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The formation of dendrites on the anode surface of metal air batteries, such as the Li-air battery, causes sig-
nificant decreases in performance over the lifetime of the battery and poses safety concerns due to short cir-
cuiting. Predictive computational methods are used to investigate novel electrolyte materials which will reduce
dendrite growth, in particular liquid crystal materials for Li-air electrolytes. The literature on liquid crystal
electrolytes was surveyed for materials data and used to develop a training set of liquid crystal compounds. These
compounds were then used as a knowledge base to develop property structure relations for the clearing and
melting temperature for liquid crystals, which are a critical design parameter for the design of novel electrolytes.
This was accomplished using standard artificial neural networks trained on molecular fingerprints and con-
volutional neural networks (CNNs) trained on compound images. Transfer learning was also demonstrated to
boost predictive performance through pre-training neural networks on larger pre-existing compound datasets.
The results show that CNNs achieve comparable accuracy compared to molecular fingerprints, and that both
multilayer perceptrons and CNNs can benefit from transfer learning. This study is the first where transfer
learning in CNNs aids in the prediction of one experimental property in a small data regime, using data of
another experimental property.

1. Introduction

Metal air batteries, such as lithium air (Li-air) batteries, promise
increased energy density and capacity compared to current battery
systems, such as lithium ion (Li-ion) batteries. Li-air batteries have the
potential to provide practical energy densities equivalent to gasoline
(1,700 Wh/kg), and an order of magnitude greater than Li-ion batteries
[1]. Li-air batteries are currently in the research and development stages
for use as primary and secondary systems for portable and military ap-
plications and electric vehicles. Currently, state of the art research on Li-
air batteries has demonstrated the reversibility of the system and has
focused on modifying the materials and cell design to increase specific
capacity and stability. Some of the key fundamental challenges in Li-air
batteries include [2]: the formation of dendrites on the Li anode surface
during cycling, increasing the electrochemical activity of the air cathode
for both oxygen reduction and evolution reactions, and increasing the
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concentration and mobility of Oy and Li" in the electrolyte. Together
these challenges and others have limited the capacity of Li-air batteries
and their cycle life.

Dendrite growth is a serious concern for Li-air batteries [2]. The
growth of dendrites reduces the Li available for the electrochemical
reactions and increases safety concerns due to short circuiting. Dendrite
growth is a pernicious problem for electrochemical applications besides
Li-air batteries, and has been observed for other battery chemistries,
such as Li-ion and NiCd, and for many metal and electronic fabrication
processes, such as solidification [3,4] and electroplating [5,6]. Research
into methods for suppressing dendrite growth has considered everything
from operating parameters [7,8] and novel physical separators [9-11],
to new electrode [12-14] and electrolyte materials [15-18]. The success
of any of these strategies has the potential to greatly increase the safety
of Li-air batteries and increase performance by reducing Li loss with
cycling. In this work we focus on the development of novel electrolyte
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materials as a possible solution to dendrite issues. Research into new
electrolyte solutions for Li batteries typically involves experimental trial
and error of possible materials, which can be a costly and time
consuming process limited to known and available materials. Because of
this, researchers have developed methods in which predictive machine
learning models are trained to predict specific properties of candidate
materials, which can be useful for screening a large dataset of materials
for potential electrolytes [19-24]. There are several previous studies
using this general method, which vary in the material database used, the
specific material property that is optimized, and the types of machine
learning models used [19,20,25-27]. Such studies include Ahmad et al
[19], in which inorganic solid materials are screened for mechanical
properties using a crystal graph convolutional network, and Ishikawa et.
Al [27] in which coordination energies between different electrolyte
solvents and ions are modeled using techniques including multiple
linear regression and LASSO regression. To further this effort, large
databases of battery-specific materials have been created [20,28-30],
calculated from first principles calculations or by extracting from the
literature.

