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SUMMARY

The mouse visual cortex contains interconnected higher visual areas, but their functional specializations are
unclear. Here, we used a data-driven approach to examine the representations of complex visual stimuli by
L2/3 neurons across mouse higher visual areas, measured using large-field-of-view two-photon calcium im-
aging. Using specialized stimuli, we found higher fidelity representations of texture in area LM, compared to
area AL. Complementarily, we found higher fidelity representations of motion in area AL, compared to area
LM. We also observed this segregation of information in response to naturalistic videos. Finally, we explored
how receptive field models of visual cortical neurons could produce the segregated representations of
texture and motion we observed. These selective representations could aid in behaviors such as visually

guided navigation.

INTRODUCTION

Visual systems evolved to extract behaviorally relevant informa-
tion from complex natural scenes. Visual stimuli contain informa-
tion about texture, motion, objects, and other features of the
environment around the animal. These components of visual
stimuli have unequal relevance across behaviors. For example,
optic flow (OF) and parallax motion information can help guide
navigation behavior, but object recognition is often invariant to
motion.

In mice, the axons from the neurons in the primary visual cor-
tex (V1) extend out to an array of higher visual areas (HVAs),
seven of which share a border with V1, and all of which have
characteristic connectivity with other brain regions. Mouse visual
cortical areas exhibit a level of hierarchical structure’ and form
two subnetworks anatomically”® and developmentally.® HVAs
receive functionally distinct afferents from the V1.°° At least
nine HVAs exhibit retinotopic topology,” ' and the neurons in
HVAs have larger receptive fields (RFs) than those in the
V1.%811 This organization and connectivity of mouse visual areas
may have evolved to selectively propagate specific visual infor-
mation to other brain regions.>®

Gratings are classic visual stimuli for characterizing responses
in visual cortical areas.'®~'* In mice, HVAs exhibit biases in their
preferred spatial and temporal frequencies of gratings, but over-
all, their frequency passbands largely overlap,®'°~'" and, thus, it
can be challenging to determine how visual information is pro-
cessed selectively in HVAs. Moreover, neural responses to
more complex or naturalistic stimuli cannot be predicted from
gratings. Even the neural responses to the superposition of
two gratings, called plaid stimuli, are not well predicted by their

component responses. Plaids can thus reveal cells that are se-
lective to pattern motion, as opposed to the motion of the
component gratings,'® and plaids have been used to show that
lateromedial (LM) and rostrolateral (RL) HVAs contain pattern-
selective neurons.'® Similarly, responses to gratings cannot pre-
dict invariant object recognition, which is exhibited by neurons in
some rodent HVAs.?°?® Thus, stimuli beyond simple gratings
can help reveal functional specializations of HVAs.

Naturalistic visual stimuli contain complex multi-scale spatial
features with statistical dependencies that are lacking in simple
gratings. Mice can distinguish photographs of natural scenes,**
which contain these features, but the features are often non-uni-
form and sparse. Parametric texture stimuli provide a more
spatially uniform stimulus for determining how complex statisti-
cal features are represented by neuronal circuitry,®® and the
cortical area V2 in primates is specialized for processing texture
stimuli.?®

Motion is another component of visual stimuli, and it can be
represented with some independence from the spatial compo-
nents of naturalistic visual representations in the brain.?” Texture
and motion differentially contribute to neuronal activity in
HVAs.?® The representation of texture relies on the encoding of
a combination of local spatial features,?® whereas the represen-
tation of motion relies on computing integrated motion signals
(e.g., opponent motion energy®®). Thus, there is a potential
computational rationale for expecting segregated representa-
tions of motion and texture.

In this study, we determined whether the L2/3 neurons in
mouse HVAs exhibit biases in their representations of motion
and texture. We used three classes of visual stimuli: drifting tex-
tures, random dot kinematograms (RDKs), and naturalistic
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Figure 1. Multi-area calcium imaging of mouse visual cortex

(A) Neuronal activity was imaged in multiple HVAs simultaneously using large-field-of-view, temporally multiplexed, two-photon calcium imaging. In an example
experiment, layer 2/3 excitatory neurons were imaged in the areas V1 and LM, AL, and PM simultaneously. The squares indicate the imaged regions, and the

projections of raw image stacks are shown below.

(B) Image stacks were analyzed to extract calcium dynamics from cell bodies after neuropil subtraction. These traces were used to infer spike activity, as shown in

raster plots below each trace.

(C) Statistics of the inferred spiking were similar to those of prior reports, indicating accurate inference. The mean and maximal instantaneous firing rates of the
neurons in the V1 and HVAs are similar (mean, 0.5 + 0.5 spike/s; max, 7 + 11 spike/s; p = 0.055 and p = 0.6; one-way ANOVA).

videos. We examined how the texture/spatial and motion com-
ponents of a naturalistic video are represented and found that
high fidelity representations of these stimulus features are segre-
gated to different HVAs. We then characterized the encoding
properties of HVA neurons using a Gabor filter-based RF model.
The results from these experiments reveal functional segrega-
tions of mouse HVAs for texture/spatial and motion components
of visual stimuli.

RESULTS

Multi-area calcium imaging to distinguish the tuning
properties of HVAs

To survey the tuning properties of multiple visual cortical areas,
we performed population calcium imaging of the L2/3 neurons
in the V1 and four HVAs (the LM, laterointermediate [LI], antero-
lateral [AL], and posteromedial [PM]) of awake mice using a mul-
tiplexing, large-field-of-view two-photon microscope with sub-
cellular resolution developed in house®® and transgenic mice
expressing the genetically encoded calcium indicator
GCaMP6s.*"*? We located the V1 and HVAs of each mouse us-
ing retinotopic maps obtained by intrinsic signal optical imag-
ing*'® (Figure S1A). The borders of HVAs were reliably delin-
eated in most cases, with the exception being some
experiments where the boundary between areas anteromedial
(AM) and PM was not clearly defined. In those cases, to be con-
servative, we considered the population to be pooled between
areas AM and PM but dominated by the latter and thus referred
to as “PM” or “AM/PM.” In cases where area AM neurons were
positively identified, we did not observe a functional difference
between putative AM and PM neurons. The large-field-of-view
imaging system allows us to carry out flexible high-resolution re-
cordings from up to four cortical visual areas simultaneously ' *°
(Figures 1A and 1B). In this study, most of the data were
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recorded in twin-region imaging mode, and two datasets were
recorded in single-region imaging mode. Neuropil-corrected cal-
cium signals were used to infer probable spike trains for each
neuron (Figure S1B). The inferred spike train was accurate
enough for computing spike-count-based statistical values.'"
During visual stimulation, the average and maximal firing rates in-
ferred were similar across cortical areas and were typically
around 0.5 spikes/s average and ranged up to 15-30 spikes/s
maximal (Figure 1C), consistent with the previously reported
values from electrophysiology.**

We characterized the neuronal responses to three types of
visual stimuli: scrolling textures (hereafter referred to as
“texture stimuli”), RDKs, and a naturalistic video mimicking
home cage navigation. Hundreds of neurons were recorded
for areas V1, LM, AL, and PM for all three stimuli, and the
area LI was recorded for the texture stimuli (complete numbers
are in Table S1). The neurons that exhibited reliable responses
to a stimulus were included for further characterization (reliable
neurons responded to >50% of the trials for RDKs or texture
stimuli or exhibited trial-to-trial correlations >0.08 with 0.5 s
bins to naturalistic stimuli). These criteria resulted in 20%-
50% of all the recorded neurons being included for further anal-
ysis (Table S1).

