
SGCN: A Graph Sparsifier Based
on Graph Convolutional Networks

Jiayu Li1(B), Tianyun Zhang2, Hao Tian1, Shengmin Jin1, Makan Fardad2,
and Reza Zafarani1

1 Data Lab, EECS Department, Syracuse University, Syracuse, NY 13244, USA
{jli221,haotian,shengmin,reza}@data.syr.edu

2 EECS Department, Syracuse University, Syracuse, NY 13244, USA
{tzhan120,makan}@syr.edu

Abstract. Graphs are ubiquitous across the globe and within science
and engineering. With graphs growing in size, node classification on large
graphs can be space and time consuming, even with powerful classifiers
such as Graph Convolutional Networks (GCNs). Hence, some questions
are raised, particularly, whether one can keep only some of the edges of a
graph while maintaining prediction performance for node classification,
or train classifiers on specific subgraphs instead of a whole graph with
limited performance loss in node classification. To address these ques-
tions, we propose Sparsified Graph Convolutional Network (SGCN), a
neural network graph sparsifier that sparsifies a graph by pruning some
edges. We formulate sparsification as an optimization problem, which
we solve by an Alternating Direction Method of Multipliers (ADMM)-
based solution. We show that sparsified graphs provided by SGCN can
be used as inputs to GCN, leading to better or comparable node clas-
sification performance with that of original graphs in GCN, DeepWalk,
and GraphSAGE.

Keywords: Graph sparsification · Node classification · Graph
convolutional network

1 Introduction

Graphs have become universal and are growing in scale in many domains, espe-
cially on the Internet and social media. Addressing graph-based problems with
various objectives has been the subject of many recent studies. Examples include
studies on link prediction [16] and graph clustering [21], or node classification [2],
which is the particular focus of this study.

In node classification, one aims to classify nodes in a network by relying
on node attributes and the network structure. There are two main categories
of node classification methods: (1) methods that directly use node attributes
and structural information as features and use [local] classifiers (e.g., decision
trees) to classify nodes, and (2) random walk-based methods (often used in semi-
supervised learning), which classify nodes by determining the probability p that
c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 275–287, 2020.
https://doi.org/10.1007/978-3-030-47426-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-47426-3_22

276 J. Li et al.

a random walk starting from node vi ∈ V with label c will end at a node with the
same label c. The performance of random walk-based methods implicitly relies
on graph structural properties, e.g., degrees, neighborhoods, and reachabilities.

In recent studies, neural network classifiers [27] are widely used for both types
of methods due to their performance and flexibility. A well-established example
is the Graph Convolutional Network (GCN) [14], a semi-supervised model that
uses the whole adjacency matrix as a filter in each neural network layer.

However, there is a major difficulty faced by methods that directly use the
whole graph to extract structural information: the size of the graph. Unlike
node attributes, as a graph with n nodes grows, the size of its adjacency matrix
increases at an O(n2) rate, which introduces an unavoidable space and compu-
tational cost to classifiers. One engineering solution is to store the adjacency
matrix in a sparse matrix (i.e., save non-zeros); however, the process is still
extremely slow and requires massive storage when the graph is dense or large.

The Present Work: Sparsified Graph Convolutional Network (SGCN).
To address space and computational challenge in node classification, we explore
whether one can just rely on a subgraph instead of the whole graph, or some
edges (potentially weighted), to extract structural information. We propose Spar-
sified Graph Convolutional Network (SGCN), a neural network graph sparsifier
to prune the input graph to GCN without losing much accuracy in node classifi-
cation. We formulate graph sparsification as an optimization problem, which we
efficiently solve via the Alternating Direction Method of Multipliers (ADMM) [3].
We also introduce a new gradient update method for the pruning process of
the adjacency matrices, ensuring updates to the matrices are consistent within
SGCN layers.

