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Abstract

We study a mean field game system introduced by Chan and Sircar (Appl Math Optim
71:533-569, 2015) to model production of an exhaustible resource. In particular, we
study the sensitivity of the solution with respect to a parameter &, which measures the
degree to which producers are interchangeable. We prove that on some interval [0, &¢],
where gy > 0, the solution is infinitely differentiable with respect to €. The result is
based on a set of new a priori estimates for forward-backward systems of linear partial
differential equations.
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1 Introduction

Consider the following system of nonlinear partial differential equations:
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(i) ut+%u“—ru+F(t,ux,m;8)2=0, O0<x<oo, 0<t<T
2
i) my = Zom = [F(tuymse)ml, =0, 0<x<oc0. 01 =T (L)
(iii)y m(x,0) =mo(x), ulx,T)=ur(x), 0<x <o
(iv) u(0,t) =m(0,1) =0, 0<tr<T

where the data consist of a parameter ¢ > 0, a time horizon 7 > 0, a smooth
probability density mg(x), a smooth function ur (x), and two positive constants o and
r, and where F (¢, u,, m; €) is given by

2 e&(t) o
24e&() 24¢&(1) Jo

F(t,uy,,m;e) = % < Uy (x, H)m(x, t)dx — u,(x, t)>

(1.2)

for some fixed smooth function & : [0, T] — [0, 1] such that £(T") = 0. We assume
that mq and u7 satisfy zero- and first-order compatibility conditions so that solutions
of (1.1) are classical (see [17]).

System (1.1) models a particular kind of mean field game for the production of
exhaustible resources, as proposed by Chan and Sircar in [8], cf. [9, 22]. In this game,
players control the rate at which they will sell from their current stock, and they must
leave the game once that stock goes to zero. The optimal strategies are determined
by the market price. In equilibrium, the market price is determined by the average of
all the players’ strategies. When the demand depends linearly on the production rate
(or on the price offered), one can determine the equilibrium by solving System (1.1);
in particular, if (u, m) is the solution, then F (¢, u,, m; ¢) gives the equilibrium rate
of production and m (x, t) gives the density of players whose remaining stock is x at
time ¢. The parameter ¢ measures the degree to which firms compete. If ¢ = 0, every
firm is a monopolist, while if ¢ is very large, all firms are nearly interchangeable in
the eyes of consumers.

Existence and uniqueness of solutions to System (1.1) has been established under
the assumptions we make in this article, thanks to the results found in [16, 17, 19], cf.
[15, 18]. In [8], Chan and Sircar proposed a numerical method to solving (1.1) that
consists of assuming the following Taylor expansion:

2
£
u, 1) =u @, 1)+ euV(x, 1) + ?”%“ DA,

2
£
m(x, 1) =m©Qx, 1) + em®(x, 1) + ?m@)(x, )4

(1.3)

Formally, u® and m® can be derived by differentiating System (1.1) k times with
respect to &, letting ¢ = 0, and then solving. Notice that setting ¢ = 0 decouples the
system. Thus «® and m® are computed by solving two equations separately, avoiding
the computational difficulties arising from the forward/backward-in-time coupling.
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To establish rigorously the accuracy of this numerical method, one must answer the
question: is the solution to System (1.1) differentiable with respect to ¢? In the present
article, we provide an affirmative answer to this question under generic assumptions on
the data. In particular, we establish that there exists 9 > 0 small enough such that for
every k € N, the solution to System (1.1) is k times differentiable with respect to € for
0 < & < go. See Theorem 1.1 below. More precisely, we establish that the difference
between the solution and its kth order Taylor expansion is bounded by Cre*t! for
some constant Cy. On the other hand, the constants Cy that appear in our analysis
blow up very fast as k — o0, and for this reason we conjecture that the infinite series
expansion does not in fact converge (see Remark 4.1).

While the numerical method of Chan and Sircar gives a practical application, our
work is also motivated by the theory of forward-backward linear systems of equations,
which turn out to be of fundamental importance in mean field game theory. In their
seminal work [3], Cardaliaguet et al. show that one can established well-posedness of
the master equation by the following steps: (1) solve the mean field game system, (2)
linearize the system by formally differentiating with respect to the measure variable
m, and, most crucially, (3) proving estimates on solutions to linearized systems, which
have as a corollary that the solution from step 1 is differentiable with respect to the
initial measure. We do not study the master equation in this article. However, our
sensitivity analysis follows exactly the same steps, where instead of linearizing with
respect to an infinite-dimensional measure variable, we differentiate with respect to ¢.
At an abstract level, the system of linear equations we study has the form

2
() Wit we —rw+ U+ FO@)(G(t, wy, 15 6) —wy) =0, 0<x<oo, 0<t<T

1
@) e — %/tx,x —(FO), = [@ + E(G(t’ Wy, i1 €) — wx)m(o)] , 0<x<o0, 0<t=<T

X

(iii) u(x,0) =0, wkx,T)=0, 0<x<o
(iv) w(0,1) = p(0,1) =0, 0<r1<T,
(1.4)
where FO 4 © 1@ W and & are given functions, and
o0
G(wy, u; &) 1= ,6(85([)) / (uj(co),u + m(o)wx> dx. (1.5)
0

with B a known function such that f(¢) — 0 as ¢ — 0. Our main mathematical
contribution in this article is a set of a priori estimates on solutions to System (1.4).
(See Sect. 2.) The estimates share three types in common with [3,Sect. 3.3]: (1) “energy
estimates,” derived by expanding (% (w, p) and using the duality between equations
(i) and (ii); (2) standard Schauder estimates on parabolic equations; and (3) estimates
on p in the space dual to a certain Holder space. Since the coupling depends on integral
terms involving the unknowns, the energy estimates are considerably more technical
than for standard mean field games. In particular, they require a fourth type of estimate,
namely (4) estimates on fOT (fo° mx, 1) dx)2 dz; see Sect. 2.1. Additionally, because
the boundary conditions in our model are of Dirichlet type, the estimates on p in the
dual of a Holder space require additional care compared to similar estimates on a torus;
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see Sect. 2.3. All of our results hold in one space dimension, on which the problem was
originally posed by Chan and Sircar (cf. [22]). In higher space dimensions, the Dirichlet
boundary conditions pose an additional difficulty for the purposes of regularity, since
there would be a corner in the domain, although the interior estimates are expected to
hold as in the one-dimensional case. This is a technical aspect we do not address in
the present work.

Mean field games were introduced circa 2006 by Lasry and Lions [27] and by
Caines, Huang, and Malhamé [23]. Since then, both theory and applications have
been well-studied. For a general exposition, we refer the reader to the texts [2, 5, 6].
Economic models are a common application of mean field game theory. See e.g. the
overviews in [1, 13, 28], and for the particular example of exhaustible resource pro-
duction see [8, 9, 22]. When the equilibrium strategy depends on the distribution of
controls, as is often the case for economics applications, we give the name mean field
game of the controls [4] (or extended mean field games [12]) to the resulting math-
ematical model. The theory of partial differential equations for mean field games of
controls has been developed in [4, 12, 14, 20, 24, 25]. The present work is, to the best
of our knowledge, the first study of parameter sensitivity for a mean field game of
controls. Some of the estimates presented here will be useful in a forthcoming study
of the master equation for a mean field game of controls with absorbing boundary
conditions [21].

The remainder of this article is organized as follows. In the rest of this introduction,
we define some notation and present the main result. Section 2 is the core of the paper
and provides a priori estimates on systems of equations with the abstract form (1.4).
In Sect. 3 we prove existence and uniqueness of solutions to (1.4). Finally, in Sect. 4,
we prove the main result.

1.1 Notation

Throughout this manuscript, L? (D) (1 < p < oo) will denote the usual Lebesgue
space on a domain D with standard norm, denoted either by ||-[| .»(p) or simply |- ,.
We will often consider the space-time domain D = (0, o) x [0, T'], on which we
consider the space L{’LZ of functions f = f(x, 7) such that the map 7 — | f(-, D)l
isin L? (0, T'). The norm is given by

Ifligpre = |t = ||f(~,t)||q|\p- (1.6)

For o € (0, 1) the space C¥ = C“ ([0, 00)) denotes the space of Holder continuous
functions u such that the following norm is finite:

lullge == ||u||oo+sup{M:x,yzo, xaéy}. (1.7)

lx — y|*
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If k is an integer, Ckt+e = ckte (10, 00)) denotes the space of k times differentiable
. k . .
functions u such that gx—‘,ﬁ € C“. Itis a Banach space with the norm

k

F3 + llulloo » (1.8)

Ca

lullgira =

+

which by standard interpolation results is equivalent to the norm H ngﬁ co
k=1 |l d/u
=0 | o | o
For «, B € (0, 1) the space cep = cup ([0, 00), [0, T']) denotes the space of all
Holder continuous functions # such that the following norm is finite:

lu(x, 1) —u(y, s)|

- 5.x,yZO,t,se[O,T],xsfﬁy,ts‘éS}-
[x — y|* 4+ |t —s|

(1.9)

lullgas = llulloo + SUP{

If j, k are integers, we can also define C/T®**# analogously. In particular, the space
C>te1+e/2 denotes the standard Holder space for parabolic equations (cf. [26]); its
norm can be written

0%u

a7 (1.10)

Co(,oc/Z '

lluell p2+at4ere = Ul + ‘ + ‘
Co.a/2

ar

Given any function f(x, t; €), we denote the k-th partial derivative of f(x, t; &) with
respect to € by

k
FO = O 1e) = a_k [f(x,1;0)], (1.11)
ae

with the convention that f© = f.

In studying System (1.4), we will frequently suppress notation and write
G(uy,m;e), G(¢), or even G to denote G (¢, uy, m; ¢), provided that no ambigu-
ity arises. Analogous statements hold for other functionals that depend on multiple
arguments.

1.2 Statement of the Main Result

Throughout this paper, we assume that conditions hold on the data so that System
(1.1) has a unique solution (u, m) satisfying u, m € C2te1+e/2 for some o € (0, 1).
Sufficient conditions are provided in [17], cf. [16]. We will denote this solution by
(u(o), m(o)). In addition to smoothness, we will also need to assume the initial density
m has finite first moment fooo xmo(x)dx < oo.
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Formally, if we differentiate (1.1) k times with respect to &, we obtain the system

2
o
(i) u(k)—i-—ugi)—ru(k)+Jk(x,t,uik),m(k);e):O, 0<x<o00,0<t<T

2
2
i) m® — “2 m®) — (K (v, u® m®6) =0,  0<x<oo, 0<1<T (1.12)
(iii) m(k)(x,O) =0, u(k)(x, T)=0, 0<x <o
(@v) u® 0,1 =m® 0.1 =0, 0<t<T,
where
Jk (x t, u(k) Z( )F(/) X, t, u)((j), o e)F(kff)(x,t,uikij),m(kfj);s)
j=0
(1.13)
and
kK rk . .
Kk(x, t, u)(ck), m®. 8) = Z (j)F(J)(x t, u)(cl), m: 6)m(k71)(x, 1. (1.14)
Jj=0

For clarity, we note that the full expression for F*) is given by

F(k)(x, ‘ ”)(ck)’ m(k ) E(t)k (k)(é‘%'(l‘)) _u(k)(x r)

1T e (ki o
O Yot -

i=0 j=0
(1.15)
where
&) = —— and Ble) = — (1.16)
€)= an g) = , .
“ 24+¢ 24¢
so that for k € N with k > 1,
O[(k)(é‘) - M and ﬂ(k) = —q® (1.17)
@2+ e)F ] ' '

The reader may wonder why, in writing F®, J;, and Ky, we have suppressed the
arguments u/) and m/) for j < k. This is because we will be arguing inductively
as follows: to prove that u® and m™® exist, we may assume that /) and m (/) are
known functions for j < k.

