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Abstract
We study a mean field game system introduced by Chan and Sircar (Appl Math Optim
71:533–569, 2015) to model production of an exhaustible resource. In particular, we
study the sensitivity of the solution with respect to a parameter ε, which measures the
degree to which producers are interchangeable.We prove that on some interval [0, ε0],
where ε0 > 0, the solution is infinitely differentiable with respect to ε. The result is
based on a set of new a priori estimates for forward-backward systems of linear partial
differential equations.
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1 Introduction

Consider the following system of nonlinear partial differential equations:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) ut + σ 2

2
uxx − ru + F(t, ux ,m; ε)2 = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i) mt − σ 2

2
mxx − [F(t, ux ,m; ε)m]x = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i i) m(x, 0) = m0(x), u(x, T ) = uT (x), 0 ≤ x < ∞
(iv) u(0, t) = m(0, t) = 0, 0 ≤ t ≤ T

(1.1)

where the data consist of a parameter ε ≥ 0, a time horizon T > 0, a smooth
probability densitym0(x), a smooth function uT (x), and two positive constants σ and
r , and where F(t, ux ,m; ε) is given by

F(t, ux ,m; ε) := 1

2

(
2

2 + εξ(t)
+ εξ(t)

2 + εξ(t)

∫ ∞

0
ux (x, t)m(x, t) dx − ux (x, t)

)

(1.2)

for some fixed smooth function ξ : [0, T ] → [0, 1] such that ξ(T ) = 0. We assume
that m0 and uT satisfy zero- and first-order compatibility conditions so that solutions
of (1.1) are classical (see [17]).

System (1.1) models a particular kind of mean field game for the production of
exhaustible resources, as proposed by Chan and Sircar in [8], cf. [9, 22]. In this game,
players control the rate at which they will sell from their current stock, and they must
leave the game once that stock goes to zero. The optimal strategies are determined
by the market price. In equilibrium, the market price is determined by the average of
all the players’ strategies. When the demand depends linearly on the production rate
(or on the price offered), one can determine the equilibrium by solving System (1.1);
in particular, if (u,m) is the solution, then F(t, ux ,m; ε) gives the equilibrium rate
of production and m(x, t) gives the density of players whose remaining stock is x at
time t . The parameter ε measures the degree to which firms compete. If ε = 0, every
firm is a monopolist, while if ε is very large, all firms are nearly interchangeable in
the eyes of consumers.

Existence and uniqueness of solutions to System (1.1) has been established under
the assumptions we make in this article, thanks to the results found in [16, 17, 19], cf.
[15, 18]. In [8], Chan and Sircar proposed a numerical method to solving (1.1) that
consists of assuming the following Taylor expansion:

u(x, t) = u(0)(x, t) + εu(1)(x, t) + ε2

2
u(2)(x, t) + · · · ,

m(x, t) = m(0)(x, t) + εm(1)(x, t) + ε2

2
m(2)(x, t) + · · · .

(1.3)

Formally, u(k) and m(k) can be derived by differentiating System (1.1) k times with
respect to ε, letting ε = 0, and then solving. Notice that setting ε = 0 decouples the
system. Thus u(k) andm(k) are computed by solving two equations separately, avoiding
the computational difficulties arising from the forward/backward-in-time coupling.
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To establish rigorously the accuracy of this numerical method, one must answer the
question: is the solution to System (1.1) differentiable with respect to ε? In the present
article, we provide an affirmative answer to this question under generic assumptions on
the data. In particular, we establish that there exists ε0 > 0 small enough such that for
every k ∈ N, the solution to System (1.1) is k times differentiable with respect to ε for
0 ≤ ε ≤ ε0. See Theorem 1.1 below. More precisely, we establish that the difference
between the solution and its kth order Taylor expansion is bounded by Ckε

k+1 for
some constant Ck . On the other hand, the constants Ck that appear in our analysis
blow up very fast as k → ∞, and for this reason we conjecture that the infinite series
expansion does not in fact converge (see Remark 4.1).

While the numerical method of Chan and Sircar gives a practical application, our
work is also motivated by the theory of forward-backward linear systems of equations,
which turn out to be of fundamental importance in mean field game theory. In their
seminal work [3], Cardaliaguet et al. show that one can established well-posedness of
the master equation by the following steps: (1) solve the mean field game system, (2)
linearize the system by formally differentiating with respect to the measure variable
m, and, most crucially, (3) proving estimates on solutions to linearized systems, which
have as a corollary that the solution from step 1 is differentiable with respect to the
initial measure. We do not study the master equation in this article. However, our
sensitivity analysis follows exactly the same steps, where instead of linearizing with
respect to an infinite-dimensional measure variable, we differentiate with respect to ε.
At an abstract level, the system of linear equations we study has the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) wt + σ 2

2
wxx − rw + � + F (0)(ε)

(
G(t, wx , μ; ε) − wx

) = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i) μt − σ 2

2
μxx − (

F (0)μ
)

x =
[
� + 1

2

(
G(t, wx , μ; ε) − wx

)
m(0)

]

x
, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i i) μ(x, 0) = 0, w(x, T ) = 0, 0 ≤ x < ∞
(iv) w(0, t) = μ(0, t) = 0, 0 ≤ t ≤ T ,

(1.4)

where F (0), u(0),m(0), �, and � are given functions, and

G(wx , μ; ε) := β
(
εξ(t)

)
∫ ∞

0

(
u(0)
x μ + m(0)wx

)
dx . (1.5)

with β a known function such that β(ε) → 0 as ε → 0. Our main mathematical
contribution in this article is a set of a priori estimates on solutions to System (1.4).
(See Sect. 2.) The estimates share three types in commonwith [3,Sect. 3.3]: (1) “energy
estimates,” derived by expanding d

dt 〈w,μ〉 and using the duality between equations
(i) and (ii); (2) standard Schauder estimates on parabolic equations; and (3) estimates
onμ in the space dual to a certain Hölder space. Since the coupling depends on integral
terms involving the unknowns, the energy estimates are considerably more technical
than for standardmean field games. In particular, they require a fourth type of estimate,
namely (4) estimates on

∫ T
0

(∫∞
0 μ(x, t) dx

)2
dt ; see Sect. 2.1. Additionally, because

the boundary conditions in our model are of Dirichlet type, the estimates on μ in the
dual of a Hölder space require additional care compared to similar estimates on a torus;
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see Sect. 2.3. All of our results hold in one space dimension, on which the problemwas
originally posedbyChan andSircar (cf. [22]). In higher space dimensions, theDirichlet
boundary conditions pose an additional difficulty for the purposes of regularity, since
there would be a corner in the domain, although the interior estimates are expected to
hold as in the one-dimensional case. This is a technical aspect we do not address in
the present work.

Mean field games were introduced circa 2006 by Lasry and Lions [27] and by
Caines, Huang, and Malhamé [23]. Since then, both theory and applications have
been well-studied. For a general exposition, we refer the reader to the texts [2, 5, 6].
Economic models are a common application of mean field game theory. See e.g. the
overviews in [1, 13, 28], and for the particular example of exhaustible resource pro-
duction see [8, 9, 22]. When the equilibrium strategy depends on the distribution of
controls, as is often the case for economics applications, we give the name mean field
game of the controls [4] (or extended mean field games [12]) to the resulting math-
ematical model. The theory of partial differential equations for mean field games of
controls has been developed in [4, 12, 14, 20, 24, 25]. The present work is, to the best
of our knowledge, the first study of parameter sensitivity for a mean field game of
controls. Some of the estimates presented here will be useful in a forthcoming study
of the master equation for a mean field game of controls with absorbing boundary
conditions [21].

The remainder of this article is organized as follows. In the rest of this introduction,
we define some notation and present the main result. Section 2 is the core of the paper
and provides a priori estimates on systems of equations with the abstract form (1.4).
In Sect. 3 we prove existence and uniqueness of solutions to (1.4). Finally, in Sect. 4,
we prove the main result.

1.1 Notation

Throughout this manuscript, L p(D) (1 ≤ p ≤ ∞) will denote the usual Lebesgue
space on a domain D with standard norm, denoted either by ‖·‖L p(D) or simply ‖·‖p.
We will often consider the space-time domain D = (0,∞) × [0, T ], on which we
consider the space L p

t L
q
x of functions f = f (x, t) such that the map t 
→ ‖ f (·, t)‖q

is in L p(0, T ). The norm is given by

‖ f ‖L p
t L

q
x

= ∥
∥t 
→ ‖ f (·, t)‖q

∥
∥
p
. (1.6)

For α ∈ (0, 1) the space Cα = Cα ([0,∞)) denotes the space of Hölder continuous
functions u such that the following norm is finite:

‖u‖Cα := ‖u‖∞ + sup

{ |u(x) − u(y)|
|x − y|α : x, y ≥ 0, x �= y

}

. (1.7)
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If k is an integer, Ck+α = Ck+α ([0,∞)) denotes the space of k times differentiable

functions u such that dku
dxk

∈ Cα . It is a Banach space with the norm

‖u‖Ck+α =
∥
∥
∥
∥
dku

dxk

∥
∥
∥
∥Cα

+ ‖u‖∞ , (1.8)

which by standard interpolation results is equivalent to the norm
∥
∥
∥ dku
dxk

∥
∥
∥Cα

+
∑k−1

j=0

∥
∥
∥ d j u
dx j

∥
∥
∥∞.

For α, β ∈ (0, 1) the space Cα,β = Cα,β ([0,∞), [0, T ]) denotes the space of all
Hölder continuous functions u such that the following norm is finite:

‖u‖Cα,β := ‖u‖∞ + sup

{ |u(x, t) − u(y, s)|
|x − y|α + |t − s|β : x, y ≥ 0, t, s ∈ [0, T ], x �= y, t �= s

}

.

(1.9)

If j, k are integers, we can also define C j+α,k+β analogously. In particular, the space
C2+α,1+α/2 denotes the standard Hölder space for parabolic equations (cf. [26]); its
norm can be written

‖u‖C2+α,1+α/2 = ‖u‖∞ +
∥
∥
∥
∥
∂u

∂t

∥
∥
∥
∥Cα,α/2

+
∥
∥
∥
∥
∂2u

∂x2

∥
∥
∥
∥Cα,α/2

. (1.10)

Given any function f (x, t; ε), we denote the k-th partial derivative of f (x, t; ε) with
respect to ε by

f (k) = f (k)(x, t; ε) := ∂k

∂εk
[ f (x, t; ε)] , (1.11)

with the convention that f (0) = f .
In studying System (1.4), we will frequently suppress notation and write

G(ux ,m; ε), G(ε), or even G to denote G(t, ux ,m; ε), provided that no ambigu-
ity arises. Analogous statements hold for other functionals that depend on multiple
arguments.

1.2 Statement of theMain Result

Throughout this paper, we assume that conditions hold on the data so that System
(1.1) has a unique solution (u,m) satisfying u,m ∈ C2+α,1+α/2 for some α ∈ (0, 1).
Sufficient conditions are provided in [17], cf. [16]. We will denote this solution by
(u(0),m(0)). In addition to smoothness, we will also need to assume the initial density
m0 has finite first moment

∫∞
0 xm0(x) dx < ∞.
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Formally, if we differentiate (1.1) k times with respect to ε, we obtain the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) u(k)
t + σ 2

2
u(k)
xx − ru(k) + Jk

(
x, t, u(k)

x ,m(k); ε
) = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i) m(k)
t − σ 2

2
m(k)

xx − (Kk)x
(
x, t, u(k)

x ,m(k); ε
) = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i i) m(k)(x, 0) = 0, u(k)(x, T ) = 0, 0 ≤ x < ∞
(iv) u(k)(0, t) = m(k)(0, t) = 0, 0 ≤ t ≤ T ,

(1.12)

where

Jk
(
x, t, u(k)

x ,m(k); ε
) :=

k∑

j=0

(
k

j

)

F ( j)(x, t, u( j)
x ,m( j); ε

)
F (k− j)(x, t, u(k− j)

x ,m(k− j); ε
)

(1.13)

and

Kk
(
x, t, u(k)

x ,m(k); ε
) :=

k∑

j=0

(
k

j

)

F ( j)(x, t, u( j)
x ,m( j); ε

)
m(k− j)(x, t). (1.14)

For clarity, we note that the full expression for F (k) is given by

F (k)(x, t, u(k)
x ,m(k); ε

) = 1

2
ξ(t)kα(k)(εξ(t)) − 1

2
u(k)
x (x, t)

+ 1

2

k∑

i=0

k−i∑

j=0

(
k

i

)(
k − i

j

)

ξ(t)iβ(i)(εξ(t)
)
∫ ∞

0
u( j)
x (x, t)m(k−i− j)(x, t) dx,

(1.15)

where

α(ε) := 2

2 + ε
and β(ε) := ε

2 + ε
, (1.16)

so that for k ∈ N with k ≥ 1,

α(k)(ε) = 2(−1)kk!
(2 + ε)k+1 and β(k) = −α(k). (1.17)

The reader may wonder why, in writing F (k), Jk , and Kk , we have suppressed the
arguments u( j) and m( j) for j < k. This is because we will be arguing inductively
as follows: to prove that u(k) and m(k) exist, we may assume that u( j) and m( j) are
known functions for j < k.

We now state our main result.
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Theorem 1.1 There exists ε0 > 0 small enough (see Equation (2.5)) such that for each
k ∈ N and all ε ∈ [0, ε0], System (1.12) has a unique classical solution (u(k),m(k)),
which satisfies the identity

(u(k),m(k)) =
(∂ku

∂εk
,
∂km

∂εk

)
(1.18)

where (u,m) is the solution to (1.1). That is, the formal differentiation carried out on
u and m to obtain System (1.12) is justified. Moreover, there exists a constant Ck > 0
such that for ε ∈ [0, ε0],

∥
∥
∥u(·, ·; ε) −∑k

j=0
ε j

j ! u
( j)(·, ·; 0)

∥
∥
∥C2+α,1+α/2

≤ Ckε
k+1,

∥
∥
∥m(·, ·; ε) −∑k

j=0
ε j

j !m
( j)(·, ·; 0)

∥
∥
∥C2+α,1+α/2

≤ Ckε
k+1,

(1.19)

where α is sufficiently small.

2 A Priori Estimates

In this section we present our main mathematical contribution by proving new a priori
estimates for a coupled forward-backward system of linear partial differential equa-
tions (1.4). It turns out that a useful first step for such systems is to prove “energy
estimates,” which are derived by expanding d

dt 〈w,μ〉 and using the duality between
equations (i) and (ii). However, because of the integral term G appearing in (1.4),
the energy estimates are not useful without certain a priori estimates on the quan-
tity

∫ T
0 (μ(x, t) dx)2 dt , where μ is the solution to the Fokker–Planck type equation

(1.4)(ii). We derive these estimates first in Sect. 2.1, which may have independent
interest to the reader interested in Fokker–Planck equations with a source. Section 2.2
then provides the desired energy estimates, which we apply throughout the rest of the
section. In Sect. 2.3 we arrive at further estimates for the Fokker–Planck equation in
the dual to a Hölder space. Finally, in Sect. 2.4 we give a priori estimates that establish
full parabolic regularity.

2.1 A Priori Estimates on Fokker–Planck Equations with a Source

In this subsection, we collect some estimates on the Fokker–Planck equation (1.4)(ii),
in particular with respect to the L1 norm and first moment in the space variable. These
results have very little to do with the particular structure of the coupled system (1.4)
and can be stated abstractly for a Fokker–Planck equation with a source. The proofs
of these results are given in Appendix A.
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Proposition 2.1 Let μ solve

⎧
⎪⎪⎨

⎪⎪⎩

(i) μt − σ 2

2
μxx − (bμ)x = νx , 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i) μ(x, 0) = μ0(x), 0 ≤ x < ∞
(i i i) μ(0, t) = 0, 0 ≤ t ≤ T ,

(2.1)

where μ0 ∈ L1([0,∞)), b ∈ L∞([0,∞) × [0, T ]) and ν ∈ L∞
t

([0, T ]; L1
x

([0,∞)
))

are known functions. Additionally, assume xμ0 ∈ L1([0,∞)) and xν ∈ L∞
t

([0, T ];
L1
x

([0,∞)
))
. Then

(a) μ ∈ L∞
t

([0, T ]; L1
x

([0,∞)
))

with

‖μ‖L∞
t (L1

x )
≤ C

(
‖μ0‖L1 + ‖ν‖L∞

t (L1
x )

)
,

where the constant C ∈ (0,∞) depends only on σ , ‖b‖∞, and T ;
(b) and

sup
0≤τ≤T

∫ ∞

0
x |μ(x, τ )| dx ≤ C

( ‖(1 + x)μ0‖L1 + ‖ν‖L∞
t (L1

x )
+ ‖xν‖L∞

t (L1
x )

)
,

where the constant C ∈ (0,∞) depends only on σ and ‖b‖∞, and T .