To evaluate SGCN, we compare its performance with other classical graph
sparsifiers on multiple real-world graphs. We demonstrate that within a range
of pruning ratios, SGCN provides better sparsified graphs compared to other
graph sparsifiers. We also show that node classification performance using these
sparsified graphs can be better or comparable to when original graphs are used
in GCN, DeepWalk [18], and GraphSAGE [11]. In sum, our contributions can
be summarized as:

1. We propose Sparsified Graph Convolutional Network (SGCN), the first neural
network graph sparsifier aiming to sparsify graphs for node classification;

2. We design a gradient update method that ensures adjacency matrices in the
two SGCN layers are updated consistently;

3. We demonstrate the sparsified graphs from SGCN perform better in node
classification that those provided by other graph sparsifiers; and

4. We show that sparsified graphs obtained from SGCN with various pruning
ratios, if used as inputs to GCN, lead to classification performances similar
to that of GCN, DeepWalk and GraphSAGE using the whole graphs.

The paper is organized as follows. We review related work in Sect. 2. We provide
the SGCN problem definition in Sect. 3. Section 4 details the problem formula-
tion, solution, and time complexity of SGCN. We conduct experiments in Sect. 5
and conclude in Sect. 6.

SGCN: A Graph Sparsifier Based on Graph Convolutional Networks 277

2 Related Work

Graph Neural Networks. Inspired by the major success of convolutional
neural networks in computer vision research, new convolutional methods have
emerged for solving graph-based problems. There are two main types of graph
convolutional networks: spectral-based methods and spatial-based methods.

Spectral-based methods, which include GCNs [6,14], are based on spectral
graph theory. Spectral-based convolutional networks often rely on graph signal
processing and are mostly based on normalized graph Laplacian. Other examples
include the work of Bhagat et al. [17], which aims to represent a graph by
extracting its locally connected components. Another is DUIF, proposed by Geng
et al. [9], which uses a hierarchical softmax for forward propagation to maximize
modularity. One main drawback of spectral-based methods is the need to perform
matrix multiplication on the adjacency matrix, which is costly for large graphs.

Spatial-based methods focus on aggregating the neighborhood for each node.
These methods can be grouped into (1) recurrent-based and (2) composition-
based methods. Recurrent-based methods update latest node representation
using that of their neighbors until convergence [5,20]. Composition-based meth-
ods update the nodes’ representations by stacking multiple graph convolution
layers. For example, Gilmer et al. [10] develop a message passing neural net-
work to embed any existing GCN model into a message passing (the influence of
neighbors) and readout pattern. Spatial-based methods are often more flexible
and easier to apply to large networks.

Graph Sparsification. For graph sparsification, previous studies have distinct
objectives from that of ours. Generally speaking, most graph properties of a
dense graph can be approximated from its [sparsified] sparse graph. Cut sparsi-
fiers [1,8,13] ensure the total weight of cuts in the sparsified graph approximates
that of cuts in the original graph within some bounded distance. Spectral spar-
sifiers [23,24] ensure sparsified graphs preserve spectral properties of the graph
Laplacian. There are various applications for graph sparsification. Some exam-
ples include, the work of Serrano et al. [22], which aims to identity the backbone
of a network that preserves structural and hierarchical information in the origi-
nal graph; the study by Satuluri et al. [19], which applies local sparsification to
preprocess a graph for clustering; the study by Lindner et al. [15], which pro-
poses a local degree sparsifier to preserve nodes surrounding local hub nodes by
weighing edges linking to higher degree nodes more; and the work by Wilder and
Sukthankar [26], which aims to minimize divergence of stationary distribution
of a random walk while sparsifying the graph.

These studies are similar, but with different objectives from that of ours.
Instead of preserving graph properties, the neural network sparsifier proposed
in this work focuses on node classification, so that the space cost is reduced due
to sparsification, while node classification performance is maintained.

