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A B S T R A C T   

The formation of dendrites on the anode surface of metal air batteries, such as the Li-air battery, causes sig
nificant decreases in performance over the lifetime of the battery and poses safety concerns due to short cir
cuiting. Predictive computational methods are used to investigate novel electrolyte materials which will reduce 
dendrite growth, in particular liquid crystal materials for Li-air electrolytes. The literature on liquid crystal 
electrolytes was surveyed for materials data and used to develop a training set of liquid crystal compounds. These 
compounds were then used as a knowledge base to develop property structure relations for the clearing and 
melting temperature for liquid crystals, which are a critical design parameter for the design of novel electrolytes. 
This was accomplished using standard artificial neural networks trained on molecular fingerprints and con
volutional neural networks (CNNs) trained on compound images. Transfer learning was also demonstrated to 
boost predictive performance through pre-training neural networks on larger pre-existing compound datasets. 
The results show that CNNs achieve comparable accuracy compared to molecular fingerprints, and that both 
multilayer perceptrons and CNNs can benefit from transfer learning. This study is the first where transfer 
learning in CNNs aids in the prediction of one experimental property in a small data regime, using data of 
another experimental property.   

1. Introduction 

Metal air batteries, such as lithium air (Li-air) batteries, promise 
increased energy density and capacity compared to current battery 
systems, such as lithium ion (Li-ion) batteries. Li-air batteries have the 
potential to provide practical energy densities equivalent to gasoline 
(1,700 Wh/kg), and an order of magnitude greater than Li-ion batteries 
[1]. Li-air batteries are currently in the research and development stages 
for use as primary and secondary systems for portable and military ap
plications and electric vehicles. Currently, state of the art research on Li- 
air batteries has demonstrated the reversibility of the system and has 
focused on modifying the materials and cell design to increase specific 
capacity and stability. Some of the key fundamental challenges in Li-air 
batteries include [2]: the formation of dendrites on the Li anode surface 
during cycling, increasing the electrochemical activity of the air cathode 
for both oxygen reduction and evolution reactions, and increasing the 

concentration and mobility of O2 and Li+ in the electrolyte. Together 
these challenges and others have limited the capacity of Li-air batteries 
and their cycle life. 

Dendrite growth is a serious concern for Li-air batteries [2]. The 
growth of dendrites reduces the Li available for the electrochemical 
reactions and increases safety concerns due to short circuiting. Dendrite 
growth is a pernicious problem for electrochemical applications besides 
Li-air batteries, and has been observed for other battery chemistries, 
such as Li-ion and NiCd, and for many metal and electronic fabrication 
processes, such as solidification [3,4] and electroplating [5,6]. Research 
into methods for suppressing dendrite growth has considered everything 
from operating parameters [7,8] and novel physical separators [9–11], 
to new electrode [12–14] and electrolyte materials [15–18]. The success 
of any of these strategies has the potential to greatly increase the safety 
of Li-air batteries and increase performance by reducing Li loss with 
cycling. In this work we focus on the development of novel electrolyte 
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materials as a possible solution to dendrite issues. Research into new 
electrolyte solutions for Li batteries typically involves experimental trial 
and error of possible materials, which can be a costly and time 
consuming process limited to known and available materials. Because of 
this, researchers have developed methods in which predictive machine 
learning models are trained to predict specific properties of candidate 
materials, which can be useful for screening a large dataset of materials 
for potential electrolytes [19–24]. There are several previous studies 
using this general method, which vary in the material database used, the 
specific material property that is optimized, and the types of machine 
learning models used [19,20,25–27]. Such studies include Ahmad et al 
[19], in which inorganic solid materials are screened for mechanical 
properties using a crystal graph convolutional network, and Ishikawa et. 
Al [27] in which coordination energies between different electrolyte 
solvents and ions are modeled using techniques including multiple 
linear regression and LASSO regression. To further this effort, large 
databases of battery-specific materials have been created [20,28–30], 
calculated from first principles calculations or by extracting from the 
literature. 

In this study, we expand on previous research into machine learning 
and electrolytes, to consider the use of ionic liquid crystals (ILCs) for the 
electrolyte of Li-air batteries. As discussed in this paper, computational 
modeling of mass transport in Li-air batteries shows the potential for 
controlled mass transport to suppress dendrite growth [31]. ILCs are a 
class of materials that inherently demonstrate anisotropic properties and 
have the potential to be used for battery electrolytes [17,32].; however, 
as they are a smaller specialized subset of ionic liquids, which display a 
liquid crystal phase, there are not yet studies in the literature where 
machine learning is used to screen ILCs as battery electrolyte candidates, 
mostly because of a lack of high-volume data in the literature. Thus, in a 
step toward this goal, this study explores machine learning models that 
can reliably predict ILC properties in small-data regimes. In this work, a 
predictive computational framework is presented utilizing materials 
informatics for identifying promising ILCs as electrolyte solutions. By 
utilizing transfer learning, we extend the predictive capabilities of deep 
learning models on material properties relevant to new electrolyte 
development and small materials datasets. 

2. Theory 

Dendrite growth near the anode-electrolyte interface of Li-air bat
teries is a strong function of the mixing near the interface. Increasing the 
transport of Li ions through the electrolyte should suppress dendrite 
growth and extend the lifetime of Li-air batteries. To explore this theory 
smoothed particle hydrodynamics (SPH), a Lagrangian particle based 
modeling method, is used to model the physics of dendrite growth near 
the anode-electrolyte interface [31,33,34]. Using a previously devel
oped SPH model of dendrite growth [31], the model is applied to 
investigate the effects of anisotropic transport properties on the growth 
rate and morphology of dendrites. As can be seen in Fig. 1, anisotropic 
diffusion (Dy≫Dx and Dy≪Dx) decreases the rate of dendrite growth 
compared to isotropic diffusion. 