We now state our main result.
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Theorem 1.1 There exists eg > 0 small enough (see Equation (2.5)) such that for each
k € Nand all ¢ € [0, gol, System (1.12) has a unique classical solution w®, m®)y,
which satisfies the identity

oku okm
k) (k)Y —
(M ’m ) - (88"’ 38k> (1.18)

where (u, m) is the solution to (1.1). That is, the formal differentiation carried out on
u and m to obtain System (1.12) is justified. Moreover, there exists a constant C > 0
such that for ¢ € [0, go],

< Ck8k+l ,

ey =Sk e
Hu(, +€) Zj=0 3!uj (s ’0)‘r2+a.1+a/2 - (1.19)

.0 = Ty im0

< Ck8k+l
C2+a14a/2 — ’

where « is sufficiently small.

2 A Priori Estimates

In this section we present our main mathematical contribution by proving new a priori
estimates for a coupled forward-backward system of linear partial differential equa-
tions (1.4). It turns out that a useful first step for such systems is to prove “energy
estimates,” which are derived by expanding (% (w, u) and using the duality between
equations (i) and (ii). However, because of the integral term G appearing in (1.4),
the energy estimates are not useful without certain a priori estimates on the quan-
tity fOT (u(x, 1) dx)? dr, where p is the solution to the Fokker—Planck type equation
(1.4)(i1). We derive these estimates first in Sect. 2.1, which may have independent
interest to the reader interested in Fokker—Planck equations with a source. Section 2.2
then provides the desired energy estimates, which we apply throughout the rest of the
section. In Sect. 2.3 we arrive at further estimates for the Fokker—Planck equation in
the dual to a Holder space. Finally, in Sect. 2.4 we give a priori estimates that establish
full parabolic regularity.

2.1 A Priori Estimates on Fokker-Planck Equations with a Source

In this subsection, we collect some estimates on the Fokker—Planck equation (1.4)(ii),
in particular with respect to the L' norm and first moment in the space variable. These
results have very little to do with the particular structure of the coupled system (1.4)
and can be stated abstractly for a Fokker—Planck equation with a source. The proofs
of these results are given in Appendix A.
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Proposition 2.1 Let i solve

2
(i) m—%um—(bmx:vx, 0O<x<oo, 0<t<T
(i) pu(x,0) = po(), 0<x<o0 2D
(iii) n(0,1) =0, 0<t<T,

where o € L'([0, 00)), b € L*®([0, 00) x [0, T]) and v € L?"([O, T, L}C([O, oo)))
are known functions. Additionally, assume x o € Ll([O, o0)) and xv € L;’o([O, T1;
L1([0, 00))). Then

(a) we LX([0, T1; LL([0, 00))) with

Il ey = € (Niollr + Wiz ) -

where the constant C € (0, 00) depends only on o, ||b|| s, and T';
(b) and

o
sup [ xlie, Dldx £ I +0moll + Wiy + ovlimay )
0<t<T JO ! :

where the constant C € (0, 00) depends only on o and ||b| o, and T.
Proof See Appendix A.1. O
The following proposition could be stated for an abstract Fokker—Planck equation
like (2.1); nevertheless, it is given in the form below to make it more obvious how it

may be applied later on.

Proposition 2.2 Define the constant

Co := 384c"In(2)(

’ ), 2.2)

where ¢’ is as in (A.5), and suppose u satisfies (ii) of System (1.4) with ® € LY (L)]C).
If A > Cy, then

T o0 2 Ci Pl 1
/ e_)"</ |/L|dx> dr < LA / / wi 2n@ dx dr,
0 0

(2.3)

where the constants C1, Ca € (0, 00) depend only on ‘
o
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In particular, if T < 00, then there is no restriction on A, and for A € (0, Cop],

T o0 2 Cil®lPe, e
/ eu(/ |M|dx> dr < L(LY)
0 0 Co

T 00
+Cpe?CoT / e M f wim @ dxdr, (2.4)
0 0

2CT

with C1 and Cy as in (2.3).

Proof See Appendix A.1. O

2.2 Energy Estimates

By energy estimates we mean specifically an estimate on the quantity fOT et fooo lwy |
m® dx dr. Before stating our result, we first define an upper bound on the parameter
¢ that we will need in the proof. With g as in (1.16) and Cy as in (2.2), let g9 > 0 be
such that

B(go) < 20 and B(s) < —. (2.5)
2 3 o> 10
96eZCOT(||F(O)HOO+Z ! \w)

Note that such a gq is possible to obtain, because lim,_, o+ B(g) = 0. The necessity
of this assumption is a consequence of the method of proof for the energy estimate.
Specifically, the upper bounds are motivated by (2.16), (2.17), and the value of C», the
constant appearing in Proposition 2.2—see the proof of Proposition 2.2 for an explicit
value.

‘ 2

Proposition 2.3 Suppose (w, u) satisfies (1.4) with ¥ € L* and ® € L?O(L}C). Let
o satisfy (2.5). Then for ¢ € [0, go] the following energy estimate is valid

T [}
/ e f JwePm @ dxdr < Cy 1@l oogr1) 1w lloo
0 0
+C (19120 + 1l ). 26)

where C € (0, 00) is a constant that depends only onr; and C> € (0, 00) is a constant
(]
Ux

that depends only on ‘ , 0, r, and T. As an immediate corollary,
o

T 00
/0 /0 e P @ dx i < € 10 01y Nl + G5 (191201, + W ).
2.7

with C} = ¢ Cy and Cyy = €T C».
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Proof We begin by observing

Sl dx = et d 2.8
Eo e Twn x—/o e ((w,—rw),u—w,u,)x (2.8)

00 _02
:/0 e”{u(—z wxx—F(O)(G—wx)—\I/>
o’ ©) 1 ©)
+w<7,uxx+[F u]x+[d>+§(G—wx)m ]X> dx

~ 1
=—c" / (F(O)GM + Wt Py + 5w (G wx)m(o)) dx.
0

The first equality follows via differentiation under the integral sign, the second equality
follows from substituting in the equations for w, — rw and u, given by System (1.4),
and the last equality follows via integration by parts. Next, unpacking G, (2.8) implies

d oo o0 o0
~3 e Mwudx = e’”ﬂ(sé)(/ FO, dx) (/ (wxm(o) + ugco)u) dx) 2.9)
0 0 0

o0 1 o0
+e ! / (Y + dwy)dx — Ee_” / w?m©® dx
0 0

+ %e_”ﬂ(sé)</; wem©@ dx)(/o (wxm(o) + ufco)u) dx).

We then have the following three estimates. First,

( FOu dx)( (wx m® 44 ©® )dx) (2.10)

(o] [oe]

( F“”udx)(/ wem©@ dx) + (/ F(O)udx></ (O)de)
0 0 0
1/ [® 2 ?

< ( F(O)de) + E(/ wxm(o) dx) + E(/ (O)udx>
0 0
([P S ) ([0 4 [ e,

where the first inequality follows by two applications of Young’s inequality, and the
last inequality via the Cauchy—Schwarz inequality. Second, let § > 0 to be chosen
later. Then

oo oo
| et wga < il [ nide+ 101 @11)

1 o0 2
=t I f ldx) 4100wl
28 0 ~
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The last inequality above follows from a generalized Young’s inequality. Third and

last,
o o0
</ wem©® dx) <f (wxm(o) + u)(CO),u) dx) (2.12)
0 0

2

o0 OO
= (/ wym©® dx) + ( wym© dx)( T dx>
0 0
00 1 00 2 1 00 2
< / w%m(o) dx + = / wxm(o) dx — / (O)u dx
0 2\ Jo 2 0

3 [ 1 2
5/0 wfm(o)dx—kz’ < |,u|dx)

The firstinequality follows via the Cauchy—Schwarz inequality and Young’s inequality.
The last inequality follows via another application of the Cauchy—Schwarz inequality.
Together with (2.9), the above three estimates imply

IA

_d% Oooe "wpdx <e” ”(ﬁ(sé)(HF@H

cx))+g||\IJHQO>(/OOOm|olx>2

- o0 ]
+5e "( BleE) — )/0 w?m©® dx + e ”(%HI@HL; walloo).

To make future calculations less cluttered define

o= e[+

)+5||\11||00. (2.14)

Now, because w(x, T) = u(x, 0) = 0, integrating the left-hand side of (2.13) in time
and rearranging the inequality, we obtain

T 5 00 T 00 2
[ (-3pco)e [TuimOarar < [ f(t)e—”( i IMIdX) ar
0 0 0 0

T
et 1
+ (5 +219ly Twxloo ) dr,
0
(2.15)

Note that 8(¢£), and subsequently f(¢), converges to O uniformly in ¢ as ¢ and § go
to 0. Let §; > 0 to be determined shortly. We can take ¢ and § small enough such that

81 81

Be€) < ) and 6 < YT

(2.16)

4( 17O+
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Thatis, || fllgee < 81 for € and § small enough. Consequently, by Proposition 2.2,

T 5 [}
/O (1 _ Eﬁ(eg)—alcz)e*”/o wm© dx dr 2.17)
2 r 1
< 81CHI P00y +/0 e_”<§ + 2Pl Ilwxlloo)dt,

for some constants Cq, C2 € (0, co) which depend only on Hu)(co) H ,o,and T. We

now choose §;1 < 1/(4C3). If necessary, we may take ¢ smaller so thogt B(e&) < 1/10
as well. This, together with (2.16), demonstrates that by choosing ¢p as in Equation
(2.5), we find for all € € [0, g¢] that

5 1
1 —— —6;C —. 2.18
2/3(85) 162 <3 (2.18)
Subsequently,
T 00 Cr @2,
/ e_”/ w?cm(o) dxdr < )
0 0 2C,

ro 1
+2/0 e (5 + 209l g )
(2.19)

To clean things up, the restriction on §; implies § < 1/ (8C2 R[PSS ), and we can
restrict § from below so that § > 1/(16C2 || ¥ ||, ). As such, we find that

T o0 Cil®l7 o,
/ e_”/ w%m(o) dxdr < O}
0 0

2C,
320 [Wlloo r ™ 4 4r 7 [ @l oo p 1) llwillog »
(2.20)
after estimating fOT e "'dr < r~!. This yields the desired result. O

As a consequence of the above energy estimate, we find that the maximum of w is
controlled partially by the square root of the maximum of wy.