278 J. Li et al.

3 Problem Definition

Consider an undirected graph G = (V,E), its nodes V = {v1, . . . , vn}, and its
edges E = {e1, . . . , em}. Let n = |V | denote the number of nodes and m = |E|
denote the number of edges. Given adjacency matrix A of G and features for each
node v : X(v) = [x1, . . . , xk], the forward model (i.e., output) of a two-layered
graph convolutional network (GCN), as formulated by Kipf and Welling [14], is

Z(Â,W) = softmax(Â ReLU(ÂXW (0))W (1)), (1)

where Â = ˜D− 1
2 ˜A ˜D− 1

2 , ˜D = diag(
∑

j
˜Aij), ˜A = A + IN , X is the matrix

of node feature vectors X(v), and W (0) and W (1) are the weights in the first
and second layer, respectively. Functions softmax(xi) = exp(xi)/

∑

i exp(xi) and
ReLU(·) = max(0, ·) both perform entry-wise operations on their arguments.
Graph sparsification aims to reduce the number of edges |E| in the original
graph G to |Es| in a subgraph Gs, i.e., |Es| < |E|, such that subgraph Gs, when
used as input to GCN, results in similar classification performance to that of the
original graph G. In pruning, adjacency A is pruned to Ap = A−B�A, where B

is a matrix and � is Hadamard product. Thus, the new ˜A is ˜A = Ap + IN and Â
is the updated filter for Ap. We will explore how the ratio of graph sparsification
in this filter affects SGCN performance.

4 SGCN: Sparsified Graph Convolutional Networks

We first illustrate the problem formulation and solution, followed by SGCN algo-
rithm, a new gradient update method, and the SGCN time complexity analysis.

4.1 Problem Formulation and Solution

Problem Formulation. The output of graph convolutional networks in Eq. (1)
is a function of Â and W , but as Â can be written as a function of A, the out-
put can be stated as Z(A,W). For semi-supervised multiclass classification, loss
function of the neural networks is the cross-entropy error over labeled examples:

f(A,W) = −
∑

l∈YL

∑

f

Ylf ln(Zlf), (2)

where YL is the set of node indices that have labels, Ylf is a matrix of labels,
and Zlf is the output of the GCN forward model. Our aim is to achieve a sparse
graph, with weight matrices being fixed in SGCN. In the following, we will use
f(A) to present the loss function and formulate our problem as:

minimize
A

f(A),

subject to ‖A‖0 ≤ η.
(3)

SGCN: A Graph Sparsifier Based on Graph Convolutional Networks 279

For Eq. (3), we define an indicator function to replace constraint:

g(Λ) =

{

0 if ‖Λ‖0 ≤ η;
+∞ otherwise.

Therefore, Eq. (3) formulation can be rewritten as

minimize
A

f(A) + g(A). (4)

Solution. In Eq. (4), the first term f(·) is the differentiable loss function of
the GCN, while the second term g(·) is the non-differentiable indicator func-
tion; hence, problem (4) cannot be solved directly by gradient descent. To deal
with this issue, we propose to use Alternating Direction Method of Multipliers
(ADMM) to rewrite problem (4). ADMM is a powerful method for solving con-
vex optimization problems [3]. Recent studies [12,25] have demonstrated that
ADMM also works well for some nonconvex problems.

The general form of a problem solvable by ADMM is

minimize
α, β

f(α) + g(β),

subject to Pα + Qβ = r.
(5)

The problem can be decomposed to two subproblems via augmented
Lagrangian. One subproblem contains f(α) and a quadratic term of α; the other
contains g(β) and a quadratic term of β. Since the quadratic term is convex
and differentiable, the two subproblems can often be efficiently solved. Hence,
we rewrite problem (4) as

minimize
A

f(A) + g(V),

subject to A = V.
(6)

The augmented Lagrangian [3] of problem (6) is given by

Lρ

(

A, V,Λ
)

= f(A) + g(V) + Tr[ΛT (A − V)] +
ρ

2
‖(A − V)‖2F ,

where Λ is the Lagrangian multiplier (i.e., the dual variable) corresponding to
constraint A = V , the positive scalar ρ is the penalty parameter, Tr(·) is the
trace, and ‖ · ‖2F is the Frobenius norm.

