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SUMMARY
The mouse visual cortex contains interconnected higher visual areas, but their functional specializations are
unclear. Here, we used a data-driven approach to examine the representations of complex visual stimuli by
L2/3 neurons across mouse higher visual areas, measured using large-field-of-view two-photon calcium im-
aging. Using specialized stimuli, we found higher fidelity representations of texture in area LM, compared to
area AL. Complementarily, we found higher fidelity representations of motion in area AL, compared to area
LM. We also observed this segregation of information in response to naturalistic videos. Finally, we explored
how receptive field models of visual cortical neurons could produce the segregated representations of
texture and motion we observed. These selective representations could aid in behaviors such as visually
guided navigation.
INTRODUCTION

Visual systems evolved to extract behaviorally relevant informa-

tion from complex natural scenes. Visual stimuli contain informa-

tion about texture, motion, objects, and other features of the

environment around the animal. These components of visual

stimuli have unequal relevance across behaviors. For example,

optic flow (OF) and parallax motion information can help guide

navigation behavior, but object recognition is often invariant to

motion.

In mice, the axons from the neurons in the primary visual cor-

tex (V1) extend out to an array of higher visual areas (HVAs),

seven of which share a border with V1, and all of which have

characteristic connectivity with other brain regions.Mouse visual

cortical areas exhibit a level of hierarchical structure1 and form

two subnetworks anatomically2,3 and developmentally.4 HVAs

receive functionally distinct afferents from the V1.5,6 At least

nine HVAs exhibit retinotopic topology,7–10 and the neurons in

HVAs have larger receptive fields (RFs) than those in the

V1.4,8,11 This organization and connectivity of mouse visual areas

may have evolved to selectively propagate specific visual infor-

mation to other brain regions.5,6

Gratings are classic visual stimuli for characterizing responses

in visual cortical areas.12–14 In mice, HVAs exhibit biases in their

preferred spatial and temporal frequencies of gratings, but over-

all, their frequency passbands largely overlap,5,15–17 and, thus, it

can be challenging to determine how visual information is pro-

cessed selectively in HVAs. Moreover, neural responses to

more complex or naturalistic stimuli cannot be predicted from

gratings. Even the neural responses to the superposition of

two gratings, called plaid stimuli, are not well predicted by their
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component responses. Plaids can thus reveal cells that are se-

lective to pattern motion, as opposed to the motion of the

component gratings,18 and plaids have been used to show that

lateromedial (LM) and rostrolateral (RL) HVAs contain pattern-

selective neurons.19 Similarly, responses to gratings cannot pre-

dict invariant object recognition, which is exhibited by neurons in

some rodent HVAs.20–23 Thus, stimuli beyond simple gratings

can help reveal functional specializations of HVAs.

Naturalistic visual stimuli contain complex multi-scale spatial

features with statistical dependencies that are lacking in simple

gratings. Mice can distinguish photographs of natural scenes,24

which contain these features, but the features are often non-uni-

form and sparse. Parametric texture stimuli provide a more

spatially uniform stimulus for determining how complex statisti-

cal features are represented by neuronal circuitry,25 and the

cortical area V2 in primates is specialized for processing texture

stimuli.26

Motion is another component of visual stimuli, and it can be

represented with some independence from the spatial compo-

nents of naturalistic visual representations in the brain.27 Texture

and motion differentially contribute to neuronal activity in

HVAs.28 The representation of texture relies on the encoding of

a combination of local spatial features,26 whereas the represen-

tation of motion relies on computing integrated motion signals

(e.g., opponent motion energy29). Thus, there is a potential

computational rationale for expecting segregated representa-

tions of motion and texture.

In this study, we determined whether the L2/3 neurons in

mouse HVAs exhibit biases in their representations of motion

and texture. We used three classes of visual stimuli: drifting tex-

tures, random dot kinematograms (RDKs), and naturalistic
1, July 11, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Multi-area calcium imaging of mouse visual cortex

(A) Neuronal activity was imaged in multiple HVAs simultaneously using large-field-of-view, temporally multiplexed, two-photon calcium imaging. In an example

experiment, layer 2/3 excitatory neurons were imaged in the areas V1 and LM, AL, and PM simultaneously. The squares indicate the imaged regions, and the

projections of raw image stacks are shown below.

(B) Image stacks were analyzed to extract calcium dynamics from cell bodies after neuropil subtraction. These traces were used to infer spike activity, as shown in

raster plots below each trace.

(C) Statistics of the inferred spiking were similar to those of prior reports, indicating accurate inference. The mean and maximal instantaneous firing rates of the

neurons in the V1 and HVAs are similar (mean, 0.5 ± 0.5 spike/s; max, 7 ± 11 spike/s; p = 0.055 and p = 0.6; one-way ANOVA).
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videos. We examined how the texture/spatial and motion com-

ponents of a naturalistic video are represented and found that

high fidelity representations of these stimulus features are segre-

gated to different HVAs. We then characterized the encoding

properties of HVA neurons using a Gabor filter-based RF model.

The results from these experiments reveal functional segrega-

tions of mouse HVAs for texture/spatial and motion components

of visual stimuli.

RESULTS

Multi-area calcium imaging to distinguish the tuning
properties of HVAs
To survey the tuning properties of multiple visual cortical areas,

we performed population calcium imaging of the L2/3 neurons

in the V1 and four HVAs (the LM, laterointermediate [LI], antero-

lateral [AL], and posteromedial [PM]) of awake mice using a mul-

tiplexing, large-field-of-view two-photon microscope with sub-

cellular resolution developed in house30 and transgenic mice

expressing the genetically encoded calcium indicator

GCaMP6s.31,32 We located the V1 and HVAs of each mouse us-

ing retinotopic maps obtained by intrinsic signal optical imag-

ing4,16 (Figure S1A). The borders of HVAs were reliably delin-

eated in most cases, with the exception being some

experiments where the boundary between areas anteromedial

(AM) and PM was not clearly defined. In those cases, to be con-

servative, we considered the population to be pooled between

areas AM and PM but dominated by the latter and thus referred

to as ‘‘PM’’ or ‘‘AM/PM.’’ In cases where area AM neurons were

positively identified, we did not observe a functional difference

between putative AM and PM neurons. The large-field-of-view

imaging system allows us to carry out flexible high-resolution re-

cordings from up to four cortical visual areas simultaneously11,30

(Figures 1A and 1B). In this study, most of the data were
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recorded in twin-region imaging mode, and two datasets were

recorded in single-region imagingmode. Neuropil-corrected cal-

cium signals were used to infer probable spike trains for each

neuron (Figure S1B). The inferred spike train was accurate

enough for computing spike-count-based statistical values.11

During visual stimulation, the average andmaximal firing rates in-

ferred were similar across cortical areas and were typically

around 0.5 spikes/s average and ranged up to 15–30 spikes/s

maximal (Figure 1C), consistent with the previously reported

values from electrophysiology.33

We characterized the neuronal responses to three types of

visual stimuli: scrolling textures (hereafter referred to as

‘‘texture stimuli’’), RDKs, and a naturalistic video mimicking

home cage navigation. Hundreds of neurons were recorded

for areas V1, LM, AL, and PM for all three stimuli, and the

area LI was recorded for the texture stimuli (complete numbers

are in Table S1). The neurons that exhibited reliable responses

to a stimulus were included for further characterization (reliable

neurons responded to >50% of the trials for RDKs or texture

stimuli or exhibited trial-to-trial correlations >0.08 with 0.5 s

bins to naturalistic stimuli). These criteria resulted in 20%–

50% of all the recorded neurons being included for further anal-

ysis (Table S1).