Corollary 2.4 Suppose (w, n) satisfies System (1.4) with W € L*™ and ® € L® (L)lc).
Let gg satisfy (2.5). Then for ¢ € [0, go],

wx, 0 < Cic(1+ willog)> + C2 Wil forall x,t €[0,00) x [0, T,
(2.21)

where C1 € (0, 00) is a constant depending only on H u)(co)

‘ ,o,r,andT; Cy € (0, 00)
o

is a constant depending only on r, and T; and k € [0, 00) is a constant depending

@ Springer



Applied Mathematics & Optimization (2022) 86:2 Page 13 of 52 2

solely on ||CD||L§>°(L£) and ||| s in such a way that k = 0 whenever ||<D||L§’O(LL) =
W] = 0. ' '

Proof Begin by defining

F(0) = HF(O) H ﬂ(ag)/oo )wxm“)) +u®p dx. (2.22)
%0 0

System (1.4) implies

2
o
I012w; + e —rw = FOu, < f(O) + W]l - (2.23)
Set
T
v(x, 1) i=e Twx, t) — / e (f() + V]l ) ds, (2.24)
t
and hence (2.23) implies
2
g ©0)
v + 7v“ — FYv, = 0. (2.25)

Using the standard maximum principle on v, we find that

T
e = [ (£ + W) ds 2.26)
0
A similar argument, where we define
T
v(x, 1) = e‘”w(x,t)+/ (f(s)+ ||\IJ||oo)ds (2.27)
t
instead, shows that
T
e w(x, t) > —f e (f () + V]l ) ds. (2.28)
0
As such,

T
I[12]e " w(x, 1) < / e_”(f(s) + ||\II||oo)ds for all (x, 1) € [0, o0) x [0, T].
0
(2.29)
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Using several careful applications of the Cauchy—Schwarz inequality we estimate

T T 00
/ e g5y ds < £ ( / o / 1 23w,m© dx ds
0 0 0 0
T 00
+/ e*”/ 1012029 e dx ds) (2.30)
0 0
T 00 1/2 00 1/2
< HF(O) H / 67”<f wzm(o) dx) </ m©® dx) ds
o Jo 0 0
T 1/2 T o0
el ([era) ([ (] )
S 0 0 0
T o 12
< HF(O) H / e_”</ w2m©® dx) ds
- o0 Jo o
T 00 2 1/2
+ HF(O)H HquO)H r_l/2</ e_”(/ |/L|dx> ds)
T 1/2 T 00 1/2
< HF<0) H (/ e ds) </ e_”/ wim© dx ds)
0 0 0 0
©) o —12 2
ol I T N T
T 00 1/2
+C2/ 67”/ w%m(o) dx ds)
0 0

T 00 1/2
< C(H‘Dlﬁ;”(u) +/ eirsf wim® dXdS> ~
2 Jo 0

Note that the fourth inequality follows from Proposition 2.2, so that C, C> € (0, 00)

2

12
ds)

are constants that depend only on

u)((o) H ,o0,and T. Also, the constant C can be
o0
given by

C:= HF(O)H r_1/2<1 +
oo

u® ”OO (€1 +C'72). 2.31)

Therefore, combining this estimate with (2.29) we obtain

T o 1/2
lw(x, )] < Ce’T(||<1>||i?o(L1)+/ e*”/ wim©® dxds) +rte T W
X 0 0

(2.32)

for all (x, t) € [0, 0o) x [0, T']. Now, using the energy estimate, established in Propo-

0)

sition 2.3, there exist constants C3, C4 € (0, 00), depending only on ‘ Uy

‘ , 0,7,
[e¢)
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and T such that for k" ;= ”‘D”%?(LD + W] s

12
|w<x,r>|sCe’T(||<b||i?o(L;)+ch/+c4 1P o1 ||wx||oo) e Wl

(2.33)
<c( o> Cak’ + Cy | @ Y2 172
< C(I0I sy + O + CallPllzeyy ) (14 oo
+rte T | Wlo
forall (x,t) € [0, o0) x [0, T'], which is the desired result. O

2.3 Estimates in the Dual of C1+@

In this subsection we want to provide a priori estimates on u, the solution to (ii) of
System (1.4), in the space

CU*([0, TT; (C)*) (2.34)

for a given a € (0, 1). Such estimates are required to deduce the time-regularity of
integral terms involving . We first use duality methods to obtain estimates on u in
the space

C4(10, T (€37, (2.35)
where C1 ¢ is the space of all ¢ € C'** such that ¢ (0) = 0. These estimates rely on

corresponding estimates for the primal problem, which are found in Appendix A.2.

Proposition 2.5 Ler (w, ) satisfy (1.4). Let &g satisfy (2.5). Then for ¢ € [0, eg] there
exists a constant k € [0, 00) and a constant C € (0, 00), depending exclusively on

u)(co) ‘ Lo, A o, and T, such that
o0

1/2

Il carago.7): @t+aysy < Cr (1 + llwxlio) (2.36)

s

Moreover, the constant k depends solely on || ® ”L?O(L}c) and ||V|| o in such a way that
& = 0 whenever || @ o1y = [[Wlloo = 0.

Proof Fix some t; € [0, T']. Consider the dual PDE to u,

Y — S + FOP, 439 =0, (x,1) € [0, 00) x [0, 11]
V(x, 1) = @(x) € CIT([0,00)), x €0, 00) (2.37)
¥ (0,1) =0, re[0,1],

for some A > 0. By Lemma A.2, we have

W lerswen 1o rrcrveny) < Co Ilerse (238)
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for some constant Cy depending only on A, o, and H FO || o
We write IZ(x, 1) := e My (x, 1), so that the above equation implies

o? - o7 _
— Y — ?I/fxx + 7Y, =0. (2.39)

We observe that

d [~ o -~
o | veue ey = [ Gt T e
t Jo 0

I
S—
3
|
S
Ayl
=
+
T
S
=
=
[=%
=

o0 ~ 1
— — _ (V]
= fo wx(op +5(G —wom ) d. (2.40)

The firstequality follows via differentiation under the integral sign, the second equality
follows from substituting in the equations for 1/; and u;, and the last equality follows
via integration by parts. Consequently, with #, € [0, #1] arbitrary, we have

/0 1~PJ()CJl)lL()CJl)dX—/0 ¥ (x, ) (x, 1) dx (2.41)

11 o0 1
= —/ / YoM (cp +-(G - wx)m(0)> dx dr
n 0 2

< B Y 200+ LG - ®dxd
< Willoo A e " [12] +2( w,)m™Y dx dt
5]

151

< Collpllgise / e () + (1)) di

19}

where we have used (2.38), and where

o 1 o0
n () ::/ |®|dx and () := 5/ IG — wy|m© dx. (2.42)
0 0

By assumption and the fact that e M e C”‘/z([O, T1), we find

N 1
—1 - —1 2
/tz e M) dr < 3 [Pl oo (L) e —e™*2] < C [Pl peerty ltr — 1|2,

(2.43)
where the constant C| depends on A and «.
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Turning our attention now to n,, we first use the Cauchy—Schwarz inequality to

write
n 11 l/2 131 ]/2
/ e—“nz(t)dt5< / e—“nz(t)zdr> ( / e—“dz> L (244)
%) 15 14

Then 7, (t)? can be estimated in the following way.

2 1 > 0) Oo (0) ?
m()” < 1 [y ] dx + 2 |wy m™ dx
0 0

-</ |u§°)u|dx> +2</ |wy |m© dx)
2\ Jo 0
1 o0 2 o0
‘ </ |;L|dx> +2/ w%m(o) dx.
oo \ Jo 0

2
The firstinequality follows from a combination of using the triangle inequality, unpack-
ing the definition of G, and recalling that fooo m©® dx < 1. The second inequality uses

IA

IA

u®

the fact that (Y }_, xk)2 < ny j_; x7. The third inequality is a consequence of the
Cauchy—Schwarz inequality. Using this initial estimate on 75, we find that

n 1 n o] 2 n [ee]
/ e M) dr < < H”S)) H / eiM(f |M|dx) dr +2/ e*’\’/ w?m® dx dr
t 2 oo Jy, 0 f 0

(2.45)
<Gk’ 4+ C3 Pl ooty lwxlloo

W

where the constants C, C3 € (0, 00) depend only on
define

’ ,o0, A, and T, and we
o

K= W loo + 1912 s (2.46)

The second inequality in (2.45) is a consequence of Proposition 2.2, followed by an
application of Proposition 2.3. Returning to (2.44), it follows that

1 1/2 1% 1/2
/ e M) di < (CzK/ + C3 [Pl pee(rr) ”w)cHoo) ([ e dt) (2.47)
t 31

2

/ 172 172
= Q1 Ok + C3 1@l ez lllos ) 11 = 2
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with C; as in (2.43). Hence (2.41) and the two estimates in (2.43) and (2.47) show
that

/0 J(m)u(x,n)dx—/o U (x, ) u(x, 1) dx

1/2 1/2
= (¢ + 1@lay ) + 1@l ) (1+ Twdlloe) 1 = 01 gl

(2.48)
where
Co i= CoC1((C2 + C)'/? +1). (2.49)
Now, call
/ 1/2
= (" + 1Pl peorny) "+ 1@ poorty (2.50)
and set 1 = 0, so that u(x, t2) = 0. Hence (2.48) implies
o
1/2
/ e, 1)) dx < Cke (14 il ) PT gl e . 251)
0
In particular, since #; and ¢ were arbitrary, we have
1/2
il oty < Cate (14 el )72, 2.52)

with C/, := Ce*T T9/2,
Again let 11, 1 € [0, T'] be arbitrary and without loss of generality take ¢; > ,. Then

/0 J(x,n)(u(x,n)—u(x,tz))dx:/o J(x,nm(x,mdx—fo ¥ (x, )p(x, 1) dx
+/0 (V(x,0) — ¥ (x,1))u(x, n)dx.  (2.53)

For the last integral, we estimate
© - 7 T 4
/0 () = P )t ) dx < 0| cungo eiver, 1l crrerys It — 121
< Coppre gl gree (1 + willo) 210 — 2274, (2.54)

where the last inequality follows from (2.52) and (2.38). Combining this with what
we found in (2.48), the equation in (2.53) implies

/0 e M) (p(x, 1) — p(x, 1)) dx

< (Clhp+ CaT*ic gl rra (1+ lwello) Pt = 02]*%. (255
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Hence, as 1, 12, and ¢ were arbitrary,
lellcers o, 71 crvoysy < (Chp + CaTMie(1 + lwyllog) /2. (2.56)

This is the desired result. O

Notice that any ¢ € C'** can be written as the sum of a constant and an element
of C}1*, since ¢ — ¢(0) € C1T%. Therefore the following proposition will complete
our estimates of  in the dual of 1.

Proposition 2.6 Ler (w, ) satisfy (1.4). Define

n(t) = /oo w(x, 1) dx. (2.57)
0

Let &g satisfy (2.5). Then for ¢ € [0, e9] and o € (0, 1/6], there exists a constant

k € [0, 00), and a constant C € (0, 00), depending solely on ‘ u)(co)

such that for all € € [0, &g

’ o, Aoaand T
o0

5/6

Inllceqo.r < Cre (1 + llwsllo) (2.58)

Moreover, the constant k depends exclusively on || D|| L(LY and ||V ||« in such a way
that k = 0 whenever || ®|| 1) = W]l = 0.

Proof We begin by applying (A.30) with the identifications u := u, b := F©, and
vi=>+ %(G — wx)m(o) to get

px, 1) = Ii(x, 1) + I(x, 1), (2.59)
where
NN EN S
Ii(x,t):= f f (a(x -y, t—s)+ a(x +y,t— s)) F(O)(y, s)u(y,s)dyds,
0 Jo (2.60)

L r>ras as
L(x,t):= / / —x—y,t—5)+—x&+y,t—s))v(y,s)dyds.
o Jo dx ax
Our first step will be to prove a bound on the functional
oo
0= [ neniax 2.61)
0
By (A.35) and Holder’s inequality, we have

u®

00 00 12
[ wentas iy + [0 o2 ([Topna) L ce
| . i

0
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We apply (2.62) and (A.4) to (2.59) and get
t
70 < [€=97 i) + 5600 b, (2.63)
0
where

00 1/2
Ci=c (Hu?(CO)H + ”F(O)H ) and g(s) = @1 +2(/ w2 m© dx) ,
0 0 0

(2.64)

and ¢’ is as in (A.5). Multiply both sides of (2.63) by ¢~*' for some A > 0 to be
chosen. Define f; (1) = e * f(¢) and g; (1) = e * g(t). We see

t
£ < /O (1 — )29 (Cy £,(5) + g1(s)) ds. 2.65)

We wish to estimate fot (t — 5)"1/2e=*=9) g, (5) ds. Since

t t o]
/ (t — s)—l/Ze—A(t—s) ds = / s—l/Ze—As ds < )\—1/2/ S—I/Ze—s ds = )\—1/27_[1/27
0 0

0
(2.66)
we have
t
f (t — )29 g, () ds
0

t 00 1/2
< ”q)”L;”(LL) ATV 2 2/ (t — s)_l/ze_)‘(’_s)</ w)zcm(o) dx) ds.
: 0 0

2.67)

