matrix
dimensions would be for it to use N ′ = 1 server, which is not
possible because of the 1-security constraint.

IV. FIELD TRACE POLYNOMIAL CODES

In this section, we present the general construction for FTP
codes. The main idea is to perform the same technique as in
Section III, L times, each one retrieving AiBi, but doing so
utilizing a single polynomial h(x) = f(x) · g(x).
Choosing the Field: We begin by choosing the field over
which we operate. Let L ∈ Z+, {p1, . . . , pL} be a set of
distinct prime numbers in increasing order, q0 a prime power,
and set q = qp1p2...pL0 . We then operate over Fq . For i ∈ [L],
we let αi ∈ Fq0 be such that Fq0(αi) is a field extension of
Fq0 of order pi. And thus, Fq = Fq0(α1, α2, . . . , αL). We also
define Fi = Fq0(αj : 1 ≤ j ≤ L and j 6= i).
Choosing the Polynomials: As described in the introduction,
we consider the setting where the user partitions the matrices
A ∈ Fa×bq and B ∈ Fb×cq as A =

[
A1 · · · AL

]
and as

Bᵀ =
[
Bᵀ

1 · · · Bᵀ
L

]
such that AB = A1B1 + · · ·+ALBL,

where each Ai ∈ Fa×
b
L

q and Bi ∈ F
b
L×c
q . In order to obtain

T -security R1, . . . , RT ∈ Fa×
b
L

q and S1, . . . , ST ∈ F
b
L×c
q

are chosen independently and uniformly at random. We then
define f, g ∈ Fq[x] as the polynomials of degree L + T − 1
such that, f(αi) = Ai, g(αi) = Bi, for every i ∈ [L], and
f(αL+i) = Rj , g(αL+i) = Sj , for every j ∈ [T ].
Choosing the Evaluation Points: For each i ∈ [L], denote
Ni = pi + 2L+ 2T − 2 and n = NL +L = pL + 3L+ 2T −
2. Consider the set {α1, α2, . . . , αL} of primitive elements
defined above. Let αL+1, . . . , αn ∈ Fq0 be distinct elements
which are also distinct from {α1, α2, . . . , αL}. We then define
Ω = {α1, . . . , αn}. The evaluation points the user sends are
those in the set {αL+1, . . . , αn} of size NL.3

Upload Phase: The FTP code uses NL servers. The user
uploads f(αL+i) and g(αL+i) to each Server i.
Download Phase: Let vj =

∏
1≤i≤n
i6=j

(αj − αi)−1 and ki(x)

be the annihilator polynomial for {αj : j ∈ [n] \ ([L + 1 :
Ni + L] ∪ {i})}. Then, for each i ∈ [L], Server j computes
trFq/Fi

(vL+jki(αL+j)h(αL+j)) and sends these Fi-values to
the user.
User Decoding: In Lemma 1, we show that the user is able
to retrieve h(αi) = AiBi from {trFq/Fi

(vjki(αj)h(αj)) : j ∈
[L + 1 : Ni + L]}. Combining these, the user can decode
AB = A1B1 + . . .+ALBL.

V. PROOF OF THEOREM 1

We break the proof into different Lemmas. We show that
FTP codes are decodable, in Lemma 1, T -secure, in Lemma 2,
and characterize their performance, in Lemma 3. These state-
ments combined prove Theorem 1.

3Thus, q0 ≥ NL is required.

Lemma 1. Given positive integers L and T , let p1, p2, . . . , pL
be distinct prime numbers in the ascending order and q0 be a
prime power with q0 ≥ NL. Let A =

[
A1 · · · AL

]
∈ Fa×bq

and Bᵀ =
[
Bᵀ

1 · · · Bᵀ
L

]
∈ Fc×bq , where q = qp1p2...pL0 .

Then, h(αi) can be decoded using Ni servers, for i ∈ [L].

Proof. Let f(x), g(x) ∈ Fq[x] be polynomials such that

f(αi) = Ai, g(αi) = Bi for i ∈ [L] and
f(αL+i) = Ri, g(αL+i) = Si for i ∈ [T ],

using the inner product partitioning A =
[
A1 · · · AL

]
and

Bᵀ =
[
Bᵀ

1 · · · Bᵀ
L

]
and uniformly distributed random Fq-

matrices Ri, Si. Therefore, h(x) = f(x)g(x) is a polynomial
of degree 2L+ 2T − 2 such that h(αi) = AiBi, for i ∈ [L].

Let C = RSFq
(n, 2L+ 2T − 1,Ω). Since the degree of h is

smaller than 2L+2T−1, the vector (h(α1), h(α2), . . . , h(αn))
is in C.