Texture and RDK stimuli were best represented in
separate HVAs

We tested the selectivity of neurons in the areas V1, LM, LI, AL,
and PM to texture stimuli using a set of naturalistic textures that
drifted in one of the four cardinal directions (Figure S2A). We
generated four families of texture images based on parametric
models of naturalistic texture patterns.®* These stimuli allowed
us to characterize the representation of both texture pattern in-
formation and drift direction information and thus test the toler-
ance of a texture-selective neuron to motion direction.
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Figure 2. Segregated representations of textures and random dot kinematogram (RDK) motion in HVAs

(A) Mice were shown texture stimuli, each of which was from one of four texture families and drifted in one of four directions. The spike raster plots from two
example neurons (10 trials shown for each) show that one neuron is selective for texture family and the other is more selective for texture direction. The amount of
mutual information (MI, in bits) for the two stimulus parameters (texture family and motion direction) is written below each raster, along with the overall or joint
(family and direction) MI.

(B) The areas V1, LM, and LI provide higher MI for texture stimuli than the area AL or PM (p = 3.7 x 10~"7). The error bars in inset indicate SE.

(C) The relation between information about the moving direction and information about the texture family carried by the individual neuron per visual area. Each dot
indicates one neuron. The blue line indicates the threshold of a significant amount of information, which was defined by shuffled data (mean + 3 * SD). Lower right:
summary of the fraction of neurons exhibiting significant joint representation (red dots). Distribution generated by permutation.

(legend continued on next page)
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We observed reliable responses to drifting textures in the
areas V1, LM, LI, and PM. AL was less reliable in response to
these stimuli (33%-41% of neurons in areas V1, LM, LI, and
PM are reliable, whereas 20% of neurons in area AL are reliable;
p = 0.04, one-way ANOVA; Figures S2A and S2B). The texture
informative neurons exhibited various selectivity patterns (Fig-
ure 2A). We measured neuronal selectivity to texture family, mo-
tion direction, or joint selectivity using mutual information (M)
analysis. Higher bit values for a neuron-stimulus parameter pair
mean that the activity from that neuron provides more informa-
tion about that stimulus parameter (or a combination of stimulus
parameters). Overall, the neurons in the areas V1 and LI were
more informative about the texture stimuli, followed by neurons
in area LM. By contrast, the neurons in the areas AL and PM
were not informative about the texture stimuli (Figure 2B; p =
3.7 x 107'7; one-way ANOVA). To examine the tolerance of
the texture encoding neurons to the translational direction, we
computed the MI between neuronal responses and texture fam-
ilies (refer to the statistical pattern of a texture image). Area LI
was the most informative about texture family out of all the tested
visual areas, followed by the areas V1 and LM (Figure S2C; p =
1.8 x 107'"; one-way ANOVA). Meanwhile, areas V1, LM, and
LI also carried more information about the motion direction of
the texture stimuli, compared with the areas AL and PM (Fig-
ure S2D; p = 1.2 x 1077, one-way ANOVA). Examining the infor-
mation encoding of individual neurons, we found an increasing
fraction of neurons that jointly encoded texture family and
texture drift direction along the putative ventral pathway (V1:
7%, LM: 8%, LI: 14%, AL: 2%, and PM: 1%; p = 9 x 107'%
one-way ANOVA,; Figure 2C), suggesting increasing joint coding
along the putative ventral visual hierarchy (V1 — LM — LI).

To further examine joint coding along the putative ventral hier-
archy, we fit an encoder model to the neurons that were signifi-
cantly informative about the drift direction or the texture family
(roughly half of the reliable neurons; Figure 2C). We decomposed
the neuron model into the drifting direction component and the
texture family component through singular value decomposition
(SVD) decomposition, and we quantified the number of drifting
directions and the number of the texture family one neuron
was selective to in the SVD components (Figures S2E and
S2F). Joint encoding neurons exhibited increasingly broader
selectivity toward texture family and drifting directions along
the putative ventral pathway (Figure S2G).

These results for texture encoding contrast with the results for
standard drifting gratings. For gratings, we found motion direc-
tion information to be encoded broadly, differing <10% among
HVAs (Figure S2H), whereas texture motion information did not
propagate to visual areas outside the putative ventral pathway,
differing >200% among HVAs (Figures S2C and S2D). The drift
speeds were similar (32°/s for the textures and 40°/s for the

Current Biology

gratings), so it is unclear which spatial structural differences be-
tween these stimuli drove the differences in encoding. Thus, we
next examined the responses to a stimulus with less spatial
structure and a greater focus on motion.

We examined the encoding of RDKs, which are salient white
dots on a dark background with 40%-90% motion coherence
(remaining dots move in random directions; Figure 2D). The
RDK stimuli elicited reliable responses (responses to >50% tri-
als) in neurons in areas V1, LM, AL, and PM. For this stimulus,
reliable neurons were common in the V1 and rarer in area LM
(p = 0.001, one-way ANOVA; Figures S3A and S3B). To charac-
terize the direction selectivity of reliable neurons, we computed
the MI between neuronal responses and the motion direction
at each coherence level. Areas V1 and AL have larger fractions
of informative neurons than areas LM and PM (p =
2.3 x 107'5, one-way ANOVA; Figure 2E). On average, areas
V1 and AL were more informative than areas LM and PM about
the motion direction of the RDKs at moderate-to-high coherence
levels (>70%); Figures S3C and S3D; p = 3.3 x 107 '°, one-way
ANOVA). At a low coherence level (40%), the differences among
HVAs became insignificant (Figure S3D).