Liquid crystals inherently have anisotropic transport properties in a 
liquid crystal phase (nematic, smectic, etc.) where their rod-like mole
cules are positionally ordered, which may allow for suppressed dendrite 
growth. Depending on the specific liquid crystal there will be a transi
tion temperature between the phases, which will dictate the operating 
temperatures where this ordered, nematic phase will exist. To utilize this 
unique property of liquid crystals to induce anisotropic properties 
within an electrolyte, the transition temperatures of the liquid crystal 
would need to fall within the operating temperature range of the battery. 

Using this basic theory, materials informatics techniques are used to 
explore the use of ILCs as possible electrolyte solutions for Li-air batte
ries. In particular, artificial neural networks are used to map structural 
features of ILCs to their transition temperatures. Artificial neural net
works are a machine learning algorithm, where features of a dataset 

(such as structural features of relevant compounds) are mapped to an 
output space, which in this study is the ILC clearing and melting tem
peratures. This is done through successive forward-propagation steps 
and back-propagation steps—in forward propagation, features are 
passed as linear combinations to several nodes in a hidden layer, which 
then are linear combinations of the other nodes in the next hidden layer, 
etc. until a layer of nodes gets passed to one output value. Back propa
gation seeks to fit the neural network to the data by minimizing an error 
function like root-mean-squared-error (RMSE), which is done through 
updating parameters by calculating their derivatives of the cost func
tion, a process known as gradient descent. 

3. Methods 

In this study, ILCs, particularly compounds that consist of an organic 
cation and an anion, are considered for Li-air electrolytes. Neural 
network models were used to predict clearing and melting temperatures, 
two relevant properties for electrolyte applications. The clearing tem
perature is a transition temperature between the isotropic liquid phase 
and the anisotropic liquid crystal phase, while the melting point is the 
transition temperature at which the ILC transitions during heating from 
a solid crystalline state to either a liquid crystal phase or an isotropic 
liquid, if there is no liquid crystal phase [32]. In our study, an ILC was 
still classified as an ILC even without a recorded liquid crystal phase, as 
long as it was included in other studies in tandem with other ILCs and 
had a similar structure. Two clearing temperature datasets were used, 
for which separate neural network models were developed: a larger 
mixed dataset of 230 clearing temperatures of various different cation 
types (imidazolium, guanidium, morpholinium, etc.), and a subset of 
that dataset consisting of 30 ammonium ILCs. Two melting temperature 
datasets were also used: a large set of 271 melting temperatures of ILCs 
of various cation types, as well as a subset of this dataset that consisted 
all the ammonium-based ILCs, containing 39 melting temperature data 
points, for which separate models were developed. One of the ammo
nium ILCs in the mixed dataset was not included in the ammonium 
dataset because the models consistently yielded inaccurate predictions 
for it, which will be elaborated on in the next section. To the authors’ 
knowledge, there is no publicly available dataset containing a large 
amount of ILCs, so the datasets used were created by manually searching 
through publications from the literature [35–68]. Transition tempera
ture data is provided in the Supporting Information. 

Because of the small sizes of the datasets, in order to create a 

Fig. 1. Dendrite growth over time for several cases of isotropic and anisotropic 
diffusion where Dx and Dy refer to the diffusion rate through (Dy) the electrolyte 
and across the anode surface (Dx). 
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predictive model, transfer learning was utilized. Transfer learning is a 
machine learning framework commonly used when the dataset in 
question (known as the “target” dataset) is too small of a size for 
developing an accurate model. In this study, in order to perform transfer 
learning, a neural network is first trained on another larger “source” 
dataset of a similar domain to create a “source” model, in a process 
called “pretraining”, and then re-trained on the smaller target dataset in 
question, in a process known as “fine-tuning” [69]. Because the model 
was pre-trained, it can find a more accurate fit for the target dataset. 
Transfer learning was explored for this application by using different 
source tasks for the two different properties: for all our models, melting 
temperatures of ionic liquids were used to train the source model for 
fine-tuning afterwards. Melting temperature was used as the training 
source because the database contained 2212 data points for melting 
temperature [70]. For the clearing temperature models (for both the 
mixed and ammonium datasets) another source model was created by 
taking the model trained on the ionic liquid melting temperatures and 
fine-tuning it on the mixed dataset of ILC melting temperatures. Fig. 2 
shows a schematic of the different source models used to train the target 
ILC clearing temperature model. 

A similar method was used for training a model to predict ILC 
melting temperatures, creating a source model by taking a model trained 
on the 2212 ionic liquid melting temperatures and fine-tuning it on the 
mixed ILC clearing temperatures. The schematic for the different source 
models created to train a neural network on ILC melting points is shown 
in Fig. 3. Note that ILCs that were already in the collection of 2212 ionic 
liquid dataset were not included in our collection of 271 melting points. 