Texture and RDK stimuli were best represented in
separate HVAs
We tested the selectivity of neurons in the areas V1, LM, LI, AL,

and PM to texture stimuli using a set of naturalistic textures that

drifted in one of the four cardinal directions (Figure S2A). We

generated four families of texture images based on parametric

models of naturalistic texture patterns.34 These stimuli allowed

us to characterize the representation of both texture pattern in-

formation and drift direction information and thus test the toler-

ance of a texture-selective neuron to motion direction.
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Figure 2. Segregated representations of textures and random dot kinematogram (RDK) motion in HVAs

(A) Mice were shown texture stimuli, each of which was from one of four texture families and drifted in one of four directions. The spike raster plots from two

example neurons (10 trials shown for each) show that one neuron is selective for texture family and the other is more selective for texture direction. The amount of

mutual information (MI, in bits) for the two stimulus parameters (texture family and motion direction) is written below each raster, along with the overall or joint

(family and direction) MI.

(B) The areas V1, LM, and LI provide higher MI for texture stimuli than the area AL or PM (p = 3.7 3 10�17). The error bars in inset indicate SE.

(C) The relation between information about themoving direction and information about the texture family carried by the individual neuron per visual area. Each dot

indicates one neuron. The blue line indicates the threshold of a significant amount of information, which was defined by shuffled data (mean + 3 * SD). Lower right:

summary of the fraction of neurons exhibiting significant joint representation (red dots). Distribution generated by permutation.

(legend continued on next page)
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We observed reliable responses to drifting textures in the

areas V1, LM, LI, and PM. AL was less reliable in response to

these stimuli (33%–41% of neurons in areas V1, LM, LI, and

PM are reliable, whereas 20% of neurons in area AL are reliable;

p = 0.04, one-way ANOVA; Figures S2A and S2B). The texture

informative neurons exhibited various selectivity patterns (Fig-

ure 2A). We measured neuronal selectivity to texture family, mo-

tion direction, or joint selectivity using mutual information (MI)

analysis. Higher bit values for a neuron-stimulus parameter pair

mean that the activity from that neuron provides more informa-

tion about that stimulus parameter (or a combination of stimulus

parameters). Overall, the neurons in the areas V1 and LI were

more informative about the texture stimuli, followed by neurons

in area LM. By contrast, the neurons in the areas AL and PM

were not informative about the texture stimuli (Figure 2B; p =

3.7 3 10�17; one-way ANOVA). To examine the tolerance of

the texture encoding neurons to the translational direction, we

computed the MI between neuronal responses and texture fam-

ilies (refer to the statistical pattern of a texture image). Area LI

was themost informative about texture family out of all the tested

visual areas, followed by the areas V1 and LM (Figure S2C; p =

1.8 3 10�11; one-way ANOVA). Meanwhile, areas V1, LM, and

LI also carried more information about the motion direction of

the texture stimuli, compared with the areas AL and PM (Fig-

ure S2D; p = 1.23 10�7, one-way ANOVA). Examining the infor-

mation encoding of individual neurons, we found an increasing

fraction of neurons that jointly encoded texture family and

texture drift direction along the putative ventral pathway (V1:

7%, LM: 8%, LI: 14%, AL: 2%, and PM: 1%; p = 9 3 10�12;

one-way ANOVA; Figure 2C), suggesting increasing joint coding

along the putative ventral visual hierarchy (V1 / LM / LI).

To further examine joint coding along the putative ventral hier-

archy, we fit an encoder model to the neurons that were signifi-

cantly informative about the drift direction or the texture family

(roughly half of the reliable neurons; Figure 2C). We decomposed

the neuron model into the drifting direction component and the

texture family component through singular value decomposition

(SVD) decomposition, and we quantified the number of drifting

directions and the number of the texture family one neuron

was selective to in the SVD components (Figures S2E and

S2F). Joint encoding neurons exhibited increasingly broader

selectivity toward texture family and drifting directions along

the putative ventral pathway (Figure S2G).

These results for texture encoding contrast with the results for

standard drifting gratings. For gratings, we found motion direc-

tion information to be encoded broadly, differing <10% among

HVAs (Figure S2H), whereas texture motion information did not

propagate to visual areas outside the putative ventral pathway,

differing >200% among HVAs (Figures S2C and S2D). The drift

speeds were similar (32�/s for the textures and 40�/s for the
(D) Mice were shown random dot kinematogram (RDK) motion stimuli, which drifte

the same direction). A raster for an example neuron (30 trials) shows that it fire

coherence.

(E) Cumulative distribution plot of information about the motion direction comb

significant amount of information, which was defined by shuffled data (mean +

permutation.

(F) These results indicate a segregation of visual stimulus representations: textur

(B, C, and E) The p values were generated by one-way ANOVA with Bonferroni c
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gratings), so it is unclear which spatial structural differences be-

tween these stimuli drove the differences in encoding. Thus, we

next examined the responses to a stimulus with less spatial

structure and a greater focus on motion.

We examined the encoding of RDKs, which are salient white

dots on a dark background with 40%–90% motion coherence

(remaining dots move in random directions; Figure 2D). The

RDK stimuli elicited reliable responses (responses to >50% tri-

als) in neurons in areas V1, LM, AL, and PM. For this stimulus,

reliable neurons were common in the V1 and rarer in area LM

(p = 0.001, one-way ANOVA; Figures S3A and S3B). To charac-

terize the direction selectivity of reliable neurons, we computed

the MI between neuronal responses and the motion direction

at each coherence level. Areas V1 and AL have larger fractions

of informative neurons than areas LM and PM (p =

2.3 3 10�15, one-way ANOVA; Figure 2E). On average, areas

V1 and AL were more informative than areas LM and PM about

themotion direction of the RDKs at moderate-to-high coherence

levels (R70%; Figures S3C and S3D; p = 3.3 3 10�10, one-way

ANOVA). At a low coherence level (40%), the differences among

HVAs became insignificant (Figure S3D).