To further characterize the direction selectivity of neurons, we
fit an encoder model to the neurons that were significantly infor-
mative about the RDK stimuli. We further decompose the neuron
model into the direction component and the coherence compo-
nent through SVD decomposition (Figures S3E and S3F; STAR
Methods). We then identified the preferred direction and the
preferred coherence level in these SVD components for individ-
ual neurons. Interestingly, the direction preference of the V1 was
biased toward a downward motion or horizontal flows (p =
8.6 x 1078, one-way ANOVA). However, in area AL, an RDK-rep-
resenting HVA, such a bias was not obvious (p = 0.09, one-way
ANOVA; Figure S3G). All the tested areas were modulated by
coherence, and the highest coherence was preferred by the ma-
jority of neurons (Figure S3G).

In summary, texture-selective neurons were more abundant in
areas V1, LM, and LI, whereas RDK direction selectivity neurons
were more abundant in areas V1 and AL. Thus, information about
drifting textures and RDK motion are relatively segregated to
distinct HVAs (Figure 2F).

The features of naturalistic videos were best
represented in separate HVAs

To determine whether this segregation of texture and motion in-
formation among HVAs could be detected within a more com-
plex stimulus, we characterized the neuronal representation of
a 64-s-long naturalistic video (Figure 3A). The naturalistic video
stimulus contained time-varying visual features such as
contrast,*>*° luminance, edge density,*” difference-of-Gaussian
(DOG) entropy,®® and OF speed and direction®® (STAR Methods;

(D) Mice were shown random dot kinematogram (RDK) motion stimuli, which drifted in one of four directions with up to 90% coherence (fraction of dots moving in
the same direction). A raster for an example neuron (30 trials) shows that it fires during rightward motion, with 0.51 bits of MI for motion direction at 90%

coherence.

(E) Cumulative distribution plot of information about the motion direction combining all coherence levels. The gray dashed line indicates the threshold for a
significant amount of information, which was defined by shuffled data (mean + 3 * SD). Inset: a boxplot of the fraction of informative neurons generated by

permutation.

(F) These results indicate a segregation of visual stimulus representations: texture stimuli to area LM and RDK motion stimuli to area AL.
(B, C, and E) The p values were generated by one-way ANOVA with Bonferroni correction.
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Figure 3. Parametric features of the naturalistic video stimulus

(A) Five example neurons show reliable, yet diverse, spike responses during a naturalistic video stimulus.

(B) The neurons in all four tested areas exhibited similarly high response sparseness to the naturalistic video (p = 0.8, one-way ANOVA).

(C) Dimensionality of neuron population responses versus the number of neurons per visual cortical area (error bars indicate SE of permutation).

(D) Form and motion components of the naturalistic video were extracted using a bank of linear filters with various sizes and locations (left). This provided time-
varying signals correlated with global, form, and motion features, such as contrast, difference-of-Gaussian (DOG) entropy, and speed entropy (middle). To
provide an intuitive feel for these features, example naturalistic video frames with the corresponding DOG entropy maps, edge density maps, and optical flow
speed maps are shown.

See also Figures S4A-S4C.

Figure S4A-S4D). Both edge density and DOG entropy capture  responses to the naturalistic video, and 21 of these classes ex-
the spatial properties of a naturalistic video frame, whereas hibited unique sparse response patterns, responding at specific
DOG entropy better supports texture family encoding time points of the naturalistic video (Figures S5C and S5D). All
(Figures S4E and S4F). Our results, thus far, suggested that the  tuning classes were observed in the V1 and HVAs, but their rela-
activity in area AL would be modulated by the motion information  tive abundance varied by area (Figures S5E and S5F). The V1 had
(OF speed or direction) in the naturalistic video and the activity in  arelatively more uniform distribution of tuning classes compared
area LM would be modulated by the texture information (DOG  with HVAs (Figure S5E). The lower dimensionality and biased dis-

entropy) in the same video. tribution of tuning classes of HVAs can indicate selective repre-
About 45% of the V1 neurons and about 25% of the LM, AL, sentations of visual features.

and PM neurons responded to the naturalistic video reliably To examine how well the visual features (Figure S4D) of the

(trial-to-trial correlation >0.08; Figure S5A). Neurons in the four  naturalistic video were represented in HVAs, we computed the

imaged visual areas exhibited diverse and highly selective re- linear regression between the responses of individual neurons,

sponses to the naturalistic video. Individual neurons responded  or population-averaged activity, with the time-varying visual fea-
to ~3% of the stimulus video frames, corresponding to a high  tures of the naturalistic video (Figure 3D). We defined the modula-
lifetime sparseness (0.83 + 0.09 [mean + SDJ; Figure 3B). The tion power of each feature as the variance of responses explained
dimensionality of the population responses of the V1 was about by the model (i.e., the /2 of a linear fit) and the modulation coeffi-
three to ten times higher than those of the LM, AL, and PM areas  cients as the slope. The visual features were computed at multiple
(Figure 3C). The average response of a cortical-area neuron pop-  spatial scales (image filtered by a Gaussian kernel with 1°-25° full
ulation converged with several hundreds of neurons (about 500  width at half maximum [FWHM]), and qualitatively similar results
from the V1 and about 200 from HVAs; Figure S5B). Thus, theda-  were observed across a wide range of scales. Overall, the set of
taset has sufficiently covered the neuronal responses of areas  visual features explained 31% of the variance of the trial-averaged
V1, LM, AL, and PM to support further analysis. To take a responses (with 0.5 s bins) of individual neurons across the visual
data-driven approach to understand the diverse response pat- areas. Representative results were obtained for edge density
terns, we classified neurons using an unbiased clustering maps with a Gaussian kernel of 2.35° (FWHM) and DOG entropy
method (Gaussian mixture model [GMM]; STAR Methods). The maps with a Gaussian kernel of 11.75° (FWHM, inner kernel; the
neurons were partitioned into 25 tuning classes based on their  outer kernel is 2-fold larger in FWHM) (Figure 3D).
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Figure 4. Segregated representations of spatial and motion features in naturalistic videos
(A) The average modulation power (left) and the average modulation coefficients (right) of individual neuronal activity by visual features of the naturalistic video.
The modulation power is characterized by the r-squared values (variance explained) of the linear regression. Error bars indicate SE of permutation. p values are

from one-way ANOVAs with the Bonferroni correction for multiple comparisons.

(B) The time-varying features were weighted to best match the average neuronal activity of enriched classes for a cortical area (N = 200 with permutation; classes
with red stars in Figure S5F). The area LM was strongly modulated by DOG entropy. The area AL was strongly modulated by speed entropy. The area PM was
modulated by contrast and edge density. The modulation coefficients were typically positive but were negative for edge density. Thus, the area PM is positively
modulated by contrast but negatively modulated by edge density. (p values are from one-way ANOVAs with the Bonferroni correction for multiple comparisons.)
(C) These results indicate that visual feature components are segregated among HVAs: texture features to the area LM, motion features to the area AL, and fine

edge features to the area PM.