For all datasets, two different types of models were used, multilayer 
perceptrons (MLPs) trained on molecular fingerprints of the ILCs, and 
convolutional neural networks (CNNs) trained on compound images, 
whose architecture and hyperparameters were determined empirically 
through intuition and trial-and-error. While generally hyperparameter 
search methods like grid search and random search are used for opti
mization, it was found that such methods were too computationally 
expensive for this study, given the need for many cross-validation (CV) 
repeats we performed, as will be explained in later sections. Thus, it was 
decided that using intuition would more suitably guide the study toward 
finding good hyperparameters. All models were developed using Keras 
with a TensorFlow backend [71]. The models’ performance with and 
without transfer learning using both MLPs and CNNs was compared. The 
focus of interest in this investigation centered around the applicability of 
transfer learning with small datasets using CNNs. Transfer learning for 
molecular property prediction has already been well-documented in the 
literature, such as in Yamada et al [69] where improvements in per
formance was achieved by searching through a pre-made collection of 
candidate source models. In the ILC property prediction field, the use of 

“learned” representations via convolutions, whether on images or graph 
representations, is novel, as all published studies have used computable 
descriptors as neural network features. The most recent related study, 
performed by Low et al [72], compares the effectiveness of both ECFP4 
and Coulomb matrix descriptors in ionic liquid melting point prediction. 
Such descriptors have demonstrated widespread success at prediction 
tasks, and are part of a trend in which hand-engineered features created 
by manually selecting functional groups to be represented as features are 
being substituted for more efficient featurizations like the aforemen
tioned. Other molecular representations include using convolutions to 
“learn” suitable feature representations from scratch, which theoreti
cally can be even more effective. Following this paradigm shift, CNNs 
were investigated because they have already shown potential in struc
ture–property relations tasks in the drug discovery field, such as with 
Chemception, a CNN trained on images of drug-like molecules to predict 
properties like solvation energies, HIV activity, and toxicity [73]. 
Chemception was followed by Chemnet, where a CNN was first trained 
on 500,000 different molecules to predict values for their calculated 
molecular descriptors in a multitask setting, in order to learn general 
chemical trends, and then fine-tuned to predict a drug-relevant property 
using a smaller dataset [74]. There have been some other studies 
investigating the efficacy of transfer learning to increase CNN perfor
mance when training on molecular images, where source models have 
been well-established pre-trained models or were developed by training 
a large molecular database on easily computable properties [75,76]. 
However, in a materials science setting, it is useful to investigate 
whether transfer learning can be employed where the source task is one 
experimental property, and the target task is another, as neither the 
source nor target properties are guaranteed to have a large amount of 
experimental data in the literature. Furthermore, it is also worth 
investigating whether accurate CNN models can be created using 
extremely small datasets of a few hundred entries or less—to the au
thors’ knowledge, the smallest molecular dataset that CNNs have been 
applied on so far is the Alpha-2a dataset containing 203 molecules [77]. 
There is some research on applications of CNNs on identifying liquid 
crystals, such as the study by Sigaki et al. [78] in which CNNs are used to 
identify the liquid crystal phase of microscope images of liquid crystals, 
but to the authors’ knowledge, none have investigated them from a 
molecular property prediction framework that would allow for 
screening of new materials. There is potential in this area–if interpret
ability tools for CNNs are developed further, CNNs as molecular feature 
extractors may be used to highlight important substructures in a com
pound image that contribute to its predicted properties, yielding valu
able structure–property insights. 

Fig. 2. Schematic of source models used for learning clearing temperatures–all paths starting from the untrained model to one of the bottom models (labeled Model 1, 
Model 2, or Model 3) represent how the neural network was pre-trained on different datasets before being trained on the representative melting temperature dataset. 
Two clearing temperature datasets were fitted: one consisting of a diverse array of 230 ILCs, and one consisting of 30 different ILCs, which is a subset of the mixed 
dataset consisting of ammonium-based cations. A newly-initialized model was trained on 2212 ionic liquids to create one source model. Another source model was 
created by training the ionic liquid source model on the dataset of ILC melting temperatures. 
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3.1. Multilayer perceptron 

The performance of deep neural networks using molecular finger
prints was considered first. For all models, an architecture that consisted 
of 3 hidden layers of (100, 50, 20) neurons was used, using dropout with 
probability 0.1 only on the first hidden layer, and L2 regularization with 
λ = 0.001 on all hidden layers. Rectified Linear Unit (ReLu) was used as 
an activation function for the hidden layers. ECFP, MACCS, Atom Pair, 
rdkit, and Topological Torsion fingerprints were all explored using the 
Xenonpy python library [69]. It was found that the circular fingerprints 
were unusable, regardless of their radius, as several ILCs that were 
similar in structure (e.g. the only structural differences between some 
ILCs was the length of side carbon chains) had the same circular fin
gerprints. To achieve optimal performance, a concatenation of Atom 
Pair and Topological Torsion fingerprints were used. Low-variance 
features were removed in order to prevent overfitting. When perform
ing transfer learning, one dataset (i.e. the target dataset, or one of the 
source datasets) was selected to have its columns with no variance 
removed, and the same features in the other datasets were removed 
accordingly. It was necessary to experiment with the datasets to find 
low-variance features to remove; for the mixed datasets, it was found 
that removing the low-variance features of the target dataset and then 
removing the corresponding source dataset features yielded superior 
performance. For the model trained on ammonium ILC clearing points, 
removing the no-variance features of the ionic liquid data yielded su
perior performance over removing low-variance features of the ammo
nium clearing point data. For the model trained on ammonium ILC 
melting temperatures, removing no-variance features (features where all 
the values are the same) of the ammonium melting point dataset yielded 
superior performance. 

When training the model on the ionic liquid melting point dataset, 
the Adam optimizer was trained with a learning rate of 0.0001 for 200 
epochs. When fine-tuning on the mixed datasets, the model was trained 
for 400 epochs using a learning rate of 0.001. When fine-tuning on the 
ammonium datasets, the dataset was trained for 300 epochs, again with 
a learning rate of 0.001. A batch size of 32 was used for all datasets; for 
learning ammonium clearing temperatures, where the dataset size was 
30, this resulted in the model using the entire dataset in one batch. When 
performing fine-tuning, all layers were left trainable, as freezing layers 
did not lead to significant improvements. For the mixed dataset models, 
20 iterations of 5-fold cross-validation were repeated in order to achieve 
stability and scores were calculated by averaging the r2, MAE, and RMSE 
scores of all the folds across all 20 runs. The 20 repetitions were 
necessary because of the high variance of the models; the variance 
originated from both the small dataset size of the ILCs and the fact that 
there were “clusters” of similarly structured ILCs that originated from 