To further characterize the direction selectivity of neurons, we

fit an encoder model to the neurons that were significantly infor-

mative about the RDK stimuli. We further decompose the neuron

model into the direction component and the coherence compo-

nent through SVD decomposition (Figures S3E and S3F; STAR

Methods). We then identified the preferred direction and the

preferred coherence level in these SVD components for individ-

ual neurons. Interestingly, the direction preference of the V1 was

biased toward a downward motion or horizontal flows (p =

8.63 10�8, one-way ANOVA). However, in area AL, an RDK-rep-

resenting HVA, such a bias was not obvious (p = 0.09, one-way

ANOVA; Figure S3G). All the tested areas were modulated by

coherence, and the highest coherence was preferred by the ma-

jority of neurons (Figure S3G).

In summary, texture-selective neurons were more abundant in

areas V1, LM, and LI, whereas RDK direction selectivity neurons

weremore abundant in areas V1 and AL. Thus, information about

drifting textures and RDK motion are relatively segregated to

distinct HVAs (Figure 2F).

The features of naturalistic videos were best
represented in separate HVAs
To determine whether this segregation of texture and motion in-

formation among HVAs could be detected within a more com-

plex stimulus, we characterized the neuronal representation of

a 64-s-long naturalistic video (Figure 3A). The naturalistic video

stimulus contained time-varying visual features such as

contrast,35,36 luminance, edge density,37 difference-of-Gaussian

(DOG) entropy,38 and OF speed and direction39 (STARMethods;
d in one of four directions with up to 90% coherence (fraction of dots moving in

s during rightward motion, with 0.51 bits of MI for motion direction at 90%

ining all coherence levels. The gray dashed line indicates the threshold for a

3 * SD). Inset: a boxplot of the fraction of informative neurons generated by

e stimuli to area LM and RDK motion stimuli to area AL.

orrection.
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Figure 3. Parametric features of the naturalistic video stimulus

(A) Five example neurons show reliable, yet diverse, spike responses during a naturalistic video stimulus.

(B) The neurons in all four tested areas exhibited similarly high response sparseness to the naturalistic video (p = 0.8, one-way ANOVA).

(C) Dimensionality of neuron population responses versus the number of neurons per visual cortical area (error bars indicate SE of permutation).

(D) Form and motion components of the naturalistic video were extracted using a bank of linear filters with various sizes and locations (left). This provided time-

varying signals correlated with global, form, and motion features, such as contrast, difference-of-Gaussian (DOG) entropy, and speed entropy (middle). To

provide an intuitive feel for these features, example naturalistic video frames with the corresponding DOG entropy maps, edge density maps, and optical flow

speed maps are shown.

See also Figures S4A–S4C.
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Figure S4A–S4D). Both edge density and DOG entropy capture

the spatial properties of a naturalistic video frame, whereas

DOG entropy better supports texture family encoding

(Figures S4E and S4F). Our results, thus far, suggested that the

activity in area ALwould bemodulated by themotion information

(OF speed or direction) in the naturalistic video and the activity in

area LM would be modulated by the texture information (DOG

entropy) in the same video.

About 45% of the V1 neurons and about 25% of the LM, AL,

and PM neurons responded to the naturalistic video reliably

(trial-to-trial correlation >0.08; Figure S5A). Neurons in the four

imaged visual areas exhibited diverse and highly selective re-

sponses to the naturalistic video. Individual neurons responded

to �3% of the stimulus video frames, corresponding to a high

lifetime sparseness (0.83 ± 0.09 [mean ± SD]; Figure 3B). The

dimensionality of the population responses of the V1 was about

three to ten times higher than those of the LM, AL, and PM areas

(Figure 3C). The average response of a cortical-area neuron pop-

ulation converged with several hundreds of neurons (about 500

from the V1 and about 200 fromHVAs; Figure S5B). Thus, the da-

taset has sufficiently covered the neuronal responses of areas

V1, LM, AL, and PM to support further analysis. To take a

data-driven approach to understand the diverse response pat-

terns, we classified neurons using an unbiased clustering

method (Gaussian mixture model [GMM]; STAR Methods). The

neurons were partitioned into 25 tuning classes based on their
responses to the naturalistic video, and 21 of these classes ex-

hibited unique sparse response patterns, responding at specific

time points of the naturalistic video (Figures S5C and S5D). All

tuning classes were observed in the V1 and HVAs, but their rela-

tive abundance varied by area (Figures S5E andS5F). The V1 had

a relatively more uniform distribution of tuning classes compared

with HVAs (Figure S5E). The lower dimensionality and biased dis-

tribution of tuning classes of HVAs can indicate selective repre-

sentations of visual features.

To examine how well the visual features (Figure S4D) of the

naturalistic video were represented in HVAs, we computed the

linear regression between the responses of individual neurons,

or population-averaged activity, with the time-varying visual fea-

tures of the naturalistic video (Figure 3D). We defined the modula-

tion power of each feature as the variance of responses explained

by the model (i.e., the r2 of a linear fit) and the modulation coeffi-

cients as the slope. The visual featureswere computed atmultiple

spatial scales (image filtered by a Gaussian kernel with 1�–25� full
width at half maximum [FWHM]), and qualitatively similar results

were observed across a wide range of scales. Overall, the set of

visual features explained 31%of the variance of the trial-averaged

responses (with 0.5 s bins) of individual neurons across the visual

areas. Representative results were obtained for edge density

maps with a Gaussian kernel of 2.35� (FWHM) and DOG entropy

maps with a Gaussian kernel of 11.75� (FWHM, inner kernel; the

outer kernel is 2-fold larger in FWHM) (Figure 3D).
Current Biology 32, 1–11, July 11, 2022 5
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Figure 4. Segregated representations of spatial and motion features in naturalistic videos

(A) The average modulation power (left) and the average modulation coefficients (right) of individual neuronal activity by visual features of the naturalistic video.

The modulation power is characterized by the r-squared values (variance explained) of the linear regression. Error bars indicate SE of permutation. p values are

from one-way ANOVAs with the Bonferroni correction for multiple comparisons.

(B) The time-varying features were weighted to best match the average neuronal activity of enriched classes for a cortical area (N = 200 with permutation; classes

with red stars in Figure S5F). The area LM was strongly modulated by DOG entropy. The area AL was strongly modulated by speed entropy. The area PM was

modulated by contrast and edge density. The modulation coefficients were typically positive but were negative for edge density. Thus, the area PM is positively

modulated by contrast but negatively modulated by edge density. (p values are from one-way ANOVAs with the Bonferroni correction for multiple comparisons.)

(C) These results indicate that visual feature components are segregated among HVAs: texture features to the area LM, motion features to the area AL, and fine

edge features to the area PM.
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Regressing these visual features with individual neuronal re-

sponses revealed selective feature representations. The AL

neurons were more sensitive to the modulation by the OF

speed entropy, whereas the PM neurons were more sensitive

to the modulation by contrast and edge density (Figure 4A).