Regressing these visual features with individual neuronal re-
sponses revealed selective feature representations. The AL
neurons were more sensitive to the modulation by the OF
speed entropy, whereas the PM neurons were more sensitive
to the modulation by contrast and edge density (Figure 4A).
We further characterized the collective effects of the biased
distributions of tuning classes (from the GMM clustering anal-
ysis) among HVAs. Some tuning classes were more abundant
in specific HVAs (relative to their abundance in the V1), and we
assessed their activity modulation by the features in the natu-
ralistic video. Area LM was enriched with neurons that corre-
lated with DOG entropy (Figure 4B). As expected, areas AL
and PM were enriched with tuning classes that correlate
with the OF speed entropy feature and the contrast and
edge density features, respectively (Figure 4B).

Together, these results indicate that motion information and
spatial information are differentially represented among HVAs
due to the distribution of tuning classes among them. AL neurons
provided superior representations of the motion features in the
naturalistic video, and LM and PM neurons provided superior
representations of the texture and edge features, respectively,
in the same naturalistic video (Figure 4C).
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Gabor models exhibited biased feature representations

To this point, the evidence from the naturalistic stimuli indicates
an enriched representation of spatial and motion features in
areas LM, PM, and AL. We then questioned whether the feature
enrichment in HVAs could be explained by RF structure. To
model the RF structures of neurons, we employed a rich set of
Gabor models, which are classic models for visual cortical neu-
rons.***! The Gabor models were simulated using a base model
of alinear-nonlinear (LNL) cascade with Gabor-filter-based linear
kernels (Figure 5A). The set of models included 2D Gabor models
with single or multiple subunits combined linearly or quadrati-
cally (Figure 5B), as multiple Gabor kernels are required for
predicting the V1 neuron responses in mice*' and generating tol-
erances to rotation, translation, and scale.’®*? The set of models
also included 3D Gabor kernels with or without untune normali-
zation units (Figure 5B), as normalization is critical for capturing
the diverse response profiles of the V1 neurons to naturalistic
stimuli.*® For the 2D Gabor-filter-based models, we examined
both linear and energy models. These are similar to the models
of complex cells in which input from multiple simple cells with
similar orientation preferences but varying phases are inte-
grated.’ Other combinations were used as well (cross
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Figure 5. Spatial and motion feature encoding by variants of Gabor-filter-based models
(A) The general architecture is a linear-nonlinear-Poisson (LNP) cascade neuron model. Neurons were simulated by various 2D and 3D Gabor-like linear kernels,

with or without an untuned subtractive normalization.

(B) From the base LNP model, variations were derived and organized into three classes: 2D Gabor-based, 3D Gabor-based without normalization, and 3D Gabor-
based with normalization. Both linear and energy responses (akin to simple cells and complex cells) were computed from combinations of 2D Gabor filters. Linear,
energy, and motion responses (akin to simple cells, complex cells, and speed cells) were computed from the 3D Gabor filters.

(C) These three classes of models varied in how much their activity was modulated by the global, form, and motion features in naturalistic videos. The neuron
models are plotted by their modulation in feature spaces. The location of a neuron model was defined by the modulation power (same as Figure 4).

orientation, cross scale, etc.; Figure 5B). For the 3D Gabor-filter-
based models, we also examined motion models (opponent mo-
tion energy”?; Figure 5B). The simulations were performed with
multiple spatial scales and, for the 3D Gabor-filter-based
models, temporal scales and sampled uniformly in space.

We determined the feature extraction properties of the models
by simulating responses to the texture and RDK stimuli and char-
acterizing them (Figure S6). Neuron models varied in the encod-
ing power of different types of stimuli or visual features. We noted
that the 2D Gabor models exhibited specific tuning to the texture
family while remaining tolerant to motion directions, especially
the cross-orientation and linear cross-position models (Fig-
ure S6A), which are the best models for texture family encoding.
On the other hand, the 3D Gabor models with normalization per-
formed the best in encoding the motion direction in RDK stimuli
(Figure S6B).

In response to the naturalistic videos, the 2D Gabor models,
especially linear cross-position and linear cross-orientation
models, exhibited better sensitivity to the contrast, edge density,
and the DOG entropy, whereas the 3D Gabor models with un-
tuned normalization exhibited better sensitivity to the OF entropy
(Figure 5C). These simulation results confirmed the apparent
trade-off in representation fidelity for spatial features and motion
features, with the 2D Gabor kernels performing better on the
former and the 3D Gabor kernels with or without normalization
on the latter.

Gabor models reproduced specific feature
representations of mouse visual cortex

Next, we determined the best Gabor model for the neuron re-
sponses recorded in vivo to the naturalistic video stimuli. We
fit individual neuronal responses with the Gabor-based models.
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One best model among the whole set, the “preferred” model,
was selected for individual neurons. The preferred models
captured the greatest amount of peristimulus time histograms
(PSTHSs) variance of the in vivo neuronal responses (Figure 6A).
In general, the preferred models explained 40% + 17% (mean +
SD) of the variance of the PSTH (no difference between visual
areas; p = 0.06, one-way ANOVA).

The V1 and HVAs varied in model preference. All classes
were present in the V1, but HVAs varied in the classes that
were more or less frequently observed (Figure 6B). We found
that area LM was enriched with texture feature encoding
models, such as the 2D models with linear cross-orientation
subunits and linear cross-position subunits (Figure 6B). Area
AL was enriched with motion encoding models, such as the
3D motion models with normalization (Figure 6B). By contrast,
area PM had an abundance of single-unit 2D models (spectral
filters), which were sensitive to the contrast visual features
(Figure 6B).

Using the preferred models that were enriched in each HVA,
we reproduced the linear regression results between the fea-
tures of the naturalistic video (Figure 3D) and the HVA-specific
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(B) For each Gabor model type and HVA, we
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for that HVA. Then, for each HVA, we normalized
the model type fractions by the frequency for
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(C) The modulation power (left) and the modulation
coefficients (right) of the average responses of en-
riched model classes for HVAs (N = 50 with permu-
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model responses (Figure 6C). In general,
the model selection reflected the segre-
gated representation of spatial and mo-
tion features by areas LM, AL, and PM.
Overall, the Gabor model analysis re-
vealed that areas LM, AL, and PM were
enriched with different RF structures.
Area LM had more 2D linear cross-orien-

.
“T tation and linear cross-position RFs, as
. well as 3D simple cells. Area AL had
T more 3D simple, complex, and motion
Edge  Speed cells and received surround normaliza-

tion input. Area PM had more 2D simple
cells and 3D complex cells. These in-
sights into the RF structure of the neurons
in HVAs provide clues about potential neural circuitry underlying
the varying representations of features in naturalistic stimuli.

