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Abstract: Copper phosphido cluster Cus(u-PPh2)4(PBus)2 was synthesized by three synthetic meth-
ods and structurally characterized by X-ray diffraction and 'H, 3'P, 13C and 3P HMBC NMR spec-
troscopy. Cus(u-PPhz)s(PBus)2 was also demonstrated to be a hydrophosphination pre-catalyst.
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1. Introduction

Metal phosphido compounds are important synthetic intermediates in organophos-
phorus chemistry [1-3]. Most copper phosphido compounds characterized by X-ray crys-
tallography have oligomeric structures [4-15] with a few notable exceptions [16, 17]. We
have been studying these types of compounds as intermediates in copper catalyzed hy-
drophosphination [18]. During our study, we isolated the novel bridging phosphido
copper compoundhuster, Cus(p-PPh2)s(PBus)2 (1) and were able to determine its molecular
structure using X-ray diffraction (Figure 1). We also demonstrate that 1 is an active hydro-

phosphination pre-catalyst.

Figure 1. Molecular structure of 1 with thermal ellipsoids drawn at the 30% probability level. Hy-
drogen atoms and two non-coordinated THF molecules of solvation are omitted for clarity. Full

labeling scheme is shown in the supplemental information.
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2. Results and Discussion

Treatment of a THF solution of copper(I) chloride with potassium diphe-
nylphosphide in the presence of tri-tert-butylphosphine at -30 °C results in the formation
of compound 1 (eq. 1) as determined by single crystal X-ray diffraction, 'H, 3P, 3C NMR,
and 3P HMBC NMR spectroscopy. Compound 1 can also be synthesized by treatment of
mesitylcopper(I) with diphenylphosphine in the presence of tri-tert-butylphosphine (eq.
2) or by treatment of Cu(acac): with three equivalents of diphenylphosphine in the pres-
ence of tri-tert-butylphosphine (eq. 3). The 'H and 3'P NMR spectra of products from these

three methods are equivalent. .
Cu(l)Cl + KPPh, + PBu;  — 1 Eq 1
THF
MesCu + Ph,PH + P'Bug ——T > Cu4(u-PPhy)4(P'bus), Eq.2
Eq.3
Cu(acac), + 3 Ph,PH + PBuy Toluene 1 q
38

Compound 1 prepared via eq. 1 forms as yellow prismatic crystals that vary in length
from plates to columns from a mixture of greater than 99 : 1 pentane : THF when stored at
-30 °C. Two co-crystalized THF molecules per asymmetric unit could be localized with 1.

The molecular core of 1 consists of an eight-membered CusP4 ring that is capped by
a P'Bus (P5 and P6) on Cul and Cu3 (Figure 2a). Formally, 1 has 2-fold symmetry but does
not crystalize with symmetry intact. Instead, 1 adopts a chair-like configuration (Figure 2b)
in which the greatest deviations from a least-squares plane of best fit of the eight atoms in
the CuasPs core is -1.0453 (0.0007) and 0.9814 (0.0007) A, for P3 and P4 respectively. The
greatest distance from a plane of best fit consisting of the four copper atoms is -1.2939
(0.0009) A for P3.The copper atoms in 1 have alternating coordination numbers. Two-co-
ordinate Cu2 and Cu4 are approaching linear geometry P2-Cu2-P1 = 167.32(3), P3-Cu4-
P4 =173.43(2), whereas Cul and Cu3 have a nearly trigonal planar geometry (P5-Cul-P4
=129.66(3), P5-Cul-P1 =130.14(4), P6-Cu3-P2 = 132.84(3), P6-Cu3-P3 = 127.65(3). The in-
fluence of the electron rich P/Bus manifests in the increased bond length between Cul and
P1 (2.3076 (10) A) versus that of Cu2 and P1 (2.2.2272 (12) A). Both values are within the
range of previously reported p2- Cu-P bonds[5, 17]. The closest copper—copper distances
are between Cu2 and Cu4, (2.8612(13)), larger than the sum of covalent radii (2.64 A) [8].
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Figure 2. CusPs ring that is capped by a P‘Busin compound 1: (a) view from above the ring (b) view
from the side.
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Table 2. Table 1. Selected Bond Lengths (A) and Angles (deg) for Complex 1