On the other hand, using Proposition 2.3, Holder’s inequality, and recalling that
fooo m© dx < 1, we get

t 00 1/2
/ (t — 5)" /2= H=9) (/ wzm(o) dx) ds
0 0

12 t oo 1/4
< ”wx”L/ool / (t — s)fl/Zef)»(th) (/ |wx|2m(0) dx> ds
xt Jo 0

o ([ . 3/4 , pt poo 1/4
< llwell % (/ (z—s)—2/3e—s“’—”ds) <// walzm(o)dxds)
Xt 0 0 0
4

12, - 1/
< )% 270 /3) (G 19l ey Tollos + C) (2.68)
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where C, and Cj3 are constants depending only on o, A, and T, and «” is as in (2.46).
We combine these estimates to get

t
£ <G / (t — )72 £ (5) ds
0

_ 2. 1/4
1Pl ety 272 2 4 2 e 187 A7 A0 (1/3) (Co 1@ ooy Nl + CK)
(2.69)

Taking the supremum, we get

sup fo(t) < CiA™2a 2 sup fi(s) (2.70)
t€[0,T] s€[0,T]

_ 12— 174
1@l ooy AP 2 4 2 w16k AT (1/3) (Cz Il Lozt ||wx||w+csx’) :

Then setting A = (2C1n1/2)2, we deduce

sup f)»(t) <2 ”q)”L?O(L)l() )L_I/ZJTI/Z
t€[0,T]

1/2 4 —1/4 / 1/4
+4 w87 A7 /3) (Co @l el + Co') T @71

which yields
* " 3/4
sup e, Dl dx < A" (wsllo + 1) + BI®@l ooy (2.72)
1e[0,71J0
for some constants A, B € (0, 0o), depending only on u,(co) ‘ ,o,A,and T, and
o0
k" =K+ ”CD”L;”(L}C) . (2.73)

We now turn to Holder estimates. By integrating (2.59) with respect to x, we
discover that

n() =ni () + (), (2.74)

where

t o0
m(r)=—2f/ St =) FO @y, )y, s)dyds,
070 (2.75)

t o0
m(t) = —2/0 /0 S(y,t —s)v(y,s)dyds.
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We want Holder estimates on each term. Let 0 < 1y < f; < T. For ny, write

11 o0
mn) — (i) = —2 / /0 SOt — ) FO(, 9uly.s)dyds  (2.76)
0]

fo oo i gg .
_2/ / / — .t =) FO(y, 9)u(y, s)dedyds.
0 0 1o ot

Note that
as x2 1 x2
() = Qolr) V232 — — = -1 2.77
or 1) = (2077) 202 2) P T 20 @.77)

Since xe ™ <e ! < 1/2 for all x, it follows that

< 02m)" 124732 vy, (2.78)

as
'E(Jﬁ Z‘)

Let ¢ = 2(20%w)~ /2. We get

n 00
FO| [ =502 / lu(y, $)ldyds (279
o t0 0

I (1) — mi(to)| < ¢’

Io [ee] I3l
FO| / / f (t — )" |u(y, s)| dr dy ds.
 Jo 0 o

Using (2.72) and computing the remaining integrals, we obtain

+c’

3/4
() =)l = € |[FO| (A (oo + 17 + BI®lzq)) (1 = 10)

(2.80)
for some constant C € (0, 00).
We proceed similarly for 7,. Write
11 o0
m(t1) — na2(to) = 2/ / Sy, ti —s)v(y,s)dyds (2.81)
1o 0
o o0 11 aS
+2/ / / —(,t —s)v(y,s)drdyds.
o Jo Jy Ot
By (A.35) and (2.72), we have
* : 34 =
| e ntar < A (Rl + 1)+ B 19l
00 12
+2 (/ lwy (x, D) m @ (x, 1) dx) , (2.82)
0
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" o, A, and T. Using

where A and B are again constants depending only on ‘

the same reasoning as above, we get
_ A 3/4 D _ 1/2 2.83
m(t) = m(o)l < € (A (Ilwylloo + 1) + BI® 011 ) (1 = 10) (2.83)

00 1/2
+2¢:/ (th —s)" 172 <f wa(x,s)Izm(O)(x,s)dx) ds
0

) 12
+20/ / (t— 3/2(/ |wx(x,s)|2m(0)(x,s)dx) drds.
0

Using Holder’s inequality and Proposition 2.3, we get

o rh 00 1/2
/f(t—s)_3/2(/ |wx(x,s)|2m(0)(x,s)dx> dr ds
0 to 0
23 to 1 00 1/6
sllwxlloé/ / (t—s)3/2</ lwx(x,s)|2m<°>(x,s)dx> dr ds
0 to 0
o ph 5/6
< flwyll2 (/ / (t—s)_g/sdtds> (2.84)
0 to
1o 31 [ee) 1/6
</ f/ wa(x,S)|2m(°)(x,s)dxdtds)
0 to JO

2/3 1/6
= CllwslE (1 = 10" (C2 1@l e 0y Nwaloo + Cak)

By a similar computation, we get

1 00 1/2
/ ) </ lwy (x, s)|2m<°>(x,s)dx) ds (2.85)
to 0

1/6
2/3

= CllwdE (1 = ) (C2 1@l quyy oo + C5x)
We deduce

In2(t1) — ma(t0)| < €T3 (Ax”( lwilloo + D¥* + B |\<I>||L,m<L;>) (t —10)"/°
16(2.86)

1/6 2/3 1/6 ALY

+CA+ T w135 (11 = 1) (Co 1Pl oo 1) lwilloo + Care

Combining (2.80) and (2.86), we can find some constant Ce (0, 00), depending only

on | F© ||oo, s A, and T, such that

In(t1) — n(to)] < Ck (lwxlloo + D¢ (11 = 10)"/°, (2.87)
where

= (€ 1@l )+ 20+ 190 ey )- (2:88)
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This yields (2.58), as desired. O

With Propositions 2.5 and 2.6 established, we now have the complete duality esti-
mate on (.

Corollary 2.7 Let (w, ) satisfy (1.4). Let eg satisfy (2.5). Then for ¢ € [0, go], one
has p € C*/4(10, T1; (C'F%)*) with

< Cre(1+ wxlls ), (2.89)

||M||C“/4([O,T];(Cl+a)*)

for some constant C € (0, 00), depending exclusively on H u)(co) ” o, M, aand T, and

o
k € [0, 00), depending solely on ||<D||L§’°(Li) and ||V o in such a way that k = 0
whenever ||<I>||L,oc(Li) = [Vl =0

2.4 Full c2+%:1+2/2 Regularity

We are now in a position to establish full parabolic regularity in classical spaces for
solutions to System (1.4).

Theorem 2.8 Let a € (0,1/6] be such that u©@, m©@) e 2142 Lot (w, p)
satisfy (1.4) with W € C*%/2 and & € C'F*%/2 Let g satisfy (2.5). Then for ¢ €
[0, g9], one has

we CZ+a,1+a/2([O, o0) x [0, T]) and e CZ+a,1+a/2([O, ) x [0, T])
(2.90)

Furthermore, there exist constants C € (0, 00) and k € [0, 00), depending solely on
the data such that

lwlle24a14a2 < Ck and ||l p2+e1402 < Ck (2.91)
with k depending exclusively on ||V ||pa.c/2 and || @||p1+e.es2 in such a way that k = 0

whenever ® = V¥ = 0. In addition, we have |1 € cl/? ([O, T1; L'((0, oo)) with an
estimate

lielicrz (o, 711 ((0.00)) < Ck- (2.92)

Proof Begin by defining

o0 o0
N1 (1) :=/ wxm(o) dx and > (¢) ::/ ufco)u dx, (2.93)
0 0

so that after expanding terms (i) of System (1.4) reads
2

wy + %wxx —rw— FOu, + BEE) () +m®) + ¥ =0. (294
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Note that B(g£) € C*/2([0, T]), and by assumption, ¥ € C**/2([0, 00), [0, T]). As
such, using classical estimates [26,Theorem IV.5.1], we find

lwlig2+ertarz < Co(IWllgaer + Inligar + In2ller ), (2.95)

where the constant C¢y € (0, o) depends on the data.
Focus on 7, first. We estimate

m) =me) = | [ @0 - a2

o
+ \/0 u® () (1 x 1) = s 1)) dx|
S ”M('atl)”(CH—ZQ)*

u (-, 1) H

u/(VO)(’ tl) - u,(VO)(W tz) HCH'z"‘

+

”/,L(, tl) - IL(, t2)||(cl+2a)*

Cl+2a

4
C2+2e, 14a |tl - t2|a/ :

w©

= 2 ”'u||C“/2([O,T];(Cl+2°‘)*)

Hence by Corollary 2.7,

‘u(m

Im2lleerzqo,ryy = 2 lellcarz o, 11: (c1+20y) (2.97)

5/6

CZ+20¢, 14+

< Cie’ (1 + lwylloo)

for some constant C| € (0, c0), depending solely on “ u©® || 242,140 and the data, and
k" € [0, 00), depending exclusively on || ® || L(LL) and | V| o, in such a way that forces

k' = 0 whenever ||CI>||Ltoo(LD = [|¥] 5 = 0. On the other hand, since m© satisfies
a (homogeneous) Fokker—Planck equation, by classical arguments (cf. [21,Lemma
3.1]) combined with the estimates of Proposition 2.6 (cf. [21,Lemma 3.7]), we have
a}rll estimate on the norm ||m© || (0.7 (Coy)- NOW a similar calculation as in (2.96)
shows

@) llcer < Co llwkllguers , (2.98)

where the constant C, € (0, oo) depends solely on ”m(o) H CalA([0,T1: (Co/2)%)" Therefore,
returning to (2.95), we have

5/6
lwllg2sesan =< Co( IWllgaer + Cii' (1 -+ wallog )+ C2 wslaar ) 299)

< Co( ¥ llcaw2 + Cix" + (Cik1 + C2) 1wy llcaar2)
< C(k1 + lwxllcaas )
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where C := Co(1+Ci(k1 + 1)+ C2), and k1 := ||V [ caes2 + &’ By interpolation of
Holder spaces, there exists a constant C’ > 0 such that

1
hwxlcnars < 5 Iwllczsatsar +C lwloo (2.100)

where C is as in the last line of (2.99). As such, (2.100) along with (2.99) show that
lwllgztatser < 2C (k1 4+ C' wlls) (2.101)
<28 (i + C(Cok"(1 + ) 2 + Ca 19 .))

1/2
= ko (14w 7).

The second inequality follows from Corollary 2.4, so that the constants C3, C4 €
(0, 00) depend only on the data, and «” € [0, co) depends solely on || D || L)) and
|¥]| o in such a way that «” = O whenever [@llzee(z1) = Wlleo = 0. The constants
C” € (0, 00) and k7 € [0, 00) can be given by

C":=2C+C'C3+Cs) and k2 =1 +&" + |V - (2.102)

Subsequently, by Young’s inequality,

1 1
lwlle2+a1+a2 < C'kr + 3 lwll g2+a 14072 + E(C//Kz)z. (2.103)

Thus,
wlle24a 1402 < 2C" K2 + (C"k2)? < Ck, (2.104)

with C := (C")? + 2C” and k := k3 + k. Hence w has the desired regularity with
appropriate bounds in terms of the data as stated in (2.91).
Turning our attention to 1, we begin by observing that (ii) of System (1.4) implies

2

fog 1 1
= e = U= FOpy = &+ §<Gm§°) —w,m® — wxmff”).