DISCUSSION

The results revealed the unique encoding properties of the L2/3
neurons of the V1 and multiple HVAs in representing textures,
motion, and naturalistic videos. Our results show that area LM
neurons provide high fidelity representations of spatial features
such as DOG entropy and textures but are poor at representing
motion. By contrast, area AL neurons provide high fidelity repre-
sentations of motion features but are poor at representing spatial
features. Area PM neurons provide high fidelity representations
of some spatial features such as edge density and contrast but
not DOG entropy or textures like area LM neurons do. Relatedly,
the areas LM, LI, and AL are all poor at representing edge den-
sity. These findings show that visual features are represented
in segregated neuronal populations, implying trade-offs in en-
coding. To investigate potential trade-offs, we examined the
RF structures of the neurons in the HVAs that contributed to
specialized feature representations. Indeed, we found that
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different RF models were required for reproducing the in vivo re-
sults in separate HVAs. These findings provide new insights into
the neural circuitry that can generate distributed representations
of visual stimuli in HVAs.

The rodent visual system evolved in response to the ecological
niche mice found themselves in. We do not expect such a pro-
cess to result in a neural circuitry that performs neat, absolute
segregations of information about visual scenes. Instead, we
expect a neural circuitry that supports adaptive behavior for
the mouse’s ecological niche, such as a visual mechanism for
predator avoidance.**“® The principles of that circuitry are likely
quite different from those of any systematic, mathematically
compact approach for parsing a visual scene in terms of the
known RF properties of visual cortical neurons. Thus, here, we
used a data-driven approach to gain a conservative foothold
into the complex visual scene processing in mice. We explored
how segregated representations might emerge using a modeling
approach based on the known RF properties of visual cortical
neurons or at least popular models thereof. This analysis showed
that a linear combination of edges and motion energy model with
normalization provided accurate accounts for distinguishing
texture and motion stimuli.

The enrichment of specific representations of motion or
texture in the L2/3 of the AL and LM areas, respectively, could
arise from specific connectivity from other brain regions (e.g.,
the V1) that preserve the selectivity that arose there® or from
converging input that results in enhanced selectivity (i.e., more
invariant selectivity) for a visual feature.'>*"**® We generally
cannot distinguish those two possibilities with this dataset.
Dense feedback and feedforward connectivity between HVAs
and the V1 make it difficult to pinpoint where selectivity arises.
However, area LI neurons exhibited more complex selectivity
than neurons in area V1, so it appears as though preserved
selectivity from V1 projecting to area LI would be insufficient to
produce such selectivity. Even then, we cannot rule out thresh-
olding effects, which could play a role in increasing the apparent
selectivity.

The dual-stream framework describes two subnetworks of vi-
sual circuitry, a ventral one for object recognition and a dorsal
one for motion and action.’”*” In primates, the ventral
stream—from the V1, through the V2, V3, and V4, to the inferior
temporal lobe— develops selective activity for specific recog-
nized objects, including faces. The dorsal stream—from the V1
through the V2, middle temporal area (MT), medial superior
temporal area (MST), and the parietal lobe—processes the
spatial and motion information in visual scenes. Anatomically,
cats and ferrets have similar visual hierarchies as primates. Cat
areas 17, 18, and 19 are analogous to the V1, V2, and V3 of pri-
mates, and area 21a and posterior medial lateral suprasylvian
sulcus (PMLS) are analogous to the primates’ V4 and MT,
respectively.’®>® Robust representations of oriented gratings
or edges are commonly found in the V1, but how do representa-
tions change along the dorsal and ventral streams? The neurons
in the areas V2 and V4 can encode a combination of local fea-
tures, such as multiple edges to detect curves and shapes.®”*
The neurons in MT and MST areas can encode opponent motion
energy.”®°*=°% However, conflicts and complexities have been
identified for these apparently stream-segregated feature repre-
sentations in primates.®”-°® Cats and ferrets may have a cortical

¢ CellP’ress

circuitry that is functionally analogous to the V4 and MT in pri-
mates;*%°>*° nevertheless, our knowledge of intermediate-level
feature representations in these animals is limited. Anatomical
connectivity with downstream brain regions supports
functional distinctions in mouse HVAs between putative ventral
and dorsal streams. For example, the putative ventral areas
are strongly connected to temporal and parahippocampal
cortices, whereas the putative dorsal areas are preferentially
connected to the parietal, motor, and limbic areas.® However,
there are also major differences. The cortical visual system of
mice is distinct from those of primates, cats, and ferrets, which
have a single V2 adjacent to the V1.%° Instead, mice have more
than seven HVAs that share a border with the V1.2°° These
anatomical differences complicate the search for the dual-
stream homologies in mice and motivate functional studies to
elucidate the information processing in mouse HVAs.?” The func-
tional similarities between the mouse LM and LI areas and ma-
caque V2 and V4 and between the mouse AL area and macaque
MT are perhaps superficial but could also indicate that the dual-
stream framework for visual pathways in primates could have an
analog in mice.*®" Anatomical and RF mapping studies suggest
that the mouse LM and AL areas likely serve as the ventral and
dorsal gateways in the mouse visual hierarchy.*#:

Our experimental results reveal the segregations of visual en-
coding, or representations, among HVAs in mice. The modeling
results demonstrate how classic models of visual cortex neuron
RFs can entail reciprocal trade-offs for representing spatial fea-
tures and motion features of visual stimuli, thus providing a po-
tential functional substrate for this segregation. These insights
show how mouse HVAs likely play distinct roles in visual behav-
iors and may share similarities with the dual processing streams
in primates.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Mouse: Emx1-cre; Ai94D (TITL-GCamp6s); ROSA-tTA The Jackson Strain: jax #005628, Jax #024104, Jax # 011008
Laboratory

Software and algorithms

MATLAB R2015b, 2019b Mathworks https://www.mathworks.com/products/matlab.html

suite2p calcium imaging processing toolbox Pachitariu et al.®® https://github.com/cortex-lab/Suite2P

MCMC spike deconvolution toolbox Pnevmatikakis https://github.com/flatironinstitute/CalmAn-MATLAB/
et al.® tree/master/deconvolution

Gabor modeling and naturalistic video processing This paper https://github.com/yuyiyi/HVA_tuning.git

RESOURCE AVAILABILITY

Lead contact
Requests for additional information or resources related to the study should be directed to Spencer L. Smith (slsQucsb.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

® Deconvolved spike data, and key functions for Gabor modeling and naturalistic video processing are available in: https://
github.com/yuyiyi/HVA_tuning.git.