By defining the scaled dual variable U = (1/ρ)Λ, the augmented Lagrangian
can be equivalently expressed in the scaled form:

Lρ

(

A, V, U
)

= f(A) + g(V) +
ρ

2
‖A − V + U‖2F − ρ

2
‖U‖2F .

When we apply ADMM [3] to this problem, we alternately update the vari-
ables according to

Ak+1 := arg min
A

Lρ

(

A, V k, Uk
)

, (7)

V k+1 := arg min
V

Lρ

(

Ak+1, V, Uk
)

, (8)

Uk+1 := Uk + Ak+1 − V k+1, (9)

280 J. Li et al.

until
‖Ak+1 − V k+1‖2F ≤ ε, ‖V k+1 − V k‖2F ≤ ε. (10)

In (7), we solve the first subproblem:

minimize
A

f ′(A) := f(A) +
ρ

2
‖A − V k + Uk‖2F . (11)

In the above problem, as the loss function f(A) and the �2-norm are differen-
tiable, we can use gradient descent to solve it. As f(A) is nonconvex with respect
to the variable A, there has been no theoretical guarantee on the convergence,
when solving problem (11). We present a method to solve (11) in Sect. 4.3.

In (8), we solve the second subproblem, which is

minimize
V

g(V) +
ρ

2
‖Ak+1 − V + Uk‖2F . (12)

As g(·) is the indicator function, problem (12) can be solved analytically [3],
where the solution is

V k+1 = ΠS(Ak+1 + Uk), (13)
where ΠS(·) is the Euclidean projection onto set S = {Λ | ‖Λ‖0 ≤ η}.

Finally, we update the scaled dual variable U according to (9). This is one
ADMM iteration. We update the variables iteratively until condition (10) is
satisfied, indicating the convergence of ADMM.

4.2 SGCN Algorithm

In the solution provided in Sect. 4.1, we need to maintain η, the number of non-
zero elements. The Euclidean projection in Eq. (13) maintains η elements in
˜Ak+1 + Uk with the largest magnitude and sets the rest to zero. This is proved
to be the optimal and the analytical solution to subproblem (12) for edge pruning
of graphs. In GCN, filters in the loss function in Eq. (2) consist of ˜D− 1

2 ˜A ˜D− 1
2 ,

where ˜A = A + IN and ˜D =
∑

j
˜Aij . Variable IN is the identity matrix and

˜A is a [modified] adjacency matrix. Variables ˜A and ˜D in each layer are fixed
and non-trainable in the original GCN. To solve graph sparsification based on
GCN and maintain classification performance, variable ˜A should be trained and
updated iteratively. As variable ˜D depends on ˜A, ˜A in the original loss function
cannot be directly differentiated. Thus, we expand the forward model into:

Z(A) = diag(
∑

j
(A + I)ij)− 1

2 (A + I)diag(
∑

j
(A + I)ij)− 1

2 XW. (14)

In Eq. (14), no variable depends on ˜A. However, we cannot still train vari-
ables A and W simultaneously as the differentiation of A depends on W and
vice versa. Hence, we first train weights variable W in SGCN. By fixing variable
W in this model, the adjacency matrix A can be regarded as a trainable vari-
able. With ADAptive Moment estimation (ADAM) optimizer, gradients of the
variable (adjacency matrix A) can be updated in SGCN. Algorithm 1 provides
the SGCN pseudo-code. We use variable A to initialize variable V in each layer
using function Initialize() and apply function Zerolike() to V to ensure
variable U has the same shape as V with all the zero elements.