the same papers, which caused cross-validation scores to differ across 
different runs; while the process of repeating cross-validation 20 times 
was computationally expensive, it was found that the cross-validation 
scores of any model would consistently average to the same values, 
and so performance could be assessed reliably. For the smaller datasets 
of ammonium clearing and melting temperatures, leave-one-out cross- 
validation (LOOV) was used, repeated three times, and the average 
MAE, RMSE, and r2 scores were calculated. It was found that when 
creating pre-trained source models for the ammonium ILC tasks, neural 
networks with the same architecture and hyperparameters trained on 
the same dataset could yield models that had varying effectiveness when 
used for transfer learning, due to randomness from shuffling data. Thus, 
different pre-trained models were created, and the scores recorded were 
the scores produced when using pre-trained models that yielded the 
optimal performance (i.e. had the lowest CV error and there was low 
variance in the 3 different CV scores). 

3.2. Convolutional neural network 

For the CNN, each ionic liquid and ILC was represented by a side-by- 
side concatenation of two 50x50x3 RGB images: one of the cation and 
the other of the anion, so that each compound was represented in total 
by a 50x100x3 image. These images were created through the rdkit 
python library using the MolstoGridImage function [79]. These image 
descriptors were chosen over the “chemception” image descriptors used 
by Goh et al. [73] because MolstoGridImage performed better. The 
differences between the two will be elaborated on in the Results and 
Discussion section. Different CNN architectures were used for the 
different datasets. For the mixed ILC datasets, the CNN architecture is as 
shown in Fig. 4. 

For the ammonium datasets, fewer layers and parameters were 
employed in order to prevent overfitting, as shown in Fig. 5: 

L2 regularization with λ = 0.3 and dropout with probability 0.3 was 
used on the fully connected layers. Hidden layers used the ReLu acti
vation function. Convolutional layers used “same” padding, and Max- 
pooling layers used a stride length, (5x5), that was the same as the 
pool size. Data augmentation (transformations such as rotating each 
cation and anion image before concatenation) performed on each cation 
and anion image pair before concatenation was not used because it 
proved to be too computationally expensive, although it lead to a small 
increase in performance. 

When performing transfer learning, a trial-and-error process of 
experimenting with freezing different layers revealed that for the mixed 
melting temperature datasets, the best performance was achieved by 
freezing the first convolutional layer while training all source models, 
while for the smaller datasets using the smaller architectures as well as 

Fig. 3. Schematic of source models used to fit a neural network to ILC melting points—all paths starting from the untrained model to one of the bottom models 
(labeled Model 1, Model 2, or Model 3) represent how the neural network was pre-trained on different datasets before being trained on the representative melting 
temperature dataset. Two melting point datasets were fitted, one of size 271 consisting of a ILCs of diverse cation bases, and a subset of that dataset consisting of 
ammonium-based cations. One source model was created by training a newly-initialized model on 2212 ionic liquid melting points. Re-training that model on ILC 
clearing temperatures yielded another source model. 
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the mixed clearing temperature dataset, leaving all layers trainable 
yielded the best performance. The source model trained on the ionic 
liquids was trained using the Adam optimizer for 40 epochs with a 
learning rate starting at 0.001 that decayed by a factor of 0.1 every 5000 
steps. A constant learning rate of 0.001 was used when fine-tuning on 
the mixed datasets, training for 500 epochs on ILC melting temperature 
data and 1000 epochs on ILC clearing temperature data. When fine- 
tuning to the ammonium datasets, the model was trained for 300 
epochs. Batch sizes used were the same as in the multilayer perceptron 
models. Again, performance was validated using 5-fold CV repeated 20 
times for the larger datasets, and LOOV repeated 3 times for the smaller 
datasets. 

4. Results and Discussion 

The performance of models trained on the mixed clearing tempera
tures is shown in Table 1. Performances of mixed melting temperatures, 
ammonium clearing temperatures, and ammonium melting tempera
tures are provided in the Supplemental Information. 

Our models yield reasonable test performances; while our datasets 
had a relatively small size and contained a diverse selection of cation 
types, all MAEs were less than 30◦. Our manually crafted ILC dataset has 
not been investigated elsewhere in the literature, so comparing our 
scores to a baseline is impossible. Nevertheless, it is possible to make an 
approximate comparison with other studies on ionic liquids. Namely, 
regression metrics of best performing models on the mixed ILC tasks 
from this study may be compared with scores found from other studies 
on predicting ionic liquid melting temperatures using the dataset of 
2212 ionic liquids that was employed as a source model in this study. 
Our datasets are similar to this ionic liquid dataset in that both contain a 
diverse distribution of core structure types (e.g. imidazolium, pyr
idinium, etc). Thus, it can be expected that satisfactory performance 
metrics for the mixed ILC datasets should be comparable to those of the 
ionic liquid dataset. Following this, Table 2 presents a comparison of 
performance metrics. The R2 scores of our study are very close to the top 

R2 scores of Venkatraman et al. [80], the original study that produced 
the ionic liquid dataset. Our metrics are worse than those of Low et al. 
[72], who used ECFP circular fingerprints to predict ionic liquid melting 
temperatures. The reason that our study did not attain the same per
formance metrics could be because ECFP fingerprints were ineffective 
when tried on our dataset, and so different methods had to be imple
mented. For this reason, a direct comparison cannot necessarily be made 
between our ILC dataset and the ionic liquid dataset. Nevertheless, it is 
noteworthy that overall our study managed to achieve scores around the 
same range as what was achieved with a dataset almost a magnitude 
larger. 