Proof See Appendix A.1. �


The following proposition could be stated for an abstract Fokker–Planck equation
like (2.1); nevertheless, it is given in the form below to make it more obvious how it
may be applied later on.

Proposition 2.2 Define the constant

C0 := 384c′ ln(2)
(
1 +

∥
∥
∥u(0)

x

∥
∥
∥
2

∞
)3

, (2.2)

where c′ is as in (A.5), and suppose μ satisfies (i i) of System (1.4) with� ∈ L∞
t (L1

x ).
If λ > C0, then

∫ T

0
e−λt

(∫ ∞

0
|μ| dx

)2

dt ≤
C1 ‖�‖2

L∞
t (L1

x )

C0
+ C2

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dx dt,

(2.3)

where the constants C1,C2 ∈ (0,∞) depend only on
∥
∥
∥u

(0)
x

∥
∥
∥∞.
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In particular, if T < ∞, then there is no restriction on λ, and for λ ∈ (0,C0],
∫ T

0
e−λt

(∫ ∞

0
|μ| dx

)2

dt ≤
C1 ‖�‖2

L∞
t (L1

x )
e2C0T

C0

+C2e
2C0T

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dx dt, (2.4)

with C1 and C2 as in (2.3).

Proof See Appendix A.1. �


2.2 Energy Estimates

By energy estimateswemean specifically an estimate on thequantity
∫ T
0 e−r t

∫∞
0 |wx |2

m(0) dx dt . Before stating our result, we first define an upper bound on the parameter
ε that we will need in the proof. With β as in (1.16) and C0 as in (2.2), let ε0 > 0 be
such that

β(ε0) <
1 + 3

∥
∥
∥u

(0)
x

∥
∥
∥
2

∞
96e2C0T

( ∥
∥F (0)

∥
∥2∞ + 3

4

∥
∥
∥u

(0)
x

∥
∥
∥
2

∞

) and β(ε0) <
1

10
. (2.5)

Note that such a ε0 is possible to obtain, because limε→0+ β(ε) = 0. The necessity
of this assumption is a consequence of the method of proof for the energy estimate.
Specifically, the upper bounds are motivated by (2.16), (2.17), and the value ofC2, the
constant appearing in Proposition 2.2—see the proof of Proposition 2.2 for an explicit
value.

Proposition 2.3 Suppose (w,μ) satisfies (1.4) with � ∈ L∞ and � ∈ L∞
t (L1

x ). Let
ε0 satisfy (2.5). Then for ε ∈ [0, ε0] the following energy estimate is valid

∫ T

0
e−r t

∫ ∞

0
|wx |2m(0) dx dt ≤ C1 ‖�‖L∞

t (L1
x )

‖wx‖∞

+C2

(
‖�‖2L∞

t (L1
x )

+ ‖�‖∞
)
, (2.6)

whereC1 ∈ (0,∞) is a constant that depends only on r; andC2 ∈ (0,∞) is a constant

that depends only on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , r , and T . As an immediate corollary,

∫ T

0

∫ ∞

0
|wx |2m(0) dx dt ≤ C ′

1 ‖�‖L∞
t (L1

x )
‖wx‖∞ + C ′

2

(
‖�‖2L∞

t (L1
x )

+ ‖�‖∞
)
,

(2.7)

with C ′
1 = erT C1 and C ′

2 = erT C2.
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Proof We begin by observing

d

dt

∫ ∞

0
e−r twμ dx =

∫ ∞

0
e−r t

((
wt − rw

)
μ − wμt

)
dx (2.8)

=
∫ ∞

0
e−r t

{

μ
(−σ 2

2
wxx − F (0)(G − wx ) − �

)

+ w
(σ 2

2
μxx + [

F (0)μ
]

x +
[
� + 1

2
(G − wx )m

(0)
]

x

)}

dx

= −e−r t
∫ ∞

0

(
F (0)Gμ + �μ + �wx + 1

2
wx (G − wx )m

(0)
)
dx .

The first equality follows via differentiation under the integral sign, the second equality
follows from substituting in the equations for wt − rw and μt given by System (1.4),
and the last equality follows via integration by parts. Next, unpacking G, (2.8) implies

− d

dt

∫ ∞

0
e−r twμ dx = e−r tβ(εξ)

(∫ ∞

0
F (0)μ dx

)(∫ ∞

0

(
wxm

(0) + u(0)
x μ

)
dx

)

(2.9)

+ e−r t
∫ ∞

0

(
�μ + �wx

)
dx − 1

2
e−r t

∫ ∞

0
w2
xm

(0) dx

+ 1

2
e−r tβ(εξ)

(∫ ∞

0
wxm

(0) dx

)(∫ ∞

0

(
wxm

(0) + u(0)
x μ

)
dx

)

.

We then have the following three estimates. First,

(∫ ∞

0
F (0)μ dx

)(∫ ∞

0

(
wxm

(0) + u(0)
x μ

)
dx

)

(2.10)

=
(∫ ∞

0
F (0)μ dx

)(∫ ∞

0
wxm

(0) dx

)

+
(∫ ∞

0
F (0)μ dx

)(∫ ∞

0
u(0)
x μ dx

)

≤
(∫ ∞

0
F (0)μ dx

)2

+ 1

2

(∫ ∞

0
wxm

(0) dx

)2

+ 1

2

(∫ ∞

0
u(0)
x μ dx

)2

≤
( ∥
∥
∥F (0)

∥
∥
∥
2

∞ + 1

2

∥
∥
∥u(0)

x

∥
∥
∥
2

∞

)(∫ ∞

0
|μ| dx

)2

+ 1

2

∫ ∞

0
w2
xm

(0) dx,

where the first inequality follows by two applications of Young’s inequality, and the
last inequality via the Cauchy–Schwarz inequality. Second, let δ > 0 to be chosen
later. Then

∫ ∞

0

(
�μ + �wx

)
dx ≤ ‖�‖∞

∫ ∞

0
|μ| dx + ‖�‖L1

x
‖wx‖∞ (2.11)

≤ 1

2δ
+ δ

2
‖�‖2∞

(∫ ∞

0
|μ| dx

)2

+ ‖�‖L1
x
‖wx‖∞ .
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The last inequality above follows from a generalized Young’s inequality. Third and
last,

(∫ ∞

0
wxm

(0) dx

)(∫ ∞

0

(
wxm

(0) + u(0)
x μ

)
dx

)

(2.12)

=
(∫ ∞

0
wxm

(0) dx

)2

+
(∫ ∞

0
wxm

(0) dx

)(∫ ∞

0
u(0)
x μ dx

)

≤
∫ ∞

0
w2
xm

(0) dx + 1

2

(∫ ∞

0
wxm

(0) dx

)2

+ 1

2

(∫ ∞

0
u(0)
x μ dx

)2

≤ 3

2

∫ ∞

0
w2
xm

(0) dx + 1

2

∥
∥
∥u(0)

x

∥
∥
∥
2

∞

(∫ ∞

0
|μ| dx

)2

.

Thefirst inequality followsvia theCauchy–Schwarz inequality andYoung’s inequality.
The last inequality follows via another application of the Cauchy–Schwarz inequality.
Together with (2.9), the above three estimates imply

− d

dt

∫ ∞

0
e−r twμ dx ≤ e−r t

(

β(εξ)
( ∥
∥
∥F (0)

∥
∥
∥
2

∞ + 3

4

∥
∥
∥u(0)

x

∥
∥
∥
2

∞

)
+ δ

2
‖�‖∞

)(∫ ∞

0
|μ| dx

)2

(2.13)

+ 1

2
e−r t

(5

2
β(εξ) − 1

) ∫ ∞

0
w2
xm

(0) dx + e−r t
( 1

2δ
+ ‖�‖L1

x
‖wx‖∞

)
.

To make future calculations less cluttered define

f (t) := 2β(εξ)
( ∥
∥
∥F (0)

∥
∥
∥
2

∞ + 3

4

∥
∥
∥u(0)

x

∥
∥
∥
2

∞

)
+ δ ‖�‖∞ . (2.14)

Now, because w(x, T ) = μ(x, 0) = 0, integrating the left-hand side of (2.13) in time
and rearranging the inequality, we obtain

∫ T

0

(
1 − 5

2
β(εξ)

)
e−r t

∫ ∞

0
w2
xm

(0) dx dt ≤
∫ T

0
f (t)e−r t

(∫ ∞

0
|μ| dx

)2

dt

+
∫ T

0
e−r t

(1

δ
+ 2 ‖�‖L1

x
‖wx‖∞

)
dt,

(2.15)

Note that β(εξ), and subsequently f (t), converges to 0 uniformly in t as ε and δ go
to 0. Let δ1 > 0 to be determined shortly. We can take ε and δ small enough such that

β(εξ) <
δ1

4
( ∥
∥F (0)

∥
∥2∞ + 3

4

∥
∥
∥u(0)

x

∥
∥
∥
2

∞

) and δ <
δ1

2 ‖�‖∞
. (2.16)
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That is, ‖ f ‖L∞
t

< δ1 for ε and δ small enough. Consequently, by Proposition 2.2,

∫ T

0

(
1 − 5

2
β(εξ) − δ1C2

)
e−r t

∫ ∞

0
w2
xm

(0) dx dt (2.17)

≤ δ1C1 ‖�‖2L∞
t (L1

x )
+
∫ T

0
e−r t

(1

δ
+ 2 ‖�‖L1

x
‖wx‖∞

)
dt,

for some constants C1,C2 ∈ (0,∞) which depend only on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , and T . We

now choose δ1 < 1/(4C2). If necessary, we may take ε smaller so that β(εξ) < 1/10
as well. This, together with (2.16), demonstrates that by choosing ε0 as in Equation
(2.5), we find for all ε ∈ [0, ε0] that

1 − 5

2
β(εξ) − δ1C2 <

1

2
. (2.18)

Subsequently,

∫ T

0
e−r t

∫ ∞

0
w2
xm

(0) dx dt ≤
C1 ‖�‖2

L∞
t (L1

x )

2C2

+2
∫ T

0
e−r t

(1

δ
+ 2 ‖�‖L1

x
‖wx‖∞

)
dt .

(2.19)

To clean things up, the restriction on δ1 implies δ < 1/
(
8C2 ‖�‖∞

)
, and we can

restrict δ from below so that δ > 1/
(
16C2 ‖�‖∞

)
. As such, we find that

∫ T

0
e−r t

∫ ∞

0
w2
xm

(0) dx dt ≤
C1 ‖�‖2

L∞
t (L1

x )

2C2

+32C2 ‖�‖∞ r−1 + 4r−1 ‖�‖L∞
t (L1

x )
‖wx‖∞ ,

(2.20)

after estimating
∫ T
0 e−r t dt ≤ r−1. This yields the desired result. �


As a consequence of the above energy estimate, we find that the maximum of w is
controlled partially by the square root of the maximum of wx .

Corollary 2.4 Suppose (w,μ) satisfies System (1.4) with � ∈ L∞ and � ∈ L∞
t (L1

x ).
Let ε0 satisfy (2.5). Then for ε ∈ [0, ε0],

|w(x, t)| ≤ C1κ
(
1 + ‖wx‖∞

)1/2 + C2 ‖�‖∞ for all x, t ∈ [0,∞) × [0, T ],
(2.21)

whereC1 ∈ (0,∞) is a constant depending only on
∥
∥
∥u

(0)
x

∥
∥
∥∞,σ , r , and T ;C2 ∈ (0,∞)

is a constant depending only on r, and T ; and κ ∈ [0,∞) is a constant depending

123



Applied Mathematics & Optimization             (2022) 86:2 Page 13 of 52     2 

solely on ‖�‖L∞
t (L1

x )
and ‖�‖∞ in such a way that κ = 0 whenever ‖�‖L∞

t (L1
x )

=
‖�‖∞ = 0.

Proof Begin by defining

f (t) :=
∥
∥
∥F (0)

∥
∥
∥∞ β(εξ)

∫ ∞

0

∣
∣
∣wxm

(0) + u(0)
x μ

∣
∣
∣ dx . (2.22)

System (1.4) implies

|[| 2]wt + σ 2

2
wxx − rw − F (0)wx ≤ f (t) + ‖�‖∞ . (2.23)

Set

v(x, t) := e−r tw(x, t) −
∫ T

t
e−rs( f (s) + ‖�‖∞

)
ds, (2.24)

and hence (2.23) implies

vt + σ 2

2
vxx − F (0)vx ≥ 0. (2.25)

Using the standard maximum principle on v, we find that

e−r tw(x, t) ≤
∫ T

0
e−rs( f (s) + ‖�‖∞

)
ds. (2.26)

A similar argument, where we define

v(x, t) := e−r tw(x, t) +
∫ T

t

(
f (s) + ‖�‖∞

)
ds (2.27)

instead, shows that

e−r tw(x, t) ≥ −
∫ T

0
e−rs( f (s) + ‖�‖∞

)
ds. (2.28)

As such,

|[| 2]e−r tw(x, t) ≤
∫ T

0
e−rs( f (s) + ‖�‖∞

)
ds for all (x, t) ∈ [0,∞) × [0, T ].

(2.29)
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Using several careful applications of the Cauchy–Schwarz inequality we estimate

∫ T

0
e−rs f (s) ds ≤

∥
∥
∥F (0)

∥
∥
∥∞

(∫ T

0
e−rs

∫ ∞

0
|[| 2]wxm

(0) dx ds

+
∫ T

0
e−rs

∫ ∞

0
|[| 2]u(0)

x μ dx ds

)

(2.30)

≤
∥
∥
∥F (0)

∥
∥
∥∞

∫ T

0
e−rs

(∫ ∞

0
w2
xm

(0) dx

)1/2(∫ ∞

0
m(0) dx

)1/2

ds

+
∥
∥
∥F (0)

∥
∥
∥∞

(∫ T

0
e−rs ds

)1/2(∫ T

0
e−rs

(∫ ∞

0
|[| 2]u(0)

x μ dx

)2

ds

)1/2

≤
∥
∥
∥F (0)

∥
∥
∥∞

∫ T

0
e−rs

(∫ ∞

0
w2
xm

(0) dx

)1/2

ds

+
∥
∥
∥F (0)

∥
∥
∥∞

∥
∥
∥u(0)

x

∥
∥
∥∞ r−1/2

(∫ T

0
e−rs

(∫ ∞

0
|μ| dx

)2

ds

)1/2

≤
∥
∥
∥F (0)

∥
∥
∥∞

(∫ T

0
e−rs ds

)1/2(∫ T

0
e−rs

∫ ∞

0
w2
xm

(0) dx ds

)1/2

+
∥
∥
∥F (0)

∥
∥
∥∞

∥
∥
∥u(0)

x

∥
∥
∥∞ r−1/2

(

C1‖�‖2L∞
t (L1

x )

+ C2

∫ T

0
e−rs

∫ ∞

0
w2
xm

(0) dx ds

)1/2

≤ C

(

‖�‖2L∞
t (L1

x )
+
∫ T

0
e−rs

∫ ∞

0
w2
xm

(0) dx ds

)1/2

.