SGCN: A Graph Sparsifier Based on Graph Convolutional Networks 281

Algorithm 1: The SGCN Algorithm
input : Adjacency matrix A, feature matrix X, ADMM iterations k, and

pruning ratio p% = η
|E| × 100%

output: Pruned adjacency matrix Ap

Train weight matrix W in SGCN;
for i ← 1 to the number of layers do

Vi ← Initialize(Ai);
Ui ← Zerolike(Vi);

for k ← 0 to ADMM iterations do
Solve subproblem (11) and update A’s in two layers;
for i ← 1 to the number of layers do

Update Vi’s by performing Euclidean projection (13);
Update Ui’s by performing (9);

Fetch A1 from the first layer;
Set the smallest p% of non-zero elements in A1 to zero;
Obtain a pruned adjacency matrix Ap;

4.3 Adjacency Matrix Training

When training adjacency matrix A in Algorithm 1, we should maintain the
adjacency matrices in the first and second layer consistent. To address this issue,
we propose a method to update the gradients of the adjacency matrix, when
fixing weight matrices W in the two layers. A mask m is defined using the
adjacency matrix A. As we use gradient descent, the following equation based
on Eqs. (2) and (14) can be applied to update the trainable variable (adjacency
matrix A) at each step to solve problem in Eq. (11):

Ak+1
i = Ak

i − γ(m � ∂f ′(Ak
i)

∂Ak
i

), (15)

for i = 1, . . . , n, where γ is the learning rate. In the process of updating A, we
keep the gradient matrices of the adjacency matrix symmetric in two layers and
gradients are set to zero when there are no edges between nodes. Also, diagonal
elements are zero in the gradient matrix as we only update the adjacency matrix
and consider no self-loops at each node. To maintain the adjacency matrices in
the two layers identical, we compute average gradients for the same edge in the
two adjacency matrices. We assign these average gradients to the corresponding
edges in the matrices for updating elements of the adjacency matrices.

4.4 Time Complexity Analysis

The GCN training time complexity is O(L|A0|F +LNF 2), where L is the num-
ber of layers, N is the number of nodes, |A0| is the number of non-zeros in an
adjacency matrix, and F is the number of features [4]. Hence, assuming ADMM

282 J. Li et al.

takes k iterations, the SGCN time complexity is O(kL|A0|F + kLNF 2). Com-
pared to SGCN training time complexity, the time to update variables V and
U according to Eqs. (13) and (9) is negligible. In our SGCN, k = 4 and L = 2.
Also, we need only a few iterations to solve subproblem (11), which indicates
the training time complexity of SGCN is similar to that of GCN. The time com-
plexity for the forward model in SGCN is O(|Γ |FC), where |Γ | is linear in the
number of edges and C is the dimension of feature maps. Hence, it is less than
that of GCN: O(|ε|FC), as we have |Γ | ≤ |ε|.

5 Experiments

There are two natural ways to measure the effectiveness of SGCN.

– First, is to compare the node classification performance of sparsified sub-
graphs obtained using SGCN with that of other sparsifiers. For that, we use
GCN for node classification, and compare the node classification performance
of SGCN with two well-known sparsifiers: Random Pruning (RP) sparsifier
and Spectral Sparsifier (SS). The RP removes edges uniformly at random
from a graph with some probabilities. The SS is the state of the art spectral
sparsifier [7], which sparsifies graphs in near linear-time.

– Second, is to compare the node classification performance of the sparsified
graphs compared to that of the original graphs. For that, we compare the
performance of GCN using sparsified subgraphs provided by SGCN with that
of GCN, DeepWalk, and GraphSAGE using original graphs.

5.1 Experimental Setup

Datasets. To evaluate the performance of node classification on sparsified
graphs, we conduct our experiments on four attributed graphs. These graphs
have been utilized for evaluation in previous studies and are hence used for
evaluation. All datasets are available online.1 Here, we briefly introduce these
datasets:

– CiteSeer: A citation network of publications classified into six categories.
Each publication is attributed by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from the dictionary;

– Cora: Similar to CiteSeer, a citation network with 7 categories;
– Terrorists: This dataset contains information about terrorists and their rela-

tionships. Each terrorist is described by a 0/1-valued vector providing features
of the individual; and

– Terrorist Attacks: The dataset provides information on terrorist attacks
classified into 6 different categories, while a 0/1-valued vector provides the
absence/presence of a feature.