We further characterized the collective effects of the biased

distributions of tuning classes (from the GMM clustering anal-

ysis) among HVAs. Some tuning classes were more abundant

in specific HVAs (relative to their abundance in the V1), and we

assessed their activity modulation by the features in the natu-

ralistic video. Area LM was enriched with neurons that corre-

lated with DOG entropy (Figure 4B). As expected, areas AL

and PM were enriched with tuning classes that correlate

with the OF speed entropy feature and the contrast and

edge density features, respectively (Figure 4B).

Together, these results indicate that motion information and

spatial information are differentially represented among HVAs

due to the distribution of tuning classes among them. AL neurons

provided superior representations of the motion features in the

naturalistic video, and LM and PM neurons provided superior

representations of the texture and edge features, respectively,

in the same naturalistic video (Figure 4C).
6 Current Biology 32, 1–11, July 11, 2022
Gabor models exhibited biased feature representations
To this point, the evidence from the naturalistic stimuli indicates

an enriched representation of spatial and motion features in

areas LM, PM, and AL. We then questioned whether the feature

enrichment in HVAs could be explained by RF structure. To

model the RF structures of neurons, we employed a rich set of

Gabor models, which are classic models for visual cortical neu-

rons.40,41 The Gabor models were simulated using a base model

of a linear-nonlinear (LNL) cascadewith Gabor-filter-based linear

kernels (Figure 5A). The set of models included 2DGabormodels

with single or multiple subunits combined linearly or quadrati-

cally (Figure 5B), as multiple Gabor kernels are required for

predicting the V1 neuron responses in mice41 and generating tol-

erances to rotation, translation, and scale.26,42 The set of models

also included 3D Gabor kernels with or without untune normali-

zation units (Figure 5B), as normalization is critical for capturing

the diverse response profiles of the V1 neurons to naturalistic

stimuli.43 For the 2D Gabor-filter-based models, we examined

both linear and energy models. These are similar to the models

of complex cells in which input from multiple simple cells with

similar orientation preferences but varying phases are inte-

grated.12 Other combinations were used as well (cross
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Figure 5. Spatial and motion feature encoding by variants of Gabor-filter-based models
(A) The general architecture is a linear-nonlinear-Poisson (LNP) cascade neuron model. Neurons were simulated by various 2D and 3D Gabor-like linear kernels,

with or without an untuned subtractive normalization.

(B) From the base LNPmodel, variations were derived and organized into three classes: 2DGabor-based, 3DGabor-basedwithout normalization, and 3DGabor-

basedwith normalization. Both linear and energy responses (akin to simple cells and complex cells) were computed from combinations of 2DGabor filters. Linear,

energy, and motion responses (akin to simple cells, complex cells, and speed cells) were computed from the 3D Gabor filters.

(C) These three classes of models varied in how much their activity was modulated by the global, form, and motion features in naturalistic videos. The neuron

models are plotted by their modulation in feature spaces. The location of a neuron model was defined by the modulation power (same as Figure 4).
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orientation, cross scale, etc.; Figure 5B). For the 3D Gabor-filter-

basedmodels, we also examined motion models (opponent mo-

tion energy29; Figure 5B). The simulations were performed with

multiple spatial scales and, for the 3D Gabor-filter-based

models, temporal scales and sampled uniformly in space.

We determined the feature extraction properties of themodels

by simulating responses to the texture and RDK stimuli and char-

acterizing them (Figure S6). Neuron models varied in the encod-

ing power of different types of stimuli or visual features.We noted

that the 2DGabor models exhibited specific tuning to the texture

family while remaining tolerant to motion directions, especially

the cross-orientation and linear cross-position models (Fig-

ure S6A), which are the best models for texture family encoding.

On the other hand, the 3D Gabor models with normalization per-

formed the best in encoding the motion direction in RDK stimuli

(Figure S6B).
In response to the naturalistic videos, the 2D Gabor models,

especially linear cross-position and linear cross-orientation

models, exhibited better sensitivity to the contrast, edge density,

and the DOG entropy, whereas the 3D Gabor models with un-

tuned normalization exhibited better sensitivity to the OF entropy

(Figure 5C). These simulation results confirmed the apparent

trade-off in representation fidelity for spatial features and motion

features, with the 2D Gabor kernels performing better on the

former and the 3D Gabor kernels with or without normalization

on the latter.

Gabor models reproduced specific feature
representations of mouse visual cortex
Next, we determined the best Gabor model for the neuron re-

sponses recorded in vivo to the naturalistic video stimuli. We

fit individual neuronal responses with the Gabor-based models.
Current Biology 32, 1–11, July 11, 2022 7
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Figure 6. HVA-specific enrichment of Ga-

bor model types

(A) Data from example neurons are shown in raster

plots (top) and PSTHs (bottom) along with the best

fits (as PSTHs) from each of the three model clas-

ses: 2D Gabor, 3D Gabor, and 3D Gabor with

normalization. The numbers near the model

PSTHs indicate the variance explained by the

best models for that example neuron. One best

model was selected for each neuron for the anal-

ysis in the following panels.

(B) For each Gabor model type and HVA, we

computed how often that model was preferred

for that HVA. Then, for each HVA, we normalized

the model type fractions by the frequency for

model types in the V1.

(C) Themodulation power (left) and themodulation

coefficients (right) of the average responses of en-

richedmodel classes for HVAs (N = 50with permu-

tation; classes with stars in B).

(B and C) The p values from one-way ANOVAs to

test the statistical difference among the three

HVA areas.
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One best model among the whole set, the ‘‘preferred’’ model,

was selected for individual neurons. The preferred models

captured the greatest amount of peristimulus time histograms

(PSTHs) variance of the in vivo neuronal responses (Figure 6A).

In general, the preferred models explained 40% ± 17% (mean ±

SD) of the variance of the PSTH (no difference between visual

areas; p = 0.06, one-way ANOVA).

The V1 and HVAs varied in model preference. All classes

were present in the V1, but HVAs varied in the classes that

were more or less frequently observed (Figure 6B). We found

that area LM was enriched with texture feature encoding

models, such as the 2D models with linear cross-orientation

subunits and linear cross-position subunits (Figure 6B). Area

AL was enriched with motion encoding models, such as the

3D motion models with normalization (Figure 6B). By contrast,

area PM had an abundance of single-unit 2D models (spectral

filters), which were sensitive to the contrast visual features

(Figure 6B).

Using the preferred models that were enriched in each HVA,

we reproduced the linear regression results between the fea-

tures of the naturalistic video (Figure 3D) and the HVA-specific
8 Current Biology 32, 1–11, July 11, 2022
model responses (Figure 6C). In general,

the model selection reflected the segre-

gated representation of spatial and mo-

tion features by areas LM, AL, and PM.

Overall, the Gabor model analysis re-

vealed that areas LM, AL, and PM were

enriched with different RF structures.