Note that the fourth inequality follows from Proposition 2.2, so that C1,C2 ∈ (0,∞)

are constants that depend only on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , and T . Also, the constant C can be

given by

C :=
∥
∥
∥F (0)

∥
∥
∥∞ r−1/2

(
1 +

∥
∥
∥u(0)

x

∥
∥
∥∞ (C1 + C2)

1/2
)
. (2.31)

Therefore, combining this estimate with (2.29) we obtain

|w(x, t)| ≤ CerT
(

‖�‖2L∞
t (L1

x )
+
∫ T

0
e−rs

∫ ∞

0
w2
xm

(0) dx ds

)1/2

+ r−1erT ‖�‖∞

(2.32)

for all (x, t) ∈ [0,∞)×[0, T ]. Now, using the energy estimate, established in Propo-

sition 2.3, there exist constants C3,C4 ∈ (0,∞), depending only on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , r ,
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and T such that for κ ′ := ‖�‖2
L∞
t (L1

x )
+ ‖�‖∞,

|w(x, t)| ≤ CerT
(

‖�‖2L∞
t (L1

x )
+ C3κ

′ + C4 ‖�‖L∞
t (L1

x )
‖wx‖∞

)1/2 + r−1erT ‖�‖∞
(2.33)

≤ C
(

‖�‖2L∞
t (L1

x )
+ C3κ

′ + C4 ‖�‖L∞
t (L1

x )

)1/2(
1 + ‖wx‖∞

)1/2

+ r−1erT ‖�‖∞

for all (x, t) ∈ [0,∞) × [0, T ], which is the desired result. �


2.3 Estimates in the Dual of C1+˛

In this subsection we want to provide a priori estimates on μ, the solution to (ii) of
System (1.4), in the space

Cα/4([0, T ]; (C1+α)∗) (2.34)

for a given α ∈ (0, 1). Such estimates are required to deduce the time-regularity of
integral terms involving μ. We first use duality methods to obtain estimates on μ in
the space

Cα/4([0, T ]; (C1+α� )∗), (2.35)

where C1+α� is the space of all φ ∈ C1+α such that φ(0) = 0. These estimates rely on
corresponding estimates for the primal problem, which are found in Appendix A.2.

Proposition 2.5 Let (w,μ) satisfy (1.4). Let ε0 satisfy (2.5). Then for ε ∈ [0, ε0] there
exists a constant κ ∈ [0,∞) and a constant C ∈ (0,∞), depending exclusively on∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , λ, α, and T , such that

‖μ‖Cα/4([0,T ]; (C1+α� )∗) ≤ Cκ
(
1 + ‖wx‖∞

)1/2
. (2.36)

Moreover, the constant κ depends solely on ‖�‖L∞
t (L1

x )
and ‖�‖∞ in such a way that

κ = 0 whenever ‖�‖L∞
t (L1

x )
= ‖�‖∞ = 0.

Proof Fix some t1 ∈ [0, T ]. Consider the dual PDE to μ,

⎧
⎪⎨

⎪⎩

−ψt − σ 2

2 ψxx + F (0)ψx + λψ = 0, (x, t) ∈ [0,∞) × [0, t1]
ψ(x, t1) = ϕ(x) ∈ C1+α� ([0,∞)), x ∈ [0,∞)

ψ(0, t) = 0, t ∈ [0, t1],
(2.37)

for some λ > 0. By Lemma A.2, we have

‖ψ‖C1+α,α/2 , ‖ψ‖Cα/4
(
[0,T ];C1+α/2(D)

) ≤ C0 ‖φ‖C1+α (2.38)
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for some constant C0 depending only on λ, α, and
∥
∥F (0)

∥
∥∞.

We write ψ̃(x, t) := e−λtψ(x, t), so that the above equation implies

− ψ̃t − σ 2

2
ψ̃xx + F (0)ψ̃x = 0. (2.39)

We observe that

d

dt

∫ ∞

0
ψ̃(x, t)μ(x, t) dx =

∫ ∞

0

(
ψ̃tμ + ψ̃μt

)
dt

=
∫ ∞

0

(− σ 2

2
ψ̃xx + F (0)ψ̃x

)
μ dx

+
∫ ∞

0
ψ̃

(
σ 2

2
μxx + [

F (0)μ
]

x +
[
� + 1

2
(G − wx )m

(0)
]

x

)

dx

= −
∫ ∞

0
ψ̃x

(
� + 1

2
(G − wx )m

(0)
)
dx . (2.40)

The first equality follows via differentiation under the integral sign, the second equality
follows from substituting in the equations for ψ̃t and μt , and the last equality follows
via integration by parts. Consequently, with t2 ∈ [0, t1] arbitrary, we have
∫ ∞

0
ψ̃(x, t1)μ(x, t1) dx −

∫ ∞

0
ψ̃(x, t2)μ(x, t2) dx (2.41)

= −
∫ t1

t2

∫ ∞

0
ψx e

−λt
(
� + 1

2
(G − wx )m

(0)
)
dx dt

≤ ‖ψx‖∞
∫ t1

t2

∫ ∞

0
e−λt |[| 2]� + 1

2
(G − wx )m

(0) dx dt

≤ C0 ‖ϕ‖C1+α

∫ t1

t2
e−λt(η1(t) + η2(t)

)
dt,

where we have used (2.38), and where

η1(t) :=
∫ ∞

0
|�| dx and η2(t) := 1

2

∫ ∞

0
|G − wx |m(0) dx . (2.42)

By assumption and the fact that e−λt ∈ Cα/2([0, T ]), we find
∫ t1

t2
e−λtη1(t) dt ≤ 1

λ
‖�‖L∞

t (L1
x )

∣
∣e−λt1 − e−λt2

∣
∣ ≤ C1 ‖�‖L∞

t (L1
x )

|t1 − t2|α/2,

(2.43)

where the constant C1 depends on λ and α.
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Turning our attention now to η2, we first use the Cauchy–Schwarz inequality to
write

∫ t1

t2
e−λtη2(t) dt ≤

(∫ t1

t2
e−λtη2(t)

2 dt

)1/2(∫ t1

t2
e−λt dt

)1/2

. (2.44)

Then η2(t)2 can be estimated in the following way.

η2(t)
2 ≤ 1

4

(∫ ∞

0
|u(0)

x μ| dx + 2
∫ ∞

0
|wx |m(0) dx

)2

≤ 1

2

(∫ ∞

0
|u(0)

x μ| dx
)2

+ 2

(∫ ∞

0
|wx |m(0) dx

)2

≤ 1

2

∥
∥
∥u(0)

x

∥
∥
∥∞

(∫ ∞

0
|μ| dx

)2

+ 2
∫ ∞

0
w2
xm

(0) dx .

Thefirst inequality follows fromacombinationof using the triangle inequality, unpack-
ing the definition of G, and recalling that

∫∞
0 m(0) dx ≤ 1. The second inequality uses

the fact that
(∑n

k=1 xk
)2 ≤ n

∑n
k=1 x

2
k . The third inequality is a consequence of the

Cauchy–Schwarz inequality. Using this initial estimate on η2, we find that

∫ t1

t2
e−λtη2(t)

2 dt ≤ 1

2

∥
∥
∥u(0)

x

∥
∥
∥∞

∫ t1

t2
e−λt

(∫ ∞

0
|μ| dx

)2

dt + 2
∫ t1

t2
e−λt

∫ ∞

0
w2
xm

(0) dx dt

(2.45)

≤ C2κ
′ + C3 ‖�‖L∞

t (L1
x )

‖wx‖∞

where the constants C2,C3 ∈ (0,∞) depend only on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , λ, and T , and we

define

κ ′ := ‖�‖∞ + ‖�‖2L∞
t (L1

x )
. (2.46)

The second inequality in (2.45) is a consequence of Proposition 2.2, followed by an
application of Proposition 2.3. Returning to (2.44), it follows that

∫ t1

t2
e−λtη2(t) dt ≤

(
C2κ

′ + C3 ‖�‖L∞
t (L1

x )
‖wx‖∞

)1/2
(∫ t2

t1
e−λt dt

)1/2

(2.47)

≤ C1

(
C2κ

′ + C3 ‖�‖L∞
t (L1

x )
‖wx‖∞

)1/2|t1 − t2|1/2
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with C1 as in (2.43). Hence (2.41) and the two estimates in (2.43) and (2.47) show
that
∫ ∞

0
ψ̃(x, t1)μ(x, t1) dx −

∫ ∞

0
ψ̃(x, t2)μ(x, t2) dx

≤ C
((

κ ′ + ‖�‖L∞
t (L1

x )

)1/2 + ‖�‖L∞
t (L1

x )

)(
1 + ‖wx‖∞

)1/2|t1 − t2|α/2 ‖ϕ‖C1+α� ,

(2.48)

where

Cα := C0C1
(
(C2 + C3)

1/2 + 1
)
. (2.49)

Now, call

κ := (
κ ′ + ‖�‖L∞

t (L1
x )

)1/2 + ‖�‖L∞
t (L1

x )
, (2.50)

and set t2 = 0, so that μ(x, t2) = 0. Hence (2.48) implies

∫ ∞

0
μ(x, t1)ϕ(x) dx ≤ CκeλT (1 + ‖wx‖∞

)1/2
T α/2 ‖ϕ‖C1+α� . (2.51)

In particular, since t1 and ϕ were arbitrary, we have

‖μ‖L∞
t (C1+α� )∗ ≤ Cακ

(
1 + ‖wx‖∞

)1/2
, (2.52)

with C ′
α := CeλT T α/2.

Again let t1, t2 ∈ [0, T ] be arbitrary and without loss of generality take t1 ≥ t2. Then

∫ ∞

0
ψ̃(x, t1)

(
μ(x, t1)−μ(x, t2)

)
dx=

∫ ∞

0
ψ̃(x, t1)μ(x, t1) dx−

∫ ∞

0
ψ̃(x, t2)μ(x, t2) dx

+
∫ ∞

0

(
ψ̃(x, t2) − ψ̃(x, t1)

)
μ(x, t2) dx . (2.53)

For the last integral, we estimate

∫ ∞

0

(
ψ̃(x, t2) − ψ̃(x, t1)

)
μ(x, t2) dx ≤ ∥

∥ψ̃
∥
∥
Cα/4([0,t1];C1+α/2

� )
‖μ‖L∞

t (C1+α/2)∗ |t1 − t2|α/4

≤ C ′
α/2κ ‖ϕ‖C1+α� (1 + ‖wx‖∞)1/2|t1 − t2|α/4, (2.54)

where the last inequality follows from (2.52) and (2.38). Combining this with what
we found in (2.48), the equation in (2.53) implies

∫ ∞

0
e−λt1ϕ(x)

(
μ(x, t1) − μ(x, t2)

)
dx

≤ (C ′
α/2 + CαT

α/4)κ ‖ϕ‖C1+α� (1 + ‖wx‖∞)1/2|t1 − t2|α/4. (2.55)
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Hence, as t1, t2, and ϕ were arbitrary,

‖μ‖Cα/4([0,T ];(C1+α)∗) ≤ (C ′
α/2 + CαT

α/4)κ(1 + ‖wx‖∞)1/2. (2.56)

This is the desired result. �

Notice that any φ ∈ C1+α can be written as the sum of a constant and an element

of C1+α� , since φ − φ(0) ∈ C1+α� . Therefore the following proposition will complete
our estimates of μ in the dual of C1+α .

Proposition 2.6 Let (w,μ) satisfy (1.4). Define

η(t) :=
∫ ∞

0
μ(x, t) dx . (2.57)

Let ε0 satisfy (2.5). Then for ε ∈ [0, ε0] and α ∈ (0, 1/6], there exists a constant

κ ∈ [0,∞), and a constant C ∈ (0,∞), depending solely on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , λ, α and T

such that for all ε ∈ [0, ε0]

‖η‖Cα([0,T ]) ≤ Cκ
(
1 + ‖wx‖∞

)5/6
. (2.58)

Moreover, the constant κ depends exclusively on ‖�‖L∞
t (L1

x )
and ‖�‖∞ in such a way

that κ = 0 whenever ‖�‖L∞
t (L1

x )
= ‖�‖∞ = 0.

Proof We begin by applying (A.30) with the identifications μ := μ, b := F (0), and
ν := � + 1

2 (G − wx )m(0) to get

μ(x, t) = I1(x, t) + I2(x, t), (2.59)

where

I1(x, t) :=
∫ t

0

∫ ∞

0

(
∂ S

∂x
(x − y, t − s) + ∂ S

∂x
(x + y, t − s)

)

F (0)(y, s)μ(y, s) dy ds,

I2(x, t) :=
∫ t

0

∫ ∞

0

(
∂ S

∂x
(x − y, t − s) + ∂ S

∂x
(x + y, t − s)

)

ν(y, s) dy ds.

(2.60)

Our first step will be to prove a bound on the functional

f (t) :=
∫ ∞

0
|μ(x, t)| dx . (2.61)

By (A.35) and Hölder’s inequality, we have

∫ ∞

0
|ν(x, t)| dx ≤ ‖�‖L1

x
+
∥
∥
∥u(0)

x

∥
∥
∥∞ f (t) + 2

(∫ ∞

0
|wx |2 m(0) dx

)1/2

. (2.62)
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We apply (2.62) and (A.4) to (2.59) and get

f (t) ≤
∫ t

0
(t − s)−1/2 (C1 f (s) + g(s)) ds, (2.63)

where

C1 = c′ (
∥
∥
∥u(0)

x

∥
∥
∥∞ +

∥
∥
∥F (0)

∥
∥
∥∞

)
and g(s) = ‖�‖L1

x
+ 2

(∫ ∞

0
|wx |2 m(0) dx

)1/2

,

(2.64)

and c′ is as in (A.5). Multiply both sides of (2.63) by e−λt for some λ > 0 to be
chosen. Define fλ(t) = e−λt f (t) and gλ(t) = e−λt g(t). We see

fλ(t) ≤
∫ t

0
(t − s)−1/2e−λ(t−s) (C1 fλ(s) + gλ(s)) ds. (2.65)

We wish to estimate
∫ t
0 (t − s)−1/2e−λ(t−s)gλ(s) ds. Since

∫ t

0
(t − s)−1/2e−λ(t−s) ds =

∫ t

0
s−1/2e−λs ds ≤ λ−1/2

∫ ∞

0
s−1/2e−s ds = λ−1/2π1/2,

(2.66)

we have

∫ t

0
(t − s)−1/2e−λ(t−s)gλ(s) ds

≤ ‖�‖L∞
t (L1

x )
λ−1/2π1/2 + 2

∫ t

0
(t − s)−1/2e−λ(t−s)

(∫ ∞

0
w2
xm

(0) dx

)1/2

ds.

(2.67)

On the other hand, using Proposition 2.3, Hölder’s inequality, and recalling that∫∞
0 m(0) dx ≤ 1, we get

∫ t

0
(t − s)−1/2e−λ(t−s)

(∫ ∞

0
w2
xm

(0) dx

)1/2

ds

≤ ‖wx‖1/2L∞
x,t

∫ t

0
(t − s)−1/2e−λ(t−s)

(∫ ∞

0
|wx |2 m(0) dx

)1/4

ds

≤ ‖wx‖1/2L∞
x,t

(∫ t

0
(t − s)−2/3e− 4

3λ(t−s) ds

)3/4 (∫ t

0

∫ ∞

0
|wx |2 m(0) dx ds

)1/4

≤ ‖wx‖1/2L∞
x,t

λ−1/4�(1/3)
(
C2 ‖�‖L∞

t (L1
x )

‖wx‖∞ + C3κ
′)1/4 , (2.68)
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where C2 and C3 are constants depending only on σ , λ, and T , and κ ′ is as in (2.46).
We combine these estimates to get

fλ(t) ≤ C1

∫ t

0
(t − s)−1/2e−λ(t−s) fλ(s) ds

+ ‖�‖L∞
t (L1

x )
λ−1/2π1/2 + 2 ‖wx‖1/2∞ λ−1/4�(1/3)

(
C2 ‖�‖L∞

t (L1
x )

‖wx‖∞ + C3κ
′)1/4 .