1 http://linqs.soe.ucsc.edu/data.

http://linqs.soe.ucsc.edu/data

SGCN: A Graph Sparsifier Based on Graph Convolutional Networks 283

Preprocessing. We preprocess the data for existing node classification
models [14,28]. We split the data into 10 folds for cross validation. In each
training fold, we only select 20 instances for each label as the labeled instances.
Other instances remain unlabeled, from which we randomly select 500 instances
for validation set, which is used to train our hyper-parameters. We filter and
reorder the adjacency matrices and attribute vectors to ensure they are ordered
according to training/testing folds.

0 20 40 60 80
0.75

0.8

0.85

0.9

0.95

1

prune ratio

re
la
ti
ve

ac
cu
ra
cy

SGCN
RP

(a) Cora

0 20 40 60 80
0.85

0.9

0.95

1

prune ratio

re
la
ti
ve

ac
cu
ra
cy

SGCN
RP

(b) CiteSeer

0 20 40 60 80

0.9

0.95

1

prune ratio
re
la
ti
ve

ac
cu
ra
cy

SGCN
RP

(c) Terrorist

0 20 40 60 80
1

1.1

1.2

1.3

1.4

1.5

prune ratio

re
la
ti
ve

ac
cu
ra
cy

SGCN
RP

(d) Terrorist Attacks

Same ratio Best result

74

76

78

75.15

78.23

73.01

76.75

74.17 74.17A
cc
ur
ac
y

SGCN RP SS

(e) Cora

Same ratio Best result

67

68

69
68.5

69.55

66.86

68.71
68.32 68.32

A
cc
ur
ac
y

SGCN RP SS

(f) CiteSeer

Same ratio Best result

70

75 73.46

77.96

68.03

76.26

71.17 71.17

A
cc
ur
ac
y

SGCN RP SS

(g) Terrorist

Same ratio Best result

65

70

75

80 79.07
80.31

66.89
68.68

64.01 64.01

A
cc
ur
ac
y

SGCN RP SS

(h) Terrorist Attacks

Fig. 1. Performance of GCN using sparsified subgraphs provided by SGCN, RP, and
SS sparsifiers. SGCN outperforms all other sparsifiers across datasets. (Color figure
online)

Parameter Setup. We vary the pruning ratio (p in Algorithm 1) from 10%
to 90% in SGCN and RP. When pruning ratio is 0%, the model is the original
GCN. We use the default parameters in GCN, DeepWalk, and GraphSAGE. In
RP, we set random seeds from 0 to 9. For SGCN, we set ρ to 0.001 and the
training learning rate to 0.001. In SS, we use the default suggested parameters
for spectral sparsifier [7]. Due to obtaining 10 folds for each dataset, we run
SGCN, RP and SS, in each fold of each dataset to obtain sparsified subgraphs
and use these subgraphs as inputs for GCN.

5.2 Results and Performance Analysis

Comparing Sparsifiers. Fig. 1 provides the average performance of GCN
with sparsified subgraphs obtained from SGCN and other graph sparsifiers. In
Figs. 1(a), (b), (c) and (d), performances are provided in relative accuracy, where
accuracy is divided by the baseline: accuracy of models from GCN. In Cora