Area LM had more 2D linear cross-orien-

tation and linear cross-position RFs, as

well as 3D simple cells. Area AL had

more 3D simple, complex, and motion

cells and received surround normaliza-

tion input. Area PM had more 2D simple

cells and 3D complex cells. These in-

sights into the RF structure of the neurons
in HVAs provide clues about potential neural circuitry underlying

the varying representations of features in naturalistic stimuli.

DISCUSSION

The results revealed the unique encoding properties of the L2/3

neurons of the V1 and multiple HVAs in representing textures,

motion, and naturalistic videos. Our results show that area LM

neurons provide high fidelity representations of spatial features

such as DOG entropy and textures but are poor at representing

motion. By contrast, area AL neurons provide high fidelity repre-

sentations of motion features but are poor at representing spatial

features. Area PM neurons provide high fidelity representations

of some spatial features such as edge density and contrast but

not DOG entropy or textures like area LM neurons do. Relatedly,

the areas LM, LI, and AL are all poor at representing edge den-

sity. These findings show that visual features are represented

in segregated neuronal populations, implying trade-offs in en-

coding. To investigate potential trade-offs, we examined the

RF structures of the neurons in the HVAs that contributed to

specialized feature representations. Indeed, we found that
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different RF models were required for reproducing the in vivo re-

sults in separate HVAs. These findings provide new insights into

the neural circuitry that can generate distributed representations

of visual stimuli in HVAs.

The rodent visual system evolved in response to the ecological

niche mice found themselves in. We do not expect such a pro-

cess to result in a neural circuitry that performs neat, absolute

segregations of information about visual scenes. Instead, we

expect a neural circuitry that supports adaptive behavior for

the mouse’s ecological niche, such as a visual mechanism for

predator avoidance.44,45 The principles of that circuitry are likely

quite different from those of any systematic, mathematically

compact approach for parsing a visual scene in terms of the

known RF properties of visual cortical neurons. Thus, here, we

used a data-driven approach to gain a conservative foothold

into the complex visual scene processing in mice. We explored

how segregated representations might emerge using amodeling

approach based on the known RF properties of visual cortical

neurons or at least popular models thereof. This analysis showed

that a linear combination of edges andmotion energymodel with

normalization provided accurate accounts for distinguishing

texture and motion stimuli.

The enrichment of specific representations of motion or

texture in the L2/3 of the AL and LM areas, respectively, could

arise from specific connectivity from other brain regions (e.g.,

the V1) that preserve the selectivity that arose there5 or from

converging input that results in enhanced selectivity (i.e., more

invariant selectivity) for a visual feature.12,41,46 We generally

cannot distinguish those two possibilities with this dataset.

Dense feedback and feedforward connectivity between HVAs

and the V1 make it difficult to pinpoint where selectivity arises.

However, area LI neurons exhibited more complex selectivity

than neurons in area V1, so it appears as though preserved

selectivity from V1 projecting to area LI would be insufficient to

produce such selectivity. Even then, we cannot rule out thresh-

olding effects, which could play a role in increasing the apparent

selectivity.

The dual-stream framework describes two subnetworks of vi-

sual circuitry, a ventral one for object recognition and a dorsal

one for motion and action.27,47 In primates, the ventral

stream—from the V1, through the V2, V3, and V4, to the inferior

temporal lobe— develops selective activity for specific recog-

nized objects, including faces. The dorsal stream—from the V1

through the V2, middle temporal area (MT), medial superior

temporal area (MST), and the parietal lobe—processes the

spatial and motion information in visual scenes. Anatomically,

cats and ferrets have similar visual hierarchies as primates. Cat

areas 17, 18, and 19 are analogous to the V1, V2, and V3 of pri-

mates, and area 21a and posterior medial lateral suprasylvian

sulcus (PMLS) are analogous to the primates’ V4 and MT,

respectively.48–53 Robust representations of oriented gratings

or edges are commonly found in the V1, but how do representa-

tions change along the dorsal and ventral streams? The neurons

in the areas V2 and V4 can encode a combination of local fea-

tures, such as multiple edges to detect curves and shapes.37,42

The neurons in MT andMST areas can encode opponent motion

energy.29,54–56 However, conflicts and complexities have been

identified for these apparently stream-segregated feature repre-

sentations in primates.57,58 Cats and ferrets may have a cortical
circuitry that is functionally analogous to the V4 and MT in pri-

mates;48,53,59 nevertheless, our knowledge of intermediate-level

feature representations in these animals is limited. Anatomical

connectivity with downstream brain regions supports

functional distinctions in mouse HVAs between putative ventral

and dorsal streams. For example, the putative ventral areas

are strongly connected to temporal and parahippocampal

cortices, whereas the putative dorsal areas are preferentially

connected to the parietal, motor, and limbic areas.3 However,

there are also major differences. The cortical visual system of

mice is distinct from those of primates, cats, and ferrets, which

have a single V2 adjacent to the V1.60 Instead, mice have more

than seven HVAs that share a border with the V1.8,60 These

anatomical differences complicate the search for the dual-

stream homologies in mice and motivate functional studies to

elucidate the information processing inmouseHVAs.27 The func-

tional similarities between the mouse LM and LI areas and ma-

caque V2 and V4 and between the mouse AL area and macaque

MT are perhaps superficial but could also indicate that the dual-

stream framework for visual pathways in primates could have an

analog in mice.3,61 Anatomical and RF mapping studies suggest

that the mouse LM and AL areas likely serve as the ventral and

dorsal gateways in the mouse visual hierarchy.4,8,62

Our experimental results reveal the segregations of visual en-

coding, or representations, among HVAs in mice. The modeling

results demonstrate how classic models of visual cortex neuron

RFs can entail reciprocal trade-offs for representing spatial fea-

tures and motion features of visual stimuli, thus providing a po-

tential functional substrate for this segregation. These insights

show how mouse HVAs likely play distinct roles in visual behav-

iors and may share similarities with the dual processing streams

in primates.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Mouse: Emx1-cre; Ai94D (TITL-GCamp6s); ROSA-tTA The Jackson

Laboratory

Strain: jax #005628, Jax #024104, Jax # 011008

Software and algorithms

MATLAB R2015b, 2019b Mathworks https://www.mathworks.com/products/matlab.html

suite2p calcium imaging processing toolbox Pachitariu et al.63 https://github.com/cortex-lab/Suite2P

MCMC spike deconvolution toolbox Pnevmatikakis

et al.64
https://github.com/flatironinstitute/CaImAn-MATLAB/

tree/master/deconvolution

Gabor modeling and naturalistic video processing This paper https://github.com/yuyiyi/HVA_tuning.git
RESOURCE AVAILABILITY

Lead contact
Requests for additional information or resources related to the study should be directed to Spencer L. Smith (sls@ucsb.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d Deconvolved spike data, and key functions for Gabor modeling and naturalistic video processing are available in: https://

github.com/yuyiyi/HVA_tuning.git.

d Code for calcium imaging processing is available in: https://github.com/yuyiyi/CaSoma_Proc.git.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
All animal procedures and experiments were approved by the Institutional Animal Care and Use Committee of the University of North

Carolina at Chapel Hill or the University of California Santa Barbara and performed in accordance with the regulation of the US

Department of Health and Human Services. Total of 34 GCaMP6s-expressing transgenic adult mice of both sexes were used in

this study. Mice were 110 – 300 days old for data collection. GCaMP6s-expressing mice were induced by triple crossing of the

following mouse lines: TITL-GCaMP6s (Allen Institute Ai94), Emx1-Cre (Jackson Labs #005628), and ROSA:LNL:tTA (Jackson

Labs #011008).31 Mice were housed under a 12 h light / 12 h dark cycle, and experiments were performed during the dark cycle

of mice.