Atom-Atom Length [A] Atom-Atom-Atom Angle [°]
Cul-P5 2.2738(10) P5-Cul-P1 130.14(4)
Cul-P1 2.3076(10) P4-Cul-P1 98.75(4)
P1-Cu2 2.2272(12) Cu2-P1-Cul 115.59(4)

Cu2—Cu4 2.8612(13) P2-Cu2-P1 167.32(3)
P2-Cu2-Cu4 96.16(2)

A complete table is provided in the supplemental information

The structure of 1 resembles Cus(u-PPhz)s(PHPh2)4 (2) described by Fenske [5]. How-
ever, in compound 2, Cul and Cu3 adopt tetrahedral geometry resulting from the coordi-
nation of two Ph2PH molecules per copper. The increased steric bulk of the P‘Bus versus
that of PhoPH provides a rationale for the observed three coordinate trigonal planar geom-
etry as only one P/Bus can coordinate to copper. The closest Cu—Cu distance in 2 is 3.17(6)
A which is larger than the corresponding distance in 1. This may be a result of 2 having a
closer to linear structure than 1 with no deviations greater than 0.2 A from the best fit plane
of the CusPs ring. Compound 1 also resembles Cus(p-PPh2)«(dppm)2 (3) (dppm = bis(di-
phenylphosphino)methane) [9] that has a CusP4 core but is not capped at Cul and Cu3 but
is instead supported by two dppm bridges between Cul-Cu2 and Cu3-Cu4. Sulfide clus-
ter (CuStBu)«(PhsP)2(4) [7] is also related, consisting of a CusSs core that is capped by PPhs
on Cul and Cu3. Similar to 1, both 3 and 4 adopt a chair-like conformation with maximum
deviations of 1.52 and 1.55 A respectively, from a plane of best fit consisting of the four
copper atoms.

Compound 1 displays evidence for dynamic behavior in solution by 'H NMR and
3P NMR spectroscopy. The tert-butyl substituents in the 'H spectrum of 1 are split into
several overlapping multiplets centered around & =1.11 and 1.28. To confirm that the mul-
tiple alkyl peaks were features of 1 in solution, and not

Compound 1 displays evidence for dynamic behavior in solution by '"H NMR and
3P NMR spectroscopy. The tert-butyl substituents in the 'H spectrum of 1 are split into
several overlapping multiplets centered around & = 1.11 and 1.28. To confirm that the mul-
tiple alkyl peaks were features of 1 in solution, and not impurities, a variable temperature
(VT) NMR experiment was performed in which 'TH NMR spectra were taken at 25 °C, 35 °C,
and 45 °C. A coalescing of the alkyl peaks was observed upon increasing the temperature
from 25 °C to 45 °C. This behavior is consistent with hindered bond rotation, slow confor-
mational change or a derivative speciation of 1 in solution under rapid exchange on the
NMR time scale [19].

Similarly, 3P NMR spectra of 1 have features that show evidence of dynamic behav-
ior. A spectrum obtained at 25 °C initially appears to have two broad singlets, but closer
inspection by enlarging the peaks reveals multiplets at & = -19.5, 60.1, and 62.3 that inte-
grate in a 1:0.15 : 1 ratio. This is unexpected because compound 1 has a 2 : 1 ratio of (p-
PPh2): (P'Bus) atoms. A second VT NMR experiment was undertaken to confirm that these
features were a result of dynamic behavior. Upon heating a benzene-ds solution of 1 to
45 °C, the signal changes from the initial 1 : 0.15 : 1 ratio to 0.67 : 0.07 : 1. Several new
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broad peaks also appear in the baseline of the spectrum obtained at 45 °C. Upon the solu- 97
tion returning to 25 °C the original features return in the same 1:0.15: 1 ratio. Thisresult 98
suggests that the multiplets are features of a derivative speciation of 1 in solution under 99
rapid exchange on the NMR time scale. Furthermore, the 1 : 0.15 : 1 ratio was preserved 100
across three trials and repeated crystallizations. 101
Finally, a 3'P HMBC NMR spectrum of 1 confirmed the shift at § =-19.53 is the signal 102
for the bridging phosphido as it is correlated only with aromatics. The signals at 8 = 62.3 103
and 60.1 are correlated with multiple alkyl peaks which identifies them as belonging to 104
PBusligand. 105
Compound 1 was found to be an active hydrophosphination catalyst. Treatment of 106
a benzene-ds solution of styrene, diphenylphosphine, and 6 mol% of 1 under 360 nm irra- 107
diation resulted in a 94% NMR conversion to the hydrophosphination product, diphe- 108
nyl(2-phenylethyl)-phosphine (5), after 24 h (eq. 4). We did not purse further hydrophos- 109