(2.105)

We already have estimates on the coefficients in C*®/2 As for the right-hand side, we
estimate Gmio) in C*%/2 by using

[ee]
1Gll oo < H / (O + wem®) de
0

Cao.a/2

”“”C’l/z([O,T];(C]*z“)*) + ||w||62+a.l+a/2 m(o)

e
- 242, 1+ CY/2([0,T1:(C*)*)

< Cik1, (2.106)
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for some C; € (0, 00), depending solely on the data, and «; € [0, oo) depending on
¥l ces2 and || @ || a2 in such a way that k1 = O whenever & = W = 0. Finally,
since ® € C1T%%/2 we obtain via classical estimates [26,Theorem IV.5.1]

©)

||M||62+a.l+tx/2 = CO( ”d)x”Ca,a/Z + HGm(O) HCG,&/Z + ‘ wxxm(o) H Cao.a/2 + ’ Wt Cot,oz/l)
0 0
= Co( @ llcaar + 1Gllcaar |m® Caaf2 + lwllgzeaisar | m® C2+u.1+ot/2)
< Co( Iy llcuer + Cixr + Csz) (2.107)

for some constant Cy € (0, co) depending only on the data, some constant C, € (0, 00)
depending only on the data and ||m(0) “ c2ta1tas2, and k2 € [0, 00) depending on
¥ | coas2 and || Dy || caarz in such a way that ko = 0 whenever @ = W = 0. Therefore,

|l ztattarr < Ck, (2.108)

with C := Co(1 + C1 + C2) and k := || Py ||cwes2 4+ k1 + k2. This demonstrates the
desired regularity for p with the required bound given in (2.91).

Finally, we appeal to Proposition 2.1 and the estimates just obtained to find that,
forall K > 0,

00 K
f IM(x,tl)—/L(x,tz)IdX§/ l(x, 1) = p(x, )l dx
0 0
1 o
+—f xlp(x, 1) = p(x, n)l dx (2.109)
K Jk
C
< K a1t = ol + = (10 + 200l qyy)

where v = ® + (G — w,)m?, and where C is a constant depending on | F© HOO

and on the data. Pick K = |t; — t»|7'/? and take the supremum over f| # t to get
an estimate on the Holder seminorm of ¢ — u(-, 1) € L)]C. Combine this with the
estimates above to obtain (2.92). O

3 Existence and Uniqueness for the Abstract System

In this section, we use a fixed point argument to demonstrate existence of solutions
to (1.4). For completeness, we provide a statement of the Leray-Schauder fixed point
theorem, taken from [11,Theorem 11.6, p. 286].

Theorem 3.1 (The Leray Schauder Fixed Point Theorem). Let X' be a Banach space,
and let T : X x [0, 1] — X be a compact mapping satisfying T (x,0) = 0 for all
x € X. Suppose there exists a constant C € (0, 0o) such that

x|y < C forall (x,A) € X x [0, 1] satisfying T (x, L) = x. 3.1

Then the mapping T : X — X, given by T\ (x) = 7 (x, 1), has a fixed point.
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We now aim to construct a suitable Banach space along with a compact operator to
satisfy the hypotheses of Theorem 3.1.

Fix o € (0, 1/6] such that u @ m© e ¢?>+2« 1+ Define the Banach space X :=
Ccxe/2 N Le(LY nec*/? ([0, T1; (C'2%)*) with norm

||m||X = ||m||cau/2 + ”m”LtOO(L’I[) + ||m||Ca/2([0yT];(cl+2a)*) . (32)

LetW € C*%?and ® e C!T**/2NL>®(L!) be given functions withx® € L®(L!)
and W(0,7) = 0. Forany m € X and A € [0, 1], let w = 7 (m, 1) be determined by
solving the system

2
) wit Swer —ru AW +AF O (&) (G (wy, m; &) — wy) =0, 0<x<oo, 0<t<T

1

i) o= Fttas = M(FOp), = Ao+ 5 (G mie) - w)m®]  0sx<oo 0sr=T
- X

(iii) u(x,0) =0, wkx,T)=0, 0<x<o

(iv) w(0,1) = u(,1) =0, 0<r<T,
(3.3)

where we recall that G is defined in (1.5).
The subsequent lemma establishes properties of 7 that are necessary for applying
Theorem 3.1.

Lemma 3.2 The operatorT, definedin (3.3), is well-defined, continuous, and compact.

Proof We break the proof into three parts. Throughout the proof, we will refer to the
results found in [26], especially Theorems IV.5.1-3, as “classical results/estimates.”

1. Well-Definiteness To show that the operator 7 is well-defined, suppose m € X
and A € [0, 1]. By Lemma B.1 there exists a unique solution w e C>+*1+e/2
to Equation (3.3)(i) (with boundary conditions given in (iii)—(iv)). In particular,
G (wy, m; ¢) (which does not depend on x) is estimated in C*%®/2 and hence via
classical results, Equation (3.3)(ii) has a unique solution wu, which is estimated in
¢ 1+/2 Tn addition, as a consequence of Proposition 2.1 (a), with

1
b:=AF® and v =210 + gk(G(wx, m;e) — wx)m(o), (3.4)

we find that u € L{®° (L)lc). Using Equation (2.109), we can deduce that u €
co/? (10, T (C1+2"‘)*), as well. This ultimately shows that . € X, and hence 7
is well-defined.

2. Continuity To demonstrate continuity of the operator 7, start by letting {(m ;, A j)}j?il
C X x [0, 1] be a sequence such that m; — min X' and A; — A as j — oo.
Let (w;, u ;) be the solution to system (3.3) with m replaced by m ; and A replaced
by A;, so that u; := 7 (mj, ;). Via classical estimates (see also Lemma B.1),
the sequences {w;}52; and {u;}52, are uniformly bounded in e l+e/2 and
therefore both w;, u; and their derivatives are uniformly bounded and equicon-
tinuous. By the Arzela-Ascoli Theorem and diagonalization, there exists some
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(w, p) € CHrantta/2 o o2+e1+a/2 and a subsequence {(wj,, i)}, such that

(Wj. ) — (w, @) in C*' ([0, R] x [0, T
xC>1 ([0, R] x [0, T]) ask — oo, VR > 0. (3.5)

In particular, wj,, u j, and their derivatives converge pointwise and are uniformly
bounded. Also, because we also have m; — m in L7°(L )1(), we see that

G ((wjk)x, m s e) (t) > G(wy,m;¢€)(t) Vtel0,T]. 3.6)

Now letk — oo in the system solved by (w, , u j, ) to see that (w, u) solves System
(3.3),i.e. © = 7 (m, 1). Finally, by the argument that appears in the next step, we
deduce that uj;, — pin X. Hence 7 (m,, A;) — 7 (m, ) in X. It follows that
7T is continuous.

3. Compactness Finally, to demonstrate compactness of the operator 7, let {(m,
)Lj)};?ozl be any bounded sequence in X' x [0, 1]. If again we let (w;, u;) be the
solution to system (3.3) with m replaced by m ; and A replaced by A ;, then as in

the previous step we see that the sequences {w j}(;il and {u j}(;il are uniformly

bounded in C2+*-179/2 and there exists a subsequence {(w,, i)}z, such that
(3.5) holds. It remains to show that ptj, — pin X = cee/2n L;’O(L}C).

We will appeal to Proposition 2.1. First, note that u;, — u (k =1, 2, ...) satisfies
(2.1) of Proposition 2.1 with

by = (hj, — M F© (3.7)
and

v = (A, —A)P
1
+§(AjkG((wjk)x, mj; €) — AG(wy, m; &) — (A (wj)x — kw))m(o).
3.8)
We have that by is uniformly bounded in L°°; we need to show that vy and xvi are
uniformly bounded in L&(L!). By assumption, ® € L®(L!) and x® € L®(L!).
Next, by (3.5), there exists a constant C; € (0, oo) such that

[rjwj — ,\u||c>o + | A jewj)x — Awy ||Oo < (C; forall k € N. (3.9)

Also, by assumption, {m j, }?2, is uniformly bounded in L°(L )lc), so there exists some
constant Cp € (0, oo) such that

|2jimjy = Am|| oo 1) < Co forall ke N. (3.10)
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It follows that

25,6 (w0 i €) = AG(wy, ms &) = (i (wj)s — )| (3.11)
* 0 * 0
= |B(e§)] fo (A (w )y — wa)m( ) dx +/O u )()‘jkmjk — am) dx
<Ci+ u}({O) H Cy forall k e N.
o0

Note that to obtain the inequality we also used that fooo m©® dx < 1. We now find that

1 o0
il ooty < 2 1@ ooty + 7<C1 + Hufco) H C2) sup f m(x, 1) dx < M,
: 2 00 re[0,71J0

(3.12)

for some constant M; € (0, c0), independent of k. Also, Proposition 2.1 (b) ensures
that xm©@ e L¥®(L!), and thus

1
lxvellzgeqrty < 21X Pl peo(r1y + E(Cl + ul®

o0
’ C2> sup f xm(o)(x,t)dx < M,
s te[0,71J0

(3.13)

for some constant M> € (0, 00), independent of k. Therefore, the PDE that A j, it j, —Au
satisfies, namely (2.1), also satisfies the hypotheses of Proposition 2.1 uniformly for
all k € N.

We then write

o
sup /0 ‘,u,jk(x, 1) — n(x, t)‘ dx

r€[0,T]
K 00
= sup [/ |Mjk(x,t)—u(x,t)!dx+/ |Mjk(x,t)—u(x,t)|dx},
t€[0,T] 0 K
(3.14)
By (3.5), for each fixed K > 0,
K
sup / |wjo(x, 1) — p(x, )| dx - 0 as k — oo. (3.15)
+€[0,71J0

By Proposition 2.1 (b),
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K

o 1
sup / |,u.,~k(x, 1) — n(x, t)| dx < sup — X |,u(,~k(x, 1) — m(x, t)| dx
1€[0.71/K ref0.71 K Jo

(3.16)
= K_lMo,b( ||Uk||L;>°(L<{_) + ||XVk||Lt°0(L}))
< K "My (M 4+ My) - 0 as K — 00
(3.17)

forall k € N, and we see that j4;, — in L;’O(L}C). Similarly, let ftj, = wj, — w. For
all t; # 1y, by taking K = |t; — t|~'/? we have, cf. (2.109),

o0
A | ey 1) = 1 (x, 12)| dx (3.18)

00
1/2 1/2
= ||M]k _I"LHCZJ([(),K]X[O,T]) |ty — 2] / + 2|t — 1] / Sl:p/(; |;ij(x,t) —/L(x,t)|dx.

From this we deduce that puj — pu in CY2([10, T1; L"), hence also in C%/?
([0, T; (C'F2)*).
Moreover, by [7,Lemma 2.2], we have

sup sup |, (v, 1) = (. 0] = € (K™ Map(My + M) ™, (3.19)
tel0,T] x>K

where C depends only on sup; || Wi — 1 “ coar- Combining this estimate with (3.5),

we deduce that 11 j, — p uniformly. Since {1 j, } is bounded in C2rel+e/2 e deduce
that p1j, — pin cxe/2, Ultimately, we have that

Wj — 1 in X as k — oo, (3.20)

as desired. We have thus shown that the operator 7 is continuous and compact. This
completes the proof. O

With Proposition 3.2 established, we may now appeal to the Leray—Schauder fixed
point theorem to obtain an existence result for System (1.4).

Theorem 3.3 There exists a unique classical solution (w, ) to System (1.4) provided
g0 > 0 satisfies (2.5) and ¢ € [0, g9].