METHOD DETAILS

Surgery
For cranial window implantation, mice were anesthetized with isoflurane (1.5 – 1.8% in oxygen) and acepromazine (1.5 – 1.8 mg/kg

body weight). Carprofen (5 mg/kg body weight) was administered prior to surgery. Body temperature was maintained using physi-

cally activated heat packs or homeothermic heat pads during surgery. Eyes were kept moist with ophthalmic ointment during sur-

gery. The scalp overlaying the right visual cortex was removed, and a custom steel headplate with a 5 mm diameter opening was

mounted to the skull with cyanoacrylate glue (Oasis Medical) and dental acrylic (Lang Dental). A 4 mm diameter craniotomy was per-

formed over the visual cortex and covered with a #1 thickness coverslip, which was secured with cyanoacrylate glue.

Intrinsic signal optical imaging (ISOI)
Prior to two-photon imaging, the locations of primary and HVAs were mapped using ISOI, as previously reported.4,30,65 Pial vascu-

lature images and intrinsic signal images were collected using a CCD camera (Teledyne DALSA 1M30) and a tandem lens
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macroscope. A 4.7 3 4.7 mm2 cortical area was imaged at 9.2 mm/pixel spatial resolution and at 30 Hz frame rate. The pial vascu-

lature was illuminated and captured through green filters (550 ± 50 nm and 560 ± 5 nm, Edmund Optics). The ISO images were

collected after focusing 600 mmdown into the brain from the pial surface. The intrinsic signals were illuminated and captured through

red filters (700 ± 38 nm, Chroma and 700 ± 5 nm, Edmund Optics). Custom ISOI instrumentation was adapted from Kalatsky and

Stryker.9 Custom acquisition software for ISOI imaging collection was adapted from David Ferster.30 During ISOI, mice were

20 cm from a flat monitor (60 3 34 cm2), which covered the visual field (110� x 75�) of the left eye. Mice were lightly anesthetized

with isoflurane (0.5%) and acepromazine (1.5 – 3 mg/kg). The body temperature was maintained at 37 �C using a custom electric

heat pad.30 Intrinsic signal responses to vertical and horizontal drifting bars were used to generate retinotopic maps for azimuth

and elevation. The retinotopic maps were then used to locate V1 and HVAs (Figure S1A). Borders between these areas were drawn

using features of the elevation and azimuth retinotopic maps, such as reversals, manually.4,16 The vasculature map provided land-

marks to identify visual areas in two-photon imaging.

In vivo two-photon imaging
Two-photon imaging was performed using a custom Trepan2p microscope controlled by custom LabView software.30 Two regions

were imaged simultaneously using temporal multiplexing.30 Two-photon excitation light from an ultrafast Ti:Sapph laser tuned to

910 nm (MaiTai DeepSee; Newport Spectra-Physics) laser was split into two beams through polarization optics, and one path

was delayed 6.25 ns relative to the other. The two beams were steered independently from each other using custom voice coil steer-

ing mirrors and tunable lenses. This way, the X, Y, Z plane of the two paths can be independently positioned anywhere in the full field

(4.4mmdiameter). The two beamswere raster scanned synchronously about their independently positioned centers by a 4 kHz reso-

nant scanner and a linear scanner (Cambridge Technologies). Photons were detected (H7422P-40, Hamamatsu) and demultiplexed

using fast electronics. For four-region scanning, the steering of the two beams was alternated every other frame.

In the current study, two-photon imaging of 500 x 500 mm2 was collected at 13.3 Hz for two-region imaging, or 6.67 Hz for large-

field single path imaging (Table S1). We typically imaged neurons in V1 and one or more HVAs simultaneously. Up to 500 neurons (V1:

129 ± 92; HVAs: 94 ± 72; mean ± SD) were recorded per imaging region (500 x 500 mm2). Imaging was performed with typically <80

mWof 910 nm excitation lights out of the front of the objective (0.45NA), including bothmultiplexed beams together. Micewere head-

fixed about 11 cm from a flat monitor, with their left eye facing the monitor, during imaging. The stimulus display monitor covered 70�

x 45� the left visual field. Two-photon images were recorded from awake mice. During two-photon imaging, we monitored the pupil

position and diameter using a custom-controlled CMOS camera (GigE, Omron) at 20 – 25 fps. No additional illumination was used for

pupil imaging.

Visual stimuli
Visual stimuli were displayed on a 60 Hz LCD monitor (9.2 x 15 cm2). All stimuli were displayed in full contrast.

The texture stimuli (Figure S2A) were generated by panning a window over a large synthesized naturalistic texture image at one of

the cardinal directions at the speed of 32 �/s. We generated the large texture image by matching the statistics of naturally occurring

texture patterns.34 The texture pattern families were: animal fur, mouse chow, rocks, and tree trunk. Each texture stimulus ran for 4 s

and was interleaved by a 4 s gray screen.

The randomdot kinematogram (RDK) stimuli contained a percentage (i.e., coherence) of white dots thatmove in the same direction

(i.e., global motion direction) on a black background (Figure S3A). We presented the animal with RDK at three coherence levels (40%,

70%, and 90%) and four cardinal directions. The dot diameter was 3.8� and the dot speed was 48 �/s. White dots covered about

12.5% of the screen. The lifetime of individual dots were about 10 frames (1/6 s). These parameters were selected based on mouse

behavior in a psychometric RDK task.66 Each RDK stimulus ran for 3 – 7 s (responses in the first 3 s were used for analysis) and inter-

leaved with 3 s gray screen. The same RDK pattern was looped over trials.

Two naturalistic videos (Figure 3A) were taken by navigating a mouse home cage, with or without a mouse in the cage. Each video

had a duration of 32 s and were presented with interleaved 8 s long periods with a gray screen. For the convenience of analysis, we

concatenated the responses to the two videos (total 64 s).