In this study, we expand on previous research into machine learning
and electrolytes, to consider the use of ionic liquid crystals (ILCs) for the
electrolyte of Li-air batteries. As discussed in this paper, computational
modeling of mass transport in Li-air batteries shows the potential for
controlled mass transport to suppress dendrite growth [31]. ILCs are a
class of materials that inherently demonstrate anisotropic properties and
have the potential to be used for battery electrolytes [17,32].; however,
as they are a smaller specialized subset of ionic liquids, which display a
liquid crystal phase, there are not yet studies in the literature where
machine learning is used to screen ILCs as battery electrolyte candidates,
mostly because of a lack of high-volume data in the literature. Thus, in a
step toward this goal, this study explores machine learning models that
can reliably predict ILC properties in small-data regimes. In this work, a
predictive computational framework is presented utilizing materials
informatics for identifying promising ILCs as electrolyte solutions. By
utilizing transfer learning, we extend the predictive capabilities of deep
learning models on material properties relevant to new electrolyte
development and small materials datasets.

2. Theory

Dendrite growth near the anode-electrolyte interface of Li-air bat-
teries is a strong function of the mixing near the interface. Increasing the
transport of Li ions through the electrolyte should suppress dendrite
growth and extend the lifetime of Li-air batteries. To explore this theory
smoothed particle hydrodynamics (SPH), a Lagrangian particle based
modeling method, is used to model the physics of dendrite growth near
the anode-electrolyte interface [31,33,34]. Using a previously devel-
oped SPH model of dendrite growth [31], the model is applied to
investigate the effects of anisotropic transport properties on the growth
rate and morphology of dendrites. As can be seen in Fig. 1, anisotropic
diffusion (Dy>Dy and D,<D,) decreases the rate of dendrite growth
compared to isotropic diffusion.

Liquid crystals inherently have anisotropic transport properties in a
liquid crystal phase (nematic, smectic, etc.) where their rod-like mole-
cules are positionally ordered, which may allow for suppressed dendrite
growth. Depending on the specific liquid crystal there will be a transi-
tion temperature between the phases, which will dictate the operating
temperatures where this ordered, nematic phase will exist. To utilize this
unique property of liquid crystals to induce anisotropic properties
within an electrolyte, the transition temperatures of the liquid crystal
would need to fall within the operating temperature range of the battery.

Using this basic theory, materials informatics techniques are used to
explore the use of ILCs as possible electrolyte solutions for Li-air batte-
ries. In particular, artificial neural networks are used to map structural
features of ILCs to their transition temperatures. Artificial neural net-
works are a machine learning algorithm, where features of a dataset
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Fig. 1. Dendrite growth over time for several cases of isotropic and anisotropic
diffusion where D, and D), refer to the diffusion rate through (Dy) the electrolyte
and across the anode surface (D,).

(such as structural features of relevant compounds) are mapped to an
output space, which in this study is the ILC clearing and melting tem-
peratures. This is done through successive forward-propagation steps
and back-propagation steps—in forward propagation, features are
passed as linear combinations to several nodes in a hidden layer, which
then are linear combinations of the other nodes in the next hidden layer,
etc. until a layer of nodes gets passed to one output value. Back propa-
gation seeks to fit the neural network to the data by minimizing an error
function like root-mean-squared-error (RMSE), which is done through
updating parameters by calculating their derivatives of the cost func-
tion, a process known as gradient descent.

3. Methods

In this study, ILCs, particularly compounds that consist of an organic
cation and an anion, are considered for Li-air electrolytes. Neural
network models were used to predict clearing and melting temperatures,
two relevant properties for electrolyte applications. The clearing tem-
perature is a transition temperature between the isotropic liquid phase
and the anisotropic liquid crystal phase, while the melting point is the
transition temperature at which the ILC transitions during heating from
a solid crystalline state to either a liquid crystal phase or an isotropic
liquid, if there is no liquid crystal phase [32]. In our study, an ILC was
still classified as an ILC even without a recorded liquid crystal phase, as
long as it was included in other studies in tandem with other ILCs and
had a similar structure. Two clearing temperature datasets were used,
for which separate neural network models were developed: a larger
mixed dataset of 230 clearing temperatures of various different cation
types (imidazolium, guanidium, morpholinium, etc.), and a subset of
that dataset consisting of 30 ammonium ILCs. Two melting temperature
datasets were also used: a large set of 271 melting temperatures of ILCs
of various cation types, as well as a subset of this dataset that consisted
all the ammonium-based ILCs, containing 39 melting temperature data
points, for which separate models were developed. One of the ammo-
nium ILCs in the mixed dataset was not included in the ammonium
dataset because the models consistently yielded inaccurate predictions
for it, which will be elaborated on in the next section. To the authors’
knowledge, there is no publicly available dataset containing a large
amount of ILCs, so the datasets used were created by manually searching
through publications from the literature [35-68]. Transition tempera-
ture data is provided in the Supporting Information.