(2.69)

Taking the supremum, we get

sup
t∈[0,T ]

fλ(t) ≤ C1λ
−1/2π1/2 sup

s∈[0,T ]
fλ(s) (2.70)

+ ‖�‖L∞
t (L1

x )
λ−1/2π1/2 + 2 ‖wx‖1/2∞ λ−1/4�(1/3)

(
C2 ‖�‖L∞

t (L1
x )

‖wx‖∞ + C3κ
′)1/4 .

Then setting λ = (2C1π
1/2)2, we deduce

sup
t∈[0,T ]

fλ(t) ≤ 2 ‖�‖L∞
t (L1

x )
λ−1/2π1/2

+4 ‖wx‖1/2∞ λ−1/4�(1/3)
(
C2 ‖�‖L∞

t (L1
x )

‖wx‖∞ + C3κ
′)1/4 , (2.71)

which yields

sup
t∈[0,T ]

∫ ∞

0
|μ(x, t)| dx ≤ Aκ ′′( ‖wx‖∞ + 1

)3/4 + B ‖�‖L∞
t (L1

x )
(2.72)

for some constants A, B ∈ (0,∞), depending only on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , λ, and T , and

κ ′′ := κ ′ + ‖�‖L∞
t (L1

x )
. (2.73)

We now turn to Hölder estimates. By integrating (2.59) with respect to x , we
discover that

η(t) = η1(t) + η2(t), (2.74)

where

η1(t) = −2
∫ t

0

∫ ∞

0
S(y, t − s)F (0)(y, s)μ(y, s) dy ds,

η2(t) = −2
∫ t

0

∫ ∞

0
S(y, t − s)ν(y, s) dy ds.

(2.75)
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We want Hölder estimates on each term. Let 0 ≤ t0 ≤ t1 ≤ T . For η1, write

η1(t1) − η1(t0) = −2
∫ t1

t0

∫ ∞

0
S(y, t1 − s)F (0)(y, s)μ(y, s) dy ds (2.76)

− 2
∫ t0

0

∫ ∞

0

∫ t1

t0

∂ S

∂t
(y, t − s)F (0)(y, s)μ(y, s) dt dy ds.

Note that

∂ S

∂t
(x, t) = (2σ 2π)−1/2t−3/2

(
x2

2σ 2t
− 1

2

)

exp

{

− x2

2σ 2t

}

. (2.77)

Since xe−x ≤ e−1 ≤ 1/2 for all x , it follows that

∣
∣
∣
∣
∂ S

∂t
(x, t)

∣
∣
∣
∣ ≤ (2σ 2π)−1/2t−3/2 ∀x . (2.78)

Let c′ = 2(2σ 2π)−1/2. We get

|η1(t1) − η1(t0)| ≤ c′
∥
∥
∥F (0)

∥
∥
∥∞

∫ t1

t0
(t1 − s)−1/2

∫ ∞

0
|μ(y, s)| dy ds (2.79)

+c′
∥
∥
∥F (0)

∥
∥
∥∞

∫ t0

0

∫ ∞

0

∫ t1

t0
(t − s)−3/2 |μ(y, s)| dt dy ds.

Using (2.72) and computing the remaining integrals, we obtain

|η1(t1) − η1(t0)| ≤ C
∥
∥
∥F (0)

∥
∥
∥∞

(
Aκ ′( ‖wx‖∞ + 1

)3/4 + B ‖�‖L∞
t (L1

x )

)
(t1 − t0)

1/2

(2.80)

for some constant C ∈ (0,∞).
We proceed similarly for η2. Write

η2(t1) − η2(t0) = 2
∫ t1

t0

∫ ∞

0
S(y, t1 − s)ν(y, s) dy ds (2.81)

+ 2
∫ t0

0

∫ ∞

0

∫ t1

t0

∂ S

∂t
(y, t − s)ν(y, s) dt dy ds.

By (A.35) and (2.72), we have

∫ ∞

0
|ν(x, t)| dx ≤ Ãκ ′′( ‖wx‖∞ + 1

)3/4 + B̃ ‖�‖L∞
t (L1

x )

+2

(∫ ∞

0
|wx (x, t)|2 m(0)(x, t) dx

)1/2

, (2.82)
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where Ã and B̃ are again constants depending only on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , λ, and T . Using

the same reasoning as above, we get

|η2(t1) − η2(t0)| ≤ C
(
Ãκ ′( ‖wx‖∞ + 1

)3/4 + B̃ ‖�‖L∞
t (L1

x )

)
(t1 − t0)

1/2 (2.83)

+ 2c′
∫ t1

t0
(t1 − s)−1/2

(∫ ∞

0
|wx (x, s)|2 m(0)(x, s) dx

)1/2

ds

+ 2c′
∫ t0

0

∫ t1

t0
(t − s)−3/2

(∫ ∞

0
|wx (x, s)|2 m(0)(x, s) dx

)1/2

dt ds.

Using Hölder’s inequality and Proposition 2.3, we get

∫ t0

0

∫ t1

t0
(t − s)−3/2

(∫ ∞

0
|wx (x, s)|2 m(0)(x, s) dx

)1/2

dt ds

≤ ‖wx‖2/3∞
∫ t0

0

∫ t1

t0
(t − s)−3/2

(∫ ∞

0
|wx (x, s)|2 m(0)(x, s) dx

)1/6

dt ds

≤ ‖wx‖2/3∞
(∫ t0

0

∫ t1

t0
(t − s)−9/5 dt ds

)5/6

(∫ t0

0

∫ t1

t0

∫ ∞

0
|wx (x, s)|2 m(0)(x, s) dx dt ds

)1/6

≤ C ‖wx‖2/3∞ (t1 − t0)
1/6

(
C2 ‖�‖L∞

t (L1
x )

‖wx‖∞ + C3κ
′)1/6 .

(2.84)

By a similar computation, we get

∫ t1

t0
(t1 − s)−1/2

(∫ ∞

0
|wx (x, s)|2 m(0)(x, s) dx

)1/2

ds (2.85)

≤ C ‖wx‖2/3∞ (t1 − t0)
1/3

(
C2 ‖�‖L∞

t (L1
x )

‖wx‖∞ + C3κ
′)1/6 .

We deduce

|η2(t1) − η2(t0)| ≤ CT 1/3
(
Ãκ ′′( ‖wx‖∞ + 1)3/4 + B̃ ‖�‖L∞

t (L1
x )

)
(t1 − t0)

1/6

+ C(1 + T 1/6) ‖wx‖2/3∞ (t1 − t0)
1/6

(
C2 ‖�‖L∞

t (L1
x )

‖wx‖∞ + C3κ
′)1/6 .

(2.86)

Combining (2.80) and (2.86), we can find some constant C̃ ∈ (0,∞), depending only

on
∥
∥F (0)

∥
∥∞,

∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , λ, and T , such that

|η(t1) − η(t0)| ≤ C̃κ (‖wx‖∞ + 1)5/6 (t1 − t0)
1/6, (2.87)

where

κ := (
κ ′ + ‖�‖L∞

t (L1
x )

)1/6 + 2
(
κ ′′ + ‖�‖L∞

t (L1
x )

)
. (2.88)
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This yields (2.58), as desired. �

With Propositions 2.5 and 2.6 established, we now have the complete duality esti-

mate on μ.

Corollary 2.7 Let (w,μ) satisfy (1.4). Let ε0 satisfy (2.5). Then for ε ∈ [0, ε0], one
has μ ∈ Cα/4

([0, T ]; (C1+α)∗
)
with

‖μ‖Cα/4
(
[0,T ];(C1+α)∗

) ≤ Cκ
(
1 + ‖wx‖∞

)5/6
, (2.89)

for some constant C ∈ (0,∞), depending exclusively on
∥
∥
∥u

(0)
x

∥
∥
∥∞, σ , λ, α and T ; and

κ ∈ [0,∞), depending solely on ‖�‖L∞
t (L1

x )
and ‖�‖∞ in such a way that κ = 0

whenever ‖�‖L∞
t (L1

x )
= ‖�‖∞ = 0.

2.4 Full C2+˛,1+˛/2 Regularity

We are now in a position to establish full parabolic regularity in classical spaces for
solutions to System (1.4).

Theorem 2.8 Let α ∈ (0, 1/6] be such that (u(0),m(0)) ∈ C2+2α,1+α . Let (w,μ)

satisfy (1.4) with � ∈ Cα,α/2 and � ∈ C1+α,α/2. Let ε0 satisfy (2.5). Then for ε ∈
[0, ε0], one has

w ∈ C2+α,1+α/2([0,∞) × [0, T ]) and μ ∈ C2+α,1+α/2([0,∞) × [0, T ]).
(2.90)

Furthermore, there exist constants C ∈ (0,∞) and κ ∈ [0,∞), depending solely on
the data such that

‖w‖C2+α,1+α/2 ≤ Cκ and ‖μ‖C2+α,1+α/2 ≤ Cκ (2.91)

with κ depending exclusively on ‖�‖Cα,α/2 and ‖�‖C1+α,α/2 in such a way that κ = 0
whenever � = � = 0. In addition, we have μ ∈ C1/2

([0, T ]; L1((0,∞)
)
with an

estimate

‖μ‖C1/2([0,T ];L1((0,∞)) ≤ Cκ. (2.92)

Proof Begin by defining

η1(t) :=
∫ ∞

0
wxm

(0) dx and η2(t) :=
∫ ∞

0
u(0)
x μ dx, (2.93)

so that after expanding terms (i) of System (1.4) reads

wt + σ 2

2
wxx − rw − F (0)wx + β(εξ)

(
η1(t) + η2(t)

)+ � = 0. (2.94)
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Note that β(εξ) ∈ Cα/2([0, T ]), and by assumption, � ∈ Cα,α/2([0,∞), [0, T ]). As
such, using classical estimates [26,Theorem IV.5.1], we find

‖w‖C2+α,1+α/2 ≤ C0
( ‖�‖Cα,α/2 + ‖η1‖Cα/2 + ‖η2‖Cα/2

)
, (2.95)

where the constant C0 ∈ (0,∞) depends on the data.
Focus on η2 first. We estimate

|η2(t1) − η2(t2)| ≤
∣
∣
∣

∫ ∞

0

(
u(0)
x (x, t1) − u(0)

x (x, t2)
)
μ(x, t1) dx

∣
∣
∣ (2.96)

+
∣
∣
∣

∫ ∞

0
u(0)
x (x, t2)

(
μ(x, t1) − μ(x, t2)

)
dx
∣
∣
∣

≤ ‖μ(·, t1)‖(C1+2α)∗
∥
∥
∥u(0)

x (·, t1) − u(0)
x (·, t2)

∥
∥
∥C1+2α

+
∥
∥
∥u(0)

x (·, t2)
∥
∥
∥C1+2α

‖μ(·, t1) − μ(·, t2)‖(C1+2α)∗

≤ 2 ‖μ‖Cα/2([0,T ];(C1+2α)∗)

∥
∥
∥u(0)

∥
∥
∥C2+2α,1+α

|t1 − t2|α/4.

Hence by Corollary 2.7,

‖η2‖Cα/2([0,T ]) ≤ 2 ‖μ‖Cα/2([0,T ];(C1+2α)∗)

∥
∥
∥u(0)

∥
∥
∥C2+2α,1+α

(2.97)

≤ C1κ
′(1 + ‖wx‖∞

)5/6

for some constant C1 ∈ (0,∞), depending solely on
∥
∥u(0)

∥
∥C2+2α,1+α and the data, and

κ ′ ∈ [0,∞), depending exclusively on ‖�‖L∞
t (L1

x )
and ‖�‖∞ in such away that forces

k′ = 0 whenever ‖�‖L∞
t (L1

x )
= ‖�‖∞ = 0. On the other hand, since m(0) satisfies

a (homogeneous) Fokker–Planck equation, by classical arguments (cf. [21,Lemma
3.1]) combined with the estimates of Proposition 2.6 (cf. [21,Lemma 3.7]), we have
an estimate on the norm

∥
∥m(0)

∥
∥Cα/2([0,T ];(Cα)∗). Now a similar calculation as in (2.96)

shows

‖η1(t)‖Cα/2 ≤ C2 ‖wx‖Cα,α/2 , (2.98)

where the constantC2 ∈ (0,∞) depends solely on
∥
∥m(0)

∥
∥Cα/4([0,T ];(Cα/2)∗). Therefore,

returning to (2.95), we have

‖w‖C2+α,1+α/2 ≤ C0

(
‖�‖Cα,α/2 + C1κ

′(1 + ‖wx‖∞
)5/6 + C2 ‖wx‖Cα,α/2

)
(2.99)

≤ C0
( ‖�‖Cα,α/2 + C1κ

′ + (C1κ1 + C2) ‖wx‖Cα,α/2
)

≤ C̃
(
κ1 + ‖wx‖Cα,α/2

)
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where C̃ := C0
(
1+C1(κ1 + 1) +C2

)
, and κ1 := ‖�‖Cα,α/2 + κ ′. By interpolation of

Hölder spaces, there exists a constant C ′ > 0 such that

‖wx‖Cα,α/2 ≤ 1

2C̃
‖w‖C2+α,1+α/2 + C ′ ‖w‖∞ , (2.100)

where C̃ is as in the last line of (2.99). As such, (2.100) along with (2.99) show that

‖w‖C2+α,1+α/2 ≤ 2C̃
(
κ1 + C ′ ‖w‖∞

)
(2.101)

≤ 2C̃
(
κ1 + C ′(C3κ

′′(1 + ‖wx‖∞)1/2 + C4 ‖�‖∞
))

≤ C ′′κ2
(
1 + ‖wx‖1/2∞

)
.

The second inequality follows from Corollary 2.4, so that the constants C3,C4 ∈
(0,∞) depend only on the data, and κ ′′ ∈ [0,∞) depends solely on ‖�‖L∞

t (L1
x )
and

‖�‖∞ in such a way that κ ′′ = 0 whenever ‖�‖L∞
t (L1

x )
= ‖�‖∞ = 0. The constants

C ′′ ∈ (0,∞) and κ2 ∈ [0,∞) can be given by

C ′′ := 2C̃(1 + C ′C3 + C4) and κ2 := κ1 + κ ′′ + ‖�‖∞ . (2.102)

Subsequently, by Young’s inequality,

‖w‖C2+α,1+α/2 ≤ C ′′κ2 + 1

2
‖w‖C2+α,1+α/2 + 1

2
(C ′′κ2)2. (2.103)

Thus,

‖w‖C2+α,1+α/2 ≤ 2C ′′κ2 + (C ′′κ2)2 ≤ Cκ, (2.104)

with C := (C ′′)2 + 2C ′′ and κ := κ2
2 + κ2. Hence w has the desired regularity with

appropriate bounds in terms of the data as stated in (2.91).
Turning our attention to μ, we begin by observing that (ii) of System (1.4) implies

μt − σ 2

2
μxx − 1

2
u(0)
xx μ − F (0)μx = �x + 1

2

(
Gm(0)

x − wxxm
(0) − wxm

(0)
x

)
.