phination reactivity given this derivative compound showed no improvement in reactivity =~ 110

compared to Cu(acac)2[18]. 111
Ph 112
N 5 mol % 1 b
) + PhyPH S Eq. 4
2 360 nm @N Ph q
25-30°C 5
CeDs 94 %
24 h 115
3. Experimental details 116
3.1. General considerations 117

All manipulations were performed under a nitrogen atmosphere with dry, oxygen- 118
free solvents using an M. Braun glovebox or standard Schlenk techniques. Tetrahydrofu- 119
ran was dried over sodium/benzophenone and vacuum transferred. Benzene-ds was pur- 120
chased and then degassed and dried over 3 and 4 A molecular sieves. Diphenylphosphine 121
[20], copper(I)chloride [21], and mesitylcopper(I) [22], were synthesized according to liter- 122
ature procedures and stored under an inert atmosphere of N2 Potassium diphe- 123
nylphosphine was made by a modified literature procedure [23] in which PhPH was 124
deprotonated by KH in THF and then filtered through celite, and concentrated to dryness 125
by vacuum. All other reagents were acquired from commercial sources and dried by con- 126
ventional means, as necessary. 'H, 3C, 3P and 3P HMBC NMR spectra were recorded with 127
a Bruker AXR 500 MHz spectrometer. All 1-D 3P NMR spectra were '"H decoupled. Reso- 128
nances in 'H NMR spectra are referenced to the residual solvent resonance (CeDs =0 7.16). 129
Reported 3'P NMR resonances are relative to external 85% HsPOa. Spectral data for diphe- 130
nyl(2-phenylethyl)-phosphine is consistent with literature reports [24]. 131

3.2. Synthesis of Compound 1 132

Method A: In an N2 filled glovebox, P(‘Bu)s (51 mg, 0.25 mmol), Cu(I)Cl (25 mg, 0.25 mmol) 133
and 5 mL of cold THF (stored at -30 °C and removed immediately before use) were stirred 134
in a scintillation vial. After 30 seconds, a KPPhz (56 mg, 0.25 mmol) solution in 5 mL of 135

cold THF was added dropwise resulting in a color change to yellow. The solution was 136
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stirred for 30 min at ambient temperature, then concentrated to a yellow residue under 137
reduced pressure. The crude product was redissolved pentane and filtered through a bed 138
of Celite. The filtrate was immediately pipetted into a scintillation vial and placed in a 139
freezer at -30 °C. Crystals suitable for X-ray crystallography precipitated overnight. To 140
isolate the product for NMR the mother liquor was decanted from the precipitate, and the 141
precipitate was washed with 2 mL of cold pentane and dried in vacuo. Yield 57 mg (65%). 142
'H NMR (500 MHz, C¢Ds) & 7.97 — 7.35 (m), 7.15 — 6.75 (m), 1.36 (d, J= 11.8 Hz), 1.32 — 1.25 143
(m), 1.11 (d, J=11.8 Hz). 3'P NMR (202 MHz, CéDs) d 62.207 (m), 60.07 (m), -19.53 (m). *C 144
NMR (126 MHz, CsDe) d 142.26 (s), 135.75 (s), 135.51 (s), 126.09 (s), 125.83 (s), 125.51 (s), 145
36.01 (s), 32.26 (s), 32.20 — 31.48 (m). 146

Method B: In an N filled glovebox, P(‘Bu)s (166 mg, 0.824 mmol) and mesitylcopper(I) 147
(150 mg, 0.824 mmol) were dissolved in 2-3 mL of cold THF (-30 °C). Neat PhPH (153 mg, 148
143 pl, 0.824 mmol) was added dropwise. The resulting yellow solution was stirred for 24 149
h. (Note: subsequent trials with less concentrated solutions monitored by 3'P NMR indi- 150
cate that full conversion is reached after 4 h). The solution was then layered with ~8 mL 151
of pentane and placed in a freezer at -30 °C. After decanting the mother liquor, 107 mg (37 152
% yield) of 2 was recovered upon washing the precipitate with cold pentane and drying. 153