Regression metrics appear to be more favorable for the ammonium 
datasets. However, it is not certain that the models trained on the 
ammonium datasets necessarily are very useful; the majority of the 

Fig. 4. CNN architecture used for the mixed ILC datasets of 230 clearing temperature data points and 271 melting temperature data points. For each ILC, a cation 
image was concatenated with an anion image before being fed into the network. Architecture hyperparameters were determined by trial-and-error and performances 
were assessed with repeated 5-fold cross-validation. 

Fig. 5. CNN architecture used for the small ILC datasets of 30 clearing temperature data points and 39 melting temperature data points. A smaller number of layers 
were necessary to prevent overfitting. Performances were validated using leave-one-out cross-validation. 

Table 1 
Performances of models trained on the large dataset of clearing temperatures, 
achieved through averaging the performance of all the folds after 5-fold cross- 
validation repeated 20 times. MAEs and RMSEs are in degrees Celsius. Both 
CNNs and MLPs were employed, and the CNN architecture is shown in Fig. 4. 
Performances of both methods were evaluated without transfer learning as well 
as with transfer learning having pre-trained on ionic liquid melting temperatures 
and ILC melting temperatures.   

TRAINING  TESTING  

Model RMSE 
(MAE) 

R2 RMSE 
(MAE) 

R2 

CNN without transfer 5.6 (4.6) 0.99 32.7 (23.8) 0.59 
CNN with transfer from ionic liquid 

model 
6.0 (4.8) 0.99 32.3 (24.6) 0.60 

CNN with transfer from ILC melting 
temperatures 

5.4 (4.3) 0.99 31.5 (23.5) 0.62 

Fingerprints without transfer 6.2 (4.7) 0.99 34.1 (23.3) 0.55 
Fingerprints with transfer from ionic 

liquid model 
7.1(5.8) 0.98 31.1(21.9) 0.63 

Fingerprints with transfer from ILC 
melting temperatures 

9.9 (8.52) 0.96 29.5 (21.3) 0.67  

A. Yan et al.                                                                                                                                                                                                                                     



Computational and Theoretical Chemistry 1205 (2021) 113443

6

cations in the dataset have very similar structures, which will likely lead 
to high bias when attempting to generalize to other ammonium ILCs, 
though the high performance metrics still indicate good accuracy when 
extrapolating to similarly structured ILCs. The training errors for the 
models trained on mixed datasets are all very low, which likely indicates 
overfitting. However, increased regularization and decreasing the 
number of model parameters techniques did not decrease the training 
error significantly and did not yield significant performance 
improvements. 

In the ammonium datasets, one of the ILCs, 1,1,1-trialkyl-3,4,5-trial
kyloxyanilinium tetrafluoroborate 1(8/BF4), whose structure is shown 
in Fig. 6, was not included in the ammonium dataset. Only its melting 
temperature (161 ◦C) was found in the literature, which the ammonium 
models consistently gave poor predictions for, as shown in Table 3. The 
reason for this under prediction becomes apparent when inspecting 
literature data from Kuo et. Al [67] in Table 4. When comparing the 
transition temperatures of 1(8/BF4) with the other ILCs in the ammo
nium dataset whose structure only differed by alkyl chain length in the 
cation, it appears that crystal transition temperatures of 1(8/BF4) as 
well as the aforementioned model predictions are close to the melting 
temperatures of the other ILCs, but not the actual melting temperature of 
1(8/BF4) itself. In fact, the melting temperature of 1(8/BF4) is anoma
lously high compared to the other ILCs. The model naturally extrapo
lated that the melting temperature of 1(8/BF4) would be close to the 
other melting temperatures, so its melting point prediction for 1(8/BF4) 
ended up in the same range as its crystal transition temperatures and far 
away from its true melting temperature. From merely inspecting the 
literature data in Table 4, it can be theorized that the mechanism behind 
melting in 1(8/BF4) is closer to the mechanism behind clearing than 
melting in the other ILCs because their temperatures are so close 
together, though the reason why such chemical differences arise is un
known. Had 1(8/BF4) not displayed such anomalous behavior and 
exhibited a liquid crystal phase in place of the two solid crystal phases it 
transitions to at 38 ◦C and 43 ◦C, it would have a melting point of either 
38 ◦C or 43 ◦C. Then, model predictions would be more in-line. Overall, 
predictive models trained on literature data may not be robust against 
cases of ILCs that exhibit deviant thermotropic behavior, which is a 
problem that could also occur for predicting clearing temperatures, 
because there could also be ILCs with anomalous clearing temperatures 
that models may not be robust against. This is unlikely to be a fault in 

hyperparameter and architecture selection, but rather that existing 
models in the literature as well as in this study have not been developed 
to predict the specific thermotropic behavior such as the number of 
different phases and the different types of phases of an ILC. Further in
vestigations in this area could therefore address this problem by creating 
models that simultaneously predict all the transition temperatures of a 
compound as well as their associated phases, instead of being limited to 
predicting one specific transition temperature. 

For most models, transfer learning brought performance improve
ments. When the larger ILC datasets were the target task (i.e. pre-trained 
models were fine-tuned on the larger ILC datasets of size 230 or 271), 
there were mixed results, and transfer learning led to larger performance 
improvements when fingerprints were employed over CNNs, as seen in 
Fig. 7. While the improvements seen using CNNs are small, it is likely 
that they are due to using the pre-trained weights, as the 20 cross- 
validation repetitions would have canceled out many differences due 
to stochastic processes and instabilities from random shuffling while 
cross-validating. On the other hand, when observing the results from 
training on the ammonium datasets, CNNs uniformly saw higher dif
ferences in performance between models with and without transfer 
learning, as shown in Fig. 8. 