Because of the small sizes of the datasets, in order to create a
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predictive model, transfer learning was utilized. Transfer learning is a
machine learning framework commonly used when the dataset in
question (known as the “target” dataset) is too small of a size for
developing an accurate model. In this study, in order to perform transfer
learning, a neural network is first trained on another larger “source”
dataset of a similar domain to create a “source” model, in a process
called “pretraining”, and then re-trained on the smaller target dataset in
question, in a process known as “fine-tuning” [69]. Because the model
was pre-trained, it can find a more accurate fit for the target dataset.
Transfer learning was explored for this application by using different
source tasks for the two different properties: for all our models, melting
temperatures of ionic liquids were used to train the source model for
fine-tuning afterwards. Melting temperature was used as the training
source because the database contained 2212 data points for melting
temperature [70]. For the clearing temperature models (for both the
mixed and ammonium datasets) another source model was created by
taking the model trained on the ionic liquid melting temperatures and
fine-tuning it on the mixed dataset of ILC melting temperatures. Fig. 2
shows a schematic of the different source models used to train the target
ILC clearing temperature model.

A similar method was used for training a model to predict ILC
melting temperatures, creating a source model by taking a model trained
on the 2212 jonic liquid melting temperatures and fine-tuning it on the
mixed ILC clearing temperatures. The schematic for the different source
models created to train a neural network on ILC melting points is shown
in Fig. 3. Note that ILCs that were already in the collection of 2212 ionic
liquid dataset were not included in our collection of 271 melting points.

For all datasets, two different types of models were used, multilayer
perceptrons (MLPs) trained on molecular fingerprints of the ILCs, and
convolutional neural networks (CNNs) trained on compound images,
whose architecture and hyperparameters were determined empirically
through intuition and trial-and-error. While generally hyperparameter
search methods like grid search and random search are used for opti-
mization, it was found that such methods were too computationally
expensive for this study, given the need for many cross-validation (CV)
repeats we performed, as will be explained in later sections. Thus, it was
decided that using intuition would more suitably guide the study toward
finding good hyperparameters. All models were developed using Keras
with a TensorFlow backend [71]. The models’ performance with and
without transfer learning using both MLPs and CNNs was compared. The
focus of interest in this investigation centered around the applicability of
transfer learning with small datasets using CNNs. Transfer learning for
molecular property prediction has already been well-documented in the
literature, such as in Yamada et al [69] where improvements in per-
formance was achieved by searching through a pre-made collection of
candidate source models. In the ILC property prediction field, the use of