284 J. Li et al.

dataset, sparsified subgraph provided by SGCN perform better in GCN than
those provided by RP, as shown in Fig. 1(a). For CiteSeer dataset, Fig. 1(b)
shows that sparsified subgraph provided by SGCN with pruning ratios between
0% and 30%, when used as input to GCN, can yield accurate classification mod-
els. In Terrorists datasets, applying subgraphs from SGCN as inputs to GCN
can easily obtain a higher accuracy, as shown in Fig. 1(c). Finally, in Fig. 1(d),
we observe that GCN performance increases as pruning ratio increase in the
Terrorist Attack dataset. Here also SGCN provides better subgraphs than RP
does. Figures 1(e), (f), (g) and (h) illustrate the performance of GCN using sub-
graphs from SGCN, RP, and SS. We compare their best performance, and the
performance under the same pruning ratio, as for Spectral Sparsifier (SS) we
cannot set pruning ratio. The results show that subgraphs from SGCN perform
the best in node classification, and SGCN is more flexible than SS as SGCN
allows different pruning ratios.

Node Classification Performance. When using sparsified subgraphs provided
by SGCN as inputs to GCN, we obtain a node-classification model, which we
denote as SGCN-GCN. On all datasets, SGCN-GCN either outperforms other
methods or yields comparable performance using much smaller graphs. On Cora

Best result

76

78

78.4178.6

74.91

78.34

A
cc
u
ra
cy

(a) Cora
Best result

55

60

65

70 69.5568.74

64.8

55.82

A
cc
u
ra
cy

(b) CiteSeer
Best result

70

72

74

76

78
77.96

76.17

70.81

78.18

A
cc
u
ra
cy

(c) Terrorist
Best result

50

60

70

80
80.3

54.77

48.92

57.32

A
cc
u
ra
cy

SGCN-GCN

GCN
GraphSAGE
DeepWalk

(d) Terrorist Attacks

Fig. 2. The performance of SGCN-GCN, GCN, GraphSAGE, and DeepWalk. SGCN-
GCN either outperforms or is comparatively accurate, using much smaller graphs.
(Color figure online)

0 20 40 60 80
0

10

20

30

40

50

prune ratio (%)

Sp
ac
e
co
st

(K
B
s)

Cora
CiteSeer
Terrorists
Terrorists Attacks

(a) Space Cost

0 20 40 60 80

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

prune ratio (%)

T
ra
in
in
g
ti
m
e
(s
ec
on
ds
)

(b) Average Training Time

0 20 40 60 80

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

prune ratio (%)

T
ra
in
in
g
ti
m
e
(s
ec
on
ds
)

(c) Prediction Time

Fig. 3. Space and computational cost using subgraphs from SGCN as inputs to GCN

SGCN: A Graph Sparsifier Based on Graph Convolutional Networks 285

dataset (Fig. 2(a)), SGCN-GCN outperforms GraphSAGE, and has a compara-
ble performance to DeepWalk and GCN. On other datasets (Figs. 2(b), (c) and
(d)), SGCN-GCN outperforms other methods, with the exception of Terrorist
dataset (Fig. 2(c)) on which it performs similarly to DeepWalk. Therefore, even
though many edges are pruned, subgraphs provided by SGCN when used as
inputs to GCN can lead to better or comparable node classification performance
over these datasets.

Space and Computational Cost. Here, we feed the subgraphs from SGCN
as inputs to GCN and show the actual space and computational cost. The space
cost in a graph is O(|V |+ |E|). As SGCN decreases the number of edges |E|, the
space cost is obviously reduced, as shown in Fig. 3(a). Figure 3(b) and (c) show
average training and prediction times in seconds, which have declining trends
when the pruning ratio increases. Hence the proposed framework reduces space
and computational cost.

6 Conclusion

When a graph is large or dense, node classification often requires massive stor-
age or is computationally expensive. In this paper, we address this issue by
proposing the first neural network architecture that can sparsify graphs for node
classification. We propose Sparsified Graph Convolutional Network (SGCN), a
neural network sparsifier. In SGCN, we formulate sparsification as an optimiza-
tion problem and provide an ADMM-based solution to solve it. Experimental
results on real-world datasets demonstrate that the proposed framework can
sparsify graphs and its output (sparsified graphs) can be used as inputs to GCN
to obtain classification models that are as accurate as using the whole graphs.
Hence, SGCN reduces storage and computational cost with a limited loss in
classification accuracy.