When comparing transfer learning using a source model trained on 
ILC properties versus using a source model trained on ionic liquid 
melting points, using a source model trained on the opposite ILC prop
erty almost always yielded slightly greater improvements over transfer 

Table 2 
Performance metrics of our dataset with that of other studies on the dataset of 2212 ionic liquids. The results of this study, which employed a datasets of size 230 and 
271 ILCs, are loosely comparable to the results found in the literature on predicting ionic liquids of size 2212.   

230 ILC clearing temperatures 
(our dataset) 

271 ILC melting temperatures 
(our dataset) 

2212 ionic liquid melting temperatures 
(Venkatraman et al. [80]) 

2212 ionic liquid melting temperatures 
(Low et al. [72]) 

R2  0.67  0.66 0.67  0.74 
Mean Average 

Error  
21.3  14.4 33  29.8 

Root Mean 
Squared error  

29.5  22.3 45  39.8  

Fig. 6. Chemical structure of the 1(n/BF4) ILC.  

Table 3 
Predictions for the melting temperature of 1(8/BF4), made by the best- 
performing models trained on the small dataset of ammonium ILCs.  

Model Prediction (◦C) Error (◦C) 

CNN trained on ammonium ILCs  32.4  128.6 
MLP trained on ammonium ILCs  54.8  106.2  

Table 4 
Transition temperatures of 6 ILCs that were present in the ammonium dataset as 
well as the excluded 1(8/BF4), taken from Kuo et al [67]. Recorded melting 
temperatures are bolded and clearing temperatures are shown with a *. Note 
that the melting temperature of 1(8/BF4) is in the same range of the clearing 
temperatures of the other ILCs. Cr = Solid crystalline phase, Colh = hexagonal 
columnar liquid crystalline phase, Colr = rectangular columnar liquid crystalline 
phase, Iso = isotropic liquid phase. The ‘1′ and ‘2′ designations refer to different 
morphologies of the liquid crystalline phase–further elaboration on liquid 
crystal behavior is found in the aforementioned references. Note how 1(8/BF4) 
does not display any liquid-crystalline behavior, and thus, its melting temper
ature is significantly higher than the others, leading to poor prediction perfor
mance for it.  

Value of n in 1(n/BF4) Transition temperatures (◦C) 

8 Cr 38 Cr 43 Cr 161 Iso 
9 Cr 29 Colr2 155 Colh 173* Iso 
10 Cr 35 Colr1 59 Colr2 151 Colh 187* Iso 
11 Cr 38 Colr1 63 Colr2 141 Colh 192* Iso 
12 Cr 45 Colr1 87 Colr2 141 Colh 196* iso 
13 Cr 47 Colr1 90 Colr2 130 Colh 197* Iso 
14 Cr 53 Colr1 103 Colr2 134 Colh 196* Iso  
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learning using the ionic liquid melting temperature source model, 
except in the ammonium clearing temperature model trained on fin
gerprints. This can also be seen in Figs. 7 and 8. This trend is not un
expected, as training a source model on ILC data already teaches the 
neural network important structural information on the ILCs for the 
target task. However, while using the models to extrapolate to ILCs 
outside of the test domain, the models pre-trained on ILC properties may 
not necessarily outperform models pre-trained on the ionic liquid 
melting points, since models pre-trained on ILC properties may be 
overfitted on ILCs in the dataset, and for ILCs that have structural 
properties that differ from those in the ILC dataset, models pre-trained 
on ionic liquid melting temperatures may perform better. The reason 
the ammonium clearing temperature model does not follow this trend is 
unclear. In fact, there was negative transfer (where using pre-trained 
weights decreased performance) when transferring from ILC melting 
points to ammonium ILC clearing points, which is unexpected since the 
source domain of ILC melting points was not expected to be radically 
different from that of ammonium clearing points. It is not clear why this 
occurred, and negative transfer is a recent field of study in machine 

learning whose causes are an active area of investigation [81]. It may be 
that because the ILC melting temperature dataset contains ILCs that are 
not in the clearing temperature dataset, the neural network learns fea
tures that are inversely correlated or unrelated to clearing temperatures 
of the ammonium ILCs. However, this is merely speculative, and there 
could also be other stochastic processes that are influencing perfor
mance, which are currently unknown and may be subject to future 
studies. These exceptions to the trend reveal that intuition alone is not 
enough to definitively reveal which source models will be useful for a 
certain target task, and that it is useful to create as many source models 
as possible and test them individually to maximize perform
ance—despite negative transfer from ILC melting points, transfer 
learning still brought performance improvements for the ammonium 
clearing temperature dataset when pre-trained on ionic liquid melting 
points. 

With a few exceptions, CNNs appear to generally underperform 
compared to molecular fingerprints. Generally, when using molecular 
fingerprints, transfer learning appears to bring more improvements, and 
there are clearer differences in performance when using different source 

Fig. 7. Graph of model performances trained on datasets of ILCs of various cation types, with and without transfer learning. Transfer learning with molecular 
fingerprints yields greater improvements than with CNNs and has the best performance overall. 