QUANTIFICATION AND STATISTICAL ANALYSIS

Calcium imaging processing
Calcium imaging processing was carried out using customMATLAB codes. Two-photon calcium imaging was motion corrected us-

ing Suite2p subpixel registration module.63 Neuron ROIs and cellular calcium traces were extracted from imaging stacks using

custom code adapted from Suit2p modules63 (https://github.com/cortex-lab/Suite2P). Neuropil contamination was corrected by

subtracting the common time series (1st principal component) of a spherical surrounding mask of each neuron from the cellular cal-

cium traces.15,67

Neuropil contamination corrected calcium traces were then deconvolved using a Markov chain Monte Carlo (MCMC) methods64

(https://github.com/flatironinstitute/CaImAn-MATLAB/tree/master/deconvolution; Figure S1B). For each calcium trace, we repeated

theMCMC simulation for 400 times, andmeasured the reproducibility of MCMC spike train inference for each cell. We computed the

Pearson correlation of the entire inferred spike train (tens of mins duration) binned at 13.3 fps. For all subsequent analysis, only cells

with stable spike train inference results were included (correlations between MCMC simulations > 0.2). The number of neurons
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passed this criterion was defined as the total number of neurons (Table S1). TheMCMCquality control was defined empirically. For all

following analysis, we randomly pick one simulation trial for each neuron. Randomly picking a different trial did not affect results

quantitatively.

Neurons in V1 and HVAs exhibited similar instantaneous firing rates, defined as inverse of inter-spike-interval (Figure 1C). Maximal

instantaneous firing rates were computed as the inverse of the minimal inter-spike-interval, while average instantaneous firing rates

were computed as the inverse of the average inter-spike-interval for individual neurons.

Reproducibility and lifetime sparseness
The reproducibility of responses to naturalistic videos was defined as the trial-to-trial Pearson correlation between inferred spike

trains of each neuron binned in 500 ms bins. The reproducibility of responses to texture stimuli and RDK were computed as the frac-

tion of trials that a neuron fired to its preferred stimulus within a time window (4 s for texture stimuli and 3 s for RDK). These definitions

were commonly used in previous studies.46,68 Only reliably responsive neurons were included in the latter analysis (Pearson corre-

lation > 0.08 to naturalistic video; fired on > 50% trials to the texture and RDK stimuli). The qualitative results were not acutely sen-

sitive to the selection criteria.

The lifetime sparseness defines how often one neuron response to a particular stimulus was computed as (Equation 1)69:

S =
1 � 1

N
� ð

P
i
riÞ2P
i
r2
i

1 � 1

N

(Equation 1)

For lifetime sparseness, ri is trial-averaged response to ith stimulus and N is the length of the stimuli. The sparseness to naturalistic

videoswas computed using 500ms bins. The qualitative results of reliability and sparseness were not acutely sensitive to the bin size.

Information analysis
Mutual information (MI) evaluates the information the neuronal response (r) has about certain aspects of the stimulus, and it is

computed in units of bits. It was computed using the following equation.

MIðr; sÞ =
X

r

X

s

pr;sðr; sÞ � log2

pr;sðr; sÞ
prðrÞ � psðsÞ (Equation 2)

We computed the MI between neuron responses and the visual stimulus (s has 16 categories for texture stimuli, psðsÞ = 1=16; s

has 12 categories for RDK, psðsÞ = 1=12). We also computed the MI between neuron responses and the texture family (s has 4 cat-

egories for texture stimuli, psðsÞ = 1=4), and theMI between neuron responses and themoving directions (s has 4 categories for both

texture stimuli and RDK, psðsÞ = 1=4). The probability of neuron responses was computed from spike count distributions within a

stimulus window (4 s for texture stimulus and 3 s for RDK). Reliable RDK and texture reliable neurons (response to >50% of trials)

were included for the MI analysis.

Informative neurons
Wedefined threshold for informative neurons fromshuffleddata (>mean+3SDofMI of shuffleddata). That is the spike count (pr;sðr;sÞ)
of a neuron shuffled on each trial independently.

Tuning pattern of informative neurons
To estimate the tuning pattern of informative neurons, i.e., which texture pattern or motion direction one neuron responded to, or how

many texture patterns one neuron responded to, we decomposed the neuronal responses into motion direction components, and

texture family or RDK coherence components using singular value decomposition (SVD). To be more robust, instead of using

trial-averaged response, we first estimated the neuronal responses by linearly regressing with a unit encoding space (Figures S2E

and S3E). Lasso regularization was applied to minimize overfitting. The regularization hyper-parameters were selected byminimizing

the cross-validation error in predicting single trial neuronal responses. The linear regression model performance was measured by

the Pearson correlation between the trial-averaged neuron response and the model. All informative neurons were well-fit by the

model (Figures S2F and S3F).

We then characterized the SVD components of all informative neurons. The SVD vectors reflect the selectivity of a neuron. Absolute

values close to one indicate a preferred stimulus while values close to zeros indicate a null stimulus. Some texture informative neu-

rons were activated by multiple texture patterns or motion directions, which were identified as the components that have a >0.4 ab-

solute SVD vector value (qualitative results hold with similar thresholds). We quantified the number of texture patterns and the number

of motion directions one texture informative neuron was responsive to (Figure S2G). Also, we identified the preferredmotion direction

and coherence level for RDK informative neurons (Figure S3G).

Population response dimensionality
We measured the dimensionality of neuron populations with certain size through principal components analysis of trial-averaged

response of neurons (spike trainswere binned in 500ms).We generated principal components of each population by the trial-averaged
e3 Current Biology 32, 1–11.e1–e5, July 11, 2022
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responses that were computed using randomly selected half of the trials (training data), and then used the first x number of principal

components to recover the trial-averaged responses of the remaining half of the trials (testing data). The dimensionality was defined as

the number of principal components that reproduced the testing data that minimize the mean squared error.

Gaussian mixture model
To characterize the tuning properties in an unbiased manner, neurons were clustered using a Gaussian mixture model70 (GMM)

based on the trial-averaged responses to the naturalistic video. Only reliably responsive neurons were included for GMM analysis

(trial-to-trial Pearson correlation of the inferred spike trains > 0.08, after spike trains were binned in 500ms bins). Neuronal responses

of the whole population, pooled over all cortical areas, were first denoised and reduced in dimension by minimizing the prediction

error of the trial-averaged response using principal component (PC) analysis. 45 PCswere kept for population responses to the natu-

ralistic videos. We also tested a wide range of PCs (20 – 70) to see how this parameter affected clustering, and we found that the

tuning group clustering was not acutely affected by the number of PCs used. Neurons collected from different visual areas and

different animals were pooled together in training the GMM (3839 neurons). GMMs were trained using the MATLAB build function

fitgmdist with a range of numbers of clusters. A model of 25 classes was selected based on the Bayesian information criterion

(BIC). We also examined models with different numbers of classes (20, 30, 45, or 75), and found that the main results held regardless

of the number of GMM classes. Neurons with similar response patterns were clustered into the same class. Figure S5C shows the

response pattern of GMM classes to the naturalistic video. The size of the naturalistic video classes is shown in Figure S5D. To

examine the reproducibility of the GMM classification, we performed GMM clustering on 10 random subsets of neurons (90% of

all neurons). We found the center of the Gaussian profile of each class was consistent (Pearson correlation of class centers,

0.74 +/- 0.12). About 65% of all neurons were correctly (based on the full data set) classified, while 72% of neurons in classes

that are over-represented in HVAs were correctly classified. Among misclassifications, about 78% were due to confusion between

the three untuned classes with tuned classes. Thus, most of the classes to come out of the GMM analysis appear to be reproducible,

and are not sensitive to specific subsets of the data.