Proof We endeavor to use the Leray-Schauder fixed point theorem, i.e., Theorem 3.1.
For that purpose, a quick inspection reveals that when A = 0, we have 7 (1, 0) = 0
for all m € X. Furthermore, Lemma 3.2 shows that 7 satisfies the compactness
requirement of the Leray-Schauder fixed point theorem. Now, suppose that there exists
i € X such that u = 7 (i, A), so that (3.3) has a solution (w, @) with & = m. Then
via the a priori estimates established in Sect. 2, specifically the regularity results of
Theorem 2.8 and Proposition 2.1 (a), we find that indeed,
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lully <C (3.21)

for some constant C € (0, 0c0). We conclude that there exists a fixed point of the
operator 7, corresponding to A = 1. We deduce that there exists a solution to (1.4),
as wanted.

To show uniqueness, let (w1, @) and (wz, 12) be solutions to (1.4). Consider the
difference (w, p) := (w1 —wz, 1 — K2). Then because System (1.4) is linear, we find
that (w, ) satisfies System (1.4) with & and @ identically 0. As such, Theorem 2.8
implies

lwllc2+a14e2 = |l c2tat+a2 <0, (3.22)

and subsequently w = p = 0. Therefore, w; = wy and | = w2, hence the solution
to System (1.4) is unique. This completes the proof. O

4 Proof of Theorem 1.1

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1 We induct on k and break the proof into three separate inductive
arguments.
Step 1. Let n € N and suppose the following induction hypothesis.

Forallk € {0, 1, ..., n— 1} assume there exists a solution (u®, m®) to (1.12),
as well as constants Cy, C; € (0, 00), depending solely on the data and on
@D, m) for j < k, such that u® and m® satisfy

H NG

H m®

s 26 [

C2+a,14a/2 Cl/z([oyT];Ll)

S P S

As a consequence of the inductive hypothesis, for all k € N with 0 < k < n, we can
estimate

(k)
HF HCIM/Z < Cp, < o0, 42)
where we define the constant
k k—i
Cr =K1+ Y. i€y ) + C “3)
i=0 j=0

In order to apply our abstract results from Sect. 3, we introduce the following notation.
We will separate out the n-th order terms appearing in J, and K,, by defining J,, and
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K. implicitly as
~ o0
Jy =Ty + FO (ﬁ(ss) /O («®@m® -+ um®) dx - u§">> (4.4)
and

~ 1 o0
K, =K, + 5(5(55)/ (ug))m(") + ujj')m(o)) dx — u<">) © @5
0

While the exact formulas of J~n and K, » can be easily gleaned from (1.13), (1.14), and
(1.15), it is more important to know that ,7,, and K, » consist entirely of lower order
terms, and hence “known” quantities in light of the induction hypothesis (see (4.1) in
Sect. 4).

Using (4.2) and recalling the formulas for J,, and K, in (1.13) and (1.14), we may
estimate

n—1

|Jn||cac«/2 = <n)CkCn k+2n'( +ZZC1 i J+ZC/ )

k=1 i=1 j=0
(4.6)

and

00 - n—1 n
/O(1+x)|K,,(x,t;8)|dx§I;<k)CFk

+n‘<l+ZZC cr . ]+ch ) @7

i=1 j=0

Also, using the product rule, we find that

n—1
n K, (n—k k), (n—k = 0,7 0
<k>(F; IR ) >>+F;n>m<>+p(n>m§c> (4.8)
k=1

n

-1
(")( m@=0 4 f@) = k)) + Fmp O,
k=1

so that
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n—1
” (En)x ”Ca,a/Z = ij <:> CI%
+CFka+n'( +ZZCJ n—i— j+ZC/ n— j)C0<OO

i=1 j=0 j=1

(4.9)

Now, the base case, k = 0, isestablished in [17] (cf. [16]). (Note that ” m© H CI2(0.T1LY)
<C (’)“ can be established, even on an unbounded domain, by the same argument as in the
proof of Theorem 2.8, cf. Equation (2.109).) Assume then that the induction hypothe-
sis holds for k = n— 1. Observe that System (1.12) can be written as System (1.4) with
wi=u®, w:=m™ V:=J, and ® := K,. Moreover, (4.6), (4.7), and (4.9) show
that the induction hypothesis guarantees W € C*%/2 and & € C't%*/2 N L;X’(Lx).
Therefore, by Theorem 3.3, there exists a unique solution to System (1.12), which by
Theorem 2.8 must satisfy (4.1) for k = n. O

Remark 4.1 The constants C,, derived from this inductive argument are likely to blow
up very quickly. Assuming they are greater than 1, they will be an increasing sequence,
and an inspection of the argument above reveals that

C

n ~

> on C (4.10)

This in turn implies that the ratio C,,/C,_ converges to 400, which means »_ C,x"
does not converge on any radius.

Step 2. Next, let n € N and suppose the following induction hypothesis.

Assume the induction hypothesis of Step I holds. Aditionally, for all k €
{0,1,...,n — 1}, suppose there exist constants C,/C, (C,’{“)’ € (0, oo) depend-
ing solely on lower order terms and the data such that

”u(k) e+h) —u® (8)||C2+D1,1+01/2 = Cllch’

|m(k)(8 +h) —m® (e) H 2iattan < Cph,

[m® e +hy —m®(e) ”Cl/?([O,TJ;L]) + [|x (m E)(S +h) —mP(e)) ”L;”(L;) < (CO'h.
(4.11)
Fork =0,1,...,n define
w® = u® @ +n) —u®E) and u® =m®E+n) —mPeE). @12

In the case k = n, it can be shown that w®™ and u® satisfy System (1.4) with
w=w", pi=u®,

V=W, +2FO@)1(e), and @ := @1 + I;(e)m©(e), (4.13)
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where

1
Ii(e) := E(s"a“)((s +h)E) — &"a™ (£8))

L[ (n)(n—i ipli j n—i—j D (n—i—j
ALEE Qo e o
+& (B0 (e +m8) = BV ) Jul (e + ym =D (e + h)} dx

oo n—1

+ % /0 2 (j)ﬂ(s@(ui’)(s + D+ wm " (e) ) dx
j=1

] oo
+3 /0 Bee) (wPm™ () + ul e + W ®) + (1P e + 1) — () ) dr,

(4.14)
N (n (k) (k) (n—k) _ =k
W) = kz:; (k) (FOE+m+ FO@)(FO ™D+~ FO )

+ (F<°> (e+h) — FO (g)) (F<">(s +h)— F“”(a)), (4.15)

and
n—1 n

O =) <k> {F<k> (e + "™ + (FOE+n) — F® (8))m("_k)(8)} (4.16)

k=1

+(FOe+m = FO@)m® @ + (FO @ +h - FOe) ) u

+ F™ (e +hu®.
A quick inspection reveals that the induction hypothesis implies ||W||cao2 and
|®]lc1+aa2 are O(h). As such, the estimates in Theorem 2.8 show that u™ and

m™ are O (h) as well.
Step 3. Let n € N and suppose the following induction hypothesis.

Assume the induction hypothesis of Step 2 holds. Additionally, suppose there
exist constants C;/, (C;)"” € (0, 0o) depending solely on lower order terms and
the data such that

”u(k)(s +h) — u(k)(g) - hu(k+1)(S)HC2+a,l+u/2 = C/thy
”m(k) (e+h)— m(k)(e) _ hm(k+1)(8) ”C’2+a.1+a/2 < C]/(/hz’
[m© e + 1) —m®(e) = hm* V@) 10 g 7y 1) = (CO"R,
||x (m(k)(8 +h) —m® () — hm(kJrl)(g)) )< (C;(k)//h2

4.17)

H LE(LL
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Fork =0,1,...,n define

w® = u® e+ h) —u®E) — hu*tV () and p®
= p O +n) — uPE) — ). (4.18)

Note that «™*D and m @+ are well-defined objects via Step 1. As it happens, when
k = n the pair (w™, u™) satisfies System (1.4) with w := w®™, p := pu™,

U=, + 2F D) (), and @ := &y + L(e)m P (o), (4.19)

where
hie) = 5 (¢ <">(<e+h)s)—s"a('”(ss)—hs<"+“a<”+”<es))

/ ( )(n;i){S['B(i)(gg)(u;/)(s)un—i—j +w)(cj)m(n—i—j)(8))
i=1 j=0

+ €89 (e + Wg) — & BV (e8) — he B (e) Jul @m "D e)
+ €89 (e + me)ul (e +h) — ' 80 el @[ m" T e + 1) = m =D o))

+ 689 ((e + mg) — & 80e8) | [ul e + 1) ui">(s>]m<"*"*f>(s>} dx
1 oo N . .
D> (?)Hﬂ((s +m)g) = B(e§) — hep (e8) [uf @m (o)

Jj=0

+ [Be +we)ul @+ ) = Bt @ [[m" e + 1) —m" (e

+[B(e +m8) — o) |[u e+ - “5”(8)]”1("7”(8)} &
0o n—1 . ) . .

- %/0 ; C)/S(es)(ufg”(em”" +udm D) dr

+ 1 /oo ,3(85) (V!) w@ 4+ w(O) (")) dx (4.20)
2 Jo
n—1

Uy =2)" <Z> (F“‘) (e+h) — F®(e) - hF(Hl)(S)) FO0 )

k=0

+ Xn: (Z) <F(k)(£ +h) — F(k)(£)> (F(”*k)(g +h) — F(n—k)(g)>’ 4.21)
k=0
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and
- (Z) FOe 41— FO) = hFE 00 ) (D 4+ = m® ™ e))
k=0
(4.22)
+hy <Z>F<’<+”(s> @O (e +h)y —m"h (5)) +2 (D PR

k=0 k=1

n—1
" Z (n) (k) (e +h) — F(k)(s) _ hF(k+l)(8))m("_k)(£).

k=

As such, we find that the induction hypothesis together with Step 2 imply that || ¥ || ce.e/2
and || ®||¢1+a.a/2 are O (h?). Using the estimates in Theorem 2.8, we ultimately see that
u™ andm®™ are O (h?). This yields the desired result concerning differentiability with
respect to €. O

Appendix A: Some technical proofs of results from Sect. 2
A.1 Proofs for Sect. 2.1

Proof of Proposition 2.1 Let S(x, t) denote the heat kernel, given by

2
S(x, 1) 1= Qo2mt) "2 exp {—%} . (A1)

Using Duhamel’s principle and integration by parts, we have u = w1 + w2, where

e z)—/ / (SCc = yot —5) = SCx + y. 1 — ) (B)y (7. 5) + vy(y. 9)) dy ds
(A2)

:/0/0 (Sx(x =y, 1 =)+ Sc(x 4+ y, 1 — ) ((b)(y, 5) + v(y.5)) dyds

and

pa(x 1) = /0 (St — v, 1) = SCx + v, 1) o) dy. (A3)

Note that

oo
f | S (x, 1)| dux
0

- /OO Se(x, ) dx = — lim (S(x, 1) — S(0,1))
0 X—>00

= Q2rol)~ 2. (A.4)
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Call
¢ =202xc) 12, (A.5)

and let M > 1 to be determined later. Then
o0
oM f G )] dx
0

t o0 o0
< e—M'/ / f (1Sc(x = y.1 —5)]
0 JO 0

+1Se x4y, 1 =) (1B oo ey, $) + [v(y, $)]) dx dy ds (A.6)

t o0
< c’e*M’/O - s)*‘/zfo (15l 1y )] + [v(y. 5)1) dy ds

t o0
=c’/ e—M(f—S><t—s)-1/2/ M5 (1Bl e 111(y, )] + [v(y, )]) dy ds.
0 0

Here, the first inequality follows directly from (A.2); the second inequality follows
from (A.4) and noting that exp { — y%/(201)} < 1 forall y € (0, 00). Define

o0
B := sup e—Mf/O ln(x, 7)| dx. (A7)

0<t<T

Then (A.6) implies

00 t
e M / lni(x, ] dx < /B ||bl| / M —5)71 2 ds
0 0
t
+ e M IIv||L,°°(L1)/ (t—s)"'2ds (A-8)
“Jo
< ¢'BIbll g M2 /7 4 2¢e™M 0]l oo 1) V1.