Fig. 8. Graph comparing model performances trained on small-sized datasets of ammonium-based ILCs. For the ammonium-based ILCs, CNNs show greater per
formance differences between training with and without transfer learning than standard neural networks (Fig. 7). However, when comparing final scores for the 
ammonium ILCs, CNNs only outperform fingerprints in predicting clearing temperatures. 
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models. Furthermore, fingerprints lead to more desirable scores in 
almost all models. This result is unsurprising, and is in-line with the 
hypothesis that CNN models need larger data sets in order to learn 
chemical features. Furthermore, in our CNN models data augmentation 
was not used; data augmentation is a commonly used technique when 
training CNNs, where input images undergo certain transformations like 
a random rotation or reflection. This process allows CNNs to become 
more robust by learning features regardless of their initial orientation on 
the image, and was employed in the development of Chemception and 
Chemnet mentioned in Section 3. While data augmentation appeared to 
yield small increases in performance in this study, it was not employed 
due to its computational cost. The image processing during data 
augmentation would drastically slow down the time needed for the 
models to converge, and combined with the need to train on 20 different 
cross-validation shuffles for our mixed datasets, data augmentation 
became impractical. Despite this setback, one exception where CNNs 
slightly outperform molecular fingerprints is when predicting ammo
nium ILC clearing temperatures. This is surprising, as it was expected 
that CNNs would perform poorly universally. This may be because when 
preprocessing low-variance features of the fingerprint vectors, the 
amount of data points (30) is significantly smaller than the feature 
vector length (4636 columns), which causes overfitting. However, 
different fingerprint algorithms and different variance thresholds when 
removing low-variance columns were experimented with, which all 
yielded approximately the same or worse performance, so this is not a 
particularly strong explanation. Another possible explanation is that 
because many ammonium ILCs in the datasets had a very large molec
ular size, as shown in Fig. 9, and emergent properties like transition 
temperatures start to depend on the overall shape of the ions, computer 
vision techniques, such as CNNs, are more adept at capturing them. 
Further investigation on the efficacy of CNNs could be in this area, and it 
may be worth testing CNN performance on small datasets of other 
complex compounds beyond ILCs to see if CNNs perform better for 
complex molecules overall. Currently, however, the exact mechanisms 
are unclear, especially since CNNs underperformed at all the other tasks. 
Overall, while CNNs underperformed compared to molecular finger
prints, this is a rather expected outcome, given how CNNs usually need 
larger datasets to learn raw chemical and structural properties; if large 
ILC datasets become available containing tens of thousands of data 
points, the comparative performance of CNNs may be worth revisiting. 

As an ablative study, the effect of image blurring, which decreases 
the spatial resolution of the images, is investigated on model prediction 
power. Although common sense would dictate that blurring the image 
would decrease predictive power, from a chemical standpoint, this may 
be a compelling study because blurring may force the models to learn 
holistic structures of the molecules instead of analyzing individual 
atoms and bonds. In this study, a Gaussian blur of different kernel sizes is 
applied to the images using the OpenCV python library [82] and then 
trained on the ammonium ILC melting temperature task without transfer 
learning. The value of sigma of the Gaussian blur is calculated as being 
dependent on the kernel size n, using Equation (1): 

σ = 0.3
( ̅̅̅̅̅̅̅̅̅̅̅

n − 1
√

− 1
)

+ 0.8 (1) 

The performance metrics are displayed in Table 5. 
It is clear that Gaussian blurring monotonically decreases model 

performance, negating the earlier hypothesis regarding learning holistic 
structures. Thus in order for a model to perform effectively, the images 
should keep a high resolution and display as many details about the 
molecule as possible. 

Finally, we compare the differences in performance of images 
created from the MolstoGridImage function in rdkit with the image 
descriptors introduced in Chemception, which will be referred to as 
“chemcepterizations”, which we copy exactly as described in the 
Chemception study by Goh et al. [73] In order to “chemcepterize” a 
molecule, the 2-D coordinates of the atoms are plotted on a dark back
ground: pixels where atoms are located are given a value equal to the 
atomic number of the atom, and bonds between atoms are drawn as 
lines, with pixels representing a section taking a value equal to 2. This is 
because 2 is the atomic number of helium, which is not present in any of 
the molecules in the datasets used, so the number 2 can be used as a 
unique representation for the chemical bonds. Chemcepterized images 
of size 50x100 (the same as for MolstoGridImage) were created and used 
for the ammonium tasks. Overall, these chemcepterized images struggle 
to match the performance of MolstoGridImage. As an example, perfor
mance metrics for the ammonium ILC melting temperature task is 
included in Table 5 in the Supplementary Material. This is unexpected 
but not too surprising, as MolstoGridImage contains approximately the 
same amount of chemical information as chemcepterizations. Images 
created by MolstoGridImage are similar to chemcepterized images in 
that in MolstoGridImage, different elements in the molecules are given a 
unique color, analogous to different atomic numbers used by chem
ception. MolstoGridImage also draws double bonds, unlike chemcepte
rization which only uses the number 2 for all bonds. The only 
information that chemcepterization includes that MolstoGridImage does 
not is the exact atomic numbers, as MolstoGridImage picks an arbitrary 
color and thus an arbitrary value for different elements, yet this 
advantage may end up being irrelevant if the goal of the model is to learn 
to differentiate molecular structures. Futhermore, chemcepterizations 
may suffer from sparsity more than MolstoGridImage. For example, if an 
anion consists of only one atom, such as bromide, then it is represented 
by one pixel in its entire size 50x50 image representation, increasing the 
model’s risk of overfitting. In contrast, MolstoGridImage creates a 
traditional structural diagram of the molecule, where atoms are repre
sented by their chemical symbol and thus take up more space on the 
image. At the same time, the inferior performance of chemcepterizations 
may be because the 50x100 sizes of the images are too small, negatively 

Fig. 9. Several different cations of ammonium-based ILCs. The large size and complexity of these cations may be a driving factor for the superior performance of 
CNNs over molecular fingerprints. 

Table 5 
Different filters are used on the ammonium ILC images before being used for to 
the melting temperature task. Gaussian blurring is seen to monotonically 
decrease performance.  

Kernel Size (n × n) No filter (baseline) 3 5 7 9 

R2  0.69  0.55  0.43  0.39  0.36 
Mean Squared Error  10.0  11.7  13.7  14.2  14.5 
Mean Average Error  12.4  14.9  16.6  17.3  17.8  
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affecting the resolution as too many atoms are crammed into a few 
pixels. However, increasing the image size and therefore resolution did 
not improve performance, so this hypothesis is not particularly 
compelling. 