@ Code for calcium imaging processing is available in: https://github.com/yuyiyi/CaSoma_Proc.git.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects

All animal procedures and experiments were approved by the Institutional Animal Care and Use Committee of the University of North
Carolina at Chapel Hill or the University of California Santa Barbara and performed in accordance with the regulation of the US
Department of Health and Human Services. Total of 34 GCaMP6s-expressing transgenic adult mice of both sexes were used in
this study. Mice were 110 - 300 days old for data collection. GCaMP6s-expressing mice were induced by triple crossing of the
following mouse lines: TITL-GCaMP6s (Allen Institute Ai94), Emx1-Cre (Jackson Labs #005628), and ROSA:LNL:tTA (Jackson
Labs #011008).>" Mice were housed under a 12 h light / 12 h dark cycle, and experiments were performed during the dark cycle
of mice.

METHOD DETAILS

Surgery

For cranial window implantation, mice were anesthetized with isoflurane (1.5 - 1.8% in oxygen) and acepromazine (1.5 - 1.8 mg/kg
body weight). Carprofen (5 mg/kg body weight) was administered prior to surgery. Body temperature was maintained using physi-
cally activated heat packs or homeothermic heat pads during surgery. Eyes were kept moist with ophthalmic ointment during sur-
gery. The scalp overlaying the right visual cortex was removed, and a custom steel headplate with a 5 mm diameter opening was
mounted to the skull with cyanoacrylate glue (Oasis Medical) and dental acrylic (Lang Dental). A 4 mm diameter craniotomy was per-
formed over the visual cortex and covered with a #1 thickness coverslip, which was secured with cyanoacrylate glue.

Intrinsic signal optical imaging (ISOI)
Prior to two-photon imaging, the locations of primary and HVAs were mapped using ISOI, as previously reported.**>° Pial vascu-
lature images and intrinsic signal images were collected using a CCD camera (Teledyne DALSA 1M30) and a tandem lens
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macroscope. A 4.7 x 4.7 mm? cortical area was imaged at 9.2 um/pixel spatial resolution and at 30 Hz frame rate. The pial vascu-
lature was illuminated and captured through green filters (550 + 50 nm and 560 + 5 nm, Edmund Optics). The ISO images were
collected after focusing 600 pm down into the brain from the pial surface. The intrinsic signals were illuminated and captured through
red filters (700 + 38 nm, Chroma and 700 + 5 nm, Edmund Optics). Custom ISOI instrumentation was adapted from Kalatsky and
Stryker.° Custom acquisition software for ISOI imaging collection was adapted from David Ferster.*® During I1SOI, mice were
20 cm from a flat monitor (60 x 34 cm?), which covered the visual field (110° x 75°) of the left eye. Mice were lightly anesthetized
with isoflurane (0.5%) and acepromazine (1.5 — 3 mg/kg). The body temperature was maintained at 37 °C using a custom electric
heat pad.*° Intrinsic signal responses to vertical and horizontal drifting bars were used to generate retinotopic maps for azimuth
and elevation. The retinotopic maps were then used to locate V1 and HVAs (Figure S1A). Borders between these areas were drawn
using features of the elevation and azimuth retinotopic maps, such as reversals, manually.”'® The vasculature map provided land-
marks to identify visual areas in two-photon imaging.

In vivo two-photon imaging

Two-photon imaging was performed using a custom Trepan2p microscope controlled by custom LabView software.*° Two regions
were imaged simultaneously using temporal multiplexing.*’ Two-photon excitation light from an ultrafast Ti:Sapph laser tuned to
910 nm (MaiTai DeepSee; Newport Spectra-Physics) laser was split into two beams through polarization optics, and one path
was delayed 6.25 ns relative to the other. The two beams were steered independently from each other using custom voice coil steer-
ing mirrors and tunable lenses. This way, the X, Y, Z plane of the two paths can be independently positioned anywhere in the full field
(4.4 mm diameter). The two beams were raster scanned synchronously about their independently positioned centers by a 4 kHz reso-
nant scanner and a linear scanner (Cambridge Technologies). Photons were detected (H7422P-40, Hamamatsu) and demultiplexed
using fast electronics. For four-region scanning, the steering of the two beams was alternated every other frame.

In the current study, two-photon imaging of 500 x 500 um? was collected at 13.3 Hz for two-region imaging, or 6.67 Hz for large-
field single path imaging (Table S1). We typically imaged neurons in V1 and one or more HVAs simultaneously. Up to 500 neurons (V1:
129 + 92; HVAs: 94 + 72; mean + SD) were recorded per imaging region (500 x 500 pm?). Imaging was performed with typically <80
mW of 910 nm excitation lights out of the front of the objective (0.45 NA), including both multiplexed beams together. Mice were head-
fixed about 11 cm from a flat monitor, with their left eye facing the monitor, during imaging. The stimulus display monitor covered 70°
x 45° the left visual field. Two-photon images were recorded from awake mice. During two-photon imaging, we monitored the pupil
position and diameter using a custom-controlled CMOS camera (GigE, Omron) at 20 — 25 fps. No additional illumination was used for
pupil imaging.

Visual stimuli
Visual stimuli were displayed on a 60 Hz LCD monitor (9.2 x 15 cm?). All stimuli were displayed in full contrast.

The texture stimuli (Figure S2A) were generated by panning a window over a large synthesized naturalistic texture image at one of
the cardinal directions at the speed of 32 °/s. We generated the large texture image by matching the statistics of naturally occurring
texture patterns.®* The texture pattern families were: animal fur, mouse chow, rocks, and tree trunk. Each texture stimulus ran for 4 s
and was interleaved by a 4 s gray screen.

The random dot kinematogram (RDK) stimuli contained a percentage (i.e., coherence) of white dots that move in the same direction
(i-e., global motion direction) on a black background (Figure S3A). We presented the animal with RDK at three coherence levels (40%,
70%, and 90%) and four cardinal directions. The dot diameter was 3.8° and the dot speed was 48 °/s. White dots covered about
12.5% of the screen. The lifetime of individual dots were about 10 frames (1/6 s). These parameters were selected based on mouse
behavior in a psychometric RDK task.®® Each RDK stimulus ran for 3 -7 s (responses in the first 3 s were used for analysis) and inter-
leaved with 3 s gray screen. The same RDK pattern was looped over trials.

Two naturalistic videos (Figure 3A) were taken by navigating a mouse home cage, with or without a mouse in the cage. Each video
had a duration of 32 s and were presented with interleaved 8 s long periods with a gray screen. For the convenience of analysis, we
concatenated the responses to the two videos (total 64 s).