(2.105)

We already have estimates on the coefficients in Cα,α/2. As for the right-hand side, we
estimate Gm(0)

x in Cα,α/2 by using

‖G‖Cα,α/2 ≤
∥
∥
∥
∥

∫ ∞

0

(
u(0)
x μ + wxm

(0)) dx

∥
∥
∥
∥Cα,α/2

≤
∥
∥
∥u(0)

∥
∥
∥C2+2α,1+α

‖μ‖Cα/2([0,T ];(C1+2α)∗) + ‖w‖C2+α,1+α/2

∥
∥
∥m(0)

∥
∥
∥Cα/2([0,T ];(Cα)∗)

≤ C1κ1, (2.106)
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for some C1 ∈ (0,∞), depending solely on the data, and κ1 ∈ [0,∞) depending on
‖�‖Cα,α/2 and ‖�‖Cα,α/2 in such a way that κ1 = 0 whenever � = � = 0. Finally,
since � ∈ C1+α,α/2, we obtain via classical estimates [26,Theorem IV.5.1]

‖μ‖C2+α,1+α/2 ≤ C0

(
‖�x‖Cα,α/2 +

∥
∥
∥Gm(0)

∥
∥
∥Cα,α/2

+
∥
∥
∥wxxm

(0)
∥
∥
∥Cα,α/2

+
∥
∥
∥wxm

(0)
∥
∥
∥Cα,α/2

)

≤ C0

(
‖�x‖Cα,α/2 + ‖G‖Cα,α/2

∥
∥
∥m(0)

∥
∥
∥Cα,α/2

+ ‖w‖C2+α,1+α/2

∥
∥
∥m(0)

∥
∥
∥C2+α,1+α/2

)

≤ C0

(
‖�x‖Cα,α/2 + C1κ1 + C2κ2

)
(2.107)

for someconstantC0 ∈ (0,∞)dependingonlyon the data, someconstantC2 ∈ (0,∞)

depending only on the data and
∥
∥m(0)

∥
∥C2+α,1+α/2 , and κ2 ∈ [0,∞) depending on

‖�‖Cα,α/2 and ‖�x‖Cα,α/2 in such away that κ2 = 0whenever� = � = 0. Therefore,

‖μ‖C2+α,1+α/2 ≤ Cκ, (2.108)

with C := C0(1 + C1 + C2) and κ := ‖�x‖Cα,α/2 + κ1 + κ2. This demonstrates the
desired regularity for μ with the required bound given in (2.91).

Finally, we appeal to Proposition 2.1 and the estimates just obtained to find that,
for all K > 0,

∫ ∞

0
|μ(x, t1) − μ(x, t2)| dx ≤

∫ K

0
|μ(x, t1) − μ(x, t2)| dx

+ 1

K

∫ ∞

K
x |μ(x, t1) − μ(x, t2)| dx

≤ K ‖μ‖C2,1 |t1 − t2| + C

K

(
‖(1 + x)ν‖L∞

t (L1
x )

)
,

(2.109)

where ν = � + (G − wx )m(0), and where C is a constant depending on
∥
∥F (0

∥
∥∞

and on the data. Pick K = |t1 − t2|−1/2 and take the supremum over t1 �= t2 to get
an estimate on the Hölder seminorm of t 
→ μ(·, t) ∈ L1

x . Combine this with the
estimates above to obtain (2.92). �


3 Existence and Uniqueness for the Abstract System

In this section, we use a fixed point argument to demonstrate existence of solutions
to (1.4). For completeness, we provide a statement of the Leray-Schauder fixed point
theorem, taken from [11,Theorem 11.6, p. 286].

Theorem 3.1 (The Leray Schauder Fixed Point Theorem). Let X be a Banach space,
and let T : X × [0, 1] → X be a compact mapping satisfying T (x, 0) = 0 for all
x ∈ X . Suppose there exists a constant C ∈ (0,∞) such that

‖x‖X ≤ C for all (x, λ) ∈ X × [0, 1] satisfying T (x, λ) = x . (3.1)

Then the mapping T1 : X → X , given by T1(x) = T (x, 1), has a fixed point.
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We now aim to construct a suitable Banach space along with a compact operator to
satisfy the hypotheses of Theorem 3.1.

Fix α ∈ (0, 1/6] such that u(0),m(0) ∈ C2+2α,1+α . Define the Banach space X :=
Cα,α/2 ∩ L∞

t (L1
x ) ∩ Cα/2

([0, T ]; (C1+2α)∗
)
with norm

‖m‖X := ‖m‖Cα,α/2 + ‖m‖L∞
t (L1

x )
+ ‖m‖Cα/2([0,T ];(C1+2α)∗) . (3.2)

Let� ∈ Cα,α/2 and� ∈ C1+α,α/2∩L∞
t (L1

x ) be given functionswith x� ∈ L∞
t (L1

x )

and �(0, T ) = 0. For any m ∈ X and λ ∈ [0, 1], let μ = T (m, λ) be determined by
solving the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) wt + σ 2

2
wxx − ru + λ� + λF (0)(ε)

(
G(wx ,m; ε) − wx

) = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i) μt − σ 2

2
μxx − λ

(
F (0)μ

)

x = λ
[
� + 1

2

(
G(wx ,m; ε) − wx

)
m(0)

]

x
, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i i) μ(x, 0) = 0, w(x, T ) = 0, 0 ≤ x < ∞
(iv) w(0, t) = μ(0, t) = 0, 0 ≤ t ≤ T ,

(3.3)

where we recall that G is defined in (1.5).
The subsequent lemma establishes properties of T that are necessary for applying

Theorem 3.1.

Lemma 3.2 The operatorT , defined in (3.3), is well-defined, continuous, and compact.

Proof We break the proof into three parts. Throughout the proof, we will refer to the
results found in [26], especially Theorems IV.5.1-3, as “classical results/estimates.”

1. Well-Definiteness To show that the operator T is well-defined, suppose m ∈ X
and λ ∈ [0, 1]. By Lemma B.1 there exists a unique solution w ∈ C2+α,1+α/2

to Equation (3.3)(i) (with boundary conditions given in (iii)–(iv)). In particular,
G(wx ,m; ε) (which does not depend on x) is estimated in Cα,α/2, and hence via
classical results, Equation (3.3)(ii) has a unique solution μ, which is estimated in
C2+α,1+α/2. In addition, as a consequence of Proposition 2.1 (a), with

b := λF (0) and ν := λ� + 1

2
λ
(
G(wx ,m; ε) − wx

)
m(0), (3.4)

we find that μ ∈ L∞
t (L1

x ). Using Equation (2.109), we can deduce that μ ∈
Cα/2

([0, T ]; (C1+2α)∗
)
, as well. This ultimately shows that μ ∈ X , and hence T

is well-defined.
2. ContinuityTodemonstrate continuity of theoperatorT , start by letting {(m j , λ j )}∞j=1⊆ X × [0, 1] be a sequence such that m j → m in X and λ j → λ as j → ∞.

Let (w j , μ j ) be the solution to system (3.3) withm replaced by m j and λ replaced
by λ j , so that μ j := T (m j , λ j ). Via classical estimates (see also Lemma B.1),
the sequences {w j }∞j=1 and {μ j }∞j=1 are uniformly bounded in C2+α,1+α/2, and
therefore both w j , μ j and their derivatives are uniformly bounded and equicon-
tinuous. By the Arzelà-Ascoli Theorem and diagonalization, there exists some
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(w,μ) ∈ C2+α,1+α/2 × C2+α,1+α/2 and a subsequence {(w jk , μ jk )}∞k=1 such that

(w jk , μ jk ) → (w,μ) in C2,1 ([0, R] × [0, T ])
×C2,1 ([0, R] × [0, T ]) as k → ∞, ∀R > 0. (3.5)

In particular, w jk , μ jk and their derivatives converge pointwise and are uniformly
bounded. Also, because we also have m j → m in L∞

t (L1
x ), we see that

G
(
(w jk )x ,m jk ; ε

)
(t) → G (wx ,m; ε) (t) ∀t ∈ [0, T ]. (3.6)

Now let k → ∞ in the system solved by (w jk , μ jk ) to see that (w,μ) solves System
(3.3), i.e. μ = T (m, λ). Finally, by the argument that appears in the next step, we
deduce that μ jk → μ in X . Hence T (m jk , λ jk ) → T (m, λ) in X . It follows that
T is continuous.

3. Compactness Finally, to demonstrate compactness of the operator T , let {(m j ,

λ j )}∞j=1 be any bounded sequence in X × [0, 1]. If again we let (w j , μ j ) be the
solution to system (3.3) with m replaced by m j and λ replaced by λ j , then as in
the previous step we see that the sequences {w j }∞j=1 and {μ j }∞j=1 are uniformly

bounded in C2+α,1+α/2, and there exists a subsequence {(w jk , μ jk )}∞k=1 such that
(3.5) holds. It remains to show that μ jk → μ in X = Cα,α/2 ∩ L∞

t (L1
x ).

We will appeal to Proposition 2.1. First, note that μ jk − μ (k = 1, 2, . . . ) satisfies
(2.1) of Proposition 2.1 with

bk := (λ jk − λ)F (0) (3.7)

and

νk := (λ jk − λ)�

+1

2

(
λ jk G

(
(w jk )x ,m jk ; ε

)− λG(wx ,m; ε) − (
λ jk (w jk )x − λw

))
m(0).

(3.8)

We have that bk is uniformly bounded in L∞; we need to show that νk and xνk are
uniformly bounded in L∞

t (L1
x ). By assumption, � ∈ L∞

t (L1
x ) and x� ∈ L∞

t (L1
x ).

Next, by (3.5), there exists a constant C1 ∈ (0,∞) such that

∥
∥λ jkw jk − λu

∥
∥∞ + ∥

∥(λ jkw jk )x − λwx
∥
∥∞ ≤ C1 for all k ∈ N. (3.9)

Also, by assumption, {m jk }∞k=1 is uniformly bounded in L∞
t (L1

x ), so there exists some
constant C2 ∈ (0,∞) such that

∥
∥λ jkm jk − λm

∥
∥
L∞
t (L1

x )
≤ C2 for all k ∈ N. (3.10)
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It follows that
∣
∣
∣λ jk G

(
(w jk )x ,m jk ; ε

)− λG(wx ,m; ε) − (
λ jk (w jk )x − λw

)∣∣
∣ (3.11)

= |β(εξ)|
∣
∣
∣
∣

∫ ∞

0

(
λ jk (w jk )x − λwx

)
m(0) dx +

∫ ∞

0
u(0)
x

(
λ jkm jk − λm

)
dx

∣
∣
∣
∣

≤ C1 +
∥
∥
∥u(0)

x

∥
∥
∥∞ C2 for all k ∈ N.

Note that to obtain the inequality we also used that
∫∞
0 m(0) dx ≤ 1. We now find that

‖νk‖L∞
t (L1

x )
≤ 2 ‖�‖L∞

t (L1
x )

+ 1

2

(
C1 +

∥
∥
∥u(0)

x

∥
∥
∥∞ C2

)
sup

t∈[0,T ]

∫ ∞

0
m(0)(x, t) dx < M1

(3.12)

for some constant M1 ∈ (0,∞), independent of k. Also, Proposition 2.1 (b) ensures
that xm(0) ∈ L∞

t (L1
x ), and thus

‖xνk‖L∞
t (L1

x )
≤ 2 ‖x�‖L∞

t (L1
x )

+ 1

2

(
C1 +

∥
∥
∥u(0)

x

∥
∥
∥∞ C2

)
sup

t∈[0,T ]

∫ ∞

0
xm(0)(x, t) dx < M2

(3.13)

for some constantM2 ∈ (0,∞), independent of k. Therefore, the PDE thatλ jkμ jk −λμ

satisfies, namely (2.1), also satisfies the hypotheses of Proposition 2.1 uniformly for
all k ∈ N.

We then write

sup
t∈[0,T ]

∫ ∞

0

∣
∣μ jk (x, t) − μ(x, t)

∣
∣ dx

= sup
t∈[0,T ]

[ ∫ K

0

∣
∣μ jk (x, t) − μ(x, t)

∣
∣ dx +

∫ ∞

K

∣
∣μ jk (x, t) − μ(x, t)

∣
∣ dx

]

,

(3.14)

By (3.5), for each fixed K > 0,

sup
t∈[0,T ]

∫ K

0

∣
∣μ jk (x, t) − μ(x, t)

∣
∣ dx → 0 as k → ∞. (3.15)

By Proposition 2.1 (b),
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sup
t∈[0,T ]

∫ ∞

K

∣
∣μ jk (x, t) − μ(x, t)

∣
∣ dx ≤ sup

t∈[0,T ]
1

K

∫ K

0
x
∣
∣μ jk (x, t) − μ(x, t)

∣
∣ dx

(3.16)

≤ K−1Mσ,b
( ‖νk‖L∞

t (L1
x )

+ ‖xνk‖L∞
t (L1

x )

)

≤ K−1Mσ,b(M1 + M2) → 0 as K → ∞
(3.17)

for all k ∈ N, and we see that μ jk → μ in L∞
t (L1

x ). Similarly, let μ̄ jk = μ jk − μ. For
all t1 �= t2, by taking K = |t1 − t2|−1/2 we have, cf. (2.109),

∫ ∞

0

∣
∣μ̄ jk (x, t1) − μ̄ jk (x, t2)

∣
∣ dx (3.18)

≤ ∥
∥μ jk − μ

∥
∥C2,1([0,K ]×[0,T ]) |t1 − t2|1/2 + 2 |t1 − t2|1/2 sup

t

∫ ∞

0

∣
∣μ jk (x, t) − μ(x, t)

∣
∣ dx .

From this we deduce that μ jk → μ in C1/2([0, T ]; L1), hence also in Cα/2
([0, T ]; (C1+2α)∗

)
.

Moreover, by [7,Lemma 2.2], we have

sup
t∈[0,T ]

sup
x≥K

∣
∣μ jk (x, t) − μ(x, t)

∣
∣ ≤ C

(
K−1Mσ,b(M1 + M2)

) α
α+1

, (3.19)

where C depends only on supk
∥
∥μ jk − μ

∥
∥Cα,α/2 . Combining this estimate with (3.5),

we deduce thatμ jk → μ uniformly. Since {μ jk } is bounded in C2+α,1+α/2, we deduce
that μ jk → μ in Cα,α/2. Ultimately, we have that

μ jk → μ in X as k → ∞, (3.20)

as desired. We have thus shown that the operator T is continuous and compact. This
completes the proof. �


With Proposition 3.2 established, we may now appeal to the Leray–Schauder fixed
point theorem to obtain an existence result for System (1.4).

Theorem 3.3 There exists a unique classical solution (w,μ) to System (1.4) provided
ε0 > 0 satisfies (2.5) and ε ∈ [0, ε0].
Proof We endeavor to use the Leray-Schauder fixed point theorem, i.e., Theorem 3.1.
For that purpose, a quick inspection reveals that when λ = 0, we have T (μ, 0) = 0
for all m ∈ X . Furthermore, Lemma 3.2 shows that T satisfies the compactness
requirement of the Leray-Schauder fixed point theorem. Now, suppose that there exists
μ ∈ X such that μ = T (μ, λ), so that (3.3) has a solution (w,μ) with μ = m. Then
via the a priori estimates established in Sect. 2, specifically the regularity results of
Theorem 2.8 and Proposition 2.1 (a), we find that indeed,
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‖μ‖X ≤ C (3.21)

for some constant C ∈ (0,∞). We conclude that there exists a fixed point of the
operator T , corresponding to λ = 1. We deduce that there exists a solution to (1.4),
as wanted.

To show uniqueness, let (w1, μ1) and (w2, μ2) be solutions to (1.4). Consider the
difference (w,μ) := (w1−w2, μ1−μ2). Then because System (1.4) is linear, we find
that (w,μ) satisfies System (1.4) with � and � identically 0. As such, Theorem 2.8
implies

‖w‖C2+α,1+α/2 = ‖μ‖C2+α,1+α/2 ≤ 0, (3.22)

and subsequently w = μ = 0. Therefore, w1 = w2 and μ1 = μ2, hence the solution
to System (1.4) is unique. This completes the proof. �


4 Proof of Theorem 1.1

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1 We induct on k and break the proof into three separate inductive
arguments.
Step 1. Let n ∈ N and suppose the following induction hypothesis.