5. Conclusion 

This study is the first known example where transfer learning has 
been conducted with CNNs to aid in the prediction of one experimental 
property using data of another experimental property, applied to small 
dataset sizes realistically encountered in chemistry problems. While 
there was more difficulty in yielding very large differences in model 
performance through transfer learning with CNNs than with molecular 
fingerprints, there were still concrete improvements when using CNNs 
that hint at the possibility of utilizing transfer learning more effectively 
in other studies. Furthermore, molecular fingerprints have been 
demonstrated to reliably yield significant performance improvements 
through transfer learning, and the results of this study show that 
different transition temperatures have “related” domains that are 
transferrable to each other. Thus, it may be worthwhile to investigate 
the efficacy of transfer learning on other transition temperatures, like 
glass transition temperatures and decomposition temperatures, for 
which data is scarcer. 

There are several takeaways on improving the predictive abilities of 
CNNs. One is the need for computing power; image processing methods 
like data augmentation can drastically slow down the training process 
by an order of magnitude, at which point the availability of computa
tional resources becomes a bottleneck. Small dataset sizes can also lead 
to increase instability, necessitating the need to repeat cross-validation 
many times. This study did not use data augmentation for these rea
sons. Furthermore, multi-task transfer learning was not employed to first 
predict computable chemical descriptors of the chemicals in the dataset 
before fine-tuning to the target tasks, as described in Chemnet. This is 
because the authors were interested in the ability of CNNs to learn raw 
transferable features between experimental properties without the aid of 
engineered descriptors. It may be possible that using such a technique, 
combined with transfer learning between different experimental prop
erties, would bring CNN performance to be on-par with fingerprints. 
However, this is not done easily–for this specific study, this would be 
best implemented with a large dataset of thousands of different unla
beled organic cations and anions for pre-training, which to the authors’ 
knowledge does not yet exist. 

While this study investigated applications of CNNs and molecular 
fingerprints, current paradigms in computational chemistry/materials 
science are geared towards applications of Graph Convolutional Net
works (GCNs), with the emergence of MoleculeNet, a quantitative 
structure property relationship (QSPR) study which revealed the supe
rior performance of several different GCN algorithms over molecular 
fingerprints [83]. When applied to ILC transition temperature tasks, 
GCNs may have mixed performance, especially GCN algorithms that 
involve analyzing the radial paths in a molecular graph. An example of 
this is that developed by Duvenaud, et al [84]. This is because they may 
have difficulty in differentiating compounds with the same core struc
ture but varying lengths of alkyl chains, a problem that appeared when 
attempting to use circular fingerprints on the ILCs in this study. How
ever, GCNs are a very active field of research and there are various 
approaches to molecular graph convolutions, so future studies could still 
investigate their performance on ionic liquid crystal property prediction 
tasks. GCN and CNN performances both rely on large datasets to learn 
raw chemical features, and their performances will likely improve 
relative to molecular fingerprints in the future as dataset sizes grow. 
While it is unclear whether CNNs will catch up to molecular fingerprints 
in the future, there may be a niche for CNNs in learning properties of 
large, complex molecules if it is true that they perform better than 
molecular fingerprints in such tasks. 
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Synthesis of Guanidinium-Sulfonimide Ion Pairs: Towards Novel Ionic Liquid 
Crystals, Beilstein J. Org. Chem. 9 (2013) 1093–1101. 

[40] S.-C. Luo, S. Sun, A.R. Deorukhkar, J.-T. Lu, A. Bhattacharyya, I.J.B. Lin, Ionic 
Liquids and Ionic Liquid Crystals of Vinyl Functionalized Imidazolium Salts, 
J. Mater. Chem. 21 (6) (2011) 1866–1873, https://doi.org/10.1039/C0JM02875D. 

[41] T. Mukai, M. Yoshio, T. Kato, H. Ohno, Self-Assembled N-Alkylimidazolium 
Perfluorooctanesulfonates, Chem. Lett. 34 (3) (2005) 442–443, https://doi.org/ 
10.1246/cl.2005.442. 

[42] T. Mukai, M. Yoshio, T. Kato, M. Yoshizawa, H. Ohno, Anisotropic Ion Conduction 
in a Unique Smectic Phase of Self-Assembled Amphiphilic Ionic Liquids, Chem. 
Commun. 10 (2005) 1333–1335, https://doi.org/10.1039/B414631J. 

[43] T. Mukai, M. Yoshio, T. Kato, M. Yoshizawa-Fujita, H. Ohno, Self-Organization of 
Protonated 2-Heptadecylimidazole as an Effective Ion Conductive Matrix, 
Electrochemistry 73 (8) (2005) 623–626, https://doi.org/10.5796/ 
electrochemistry.73.623. 

[44] J. Sakuda, M. Yoshio, T. Ichikawa, H. Ohno, T. Kato, 2D Assemblies of Ionic Liquid 
Crystals Based on Imidazolium Moieties: Formation of Ion-Conductive Layers, New 
J. Chem. 39 (6) (2015) 4471–4477, https://doi.org/10.1039/C5NJ00085H. 

[45] H. Shimura, M. Yoshio, K. Hoshino, T. Mukai, H. Ohno, T. Kato, Noncovalent 
Approach to One-Dimensional Ion Conductors: Enhancement of Ionic 
Conductivities in Nanostructured Columnar Liquid Crystals, J. Am. Chem. Soc. 130 
(5) (2008) 1759–1765, https://doi.org/10.1021/ja0775220. 

[46] G.F. Starkulla, S. Klenk, M. Butschies, S. Tussetschläger, S. Laschat, Towards Room 
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