QUANTIFICATION AND STATISTICAL ANALYSIS

Calcium imaging processing

Calcium imaging processing was carried out using custom MATLAB codes. Two-photon calcium imaging was motion corrected us-
ing Suite2p subpixel registration module.®® Neuron ROIs and cellular calcium traces were extracted from imaging stacks using
custom code adapted from Suit2p modules® (https://github.com/cortex-lab/Suite2P). Neuropil contamination was corrected by
subtracting the common time series (1 st principal component) of a spherical surrounding mask of each neuron from the cellular cal-
cium traces.'>®”

Neuropil contamination corrected calcium traces were then deconvolved using a Markov chain Monte Carlo (MCMC) methods®*
(https://github.com/flatironinstitute/CalmAn-MATLAB/tree/master/deconvolution; Figure S1B). For each calcium trace, we repeated
the MCMC simulation for 400 times, and measured the reproducibility of MCMC spike train inference for each cell. We computed the
Pearson correlation of the entire inferred spike train (tens of mins duration) binned at 13.3 fps. For all subsequent analysis, only cells
with stable spike train inference results were included (correlations between MCMC simulations > 0.2). The number of neurons
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passed this criterion was defined as the total number of neurons (Table S1). The MCMC quality control was defined empirically. For all
following analysis, we randomly pick one simulation trial for each neuron. Randomly picking a different trial did not affect results
quantitatively.

Neurons in V1 and HVAs exhibited similar instantaneous firing rates, defined as inverse of inter-spike-interval (Figure 1C). Maximal
instantaneous firing rates were computed as the inverse of the minimal inter-spike-interval, while average instantaneous firing rates
were computed as the inverse of the average inter-spike-interval for individual neurons.

Reproducibility and lifetime sparseness
The reproducibility of responses to naturalistic videos was defined as the trial-to-trial Pearson correlation between inferred spike
trains of each neuron binned in 500 ms bins. The reproducibility of responses to texture stimuli and RDK were computed as the frac-
tion of trials that a neuron fired to its preferred stimulus within a time window (4 s for texture stimuli and 3 s for RDK). These definitions
were commonly used in previous studies.*®%® Only reliably responsive neurons were included in the latter analysis (Pearson corre-
lation > 0.08 to naturalistic video; fired on > 50% trials to the texture and RDK stimuli). The qualitative results were not acutely sen-
sitive to the selection criteria.
The lifetime sparseness defines how often one neuron response to a particular stimulus was computed as (Equation 1)%:
N0
N i
—
1 - —
N
For lifetime sparseness, r; is trial-averaged response to it stimulus and N is the length of the stimuli. The sparseness to naturalistic
videos was computed using 500 ms bins. The qualitative results of reliability and sparseness were not acutely sensitive to the bin size.

—~

S = (Equation 1)

Information analysis
Mutual information (MI) evaluates the information the neuronal response (r) has about certain aspects of the stimulus, and it is
computed in units of bits. It was computed using the following equation.

_ Prs(r,s) .
Ml(r7s) = ngr,s(ﬂ S) * /ngm (Equatlon 2)

We computed the MI between neuron responses and the visual stimulus (s has 16 categories for texture stimuli, ps(s) = 1/16; s
has 12 categories for RDK, ps(s) = 1/12). We also computed the MI between neuron responses and the texture family (s has 4 cat-
egories for texture stimuli, ps(s) = 1/4), and the Ml between neuron responses and the moving directions (s has 4 categories for both
texture stimuli and RDK, ps(s) = 1/4). The probability of neuron responses was computed from spike count distributions within a
stimulus window (4 s for texture stimulus and 3 s for RDK). Reliable RDK and texture reliable neurons (response to >50% of trials)
were included for the MI analysis.

Informative neurons
We defined threshold for informative neurons from shuffled data (> mean + 3 SD of Ml of shuffled data). That is the spike count (o, s (1))
of a neuron shuffled on each trial independently.

Tuning pattern of informative neurons

To estimate the tuning pattern of informative neurons, i.e., which texture pattern or motion direction one neuron responded to, or how
many texture patterns one neuron responded to, we decomposed the neuronal responses into motion direction components, and
texture family or RDK coherence components using singular value decomposition (SVD). To be more robust, instead of using
trial-averaged response, we first estimated the neuronal responses by linearly regressing with a unit encoding space (Figures S2E
and S3E). Lasso regularization was applied to minimize overfitting. The regularization hyper-parameters were selected by minimizing
the cross-validation error in predicting single trial neuronal responses. The linear regression model performance was measured by
the Pearson correlation between the trial-averaged neuron response and the model. All informative neurons were well-fit by the
model (Figures S2F and S3F).

We then characterized the SVD components of all informative neurons. The SVD vectors reflect the selectivity of a neuron. Absolute
values close to one indicate a preferred stimulus while values close to zeros indicate a null stimulus. Some texture informative neu-
rons were activated by multiple texture patterns or motion directions, which were identified as the components that have a >0.4 ab-
solute SVD vector value (qualitative results hold with similar thresholds). We quantified the number of texture patterns and the number
of motion directions one texture informative neuron was responsive to (Figure S2G). Also, we identified the preferred motion direction
and coherence level for RDK informative neurons (Figure S3G).

Population response dimensionality
We measured the dimensionality of neuron populations with certain size through principal components analysis of trial-averaged
response of neurons (spike trains were binned in 500 ms). We generated principal components of each population by the trial-averaged
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responses that were computed using randomly selected half of the trials (training data), and then used the first x number of principal
components to recover the trial-averaged responses of the remaining half of the trials (testing data). The dimensionality was defined as
the number of principal components that reproduced the testing data that minimize the mean squared error.

Gaussian mixture model

To characterize the tuning properties in an unbiased manner, neurons were clustered using a Gaussian mixture model”® (GMM)
based on the trial-averaged responses to the naturalistic video. Only reliably responsive neurons were included for GMM analysis
(trial-to-trial Pearson correlation of the inferred spike trains > 0.08, after spike trains were binned in 500 ms bins). Neuronal responses
of the whole population, pooled over all cortical areas, were first denoised and reduced in dimension by minimizing the prediction
error of the trial-averaged response using principal component (PC) analysis. 45 PCs were kept for population responses to the natu-
ralistic videos. We also tested a wide range of PCs (20 — 70) to see how this parameter affected clustering, and we found that the
tuning group clustering was not acutely affected by the number of PCs used. Neurons collected from different visual areas and
different animals were pooled together in training the GMM (3839 neurons). GMMs were trained using the MATLAB build function
fitgmdist with a range of numbers of clusters. A model of 25 classes was selected based on the Bayesian information criterion
(BIC). We also examined models with different numbers of classes (20, 30, 45, or 75), and found that the main results held regardless
of the number of GMM classes. Neurons with similar response patterns were clustered into the same class. Figure S5C shows the
response pattern of GMM classes to the naturalistic video. The size of the naturalistic video classes is shown in Figure S5D. To
examine the reproducibility of the GMM classification, we performed GMM clustering on 10 random subsets of neurons (90% of
all neurons). We found the center of the Gaussian profile of each class was consistent (Pearson correlation of class centers,
0.74 +/- 0.12). About 65% of all neurons were correctly (based on the full data set) classified, while 72% of neurons in classes
that are over-represented in HVAs were correctly classified. Among misclassifications, about 78% were due to confusion between
the three untuned classes with tuned classes. Thus, most of the classes to come out of the GMM analysis appear to be reproducible,
and are not sensitive to specific subsets of the data.