The second inequality follows from the substitutions and estimate below

t t
/ e—M([—S)([_S)—l/ZdS — f e—MSs—l/zdS
0 0

Mt
= M—1/2/ eSsT12ds < MV 7. (A9)
0
Now, if M > 1, then 2e_MK/? < 1 forall > 0. Thus, (A.8) implies

o0
M [ e 01y £ ¢ Mol VEM B+ Dol (A10)
0
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On the other hand, since S(-, ¢) is a probably density, we deduce
o0 o0
fo e 1)l dx 5/0 ool dx. (A11)

Add e~ M times (A.11) to (A.10), take a supremum on both sides over all ¢ € [0, T],
and we find that

B < bl vTM 2B + ol + ¢ vl o r1y - (A.12)

Choose M > 1 large enough so that M > (2¢’ ||b|| 1 ﬁ)z. Consequently, we find
that

B < 2ol +2¢ Wil e - (A.13)

which, given the definition of B in (A.7), establishes part (a).
For part (b) we argue similarly. First, note that

o o o0
2/ X|Sx(x,t)|dx = —2/ xSx(x,t)dx = 2[ Sx,t)dt =1. (A.14)
0 0 0
Knowing this and using (A.4), we can estimate

/ K(ISe(x =y, t = )|+ ISCx + v, 1 — 5)]) dx
0
=/ (x+y)|Sx(x,l—s)|dx+/ (x—y)|Sy(x,t —s)|dx
—y y
5/ (x—‘,—y)ISx(x,l—s)Idx—l—/ X |Sy(x,t —s)|dx
o 0

3 o0
:,H/ 1S (x, 1 — 5] dx
2

<24yt —s5)""2,
(A.15)

where ¢’ is as in (A.5). Note that the second equality above follows from (A.14), and
the last inequality from (A.4). We now use Fubini’s Theorem to estimate

o0
/ *lin (r, 1)l dx
0

t o0 o0
Se(x —y, t — Sy = bl
sfofo fo H(1ScCx =yt =91+ 18eCx vt = 9 (Wl a0
+|v(y,s)|)dxdyds

t o0
5/0/0 (24 ¢yt — )72 (16l 11 G )] + vy, 9)]) dy ds.
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The second inequality follows directly from (A.15). Let M > 1 to be determined later
and define

o0
B’ := sup e—M’f x|p(x, 1)] dx. (A.17)
0

0<t<T

We then estimate in a similar manner as in the proof of part (a)

o0 t o0
e‘M’fO xluz(x,mdxfe_M’/Ofo 2+ v =72 (Ibll e In(y. )|
+ [v(y, s)[) dyds
t o0
< / M=) (¢ 172 / e M5y (16 e 12y, 9)]
0 0

+ (. 5)])dyds
+ 2t M ([|b] 1 Il ooty + Ivlloepty )-

(A.18)
In similar fashion, we estimate
(o 0] o0 o0
/O x luaCe, 1)l dx < /0 (x + S (x. 1) lio(y)| dx dy
—y
o0 o0

+/0 / (x —y)Sx, 1) [no(y)dx dy (A.19)

y

o0 o0 o0
53/0 xS(x,r)dx/O Iuo(y)ldy-irfo ¥ o) dy,

where we have also used that S(-, ) is an even function. We calculate (by a change of
variables) that fooo xS(x,t)dx = % Add together (A.18) and (A.19) to get

mr [ 1/2

e ’/ x|, Dl dx < Ibllgse VTM V2B + |xpoll 1
0

e Ioevll ey + o (loll + Ivllay) (A.20)
Here, cp s < o0 is a constant that depends only on ||b|;~ and o; its existence is
guaranteed by part (a) of this proposition. Now, taking a supremum on both sides

of (A.20) over all + € [0, T'], then choosing M > 1 large enough so that M >
Q16 ¢’ /7)?, we derive

B =2 (Ixuoll +¢ vy +eno (Ioll + IWlzyy)) - (A21)

Recalling the definition of B’ in (A.17), the above estimate implies part (b) of the
proposition. o
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Before proving Proposition 2.2, we present an abstract lemma.

LemmaA.1 Let A > 1, B, > 0be given constants. Suppose f, g : [0, 00) — [0, 00)
are functions that satisfy

t
f(t) < Af(t) + B/ (=72 (F(s) + g ds VO <t <n <1046 (A22)
1

Then for any A > % In(A), we have

2512 T A 2812 r
(1 — 1—>/ e MF@)ydr < = f(0) + —/ e Mg(r)dr.
0 K 1— 0

— Ae—*é Ae—A8
(A.23)
Proof Set h(t) = f(t) + g(t), so that (A.22) reads simply
4]
f(n) < Af(t0) + B/ (t1 — )" Y2h(s)ds forall0 <ty <1 <to+38.
10
(A.24)
For arbitrary t > Oletn = L%J Use (A.24) n + 1 times to get
n ) t—jé
f) < A™TF0) + ZAJB/ (t—jos—s)"2h(s)ds, (A.25)
s (t=(+Do)y
where s := max{s, 0}. Note that
t—s
t—(j+1)5<s§t—j8=>j={ 5 J
so we define ¢ (s) = (s — | 3] 8)'/%. Then (A.25) implies
t ! 1=Jjé t—s
f) < AT FO)+) B AT ¢t — s)h(s)ds (A.26)
PR IDN

t —s
— ASTLF(0) +B/ AT Gt — $)h(s) ds.
0
LetA > % In(A) and setk = A — % In(A) > 0. Multiply (A.26) by e~*/, then integrate
from 0 to T to get

T A T t
f e M ft)ydt < = f(0) + B/ / e Ut — 5)e h(s) ds dt
0 * o o (A.27)

A T T—s
=20+ B/ / e (e M h(s)dr ds.
K 0 0
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We now observe that

00 o0 A(n+1)8
/ ety dt = Z/ et —n&) V2 dr
0 n=o?n

(A.28)

A
—_
|
o P
|
=
(=2
S—
(=2
-
|
—
=
(3]
o
~

Applying (A.28) to (A.27), we get

g A 2812 (T
/ M0 dt < = FO0) + ——— / e (f(s) +g(s))ds, (A29)
0 K 1 — Ae 0

which implies (A.23). O
We now apply Proposition A.1 to the Fokker—Planck equation.

Proof of Proposition 2.2 First we will treat w as a solution of the abstract Fokker—
Planck equation (2.1) by identifying b := F© and v := ® + 3 (G (&) — w,)m®. We
start with the following formula: for every t; > 79 > 0,

n(x, 1) =/0 Sx—y,t1 —t0) = Sx +y,t1 —t0)) u(y, to) dy

LN EN as
+/ / (78 x=y,h—8)+_—C&+yn —S)) by, )y, s) +v(y,s))dyds,
v Jo X ax

(A.30)
Using the same calculations as in (A.6), we get
[o)0] [o)e]
/O Iu(x,n)ldxffo (. 10)] dy
11 o0
+c’f /0 (t1 =) 2 (blloo Iy, )1 + Iv(y, )] dyds,  (A31)
0]

where ¢’ is defined in (A.5). Let

oo 2 00 2
F) = (/0 |u<x,r>|dx> and g(1) = (/O |v<x,r>|dx) ,

SO We can write

1
P = 700 e [ =97 (Ibll £ 4 96601 2) d5. (432

fo
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By Holder’s inequality, we get

' 172
£ < fa 4 bl (20 - 002) ([0 0as)
0]

(A.33)
1
re(2m-'?)" ( - s)—”zg(s)ds)
0]

Next, we square both sides and use the inequality (a + b)> < 2(a” + b?) to get

1/2

1
Ft) < 2f(t0) + 4e(1 + 1blloo) (11 — 10)'/? / (t1 — )2 (f(s) + g(s)) ds.
0]
(A.34)

We now estimate
o 1 0
/ 1210 + 2(G(e) — wy)m® dx < @]l + 2/ wm®| dx
0 0
o0
+ / | ] dx, (A.35)
0

so that
o0 2 o 2
g <3®lI7, + 12(/ wam(0)|dx> +3(f |u§%|dx> (A.36)
* 0 0
0 2
<302, + 12/ wln®dx+3 |u®|” fo.
X 0 o

The first inequality follows from the fact that (37_; xx)> < n Y 4_, x2. The
second inequality follows from the Cauchy—Schwarz inequality and the fact that
fooo m©® dx < 1. Now, define

1 o0
h(t) = —2(3 1] oo r1) + 12/ wm© dx). (A37)
1+3 ‘ u)(co) 0

‘ o0

Since

L+ bl =1+ |FO| <2(1+
o0

1)

we see that (A.36) and (A.34) yield

F(t) < 2£(t0) +24c(1+ |u?

DX —lo)l/z/o (61 = )'2(£) +h(s),
(A.38)
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“)

o0

? ), and estimating (1

upon factoring out ( 3(1 +

IA

)2 From (A. 38) we see that Proposition A.1 applies with A := 2, and

B = 24c(1 + |u®] s,
Now, choose § > 0 small enough such that

1
28'2B < 7 =< 5 (A.39)
Then choose A > % In(2) large enough such that
s 1 2
1 —Ae™™ > 3 = A > gln(2) < A > Cy. (A.40)
As a result,
2812B 1 (A4
—_— < o, .
1 —Ae 2
and by Proposition A.1 we obtain
T 00 2 3 T
[P ([ man) ars 2 [Tl
M e
o
12 T o]
+—2/ e_M/ wim® dx dr
" ) 0 0
X
o
3 ||<I>||LOO(L1
=
Co(1 )

/ / wy 2m© dx dr.

(A.42)

The second inequality is obtained by the simple estimate

T
1 1 1
/ e Mdr = —(1-— e_)‘T) < - < —. (A.43)
0 A A Co
Thus, (2.3) holds.
Now, in the case that T is finite, we can estimate for all A € (0, Cyp],

eM = ¢2Co=01 ,=2C0t < ,Co=WT ,=2Cot (A.44)

@ Springer



Applied Mathematics & Optimization (2022) 86:2 Page 45 of 52 2

Consequently, using (2.3) with A = 2Cj, we obtain

T 00 2 T o] 2
f e_)‘r</ |u|dx> dr Se(zc"_)‘)Tf e_zc‘)’([ |u|dx) dr
0 0 0 0
D7 T
LCCo m( CLIPlrqy +C2/ ~2Cot /Oo 2m(0>dxdt)
Co W

Cl @02 1
B 2 R— +C2eZC°T / / w?m© dx dr,

- Co
(A.45)

whereby the last inequality follows, because e>¢0! < ¢=* for all t € [0, T]. This
completes the proof. O

A.2 An Abstract Holder Estimate

In this subsection we will give an abstract result on Holder regularity for a parabolic
equation with Dirichlet boundary conditions and bounded coefficients. Our argument
is in the spirit of [3,Lemma 3.2.2.], but we cover the case of an unbounded domain.
The result stated below is also meant to allow for a possibly infinite time horizon,
though in the present work we will not exploit this.