References

1. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n2) time.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 47–55 (1996)

2. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks.
CoRR abs/1101.3291 (2011)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Found. Trends R© Mach. Learn. 3(1), 1–122 (2011)

4. Chiang, W., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.: Cluster-GCN: an effi-
cient algorithm for training deep and large graph convolutional networks. CoRR
abs/1905.07953 (2019)

5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. Comput. Sci. (2014)

286 J. Li et al.

6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. CoRR abs/1606.09375 (2016)

7. Feng, Z.: Spectral graph sparsification in nearly-linear time leveraging efficient
spectral perturbation analysis. In: Proceedings of the 53rd Annual Design Automa-
tion Conference, DAC 2016, pp. 57:1–57:6. ACM, New York (2016)

8. Fung, W.S., Hariharan, R., Harvey, N.J., Panigrahi, D.: A general framework for
graph sparsification. In: Proceedings of the Forty-third Annual ACM Symposium
on Theory of Computing, STOC 2011, pp. 71–80. ACM, New York (2011)

9. Geng, X., Zhang, H., Bian, J., Chua, T.: Learning image and user features for rec-
ommendation in social networks. In: IEEE International Conference on Computer
Vision (ICCV), pp. 4274–4282, December 2015

10. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. CoRR abs/1704.01212 (2017)

11. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS (2017)

12. Hong, M., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction
method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1),
337–364 (2016)

13. Karger, D.R.: Random sampling in cut, flow, and network design problems. In: Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
Montréal, Québec, Canada, 23–25 May 1994, pp. 648–657 (1994)

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR abs/1609.02907 (2016)

15. Lindner, G., Staudt, C.L., Hamann, M., Meyerhenke, H., Wagner, D.: Structure-
preserving sparsification of social networks. In: Proceedings of the IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
2015, ASONAM 2015, pp. 448–454. ACM, New York (2015)

16. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A 390(6),
1150–1170 (2011)

17. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. CoRR abs/1605.05273 (2016)

18. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710. ACM, New York
(2014)

19. Satuluri, V., Parthasarathy, S., Ruan, Y.: Local graph sparsification for scalable
clustering. In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2011, pp. 721–732. ACM, New York (2011)

20. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. Trans. Neur. Netw. 20(1), 61–80 (2009)

21. Schaeffer, S.E.: Survey: graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
22. Serrano, M.Á., Boguñá, M., Vespignani, A.: Extracting the multiscale backbone of

complex weighted networks. Proc. Nat. Acad. Sci. U.S.A. 106(16), 6483–8 (2009)
23. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. CoRR

abs/0803.0929 (2008)
24. Spielman, D.A., Teng, S.: Nearly-linear time algorithms for preconditioning and

solving symmetric, diagonally dominant linear systems. CoRR abs/cs/0607105
(2006)

25. Takapoui, R., Moehle, N., Boyd, S., Bemporad, A.: A simple effective heuristic for
embedded mixed-integer quadratic programming. Int. J. Control, pp. 1–11 (2017)

SGCN: A Graph Sparsifier Based on Graph Convolutional Networks 287

26. Wilder, B., Wilder, T.: Sparsification of social networks using random walks 2015
(2015)

27. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. CoRR abs/1901.00596 (2019)

28. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning
with graph embeddings. In: Proceedings of the 33rd International Conference on
International Conference on Machine Learning, ICML 2016, vol. 48, pp. 40–48.
JMLR.org (2016)

	SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 SGCN: Sparsified Graph Convolutional Networks
	4.1 Problem Formulation and Solution
	4.2 SGCN Algorithm
	4.3 Adjacency Matrix Training
	4.4 Time Complexity Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Results and Performance Analysis

	6 Conclusion
	References