2212 lonic liquid

Computational and Theoretical Chemistry 1205 (2021) 113443

“learned” representations via convolutions, whether on images or graph
representations, is novel, as all published studies have used computable
descriptors as neural network features. The most recent related study,
performed by Low et al [72], compares the effectiveness of both ECFP4
and Coulomb matrix descriptors in ionic liquid melting point prediction.
Such descriptors have demonstrated widespread success at prediction
tasks, and are part of a trend in which hand-engineered features created
by manually selecting functional groups to be represented as features are
being substituted for more efficient featurizations like the aforemen-
tioned. Other molecular representations include using convolutions to
“learn” suitable feature representations from scratch, which theoreti-
cally can be even more effective. Following this paradigm shift, CNNs
were investigated because they have already shown potential in struc-
ture-property relations tasks in the drug discovery field, such as with
Chemception, a CNN trained on images of drug-like molecules to predict
properties like solvation energies, HIV activity, and toxicity [73].
Chemception was followed by Chemnet, where a CNN was first trained
on 500,000 different molecules to predict values for their calculated
molecular descriptors in a multitask setting, in order to learn general
chemical trends, and then fine-tuned to predict a drug-relevant property
using a smaller dataset [74]. There have been some other studies
investigating the efficacy of transfer learning to increase CNN perfor-
mance when training on molecular images, where source models have
been well-established pre-trained models or were developed by training
a large molecular database on easily computable properties [75,76].
However, in a materials science setting, it is useful to investigate
whether transfer learning can be employed where the source task is one
experimental property, and the target task is another, as neither the
source nor target properties are guaranteed to have a large amount of
experimental data in the literature. Furthermore, it is also worth
investigating whether accurate CNN models can be created using
extremely small datasets of a few hundred entries or less—to the au-
thors’ knowledge, the smallest molecular dataset that CNNs have been
applied on so far is the Alpha-2a dataset containing 203 molecules [77].
There is some research on applications of CNNs on identifying liquid
crystals, such as the study by Sigaki et al. [78] in which CNNs are used to
identify the liquid crystal phase of microscope images of liquid crystals,
but to the authors’ knowledge, none have investigated them from a
molecular property prediction framework that would allow for
screening of new materials. There is potential in this area-if interpret-
ability tools for CNNs are developed further, CNNs as molecular feature
extractors may be used to highlight important substructures in a com-
pound image that contribute to its predicted properties, yielding valu-
able structure-property insights.

271 ILC melting
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—— Pre-training
230 or 30 ILC 230 0r 30 ILC 230 or 30 ILC = Fine-tuning

clearing points clearing points

Model 1 Model 2

clearing points

No transfer
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Fig. 2. Schematic of source models used for learning clearing temperatures-all paths starting from the untrained model to one of the bottom models (labeled Model 1,
Model 2, or Model 3) represent how the neural network was pre-trained on different datasets before being trained on the representative melting temperature dataset.
Two clearing temperature datasets were fitted: one consisting of a diverse array of 230 ILCs, and one consisting of 30 different ILCs, which is a subset of the mixed
dataset consisting of ammonium-based cations. A newly-initialized model was trained on 2212 ionic liquids to create one source model. Another source model was
created by training the ionic liquid source model on the dataset of ILC melting temperatures.
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Fig. 3. Schematic of source models used to fit a neural network to ILC melting points—all paths starting from the untrained model to one of the bottom models
(labeled Model 1, Model 2, or Model 3) represent how the neural network was pre-trained on different datasets before being trained on the representative melting
temperature dataset. Two melting point datasets were fitted, one of size 271 consisting of a ILCs of diverse cation bases, and a subset of that dataset consisting of
ammonium-based cations. One source model was created by training a newly-initialized model on 2212 ionic liquid melting points. Re-training that model on ILC

clearing temperatures yielded another source model.

3.1. Multilayer perceptron

The performance of deep neural networks using molecular finger-
prints was considered first. For all models, an architecture that consisted
of 3 hidden layers of (100, 50, 20) neurons was used, using dropout with
probability 0.1 only on the first hidden layer, and L2 regularization with
A =0.001 on all hidden layers. Rectified Linear Unit (ReLu) was used as
an activation function for the hidden layers. ECFP, MACCS, Atom Pair,
rdkit, and Topological Torsion fingerprints were all explored using the
Xenonpy python library [69]. It was found that the circular fingerprints
were unusable, regardless of their radius, as several ILCs that were
similar in structure (e.g. the only structural differences between some
ILCs was the length of side carbon chains) had the same circular fin-
gerprints. To achieve optimal performance, a concatenation of Atom
Pair and Topological Torsion fingerprints were used. Low-variance
features were removed in order to prevent overfitting. When perform-
ing transfer learning, one dataset (i.e. the target dataset, or one of the
source datasets) was selected to have its columns with no variance
removed, and the same features in the other datasets were removed
accordingly. It was necessary to experiment with the datasets to find
low-variance features to remove; for the mixed datasets, it was found
that removing the low-variance features of the target dataset and then
removing the corresponding source dataset features yielded superior
performance. For the model trained on ammonium ILC clearing points,
removing the no-variance features of the ionic liquid data yielded su-
perior performance over removing low-variance features of the ammo-
nium clearing point data. For the model trained on ammonium ILC
melting temperatures, removing no-variance features (features where all
the values are the same) of the ammonium melting point dataset yielded
superior performance.