Define, for i ∈ [L], Ui = {L + 1, . . . , L + Ni}, which has
Ni elements. For each i ∈ [L], let

ki(x) =
∏

j∈[n]\(Ui∪{i})

(x− αj).

Note that deg(ki(x)) = pL + L− 1− pi,
and so deg(ki(x)xs) < pL + L− 1 for s = 0, . . . , pi − 1.
Using V as in Definition 2, it follows that the General-

ized Reed-Solomon with parameter n, pL + L − 1, Ω and
V contains the element (v1ki(α1)αs1, . . . , vnki(αn)αsn), for
s = 0, . . . , pi − 1, i.e.,

(v1ki(α1)αs1, . . . , vnki(αn)αsn)

∈ C⊥ = GRSFq
(n, pL + L− 1,Ω, V ).

The dual-code property implies that
n∑
j=1

vjki(αj)α
s
jh(αj) = 0.

For each i ∈ [L], we have ki(αj) = 0 if j 6∈ Ui∪{i}, hence

viki(αi)α
s
ih(αi) = −

∑
j∈Ui

vjki(αj)α
s
jh(αj).

Applying tri := trFq/Fi
to both sides yields, using the Fi-

linearity and αj ∈ Fi for j ∈ Ui,

tri (viki(αi)α
s
ih(αi)) = −

∑
j∈Ui

αsj tri (vjki(αj)h(αj)) .

Let {λs,i = viki(αi)α
s
i : 0 ≤ s < pi}. Since viki(αi) 6= 0

and αi is a primitive element, the set {λs,i} is an Fi-basis of
E. Further, there exists a set {µs,i : 0 ≤ s < pi} which is the
trace-dual Fq0 -basis to {λs,i} of Fq0(αi). Thus,

pi−1∑
s=0

tri (λs,ih(αi))µs,i = h(αi) = AiBi.
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Decodability is then obtained by repeating the process given
in Lemma 1 and summing it over i ∈ [L],

L∑
i=1

pi−1∑
s=0

tri (viki(αi)α
s
ih(αi))µs,i = AB.

Next, we show that FTP codes are T -secure.

Lemma 2. FTP codes are T -secure.

Proof. In extended version. Follows from standard arguments.

We now characterize the total communication.

Lemma 3. FTP codes have total communication rate

R =

(
NLb

L

(
1

a
+

1

c

)
+

L∑
i=1

Ni
pi

)−1
.

Proof. In extended version. Follows from a direct calculation.

VI. EXAMPLE: L = 3 AND T = 2

We present an example of an FTP code for L = 3 and
T = 2 and compare it to the current state of the art [11].

Choosing the field: We begin by choosing a set of three
prime numbers {5, 7, 11}, q0 = 27 a prime power, and
set 275·7·11 = 27385. Thus, we operate over F27385 . Let
α1, α2, α3 ∈ F27 be such that F27(α1), F27(α2), and F27(α3)
are field extensions of F27 of degrees 5, 7, and 11, respectively.
Therefore, F27385 = F27(α1, α2, . . . , αL). We also define
F1 = F27(α2, α3) = F77

27, F2 = F27(α1, α3) = F55
27, and

F3 = F27(α1, α2) = F35
27.

Choosing the polynomials: Since L = 3, consider the setting
where the user partitions the matrices A ∈ Fa×b27385 and B ∈
Fb×c27385 as A =

[
A1 A2 A3

]
and Bᵀ =

[
Bᵀ

1 Bᵀ
2 Bᵀ

3

]
such that AB = A1B1 + A2B2 + A3B3, where each Ai ∈
Fa×

b
3

27385 and Bi ∈ F
b
3×c
27385 . In order to obtain 2-security we

choose R1, R2 ∈ Fa×
b
3

27385 and S1, S2 ∈ F
b
3×c
27385 all independently

and uniformly at random. We then define f, g ∈ F27385 [x] as
the polynomials of degree 3 such that, f(αi) = Ai, g(αi) =
Bi, for every i ∈ [3], and f(α3+j) = Rj , g(α3+j) = Sj , for
j ∈ [2]. Hence, h(x) = f(x) · g(x) is a polynomial of degree
8 such that h(αi) = AiBi for every i ∈ [3].
Choosing the Evaluation Points: Let N1 = 13, N2 = 15,
N3 = 19, and n = 22. Consider the set {α1, α2, α3} of
primitive elements defined above. Let α4, . . . , α22 ∈ F27

be distinct elements which are not in {α1, α2, α3}. Define
Ω = {α1, . . . , α22}. The evaluation points the user sends are
those in the set {α4, . . . , α22} of size 19.
Upload Phase: The FTP code uses 19 servers. The user
uploads f(α3+i) and g(α3+i) to each Server i.
Download Phase: Let vj =