Visual features of the naturalistic video

We characterized various visual features of the naturalistic video (Figure S5).

Average luminance

The average pixel value of each frame.

Global contrast

The ratio between the standard deviation of pixel values in a frame, and the average luminance of that same frame.

Edge density

The local edges were detected by a Canny edge detector.”’ The algorithm finds edges by the local intensity gradient and guarantees

to keep the maximum edge in a neighborhood while suppressing non-maximum edges. We applied the Canny edge detector after

Gaussian blurring of the original image at multiple scales (1°-10°). A binary edge map was generated as the result of edge detection

(Figure S4A). The edge density was computed as the sum of positive pixels in the binary edge map of each frame.

Difference of Gaussian (DOG) entropy

We characterized local luminance features following the difference of Gaussian filtering at multiple scales, and then computed the

entropy of these features within a local neighborhood (Figure S4B).

Optical flow entropy

We estimated the direction and speed of salient features (e.g., moving objects) using the Horn-Schunck method at multiple spatial

scales. Then we computed the entropy of the OF direction and speed at each frame. Since the OF estimation relies on the saliency of

visual features, the moving texture and RDK stimuli resulted in distinct OF entropies, with the latter being larger (Figure S5C).
Visual features were computed either by average over space or by computing a spatial variance value (i.e., entropy). These mea-

surements were inspired by the efficient coding theory,”? which suggested that the neuron population coding is related to the abun-

dance or the variance of visual features in the natural environment.

Discrimination of texture images by DOG features

We computed the pairwise distance between texture images (Figure S4E) within the same class or from different classes (Figure S4F).

The Euclidean distance was computed using DOG entropy (11.75° spatial filter size) or edge density (2.35° spatial filter size) feature

maps. We then trained a support vector machine (SVM) classifier to discriminate texture images within and across classes, based on

this pairwise distance (using the MATLAB built-in function classify). We reported the cross-validation classification error rate

(Figure S4F).

Modulation power of naturalistic features

Alinear regression model was fit to the neuronal activity of individual neurons or average population response with individual features
(Figure 4). These features are described above in the section “visual features of the naturalistic video”. We then evaluated a feature’s
contribution in modulating the average population responses by the variance explained (r-squared) of each model (Figure 3D). Fea-
tures were computed over multiple spatial scales. The spatial scales that best modulated (highest r-squared) the neuronal response
was used for this analysis.
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Neuronal activity of individual neurons or population average response were binning into 50 ms bins (50 — 500 ms bins were tested
and generated qualitatively similar results). To evaluate the functional contribution of over-represented classes of HVAs, we pooled
neurons from over-represented tuning classes of one HVA (200 neurons per pool with permutation; 50 — 200 pool size was tested and
results hold), and we averaged activity over the pool, and then determined which features modulated activity the over-represented
classes in an HVA (Figure 4B).

Gabor-based receptive field models

The neuron models used the structure of a linear-nonlinear (LNL) cascade. The spiking of model neurons was simulated following a
nonhomogeneous Poisson process with a time varying Poisson rate. The rate was calculated by convolving visual stimuli with a linear
kernel or a combination of linear kernels, followed by an exponential nonlinearity (Figure 5A). Linear kernels were modeled by 2D (XY
spatial) or 3D Gabor (XYT spatiotemporal) filters defined over a wide range of spatiotemporal frequencies and orientations. We simu-
lated neurons with simple cells, complex cells and motion cells models®® (Figure 5B). The three differed in the linear components of
the LNL cascade: simple cells (called linear model, or spectral model for the 2D Gabor kernels) used the linear response of a Gabor
filter; complex cells (called energy model) used the sum of the squared responses from a quadrature pair of Gabor filters (90° phase
shifted Gabor filter pairs); speed cells (called motion model) used the arithmetic difference between the energy responses from an
opponent pair of complex cells. We also modeled neurons based on the cross product of the linear or energy responses from two 2D
Gabor filters. In particular, we simulated the following three combination models: 1. 2D Gabor filters matched in spatial scale and
location but tuned to different orientations (cross-orientation model); 2. 2D Gabor filters tuned to the same orientation and location
with different spatial scales (cross-scale model); 3. 2D Gabor filters with matched tuning properties but offset in visual space (cross-
position model) (Figure 5B). In addition, we included a subtractive normalization before taking the nonlinearity in some models. A total
of 13 Gabor model types were used (Figure 5B).

To examine feature encoding by these neuron model types, we performed 10 — 20 repeats of simulation for each neuron model to
each stimulus. Either the simulated spike trains or peristimulus time histograms (PSTH) were used for characterizing the feature en-
coding. We analyzed the model responses in the same way as we had done for the mouse experimental data. We computed the
mutual information between simulated neuron responses and texture stimuli or RDK stimuli, and characterized the selectivity of simu-
lated neurons to texture families or RDK directions (Figure S6). Next, we examined the modulation of simulated population responses
by visual features of the naturalistic video. Neuron models were located in the feature space by how much of the population response
variance was explained by individual features (Figure 5C).

Fit neuron responses with Gabor-based models

We fit individual neuronal responses with models following a linear regression equation (Equation 3). The linear coefficients were opti-
mized by minimizing the cross-validation error. We also tested a sigmoidal nonlinear fitting (Equation 4). Sigmoidal parameters were
optimized through gradient descent. As sigmoidal nonlinearity did not significantly improve the modeling performance, we reported
the results from the linear fitting.

neuron response = axX; (Equation 3)

a

neuron response = ————————
P 1+exp(—bxx+c)

(Equation 4)
Where x is the simulated response and a — ¢ are parameters for fitting. Neuron models were grouped into three categories: 2D Gabor
models, 3D Gabor models, and 3D Gabor models with normalization. One model of each category, which minimizes the cross-vali-
dation error, was kept for each neuron. Then, we selected the one among the three that maximize the variance explained of the PSTH
for each neuron (Figure 6A). HVAs varied in their preference of different model types (Figure 6B). We then examined the modulation
power of naturalistic visual features of enriched neuron models.

Statistical analysis and data availability

P-values were generated by one-way ANOVA with Bonferroni multiple comparison if not otherwise stated. Detailed statistical values
were provided in the figure legends. Boxplot whiskers indicate the full data range.
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