For all k ∈ {0, 1, . . . , n−1} assume there exists a solution (u(k),m(k)) to (1.12),
as well as constants Ck,C∗

k ∈ (0,∞), depending solely on the data and on
(u( j),m( j)) for j < k, such that u(k) and m(k) satisfy

∥
∥
∥u(k)

∥
∥
∥C2+α,1+α/2

+
∥
∥
∥m(k)

∥
∥
∥C2+α,1+α/2

≤ Ck and
∥
∥
∥m(k)

∥
∥
∥C1/2([0,T ];L1)

+
∥
∥
∥xm(k)

∥
∥
∥
L∞
t (L1

x )
≤ C∗

k . (4.1)

As a consequence of the inductive hypothesis, for all k ∈ N with 0 ≤ k < n, we can
estimate

∥
∥
∥F (k)

∥
∥
∥C1+α,α/2

≤ CFk < ∞, (4.2)

where we define the constant

CFk := k!
(
1 +

k∑

i=0

k−i∑

j=0

C jC
∗
k−i− j

)
+ Ck . (4.3)

In order to apply our abstract results from Sect. 3, we introduce the following notation.
We will separate out the n-th order terms appearing in Jn and Kn by defining J̃n and
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K̃n implicitly as

Jn = J̃n + F (0)
(

β(εξ)

∫ ∞

0

(
u(0)
x m(n) + u(n)

x m(0)
)
dx − u(n)

x

)

(4.4)

and

Kn = K̃n + 1

2

(

β(εξ)

∫ ∞

0

(
u(0)
x m(n) + u(n)

x m(0)
)
dx − u(n)

x

)

m(0). (4.5)

While the exact formulas of J̃n and K̃n can be easily gleaned from (1.13), (1.14), and
(1.15), it is more important to know that J̃n and K̃n consist entirely of lower order
terms, and hence “known” quantities in light of the induction hypothesis (see (4.1) in
Sect. 4).

Using (4.2) and recalling the formulas for Jn and Kn in (1.13) and (1.14), we may
estimate

∥
∥ J̃n

∥
∥Cα,α/2 ≤

n−1∑

k=1

(
n

k

)

CkCn−k + 2n!
(
1 +

n∑

i=1

n∑

j=0

C jC
∗
n−i− j +

n−1∑

j=1

C jC
∗
n− j

)
< ∞,

(4.6)

and

∫ ∞

0
(1 + x)

∣
∣K̃n(x, t; ε)

∣
∣ dx ≤

n−1∑

k=1

(
n

k

)

CFkC
∗
n−k

+n!
(
1 +

n∑

i=1

n∑

j=0

C jC
∗
n−i− j +

n−1∑

j=1

C jC
∗
n− j

)
< ∞. (4.7)

Also, using the product rule, we find that

(
K̃n
)

x =
n−1∑

k=1

(
n

k

)(
F (k)
x m(n−k) + F (k)m(n−k)

x

)
+ F̃ (n)

x m(0) + F̃ (n)m(0)
x (4.8)

=
n−1∑

k=1

(
n

k

)(
− u(k)

xx m
(n−k) + F (k)m(n−k)

x

)
+ F̃ (n)m(0)

x ,

so that
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∥
∥(K̃n)x

∥
∥Cα,α/2 ≤

n−1∑

k=1

(
n

k

)

C2
k

+CFkCk + n!
(
1 +

n∑

i=1

n∑

j=0

C jC
∗
n−i− j +

n−1∑

j=1

C jC
∗
n− j

)
C0 < ∞.

(4.9)

Now, thebase case, k = 0, is established in [17] (cf. [16]). (Note that
∥
∥m(0)

∥
∥C1/2([0,T ];L1)

≤ C∗
0 can be established, even on an unbounded domain, by the same argument as in the

proof of Theorem 2.8, cf. Equation (2.109).) Assume then that the induction hypothe-
sis holds for k = n−1. Observe that System (1.12) can be written as System (1.4) with
w := u(n), μ := m(n), � := J̃n , and � := K̃n . Moreover, (4.6), (4.7), and (4.9) show
that the induction hypothesis guarantees � ∈ Cα,α/2 and � ∈ C1+α,α/2 ∩ L∞

t (L1
x ).

Therefore, by Theorem 3.3, there exists a unique solution to System (1.12), which by
Theorem 2.8 must satisfy (4.1) for k = n. �

Remark 4.1 The constants Cn derived from this inductive argument are likely to blow
up very quickly. Assuming they are greater than 1, they will be an increasing sequence,
and an inspection of the argument above reveals that

Cn � 2nC2
n−1. (4.10)

This in turn implies that the ratio Cn/Cn−1 converges to +∞, which means
∑

Cnxn

does not converge on any radius.

Step 2. Next, let n ∈ N and suppose the following induction hypothesis.

Assume the induction hypothesis of Step 1 holds. Aditionally, for all k ∈
{0, 1, . . . , n − 1}, suppose there exist constants C ′

k, (C
∗
k )

′ ∈ (0,∞) depend-
ing solely on lower order terms and the data such that

∥
∥u(k)(ε + h) − u(k)(ε)

∥
∥C2+α,1+α/2 ≤ C ′

kh,∥
∥m(k)(ε + h) − m(k)(ε)

∥
∥C2+α,1+α/2 ≤ C ′

kh,∥
∥m(k)(ε + h) − m(k)(ε)

∥
∥C1/2([0,T ];L1)

+ ∥
∥x

(
m(k)(ε + h) − m(k)(ε)

)∥
∥
L∞
t (L1

x )
≤ (C∗

k )′h.

(4.11)

For k = 0, 1, . . . , n define

w(k) := u(k)(ε + h) − u(k)(ε) and μ(k) := m(k)(ε + h) − m(k)(ε). (4.12)

In the case k = n, it can be shown that w(n) and μ(n) satisfy System (1.4) with
w := w(n), μ := μ(n),

� := �1 + 2F (0)(ε)I1(ε), and � := �1 + I1(ε)m
(0)(ε), (4.13)
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where

I1(ε) := 1

2

(
ξnα(n)

(
(ε + h)ξ

)− ξnα(n)(εξ)
)

+ 1

2

∫ ∞

0

n∑

i=1

n−i∑

j=0

(
n

i

)(
n − i

j

){

ξ iβ(i)(εξ)
(
u( j)
x (ε + h)μ(n−i− j) + w

( j)
x m(n−i− j)(ε)

)

+ ξ i
(
β(i)((ε + h)ξ

)− β(i)(εξ)
)
u( j)
x (ε + h)m(n−i− j)(ε + h)

}

dx

+ 1

2

∫ ∞

0

n−1∑

j=1

(
n

j

)

β(εξ)
(
u( j)
x (ε + h)μ(n− j) + w

( j)
x m(n− j)(ε)

)
dx

+ 1

2

∫ ∞

0
β(εξ)

(
w(0)
x m(n)(ε) + u(n)

x (ε + h)μ(0)
)

+
(
u(0)
x (ε + h) − u(0)

x (ε)
)
μ(n) dx,

(4.14)

�1 :=
n∑

k=1

(
n

k

)(
F (k)(ε + h) + F (k)(ε)

)(
F (n−k)(ε + h) − F (n−k)(ε)

)

+
(
F (0)(ε + h) − F (0)(ε)

)(
F (n)(ε + h) − F (n)(ε)

)
, (4.15)

and

�1 :=
n−1∑

k=1

(
n

k

){

F (k)(ε + h)μ(n−k) + (
F (k)(ε + h) − F (k)(ε)

)
m(n−k)(ε)

}

(4.16)

+
(
F (0)(ε + h) − F (0)(ε)

)
m(n)(ε) +

(
F (0)(ε + h) − F (0)(ε)

)
μ(n)

+ F (n)(ε + h)μ(0).

A quick inspection reveals that the induction hypothesis implies ‖�‖Cα,α/2 and
‖�‖C1+α,α/2 are O(h). As such, the estimates in Theorem 2.8 show that u(n) and
m(n) are O(h) as well.

Step 3. Let n ∈ N and suppose the following induction hypothesis.

Assume the induction hypothesis of Step 2 holds. Additionally, suppose there
exist constants C ′′

k , (C∗
k )

′′ ∈ (0,∞) depending solely on lower order terms and
the data such that

∥
∥u(k)(ε + h) − u(k)(ε) − hu(k+1)(ε)

∥
∥C2+α,1+α/2 ≤ C ′′

k h
2,

∥
∥m(k)(ε + h) − m(k)(ε) − hm(k+1)(ε)

∥
∥C2+α,1+α/2 ≤ C ′′

k h
2,

∥
∥m(k)(ε + h) − m(k)(ε) − hm(k+1)(ε)

∥
∥C1/2([0,T ];L1)

≤ (C∗
k )

′′h2,
∥
∥x

(
m(k)(ε + h) − m(k)(ε) − hm(k+1)(ε)

)∥
∥
L∞
t (L1

x )
≤ (C∗

k )
′′h2

(4.17)
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For k = 0, 1, . . . , n define

w(k) := u(k)(ε + h) − u(k)(ε) − hu(k+1)(ε) and μ(k)

:= μ(k)(ε + h) − μ(k)(ε) − hμ(k+1)(ε). (4.18)

Note that u(n+1) and m(n+1) are well-defined objects via Step 1. As it happens, when
k = n the pair (w(n), μ(n)) satisfies System (1.4) with w := w(n), μ := μ(n),

� := �2 + 2F (0)(ε)I2(ε), and � := �2 + I2(ε)m
(0)(ε), (4.19)

where

I2(ε) := 1

2

(
ξnα(n)

(
(ε + h)ξ

)− ξnα(n)(εξ) − hξ (n+1)α(n+1)(εξ)
)

+ 1

2

∫ ∞

0

n∑

i=1

n−i∑

j=0

(
n

i

)(
n − i

j

){

ξ iβ(i)(εξ)
(
u( j)
x (ε)μn−i− j + w

( j)
x m(n−i− j)(ε)

)

+
[
ξ iβ(i)((ε + h)ξ

)− ξ iβ(i)(εξ) − hξ i+1β(i+1)(εξ)
]
u( j)
x (ε)m(n−i− j)(ε)

+
[
ξ iβ(i)((ε + h)ξ

)
u( j)
x (ε + h) − ξ iβ(i)(εξ)u( j)

x (ε)
][
m(n−i− j)(ε + h) − m(n−i− j)(ε)

]

+
[
ξ iβ(i)((ε + h)ξ

)− ξ iβ(i)(εξ)
][
u( j)
x (ε + h) − u( j)

x (ε)
]
m(n−i− j)(ε)

}

dx

+ 1

2

∫ ∞

0

n∑

j=0

(
n

j

){[
β
(
(ε + h)ξ

)− β(εξ) − hξβ(1)(εξ)
]
u( j)
x (ε)m(n− j)(ε)

+
[
β
(
(ε + h)ξ

)
u( j)
x (ε + h) − β(εξ)u( j)

x (ε)
][
m(n− j)(ε + h) − m(n− j)(ε)

]

+
[
β
(
(ε + h)ξ

)− β(εξ)
][
u( j)
x (ε + h) − u( j)

x (ε)
]
m(n− j)(ε)

}

dx

+ 1

2

∫ ∞

0

n−1∑

j=1

(
n

j

)

β(εξ)
(
u( j)
x (ε)μn− j + w

( j)
x m(n− j)(ε)

)
dx

+ 1

2

∫ ∞

0
β(εξ)

(
u(n)
x μ(0) + w(0)

x m(n)
)
dx (4.20)

�2 := 2
n−1∑

k=0

(
n

k

)(
F (k)(ε + h) − F (k)(ε) − hF (k+1)(ε)

)
F (n−k)(ε)

+
n∑

k=0

(
n

k

)(
F (k)(ε + h) − F (k)(ε)

)(
F (n−k)(ε + h) − F (n−k)(ε)

)
, (4.21)
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and

�2 :=
n∑

k=0

(
n

k

)(
F (k)(ε + h) − F (k)(ε) − hF (k+1)(ε)

)(
m(n−k)(ε + h) − m(n−k)(ε)

)

(4.22)

+ h
n∑

k=0

(
n

k

)

F (k+1)(ε)
(
m(n−k)(ε + h) − m(n−k)(ε)

)
+

n∑

k=1

(
n

k

)

F (k)(ε)μ(n−k)

+
n−1∑

k=0

(
n

k

)(
F (k)(ε + h) − F (k)(ε) − hF (k+1)(ε)

)
m(n−k)(ε).

As such,wefind that the induction hypothesis togetherwith Step 2 imply that ‖�‖Cα,α/2

and ‖�‖C1+α,α/2 are O(h2). Using the estimates in Theorem 2.8, we ultimately see that
u(n) andm(n) are O(h2). This yields the desired result concerning differentiabilitywith
respect to ε. �


Appendix A: Some technical proofs of results from Sect. 2

A.1 Proofs for Sect. 2.1

Proof of Proposition 2.1 Let S(x, t) denote the heat kernel, given by

S(x, t) := (2σ 2π t)−1/2 exp

{

− x2

2σ 2t

}

. (A.1)

Using Duhamel’s principle and integration by parts, we have μ = μ1 + μ2, where

μ1(x, t) =
∫ t

0

∫ ∞

0

(
S(x − y, t − s) − S(x + y, t − s)

)(
(bμ)y(y, s) + νy(y, s)

)
dy ds

=
∫ t

0

∫ ∞

0

(
Sx (x − y, t − s) + Sx (x + y, t − s)

)(
(bμ)(y, s) + ν(y, s)

)
dy ds

(A.2)

and

μ2(x, t) =
∫ ∞

0
(S(x − y, t) − S(x + y, t)) μ0(y) dy. (A.3)

Note that

∫ ∞

0

∣
∣Sx (x, t)

∣
∣ dx = −

∫ ∞

0
Sx (x, t) dx = − lim

x→∞
(
S(x, t) − S(0, t)

)

= (2πσ 2t)−1/2. (A.4)
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Call

c′ := 2(2πσ 2)−1/2, (A.5)

and let M > 1 to be determined later. Then

e−Mt
∫ ∞

0
|μ1(x, t)| dx

≤ e−Mt
∫ t

0

∫ ∞

0

∫ ∞

0

(|Sx (x − y, t − s)|
+ |Sx (x + y, t − s)|)( ‖b‖L∞ |μ(y, s)| + |ν(y, s)|) dx dy ds
≤ c′e−Mt

∫ t

0
(t − s)−1/2

∫ ∞

0

( ‖b‖L∞ |μ(y, s)| + |ν(y, s)|) dy ds

= c′
∫ t

0
e−M(t−s)(t − s)−1/2

∫ ∞

0
e−Ms( ‖b‖L∞ |μ(y, s)| + |ν(y, s)|) dy ds.

(A.6)

Here, the first inequality follows directly from (A.2); the second inequality follows
from (A.4) and noting that exp

{− y2/(2σ 2t)
} ≤ 1 for all y ∈ (0,∞). Define

B := sup
0≤τ≤T

e−Mτ

∫ ∞

0
|μ(x, τ )| dx . (A.7)

Then (A.6) implies

e−Mt
∫ ∞

0
|μ1(x, t)| dx ≤ c′B ‖b‖L∞

∫ t

0
e−M(t−s)(t − s)−1/2 ds

+ c′e−Mt ‖ν‖L∞
t (L1

x )

∫ t

0
(t − s)−1/2 ds

≤ c′B ‖b‖L∞ M−1/2√π + 2c′e−Mt ‖ν‖L∞
t (L1

x )

√
t .