∏
1≤i≤22
i6=j

(αj − αi)−1. Let U1 =

{4, 5, . . . , 16}, U2 = {4, 5, . . . , 18} and U3 = {4, . . . , 22}
be the index sets of cardinality 13, 15, and 19, respectively.
For i ∈ [3], define ki(x) as the annihilator polynomial for

{αj : j ∈ [22] \ ([4 : Ni + 3] ∪ {i})}, i.e., ki(x) =∏
j∈[22]\(Ui∪{i})(x− αj).
Defining V as in Definition 2 for the dual code, the Server

j, for each i ∈ [3], computes tri(v3+jki(α3+j)h(α3+j)) and
sends these Fi-values to the user.
User Decoding: In Lemma 1, we show that the user is able
to retrieve h(αi) = AiBi from {tri(vjki(αj)h(αj)) : j ∈ [4 :
Ni + 3]}. Because V is constructed as in Definition 2 for the
dual code, it follows that

tri(v1ki(αi)α
s
ih(αi)) = −

∑
j∈Ui

αsj tri(vjki(αj)h(αj)),

where the trace dual is tri = trF27385/F27(αj :j∈[3]\{i}) Hence,
given {tri(vjki(αj)h(αj)) : j ∈ Ui}, the user can compute
tri(v1ki(αi)α

s
ih(αi)). Using trace-dual basis elements µi,s,

for i ∈ [3], we have h(αi) =
∑Ni−1
s=0 tri(vik(αi)α

s
ih(αi))µi,s.

Summing up the results, the user can then decode the product
AB = h(α1) + h(α2) + h(α3) = A1B1 +A2B2 +A3B3.

Communication Costs: Server i has h(αi) as in terms
of symbols of F27385 , but transmits only tri(vjki(αj)h(αj)),
symbols of Fi which is one symbol of Fi. To retrieve
h(αi), only a pi-th part of the information in each of |Ui|
servers is needed. Hence, to determine h(αi), it is enough
to download an x-th part of each of the y servers in Ui for
(i, x, y) ∈ {(1, 5, 13), (2, 7, 15), (3, 11, 19)}.

In conclusion, the FTP code used to compute the prod-
uct AB, with partitioning parameters L = 3 and security
parameter T = 2, uses N3 = 19 servers and achieves a
download rate of 1

6.47 . In comparison, the state of the art
traditional polynomial code in [11] has a download rate of
1
7 . The scheme in [11] has a total communication rate equal
to
(
7
3 · b

(
1
a + 1

c

)
+ 7
)−1

. The total communication rate of
the above FTP code is

(
19
3 · b

(
1
a + 1

c

)
+ 2491

385

)−1
. A direct

calculation shows that the FTP code outperforms the scheme in
[11] for matrices with dimensions such that b

(
1
a + 1

c

)
< 51

385 .

VII. PROOF OF THEOREM 2
We begin by proving a technical lemma.

Lemma 4. Let T,N,N ′, L, L′ be positive integers, λ, η ≥ 0
be real numbers, pi ≥ 2L(L + T − 1)η be primes, for every
i ∈ [L], such that pi < pi+1 and pL > LN ′/L′−2L−2T +2,
Ni = pi + 2L+ 2T − 2, and λ < N ′−L−1/η

NL/L−N ′/L′ . Then,(
NLλ

L
+

L∑
i=1

Ni
pi

)−1
>

(
N ′
(
λ

L′
+ 1

))−1
. (3)

Proof. In extended version. Follows from a direct calculation.

Consider a traditional polynomial scheme with partitioning
parameter L and security parameter T . Given the trivial lower
bound N ′ > L on its recovery threshold N ′, it follows from a
direct calculation that the total communication rate R′ of the
traditional polynomial scheme is upper bounded by

R′ <
(
N ′
(
b

L

(
1

a
+

1

c

)
+ 1

))−1
. (4)
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Let λ = b
(
1
a + 1

c

)
, µ > (N ′ − L)−1 and select L primes

p1, . . . , pL in increasing order and such that pi ≥ 2L(L+T −
1)η and pL > LN ′/L − 2L − 2T + 2. Next, define Ni =
pi + 2L+ 2T − 2 and set

K =
N ′ − L− 1/η

NL/L−N ′/L
. (5)

Then, by Theorem 1, the communication rate R of the FTP
code with these parameters, given by (1), is equal to the left
hand side of (3). For these same parameters, the right hand
sides of (3) and (4) are the same. Thus, if b

(
1
a + 1

c

)
< K,

it follows from Lemma 4 that the communication rate of the
FTP code R is larger than the right hand side of (3), and is
therefore larger than the communication rate of the traditional
polynomial scheme R′.
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