154
Method C: In an N2 filled glovebox, 31.5 mg PhoPH (29.5 ul, 0.170 mmol) was added drop- 155
wise at -30 °C to a scintillation vial containing a toluene solution of 15 mg (0.057 mmol) 156
Cu(acac)2 and 11.5 mg (0.057 mmol) of P(‘Bu)s. The solution allowed to warm to ambient 157
temperature and stirred for 24 h. Then the solvent was removed under reduced pressure, 158
the residue was taken up in pentane, filtered through a bed of Celite, and placed in a 159
freezer at -30 °C. The resultant precipitate was dissolved in a minimum amount of THF ~ 160
1 mL and layered with three mL of pentane and placed in the freezer again. The 10.6 mg 161
(53% yield) of solid was isolated by decanting the mother liquor, washing with cold pen- 162
tane, and drying. The '"H and 3'P NMR spectra of the compound obtained by this method 163
matched methods A and B. 164

165
Catalytic experiment: In an Nz filled dry box, 8 mg (.023 mmol, 6 mol %) of 1, 70.7 mg (66 166
ul, 0.38 mmol) diphenylphosphine and 39.5 mg (43.5 ul, 0.38 mmol) of styrene was meas- 167
ured and mixed in 0.6 mL benzene-ds. This solution was transferred to an NMR tube. Ini- 168
tial '"H and 3'P NMR spectra were obtained before placing the tube in a photoreactor con- 169
taining a Rexim G23 UV-A (9W) lamp at ambient temperature. The temperature of the 360 170
nm photoreactor was measured to be 25-30 °C, depending on how long ithad been inuse. 171
No efforts to control the temperature between this range were undertaken. Periodic 'TH 172
and 3'P NMR spectra were collected. Conversions were determined by integration of 'H 173

and 3P NMR spectra to starting materials. 174

3.3 X-Ray structure determinations 175
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Reference

X-ray diffraction data were collected on a Bruker APEX 2 CCD platform diffracto-
meter (Mo Ka (A = 0.71073 A)) at 150(2) K. A suitable yellow prismatic plate crystal of
Cus(p-PPh2)4(PBus)2, was mounted on a MiTeGen Micromount with Paratone-N cryopro-
tectant oil. The structure was solved using direct methods and standard difference map
techniques and was refined by full-matrix least-squares procedures on F2 with using the
Bruker SHELXTL Software Package [25, 26]. All non-hydrogen atoms were refined aniso-
tropically. Hydrogen atoms on carbon were included in calculated positions and were re-
fined using a riding model.

Crystal Data for Cr2HouCusPs, 2(CsHsO) (M = 1543.65 g/mol): monoclinic, space
group P2;/n (14), a=17.127(10) A, b =19.946(11) A, c = 23.841(14) A, = 105.715(7)°, V =
7840(8) A%, Z = 4, peac = 1.308 g/cm3, 90959 reflections measured (3.32° < 20 < 55.01°) (0.77
A), 17898 unique (Rint = 0.0881, Rsigma = 0.0587), which were used in all calculations. The
final R1 was 0.032 (I >20(I)) and wR2 was 0.0839 (all data). Full crystallographic information
(as CIF file) and CheckCIF report are given in the supplementary materials.

4. Conclusions

Compound 1 has been synthesized by three methods and characterized by X-ray dif-
fraction and 'H, 3'P, 13C and 3'P HMBC NMR spectroscopy. 1 has been demonstrated to be
a hydrophosphination pre-catalyst under photocatalytic conditions. Mechanistic work on

a monomeric copper phosphido for hydrophosphination is underway.

Supplementary Materials: The following are available online: 'H, 3'P, 13C and 3'P HMBC NMR spec-
tra of 1, 'H and 3'P NMR spectra of a catalytic hydrophosphination experiment, crystallographic
information file (CIF) and CheckCIF report for compound 1.
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