Visual features of the naturalistic video
We characterized various visual features of the naturalistic video (Figure S5).

Average luminance

The average pixel value of each frame.

Global contrast

The ratio between the standard deviation of pixel values in a frame, and the average luminance of that same frame.

Edge density

The local edges were detected by a Canny edge detector.71 The algorithm finds edges by the local intensity gradient and guarantees

to keep the maximum edge in a neighborhood while suppressing non-maximum edges. We applied the Canny edge detector after

Gaussian blurring of the original image at multiple scales (1�-10�). A binary edge map was generated as the result of edge detection

(Figure S4A). The edge density was computed as the sum of positive pixels in the binary edge map of each frame.

Difference of Gaussian (DOG) entropy

We characterized local luminance features following the difference of Gaussian filtering at multiple scales, and then computed the

entropy of these features within a local neighborhood (Figure S4B).

Optical flow entropy

We estimated the direction and speed of salient features (e.g., moving objects) using the Horn-Schunck method at multiple spatial

scales. Then we computed the entropy of the OF direction and speed at each frame. Since the OF estimation relies on the saliency of

visual features, the moving texture and RDK stimuli resulted in distinct OF entropies, with the latter being larger (Figure S5C).

Visual features were computed either by average over space or by computing a spatial variance value (i.e., entropy). These mea-

surements were inspired by the efficient coding theory,72 which suggested that the neuron population coding is related to the abun-

dance or the variance of visual features in the natural environment.

Discrimination of texture images by DOG features

Wecomputed the pairwise distance between texture images (Figure S4E) within the same class or from different classes (Figure S4F).

The Euclidean distance was computed using DOG entropy (11.75� spatial filter size) or edge density (2.35� spatial filter size) feature
maps. We then trained a support vector machine (SVM) classifier to discriminate texture images within and across classes, based on

this pairwise distance (using the MATLAB built-in function classify). We reported the cross-validation classification error rate

(Figure S4F).

Modulation power of naturalistic features
A linear regressionmodel was fit to the neuronal activity of individual neurons or average population response with individual features

(Figure 4). These features are described above in the section ‘‘visual features of the naturalistic video’’. We then evaluated a feature’s

contribution in modulating the average population responses by the variance explained (r-squared) of each model (Figure 3D). Fea-

tures were computed over multiple spatial scales. The spatial scales that best modulated (highest r-squared) the neuronal response

was used for this analysis.
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Neuronal activity of individual neurons or population average response were binning into 50 ms bins (50 – 500 ms bins were tested

and generated qualitatively similar results). To evaluate the functional contribution of over-represented classes of HVAs, we pooled

neurons from over-represented tuning classes of one HVA (200 neurons per pool with permutation; 50 – 200 pool size was tested and

results hold), and we averaged activity over the pool, and then determined which features modulated activity the over-represented

classes in an HVA (Figure 4B).

Gabor-based receptive field models
The neuron models used the structure of a linear-nonlinear (LNL) cascade. The spiking of model neurons was simulated following a

nonhomogeneous Poisson process with a time varying Poisson rate. The rate was calculated by convolving visual stimuli with a linear

kernel or a combination of linear kernels, followed by an exponential nonlinearity (Figure 5A). Linear kernels were modeled by 2D (XY

spatial) or 3D Gabor (XYT spatiotemporal) filters defined over a wide range of spatiotemporal frequencies and orientations. We simu-

lated neurons with simple cells, complex cells and motion cells models29 (Figure 5B). The three differed in the linear components of

the LNL cascade: simple cells (called linear model, or spectral model for the 2D Gabor kernels) used the linear response of a Gabor

filter; complex cells (called energy model) used the sum of the squared responses from a quadrature pair of Gabor filters (90� phase
shifted Gabor filter pairs); speed cells (called motion model) used the arithmetic difference between the energy responses from an

opponent pair of complex cells. We also modeled neurons based on the cross product of the linear or energy responses from two 2D

Gabor filters. In particular, we simulated the following three combination models: 1. 2D Gabor filters matched in spatial scale and

location but tuned to different orientations (cross-orientation model); 2. 2D Gabor filters tuned to the same orientation and location

with different spatial scales (cross-scale model); 3. 2D Gabor filters with matched tuning properties but offset in visual space (cross-

positionmodel) (Figure 5B). In addition, we included a subtractive normalization before taking the nonlinearity in somemodels. A total

of 13 Gabor model types were used (Figure 5B).

To examine feature encoding by these neuron model types, we performed 10 – 20 repeats of simulation for each neuron model to

each stimulus. Either the simulated spike trains or peristimulus time histograms (PSTH) were used for characterizing the feature en-

coding. We analyzed the model responses in the same way as we had done for the mouse experimental data. We computed the

mutual information between simulated neuron responses and texture stimuli or RDK stimuli, and characterized the selectivity of simu-

lated neurons to texture families or RDK directions (Figure S6). Next, we examined themodulation of simulated population responses

by visual features of the naturalistic video. Neuronmodels were located in the feature space by howmuch of the population response

variance was explained by individual features (Figure 5C).

Fit neuron responses with Gabor-based models
We fit individual neuronal responses withmodels following a linear regression equation (Equation 3). The linear coefficients were opti-

mized by minimizing the cross-validation error. We also tested a sigmoidal nonlinear fitting (Equation 4). Sigmoidal parameters were

optimized through gradient descent. As sigmoidal nonlinearity did not significantly improve the modeling performance, we reported

the results from the linear fitting.

neuron response = a � x; (Equation 3)
neuron response =
a

1+ expð�b � x + cÞ; (Equation 4)

Where x is the simulated response and a – c are parameters for fitting. Neuron models were grouped into three categories: 2D Gabor

models, 3D Gabor models, and 3D Gabor models with normalization. One model of each category, which minimizes the cross-vali-

dation error, was kept for each neuron. Then, we selected the one among the three that maximize the variance explained of the PSTH

for each neuron (Figure 6A). HVAs varied in their preference of different model types (Figure 6B). We then examined the modulation

power of naturalistic visual features of enriched neuron models.

Statistical analysis and data availability
P-values were generated by one-way ANOVA with Bonferroni multiple comparison if not otherwise stated. Detailed statistical values

were provided in the figure legends. Boxplot whiskers indicate the full data range.
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