(A.8)

The second inequality follows from the substitutions and estimate below

∫ t

0
e−M(t−s)(t − s)−1/2 ds =

∫ t

0
e−Mss−1/2 ds

= M−1/2
∫ Mt

0
e−ss−1/2 ds ≤ M−1/2√π. (A.9)

Now, if M > 1, then 2e−Mt√t ≤ 1 for all t > 0. Thus, (A.8) implies

e−Mt
∫ ∞

0
|μ1(x, t)| dx ≤ c′ ‖b‖L∞

√
πM−1/2B + c′ ‖ν‖L∞

t (L1
x )

. (A.10)
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On the other hand, since S(·, t) is a probably density, we deduce

∫ ∞

0
|μ2(x, t)| dx ≤

∫ ∞

0
|μ0(x)| dx . (A.11)

Add e−Mt times (A.11) to (A.10), take a supremum on both sides over all t ∈ [0, T ],
and we find that

B ≤ c′ ‖b‖L∞
√

πM−1/2B + ‖μ0‖L1 + c′ ‖ν‖L∞
t (L1

x )
. (A.12)

Choose M > 1 large enough so that M > (2c′ ‖b‖L∞
√

π)2. Consequently, we find
that

B ≤ 2 ‖μ0‖L1 + 2c′ ‖ν‖L∞
t (L1

x )
, (A.13)

which, given the definition of B in (A.7), establishes part (a).
For part (b) we argue similarly. First, note that

2
∫ ∞

0
x |Sx (x, t)| dx = −2

∫ ∞

0
xSx (x, t) dx = 2

∫ ∞

0
S(x, t) dt = 1. (A.14)

Knowing this and using (A.4), we can estimate

∫ ∞

0
x
(|Sx (x − y, t − s)| + |S(x + y, t − s)|) dx

=
∫ ∞

−y
(x + y) |Sx (x, t − s)| dx +

∫ ∞

y
(x − y) |Sx (x, t − s)| dx

≤
∫ ∞

−∞
(x + y) |Sx (x, t − s)| dx +

∫ ∞

0
x |Sx (x, t − s)| dx

= 3

2
+ y

∫ ∞

−∞
|Sx (x, t − s)| dx

≤ 2 + c′y(t − s)−1/2,

(A.15)

where c′ is as in (A.5). Note that the second equality above follows from (A.14), and
the last inequality from (A.4). We now use Fubini’s Theorem to estimate

∫ ∞

0
x |μ1(x, t)| dx

≤
∫ t

0

∫ ∞

0

∫ ∞

0
x
(|Sx (x − y, t − s)| + |Sx (x + y, t − s)|)( ‖b‖L∞ |μ(y, s)|

+ |ν(y, s)|) dx dy ds
≤
∫ t

0

∫ ∞

0

(
2 + c′y(t − s)−1/2)( ‖b‖L∞ |μ(y, s)| + |ν(y, s)|) dy ds.

(A.16)

123



    2 Page 40 of 52 Applied Mathematics & Optimization             (2022) 86:2 

The second inequality follows directly from (A.15). Let M > 1 to be determined later
and define

B ′ := sup
0≤t≤T

e−Mt
∫ ∞

0
x |μ(x, t)| dx . (A.17)

We then estimate in a similar manner as in the proof of part (a)

e−Mt
∫ ∞

0
x |μ2(x, t)| dx ≤ e−Mt

∫ t

0

∫ ∞

0

(
2 + c′y(t − s)−1/2)( ‖b‖L∞ |μ(y, s)|

+ |ν(y, s)|) dy ds
≤ c′

∫ t

0
e−M(t−s)(t − s)−1/2

∫ ∞

0
e−Ms y

( ‖b‖L∞ |μ(y, s)|
+ |ν(y, s)|) dy ds
+ 2te−Mt( ‖b‖L∞ ‖μ‖L∞

t (L1
x )

+ ‖ν‖L∞
t (L1

x )

)
.

(A.18)

In similar fashion, we estimate

∫ ∞

0
x |μ2(x, t)| dx ≤

∫ ∞

0

∫ ∞

−y
(x + y)S(x, t) |μ0(y)| dx dy

+
∫ ∞

0

∫ ∞

y
(x − y)S(x, t) |μ0(y)| dx dy

≤ 3
∫ ∞

0
xS(x, t) dx

∫ ∞

0
|μ0(y)| dy +

∫ ∞

0
y |μ0(y)| dy,

(A.19)

where we have also used that S(·, t) is an even function. We calculate (by a change of

variables) that
∫∞
0 xS(x, t) dx =

√
σ 2t
2π . Add together (A.18) and (A.19) to get

e−Mt
∫ ∞

0
x |μ(x, t)| dx ≤ c′ ‖b‖L∞

√
πM−1/2B ′ + ‖xμ0‖L1

+c′ ‖xν‖L∞
t (L1

x )
+ cb,σ

(
‖μ0‖L1 + ‖ν‖L∞

t (L1
x )

)
. (A.20)

Here, cb,σ < ∞ is a constant that depends only on ‖b‖L∞ and σ ; its existence is
guaranteed by part (a) of this proposition. Now, taking a supremum on both sides
of (A.20) over all t ∈ [0, T ], then choosing M > 1 large enough so that M >

(2 ‖b‖L∞ c′√π)2, we derive

B ′ ≤ 2
(
‖xμ0‖L1 + c′ ‖xν‖L∞

t (L1
x )

+ cb,σ
(
‖μ0‖L1 + ‖ν‖L∞

t (L1
x )

))
. (A.21)

Recalling the definition of B ′ in (A.17), the above estimate implies part (b) of the
proposition. �
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Before proving Proposition 2.2, we present an abstract lemma.

Lemma A.1 Let A ≥ 1, B, δ > 0 be given constants. Suppose f , g : [0,∞) → [0,∞)

are functions that satisfy

f (t1) ≤ A f (t0) + B
∫ t1

t0
(t1 − s)−1/2 ( f (s) + g(s)) ds ∀0 ≤ t0 ≤ t1 ≤ t0 + δ (A.22)

Then for any λ > 1
δ
ln(A), we have

(

1 − 2δ1/2B

1 − Ae−λδ

)∫ T

0
e−λt f (t) dt ≤ A

κ
f (0) + 2δ1/2B

1 − Ae−λδ

∫ T

0
e−λt g(t) dt .

(A.23)

Proof Set h(t) = f (t) + g(t), so that (A.22) reads simply

f (t1) ≤ A f (t0) + B
∫ t1

t0
(t1 − s)−1/2h(s) ds for all 0 ≤ t0 ≤ t1 ≤ t0 + δ.

(A.24)

For arbitrary t > 0 let n = ⌊ t
δ

⌋
. Use (A.24) n + 1 times to get

f (t) ≤ An+1 f (0) +
n∑

j=0

A j B
∫ t− jδ

(t−( j+1)δ)+
(t − jδ − s)−1/2h(s) ds, (A.25)

where s+ := max{s, 0}. Note that

t − ( j + 1)δ < s ≤ t − jδ ⇒ j =
⌊
t − s

δ

⌋

,

so we define φ(s) = (
s − ⌊ s

δ

⌋
δ
)−1/2. Then (A.25) implies

f (t) ≤ A
t
δ
+1 f (0) +

n∑

j=0

B
∫ t− jδ

(t−( j+1)δ)+
A

t−s
δ φ(t − s)h(s) ds (A.26)

= A
t
δ
+1 f (0) + B

∫ t

0
A

t−s
δ φ(t − s)h(s) ds.

Let λ > 1
δ
ln(A) and set κ = λ− 1

δ
ln(A) > 0. Multiply (A.26) by e−λt , then integrate

from 0 to T to get

∫ T

0
e−λt f (t) dt ≤ A

κ
f (0) + B

∫ T

0

∫ t

0
e−κ(t−s)φ(t − s)e−λsh(s) ds dt

= A

κ
f (0) + B

∫ T

0

∫ T−s

0
e−κtφ(t)e−λsh(s) dt ds.

(A.27)
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We now observe that

∫ ∞

0
e−κtφ(t) dt =

∞∑

n=0

∫ (n+1)δ

nδ

e−κt (t − nδ)−1/2 dt

=
∞∑

n=0

e−nκδ

∫ δ

0
e−κt t−1/2 dt

≤ 1

1 − e−κδ

∫ δ

0
t−1/2 dt

= 2δ1/2

1 − e−κδ
= 2δ1/2

1 − Ae−λδ

(A.28)

Applying (A.28) to (A.27), we get

∫ T

0
e−λt f (t) dt ≤ A

κ
f (0) + 2δ1/2B

1 − Ae−λδ

∫ T

0
e−λs ( f (s) + g(s)) ds, (A.29)

which implies (A.23). �

We now apply Proposition A.1 to the Fokker–Planck equation.

Proof of Proposition 2.2 First we will treat μ as a solution of the abstract Fokker–
Planck equation (2.1) by identifying b := F (0) and ν := � + 1

2

(
G(ε) − wx

)
m(0). We

start with the following formula: for every t1 ≥ t0 ≥ 0,

μ(x, t1) =
∫ ∞

0
(S(x − y, t1 − t0) − S(x + y, t1 − t0)) μ(y, t0) dy

+
∫ t1

t0

∫ ∞

0

(
∂ S

∂x
(x − y, t1 − s) + ∂ S

∂x
(x + y, t1 − s)

)

(b(y, s)μ(y, s) + ν(y, s)) dy ds,

(A.30)

Using the same calculations as in (A.6), we get

∫ ∞

0
|μ(x, t1)| dx ≤

∫ ∞

0
|μ(y, t0)| dy

+c′
∫ t1

t0

∫ ∞

0
(t1 − s)−1/2 (‖b‖∞ |μ(y, s)| + |ν(y, s)|) dy ds, (A.31)

where c′ is defined in (A.5). Let

f (t) :=
(∫ ∞

0
|μ(x, t)| dx

)2

and g(t) :=
(∫ ∞

0
|ν(x, t)| dx

)2

,

so we can write

f (t1)
1/2 ≤ f (t0)

1/2 + c
∫ t1

t0
(t1 − s)−1/2

(
‖b‖∞ f (s)1/2 + g(s)1/2

)
ds. (A.32)
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By Hölder’s inequality, we get

f (t1)
1/2 ≤ f (t0)

1/2 + ‖b‖∞ c
(
2(t1 − t0)

1/2
)1/2

(∫ t1

t0
(t1 − s)−1/2 f (s) ds

)1/2

(A.33)

+ c
(
2(t1 − t0)

1/2
)1/2

(∫ t1

t0
(t1 − s)−1/2g(s) ds

)1/2

.

Next, we square both sides and use the inequality (a + b)2 ≤ 2(a2 + b2) to get

f (t1) ≤ 2 f (t0) + 4c(1 + ‖b‖∞)(t1 − t0)
1/2

∫ t1

t0
(t1 − s)−1/2 ( f (s) + g(s)) ds.

(A.34)

We now estimate
∫ ∞

0
|[| 2]� + 1

2

(
G(ε) − wx

)
m(0) dx ≤ ‖�‖L1

x
+ 2

∫ ∞

0

∣
∣
∣wxm

(0)
∣
∣
∣ dx

+
∫ ∞

0
|u(0)

x μ| dx, (A.35)

so that

g(t) ≤ 3 ‖�‖2L1
x
+ 12

(∫ ∞

0
|wxm

(0)| dx
)2

+ 3

(∫ ∞

0
|u(0)

x μ| dx
)2

(A.36)

≤ 3 ‖�‖2L1
x
+ 12

∫ ∞

0
w2
xm

(0) dx + 3
∥
∥
∥u(0)

x

∥
∥
∥
2

∞ f (t).

The first inequality follows from the fact that
(∑n

k=1 xk
)2 ≤ n

∑n
k=1 x

2
k . The

second inequality follows from the Cauchy–Schwarz inequality and the fact that∫∞
0 m(0) dx ≤ 1. Now, define

h(t) := 1

1 + 3
∥
∥
∥u

(0)
x

∥
∥
∥
2

∞

(
3 ‖�‖L∞

t (L1
x )

+ 12
∫ ∞

0
w2
xm

(0) dx
)
. (A.37)

Since

1 + ‖b‖∞ = 1 +
∥
∥
∥F (0)

∥
∥
∥∞ ≤ 2

(
1 +

∥
∥
∥u(0)

x

∥
∥
∥∞

)
,

we see that (A.36) and (A.34) yield

f (t1) ≤ 2 f (t0) + 24c
(
1 +

∥
∥
∥u(0)

x

∥
∥
∥∞

)3
(t1 − t0)

1/2
∫ ∞

0
(t1 − s)1/2

(
f (s) + h(s)

)
,

(A.38)
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upon factoring out
(
1 + 3

∥
∥
∥u

(0)
x

∥
∥
∥
2

∞
)
, and estimating

(
1 + 3

∥
∥
∥u

(0)
x

∥
∥
∥
2

∞
) ≤ 3

(
1 +

∥
∥
∥u

(0)
x

∥
∥
∥∞

)2. From (A.38), we see that Proposition A.1 applies with A := 2, and

B := 24c
(
1 +

∥
∥
∥u

(0)
x

∥
∥
∥∞

)3
δ1/2.

Now, choose δ > 0 small enough such that

2δ1/2B <
1

4
⇐⇒ δ <

1

192c
(
1 +

∥
∥
∥u

(0)
x

∥
∥
∥∞

)3
. (A.39)

Then choose λ > 1
δ
ln(2) large enough such that

1 − Ae−λδ >
1

2
⇐⇒ λ >

2

δ
ln(2) ⇐⇒ λ > C0. (A.40)

As a result,

2δ1/2B

1 − Ae−λδ
<

1

2
, (A.41)

and by Proposition A.1 we obtain

∫ T

0
e−λt

(∫ ∞

0
|μ| dx

)2

dt ≤ 3

1 + 3
∥
∥
∥u

(0)
x

∥
∥
∥
2

∞

∫ T

0
e−λt ‖�‖2L1

x
dt

+ 12

1 + 3
∥
∥
∥u

(0)
x

∥
∥
∥
2

∞

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dx dt

≤
3 ‖�‖2

L∞
t (L1

x )

C0
(
1 + 3

∥
∥
∥u

(0)
x

∥
∥
∥
2

∞
)

+ 12

1 + 3
∥
∥
∥u

(0)
x

∥
∥
∥
2

∞

∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dx dt .

(A.42)

The second inequality is obtained by the simple estimate

∫ T

0
e−λt dt = 1

λ
(1 − e−λT ) <

1

λ
<

1

C0
. (A.43)

Thus, (2.3) holds.
Now, in the case that T is finite, we can estimate for all λ ∈ (0,C0],

e−λt = e(2C0−λ)t e−2C0t ≤ e(2C0−λ)T e−2C0t . (A.44)
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Consequently, using (2.3) with λ = 2C0, we obtain

∫ T

0
e−λt

(∫ ∞

0
|μ| dx

)2

dt ≤ e(2C0−λ)T
∫ T

0
e−2C0t

(∫ ∞

0
|μ| dx

)2

dt

≤ e(2C0−λ)T
(C1 ‖�‖2

L∞
t (L1

x )

C0
+ C2

∫ T

0
e−2C0t

∫ ∞

0
w2
xm

(0) dx dt

)

≤
C1 ‖�‖2

L∞
t (L1

x )
e2C0T

C0
+ C2e

2C0T
∫ T

0
e−λt

∫ ∞

0
w2
xm

(0) dx dt,

(A.45)

whereby the last inequality follows, because e−2C0t ≤ e−λt for all t ∈ [0, T ]. This
completes the proof. �


A.2 An Abstract Hölder Estimate

In this subsection we will give an abstract result on Hölder regularity for a parabolic
equation with Dirichlet boundary conditions and bounded coefficients. Our argument
is in the spirit of [3,Lemma 3.2.2.], but we cover the case of an unbounded domain.
The result stated below is also meant to allow for a possibly infinite time horizon,
though in the present work we will not exploit this.

Lemma A.2 Fix 0 < α < 1. Let u be a solution of

∂u

∂t
+ λu − σ 2

2

∂2u

∂x2
+ V (x, t)

∂u

∂x
= F, u(0, t) = 0, u(x, 0) = u0(x)(A.46)

where λ is any positive constant, V and F are a bounded continuous functions, and
u0 ∈ C1+α� (D) (i.e. u0 ∈ C1+α(D) and u0(0) = 0). Then

‖u‖Cα,α/2
(
D×[0,T ]

) +
∥
∥
∥
∥

∂u

∂x

∥
∥
∥
∥Cα,α/2

(
D×[0,T ]

) ≤ C (‖V ‖∞ , α, λ)
(‖F‖∞ + ‖u0‖C1+α

)
,

(A.47)

where C (‖V ‖∞ , α, λ) is independent of T .
As a corollary, we have

‖u‖Cα/4
(
[0,T ];C1+α/2(D)

) ≤ C (‖V ‖∞ , α, λ)
(‖F‖∞ + ‖u0‖C1+α

)
. (A.48)

Proof We will start by assuming u0 = 0. By a standard application of the maximum
principle we have that ‖u‖0 ≤ 1

λ
‖F‖0. Let φ(x) be a smooth function, and observe

that

∂ (φu)

∂t
− σ 2

2

∂2(φu)

∂x2
+
(

V + σ 2φ′

φ

)
∂ (φu)

∂x
+ λ(φu) = g(x, t), (A.49)
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where

g(x, t) = φ(x)F(x, t) +
(

σ 2
(
φ′(x)

)2

φ(x)
− σ 2

2
φ′′(x) + V (x, t)φ′(x)

)

u(x, t).