LemmaA.2 Fix0 < o < 1. Let u be a solution of

2 92

u o 0°u ou
m + Au — D) + Vi(x, t)a =F, u,t) =0, u(x,0)=up(x)(A.46)

where A is any positive constant, V and F are a bounded continuous functions, and

uy € CL+4(D) (i.e. ug € C'*(D) and up(0) = 0). Then

ou
dx

SC(IVllo-a2) (IFlloo + lluollerea)

flull -
caa2 (DX[O,T])

C“v“/z(fx[(),T]) + ‘

(A47)

where C (||V ||l » &, A) is independent of T .
As a corollary, we have

Il crvony) = € IV lloo o 2) (1Fllog + llolerse) . (A48)

Proof We will start by assuming 1o = 0. By a standard application of the maximum
principle we have that ||u]y < % [|F|lo- Let ¢ (x) be a smooth function, and observe
that

2 a2 2 47
Olgu) o3 @w) (V + ﬂ) YO0 gy = g, (A49)

at 2 ax? ¢ dx
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where
2 (p0)’ o, ,
g, )= Fx, )+ | ———— — 5" (x) + V(x,)¢ (x) | ulx, 1).
é(x) 2
(A.50)
Fix atime t > 0, and set v(x, 1) = e”’_”¢(x)u(x, t). Then (A.49) becomes
Bv_0282v+ V+02¢’ v ASD)
w2 ( s Jox =% (A
where
g, 1) = Dg(x,1). (A.52)

Fix anya > O and let ¢ (x) = (1 + (x — a)z)_l/z. Note that ¢ satisfies the following
properties:

1
<1 |2

o0 l/p 2]? 1/p
<2, (/ |¢(x)|pdx> = (—1> Vp > 1,(A.53)
—00 p—

¢
¢

and also (f eP*—™ dt)l/p < (Ap)~ VP 1t follows that

181 Lo Dx 0.0y < CPIATP(IF g+ (1 + 1VIIoo) llullo)
<CPYPNFlog(1+11VIso) s (A.54)

where C(p) remains bounded as p — oo.
Take p arbitrarily large. By the potential estimates in [26,Sect. IV.3] we have an
estimate of the form

’Bv ‘azv <CH~ (V+2¢/> v
27 bl < g - b B
Ot || Lr(Dx(0,1)) dx? LP(Dx(0,7)) ¢ ) x| LrDx,1)
_ v
< C(PAYPYFIg(L+ V) + C (1 + [ VIlp) P :
LP(Dx(0,1))

(A.55)
where the constants do not depend on 7. On the other hand we have
Il = CEAP lullp < CA~"PIFl,.  (AS6)
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By interpolation (see e.g. [26,Lemma I1.3.3]) we have

| < (|5
LP(Dx(0,1)) ar

for some constant C, where § > 0 is sufficiently small. Choosing § > 0 small enough,
we deduce

ov
at

9%y
ax2

dv

+ < lhvll
— — v
ax s LP(Dx(0,7))

LP(Dx(0,7)) ‘ LP(’D><(0,t))>

(A.57)

9%v

P < C(PA VP |IFllg (14 1VIoo)

LP(Dx(0,1))

LP(Dx(0,7)) ‘
+C (1 + ||V||<2,o> vl e Dx 0,y
<CPA VP UFIlg(1+ Vo)
+C (147 Fly V1)
(A.58)

Then by a Sobolev type embedding theorem [26,Lemma I1.3.3] we have

v
lvllgeare + H— =CpMIFl (1+1VIR)+C  (A59)

0x || caas2

foro =1— % (assuming p > 3). We can rewrite this as

M plu 4 ¢8_u
ax

= Cp M IFly (1+1VIZ) +C. (A.60)

+

A(—1)
| u.,.n

Ca,a/Z

Since r > e’ is locally Lipschitz with constant depending on A, we can write this as

, au
du+d—

||¢u||Ca,a/2(5X[T_1’T]) + 9x

Ce/2(Dx[r—1,7])
< Cp. W IFl (14 1VIE) + CG. (A61)

Using the fact that % is bounded by 1 and is globally Lipschitz with Lip (%) =1,
we also have

=
Co.a/2

+ llpullce .

+ (6w ga =
CD(,O(/Z
(A.62)

Coz,ot/2

, ou
dut+o—
ax

p ou
Pu+¢—
ax

H u
Pox
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hence

u
||¢“ ”C"‘*"‘/Z(fx[‘r—l,r]) + ¢a

Cxa/2(Dx[r—1,1))
= Cp. W IFly (1+1VIE) + €. (A.63)

Now, since % is globally Lipschitz with Lip(1/¢) = 1, and bounded on [a — 1, a + 1]
with an upper bound of 2, we deduce that

ou
0x

||M ”ca,a/Z([af]ﬂ«l»]])([f*lyf]) + ‘
Ca,a/Z([a_l,a—‘,-l]X[T—l»f])

= Cp. 1 IF Nl (14 IVIZ) +CO. (A64)

This estimate is independent of T and a. Letting t and a vary through all the positive
integers, and since p can be determined through «, it follows that

u
u _ iy < Cla, W) IIF (1+ v2)+cx.
10 (0.0 ‘ 35 |cconmrtoo0) @ M) IFlo (14 1VIE) +CR)
(A.65)
We now remove the assumption that ug = 0. Let w be the solution of
d 29%w
a—‘t“ _ "2 T AW =00 wr0) = (). (A.66)

As A > 0, by the maximum principle, we have [[w|lg < |luollg. Then [w]ca.arz <
C ||lugllca by [26,Theorem 10.1]; this estimate does not depend on time because of the
global in time L* bound. This establishes ||w||cae/2 < C |lugllce. We then take the

derivative in x of Equation (A.66) and apply the same argument as above to B_w to
X

Bl
establish H a_u) < C |lugll g1+« - Then let & be the solution of

Ca.a/z
9 _ o= 3% +V( z) +A Flx,0) — V( t) (A.67)
— - X, 1)— = F(x, 1) — V(x, .
9 2 9x2 "=

with zero initial conditions. Then by (A.65) we have

ou
dx

ow
< Clo, 2, 1V loo) HF+ veZ
dx

| ceal2(Dx[0,00)) + ‘

caal2(Dx[0,00)) 0 (A.68)

<C IVl ) (IFllg + luollgree) -

As u = 1 + w is the solution to (A.46), the claim is proved.
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Finally, to prove (A.48), note that (A.47) immediately implies

sup ”u("t)”CIJra/Z(f) =< sup ”u('st)”ClJroc(@)
0<r<T 0<t<T

<C(IVlso»a 1) (IFllo + luolici+) ,  (A.69)

and we also have

8u( " Bu( ) Bu( t)+8u( )
— X, —— W, 85— — 5 D , §
sup sup 0x 0x dx Y 0x Y
t#£s x#y [t — S|a/4 |x — )’|a/2
d
2‘—u min{|t—s|“/2,|x—y|“} (A.70)

< sup sup 0x || paar2

T ks xty |t —s|%* |x — y|*/?

SCUVloo-a. X)) (I Fllso + lluoligisa) -
Combine (A.69) and (A.70) to get (A.48). O

Appendix B: Nonlocal Existence Lemma

For this lemma, recall the definition X = C**/2NLX®(LL)NC*/? ([0, T]; (C1T2)*)
with norm

||m||X = ||m||Ca,a/2 + ”m”L?O(L/lV) + ”m”Ca/Z([O’T];(ClJrZa)*) . (B])

LemmaB.1 Let a € (0, 1/2) be such that u@®, m©® e C2214 [etm € X, ur €
C2H([0, 00)), and W € C**/2([0, 00) x [0, T1) be given. Consider the backward
parabolic equation

2
@)+ Tty — ru 4 AV 42 F O (e)(Gluy, mie) —u,) =0, 0<x <00, 0<1<T
2 (B.2)

@) ux, T)=urx), 0<x<o0
(iii) u(0,t) =0, 0<t<T,

where G is defined as in (1.5). We assume the usual compatibility conditions of first
order:

2
ur(0) =0, %u’T’(O) + 290, T) — AFQ()(0,00u(0) =0.  (B.3)

Then there exists a unique classical solution u € C*+*17%/2([0, 00) x [0, T) to the
boundary value problem (B.2). Moreover; the following estimate holds:

lullg2saran < C (Imllx + 1 llcera + lurllcara) (B.4)
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where C depends only on the data.

Proof Let u € C2T1+2/2([0, 00) x [0, T) be given. Note that
||G(ux, m; 8)||Ca,a/2 < C <||m||Ca/2([0)T];(C1+2a)*) + ||M||CZ+01,1+0(/2> . (BS)

where C depends on the C22e 1+ norms of 1@ and m©. By [26,Theorem IV.5.2],
there exists a unique solution w € CZ+*1+%/2([0, 00) x [0, T]) the boundary value
problem

2

(0w + %wn — w4 AW 4 AF O (e)(Guy, mie) —wy) =0, 0<x <00, 0<1<T
(i) wex, T) = ur(x), 0<x<oo (B.6)
(i) w(0, 1) =0 0<r<T,

and it satisfies the estimate
lwllgetai+er < C (||\I’||Ca,a/2 + G (uy, m; &) | caare + ||uT||Cz+a) . (B.7)

We will denote w = F'(u). Our goal it to show that F is a contraction on a suitably
defined metric space, and use this to prove (B.2) has a solution.

Let uy, up € CHe142/2([0, 00) x [0, T]), then define u = u; — up and w =
F(u1) — F(u»). Note that w satisfies

2
(i) w;+ U—wxx —rw +AF(O)(£)(G(MX,O; g) — wx) =0,0<x<o00, 0<tr<T
2 (B.8)

(ii) wkx,T)=0, 0<x <o
(iii) w(0,1) = 0. 0<t=<T.

Recalling the definition of G in (1.5), we see that there is a constant C1, depending
only on the data, such that

G (ux, 0: &)l caarz = Ci lluxllgaar2 - (B.9)

Combining this with classical estimates from [26,Theorem IV.5.2], we see that there
is some constant C;, depending only on the data, such that

lwllc2+a14a2 < Co |ty |l caar2 - (B.10)

Using interpolation on Holder spaces, we deduce that there exists a constant C3,
depending only on C», such that

1
Ca vy llgaarz < i V]l g2saitarr + C3 llvlloo Yo € C2FeHe/2 0 (B.11)
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Hence
1
lwlle2+ai+a2 < I lullp24a+a2 4+ C3 |1 ]| oo - (B.12)

Next, we define @ (x, 1) = e"T=Dw +r=1(e"T =D — 1)C| ||ty || ce2, Which satisfies

—0 _U_2~ A FO )7
+ (—wy 3 Wyy — A (e)wy) < 0. (B.13)

Apply the maximum principle to w to deduce that

lwe, D] < r e T — DOy Nugllgear < (T — 0T C lullgavatiar -
(B.14)

We now apply all of these estimates only on the time interval [T — t, T'] for some
T > 0. We deduce that

||w||cz+a.1+a/2([0,oo)x[T_,,T]) + 2C3 ”w”LOO([O,OO)X[Tf‘[,T]) (BIS)

1
< (Z + 2C3rerTC1> lullg2rat+ar 0,00y x[7—7,77) + C3 el Loo((0,00) x [T —7.7) -

1
We now set 7 = ——————. Define ); to be the space C2t%17%/2([0, 00) x [T —1, T])
8Cze' T Cy

endowed with the norm

||u)||yf = ”w||C2+°‘~1+“/2([0,00)X[T—T,T]) + 2C3 ”u}”Loc([O’oo)X[T,ryT]) . (B16)

Observe that ); is a Banach space. Moreover, by the above estimates, F : V; — )¢
is a contraction, since || F'(u1) — F(u2)|ly, < % luy — uz|ly, . Hence F has a unique
fixed point u, which is a solution to (B.2) and satisfies the estimate (B.4) on the time
interval [T — t, T]. However, T is arbitrary. We can now partition the interval [0, T']
into subintervals that are each at most 7 in length,i.e. 0 =7 <) < --- <ty =T
where ;1 —t; < r. Apply the same argument on each subinterval [¢; 1, #;], replacing
the final condition u7 (x) with w(x, t;), for each j starting with N and going down
to 1. (Cf. the proof of [10,Proposition 3.11].) In this way we obtain a solution u to
Equation (B.2), which indeed satisfies (B.4). Uniqueness of this solution follows from
uniqueness on each subinterval. O
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