(A.50)

Fix a time τ > 0, and set v(x, t) = eλ(t−τ)φ(x)u(x, t). Then (A.49) becomes

∂v

∂t
− σ 2

2

∂2v

∂x2
+
(

V + σ 2φ′

φ

)
∂v

∂x
= g̃, (A.51)

where

g̃(x, t) = eλ(t−τ)g(x, t). (A.52)

Fix any a > 0 and let φ(x) = (
1 + (x − a)2

)−1/2
. Note that φ satisfies the following

properties:

∣
∣
∣
∣
φ′

φ

∣
∣
∣
∣ ≤ 1,

∣
∣
∣
∣
φ′′

φ

∣
∣
∣
∣ ≤ 2,

(∫ ∞

−∞
|φ(x)|p dx

)1/p

=
(

2p

p − 1

)1/p

∀p > 1,(A.53)

and also
(∫ τ

0 epλ(t−τ) dt
)1/p ≤ (λp)−1/p. It follows that

‖g̃‖L p(D×(0,τ )) ≤ C(p)λ−1/p (‖F‖0 + (1 + ‖V ‖∞) ‖u‖0)
≤ C(p)λ−1/p ‖F‖0 (1 + ‖V ‖∞) , (A.54)

where C(p) remains bounded as p → ∞.
Take p arbitrarily large. By the potential estimates in [26,Sect. IV.3] we have an

estimate of the form

∥
∥
∥
∥
∂v

∂t

∥
∥
∥
∥
L p(D×(0,τ ))

+
∥
∥
∥
∥

∂2v

∂x2

∥
∥
∥
∥
L p(D×(0,τ ))

≤ C

∥
∥
∥
∥g̃ −

(

V + 2φ′

φ

)
∂v

∂x

∥
∥
∥
∥
L p(D×(0,τ ))

≤ C(p)λ−1/p ‖F‖0 (1 + ‖V ‖0) + C (1 + ‖V ‖0)
∥
∥
∥
∥

∂v

∂x

∥
∥
∥
∥
L p(D×(0,τ ))

,

(A.55)

where the constants do not depend on τ . On the other hand we have

‖v‖L p(D×(0,τ )) ≤ C(p)λ−1/p ‖u‖0 ≤ C(p)λ−1−1/p ‖F‖0 . (A.56)
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By interpolation (see e.g. [26,Lemma II.3.3]) we have

∥
∥
∥
∥

∂v

∂x

∥
∥
∥
∥
L p(D×(0,τ ))

≤ δ

(∥
∥
∥
∥
∂v

∂t

∥
∥
∥
∥
L p(D×(0,τ ))

+
∥
∥
∥
∥

∂2v

∂x2

∥
∥
∥
∥
L p(D×(0,τ ))

)

+ C

δ
‖v‖L p(D×(0,τ ))

(A.57)

for some constant C , where δ > 0 is sufficiently small. Choosing δ > 0 small enough,
we deduce

∥
∥
∥
∥
∂v

∂t

∥
∥
∥
∥
L p(D×(0,τ ))

+
∥
∥
∥
∥

∂2v

∂x2

∥
∥
∥
∥
L p(D×(0,τ ))

≤ C(p)λ−1/p ‖F‖0 (1 + ‖V ‖∞)

+ C
(
1 + ‖V ‖2∞

)
‖v‖L p(D×(0,τ ))

≤ C(p)λ−1/p ‖F‖0 (1 + ‖V ‖∞)

+ C
(
1 + C(p)λ−1−1/p ‖F‖0 ‖V ‖2∞

)

(A.58)

Then by a Sobolev type embedding theorem [26,Lemma II.3.3] we have

‖v‖Cα,α/2 +
∥
∥
∥
∥

∂v

∂x

∥
∥
∥
∥Cα,α/2

≤ C(p, λ) ‖F‖0
(
1 + ‖V ‖2∞

)
+ C (A.59)

for α = 1 − 3
p (assuming p > 3). We can rewrite this as

∥
∥
∥eλ(·−τ)φu

∥
∥
∥Cα,α/2

+
∥
∥
∥
∥e

λ(·−τ)

(

φ′u + φ
∂u

∂x

)∥
∥
∥
∥Cα,α/2

≤ C(p, λ) ‖F‖0
(
1 + ‖V ‖2∞

)
+ C . (A.60)

Since t 
→ eλt is locally Lipschitz with constant depending on λ, we can write this as

‖φu‖Cα,α/2(D×[τ−1,τ ]) +
∥
∥
∥
∥φ

′u + φ
∂u

∂x

∥
∥
∥
∥Cα,α/2(D×[τ−1,τ ])

≤ C(p, λ) ‖F‖0
(
1 + ‖V ‖2∞

)
+ C(λ). (A.61)

Using the fact that φ′
φ
is bounded by 1 and is globally Lipschitz with Lip

(
φ′
φ

)
= 1,

we also have

∥
∥
∥
∥φ

∂u

∂x

∥
∥
∥
∥Cα,α/2

≤
∥
∥
∥
∥φ

′u + φ
∂u

∂x

∥
∥
∥
∥Cα,α/2

+ ∥
∥φ′u

∥
∥Cα,α/2 ≤

∥
∥
∥
∥φ

′u + φ
∂u

∂x

∥
∥
∥
∥Cα,α/2

+ ‖φu‖Cα ,

(A.62)
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hence

‖φu‖Cα,α/2(D×[τ−1,τ ]) +
∥
∥
∥
∥φ

∂u

∂x

∥
∥
∥
∥Cα,α/2(D×[τ−1,τ ])

≤ C(p, λ) ‖F‖0
(
1 + ‖V ‖2∞

)
+ C(λ). (A.63)

Now, since 1
φ
is globally Lipschitz with Lip(1/φ) = 1, and bounded on [a− 1, a+ 1]

with an upper bound of 2, we deduce that

‖u‖Cα,α/2([a−1,a+1]×[τ−1,τ ]) +
∥
∥
∥
∥
∂u

∂x

∥
∥
∥
∥Cα,α/2([a−1,a+1]×[τ−1,τ ])

≤ C(p, λ) ‖F‖0
(
1 + ‖V ‖2∞

)
+ C(λ). (A.64)

This estimate is independent of τ and a. Letting τ and a vary through all the positive
integers, and since p can be determined through α, it follows that

‖u‖Cα,α/2
(
D×[0,∞)

) +
∥
∥
∥
∥
∂u

∂x

∥
∥
∥
∥Cα,α/2

(
D×[0,∞)

) ≤ C(α, λ) ‖F‖0
(
1 + ‖V ‖2∞

)
+ C(λ).

(A.65)

We now remove the assumption that u0 = 0. Let w be the solution of

∂w

∂t
− σ 2

2

∂2w

∂x2
+ λw = 0, w(x, 0) = u0(x). (A.66)

As λ > 0, by the maximum principle, we have ‖w‖0 ≤ ‖u0‖0. Then [w]Cα,α/2 ≤
C ‖u0‖Cα by [26,Theorem 10.1]; this estimate does not depend on time because of the
global in time L∞ bound. This establishes ‖w‖Cα,α/2 ≤ C ‖u0‖Cα . We then take the

derivative in x of Equation (A.66) and apply the same argument as above to
∂w

∂x
to

establish

∥
∥
∥
∥
∂w

∂x

∥
∥
∥
∥Cα,α/2

≤ C ‖u0‖C1+α . Then let û be the solution of

∂ û

∂t
− σ 2

2

∂2û

∂x2
+ V (x, t)

∂ û

∂x
+ λû = F(x, t) − V (x, t)

∂w

∂x
(A.67)

with zero initial conditions. Then by (A.65) we have

∥
∥û
∥
∥
Cα,α/2

(
D×[0,∞)

) +
∥
∥
∥
∥

∂ û

∂x

∥
∥
∥
∥Cα,α/2

(
D×[0,∞)

) ≤ C(α, λ, ‖V ‖∞)

∥
∥
∥
∥F + V

∂w

∂x

∥
∥
∥
∥
0

≤ C (‖V ‖∞ , α, λ)
(‖F‖0 + ‖u0‖C1+α

)
.

(A.68)

As u = û + w is the solution to (A.46), the claim is proved.
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Finally, to prove (A.48), note that (A.47) immediately implies

sup
0≤t≤T

‖u(·, t)‖C1+α/2(D)
≤ sup

0≤t≤T
‖u(·, t)‖C1+α(D)

≤ C (‖V ‖∞ , α, λ)
(‖F‖∞ + ‖u0‖C1+α

)
, (A.69)

and we also have

sup
t �=s

sup
x �=y

∣
∣
∣
∣
∂u

∂x
(x, t) − ∂u

∂x
(x, s) − ∂u

∂x
(y, t) + ∂u

∂x
(y, s)

∣
∣
∣
∣

|t − s|α/4 |x − y|α/2

≤ sup
t �=s

sup
x �=y

2

∥
∥
∥
∥
∂u

∂x

∥
∥
∥
∥Cα,α/2

min
{|t − s|α/2 , |x − y|α}

|t − s|α/4 |x − y|α/2

≤ C (‖V ‖∞ , α, λ)
(‖F‖∞ + ‖u0‖C1+α

)
.

(A.70)

Combine (A.69) and (A.70) to get (A.48). �


Appendix B: Nonlocal Existence Lemma

For this lemma, recall the definition X = Cα,α/2 ∩ L∞
t (L1

x )∩ Cα/2
([0, T ]; (C1+2α)∗

)

with norm

‖m‖X := ‖m‖Cα,α/2 + ‖m‖L∞
t (L1

x )
+ ‖m‖Cα/2([0,T ];(C1+2α)∗) . (B.1)

Lemma B.1 Let α ∈ (0, 1/2) be such that u(0),m(0) ∈ C2+2α,1+α . Let m ∈ X , uT ∈
C2+α([0,∞)), and � ∈ Cα,α/2([0,∞) × [0, T ]) be given. Consider the backward
parabolic equation

⎧
⎪⎪⎨

⎪⎪⎩

(i) ut + σ 2

2
uxx − ru + λ� + λF (0)(ε)

(
G(ux ,m; ε) − ux

) = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i) u(x, T ) = uT (x), 0 ≤ x < ∞
(i i i) u(0, t) = 0, 0 ≤ t ≤ T ,

(B.2)

where G is defined as in (1.5). We assume the usual compatibility conditions of first
order:

uT (0) = 0,
σ 2

2
u′′
T (0) + λ�(0, T ) − λF (0)(ε)(0, 0)u′

T (0) = 0. (B.3)

Then there exists a unique classical solution u ∈ C2+α,1+α/2([0,∞) × [0, T ]) to the
boundary value problem (B.2). Moreover, the following estimate holds:

‖u‖C2+α,1+α/2 ≤ C
(‖m‖X + ‖�‖Cα/2,α + ‖uT ‖C2+α

)
(B.4)
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where C depends only on the data.

Proof Let u ∈ C2+α,1+α/2([0,∞) × [0, T ]) be given. Note that

‖G(ux ,m; ε)‖Cα,α/2 ≤ C
(
‖m‖Cα/2([0,T ];(C1+2α)∗) + ‖u‖C2+α,1+α/2

)
, (B.5)

where C depends on the C2+2α,1+α norms of u(0) and m(0). By [26,Theorem IV.5.2],
there exists a unique solution w ∈ C2+α,1+α/2([0,∞) × [0, T ]) the boundary value
problem

⎧
⎪⎪⎨

⎪⎪⎩

(i) wt + σ 2

2
wxx − rw + λ� + λF (0)(ε)

(
G(ux ,m; ε) − wx

) = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i) w(x, T ) = uT (x), 0 ≤ x < ∞
(i i i) w(0, t) = 0. 0 ≤ t ≤ T ,

(B.6)

and it satisfies the estimate

‖w‖C2+α,1+α/2 ≤ C
(‖�‖Cα,α/2 + ‖G(ux ,m; ε)‖Cα,α/2 + ‖uT ‖C2+α

)
. (B.7)

We will denote w = F(u). Our goal it to show that F is a contraction on a suitably
defined metric space, and use this to prove (B.2) has a solution.

Let u1, u2 ∈ C2+α,1+α/2([0,∞) × [0, T ]), then define u = u1 − u2 and w =
F(u1) − F(u2). Note that w satisfies

⎧
⎪⎪⎨

⎪⎪⎩

(i) wt + σ 2

2
wxx − rw + λF (0)(ε)

(
G(ux , 0; ε) − wx

) = 0, 0 ≤ x < ∞, 0 ≤ t ≤ T

(i i) w(x, T ) = 0, 0 ≤ x < ∞
(i i i) w(0, t) = 0. 0 ≤ t ≤ T .

(B.8)

Recalling the definition of G in (1.5), we see that there is a constant C1, depending
only on the data, such that

‖G(ux , 0; ε)‖Cα,α/2 ≤ C1 ‖ux‖Cα,α/2 . (B.9)

Combining this with classical estimates from [26,Theorem IV.5.2], we see that there
is some constant C2, depending only on the data, such that

‖w‖C2+α,1+α/2 ≤ C2 ‖ux‖Cα,α/2 . (B.10)

Using interpolation on Hölder spaces, we deduce that there exists a constant C3,
depending only on C2, such that

C2 ‖vx‖Cα,α/2 ≤ 1

4
‖v‖C2+α,1+α/2 + C3 ‖v‖∞ ∀v ∈ C2+α,1+α/2. (B.11)
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Hence

‖w‖C2+α,1+α/2 ≤ 1

4
‖u‖C2+α,1+α/2 + C3 ‖u‖∞ . (B.12)

Next, we define w̃(x, t) = er(T−t)w±r−1(er(T−t) −1)C1 ‖ux‖Cα,α/2 , which satisfies

± (−w̃t − σ 2

2
w̃xx − λF (0)(ε)w̃x ) ≤ 0. (B.13)

Apply the maximum principle to w̃ to deduce that

|w(x, t)| ≤ r−1(er(T−t) − 1)C1 ‖ux‖Cα,α/2 ≤ (T − t)erT C1 ‖u‖C2+α,1+α/2 .

(B.14)

We now apply all of these estimates only on the time interval [T − τ, T ] for some
τ > 0. We deduce that

‖w‖C2+α,1+α/2([0,∞)×[T−τ,T ]) + 2C3 ‖w‖L∞([0,∞)×[T−τ,T ]) (B.15)

≤
(
1

4
+ 2C3τe

rT C1

)

‖u‖C2+α,1+α/2([0,∞)×[T−τ,T ]) + C3 ‖u‖L∞([0,∞)×[T−τ,T ]) .

Wenowset τ = 1

8C3erT C1
.DefineYτ to be the spaceC2+α,1+α/2([0,∞)×[T−τ, T ])

endowed with the norm

‖w‖Yτ
:= ‖w‖C2+α,1+α/2([0,∞)×[T−τ,T ]) + 2C3 ‖w‖L∞([0,∞)×[T−τ,T ]) . (B.16)

Observe that Yτ is a Banach space. Moreover, by the above estimates, F : Yτ → Yτ

is a contraction, since ‖F(u1) − F(u2)‖Yτ
≤ 1

2 ‖u1 − u2‖Yτ
. Hence F has a unique

fixed point u, which is a solution to (B.2) and satisfies the estimate (B.4) on the time
interval [T − τ, T ]. However, T is arbitrary. We can now partition the interval [0, T ]
into subintervals that are each at most τ in length, i.e. 0 = t0 < t1 < · · · < tN = T
where t j+1−t j ≤ τ . Apply the same argument on each subinterval [t j−1, t j ], replacing
the final condition uT (x) with w(x, t j ), for each j starting with N and going down
to 1. (Cf. the proof of [10,Proposition 3.11].) In this way we obtain a solution u to
Equation (B.2), which indeed satisfies (B.4). Uniqueness of this solution follows from
uniqueness on each subinterval. �
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