When training the model on the ionic liquid melting point dataset,
the Adam optimizer was trained with a learning rate of 0.0001 for 200
epochs. When fine-tuning on the mixed datasets, the model was trained
for 400 epochs using a learning rate of 0.001. When fine-tuning on the
ammonium datasets, the dataset was trained for 300 epochs, again with
a learning rate of 0.001. A batch size of 32 was used for all datasets; for
learning ammonium clearing temperatures, where the dataset size was
30, this resulted in the model using the entire dataset in one batch. When
performing fine-tuning, all layers were left trainable, as freezing layers
did not lead to significant improvements. For the mixed dataset models,
20 iterations of 5-fold cross-validation were repeated in order to achieve
stability and scores were calculated by averaging the r2, MAE, and RMSE
scores of all the folds across all 20 runs. The 20 repetitions were
necessary because of the high variance of the models; the variance
originated from both the small dataset size of the ILCs and the fact that
there were “clusters” of similarly structured ILCs that originated from

the same papers, which caused cross-validation scores to differ across
different runs; while the process of repeating cross-validation 20 times
was computationally expensive, it was found that the cross-validation
scores of any model would consistently average to the same values,
and so performance could be assessed reliably. For the smaller datasets
of ammonium clearing and melting temperatures, leave-one-out cross-
validation (LOOV) was used, repeated three times, and the average
MAE, RMSE, and r? scores were calculated. It was found that when
creating pre-trained source models for the ammonium ILC tasks, neural
networks with the same architecture and hyperparameters trained on
the same dataset could yield models that had varying effectiveness when
used for transfer learning, due to randomness from shuffling data. Thus,
different pre-trained models were created, and the scores recorded were
the scores produced when using pre-trained models that yielded the
optimal performance (i.e. had the lowest CV error and there was low
variance in the 3 different CV scores).

3.2. Convolutional neural network

For the CNN, each ionic liquid and ILC was represented by a side-by-
side concatenation of two 50x50x3 RGB images: one of the cation and
the other of the anion, so that each compound was represented in total
by a 50x100x3 image. These images were created through the rdkit
python library using the MolstoGridImage function [79]. These image
descriptors were chosen over the “chemception” image descriptors used
by Goh et al. [73] because MolstoGridimage performed better. The
differences between the two will be elaborated on in the Results and
Discussion section. Different CNN architectures were used for the
different datasets. For the mixed ILC datasets, the CNN architecture is as
shown in Fig. 4.

For the ammonium datasets, fewer layers and parameters were
employed in order to prevent overfitting, as shown in Fig. 5:

L2 regularization with A = 0.3 and dropout with probability 0.3 was
used on the fully connected layers. Hidden layers used the ReLu acti-
vation function. Convolutional layers used “same” padding, and Max-
pooling layers used a stride length, (5x5), that was the same as the
pool size. Data augmentation (transformations such as rotating each
cation and anion image before concatenation) performed on each cation
and anion image pair before concatenation was not used because it
proved to be too computationally expensive, although it lead to a small
increase in performance.

When performing transfer learning, a trial-and-error process of
experimenting with freezing different layers revealed that for the mixed
melting temperature datasets, the best performance was achieved by
freezing the first convolutional layer while training all source models,
while for the smaller datasets using the smaller architectures as well as
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Fig. 4. CNN architecture used for the mixed ILC datasets of 230 clearing temperature data points and 271 melting temperature data points. For each ILC, a cation
image was concatenated with an anion image before being fed into the network. Architecture hyperparameters were determined by trial-and-error and performances

were assessed with repeated 5-fold cross-validation.
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Fig. 5. CNN architecture used for the small ILC datasets of 30 clearing temperature data points and 39 melting temperature data points. A smaller number of layers
were necessary to prevent overfitting. Performances were validated using leave-one-out cross-validation.

the mixed clearing temperature dataset, leaving all layers trainable
yielded the best performance. The source model trained on the ionic
liquids was trained using the Adam optimizer for 40 epochs with a
learning rate starting at 0.001 that decayed by a factor of 0.1 every 5000
steps. A constant learning rate of 0.001 was used when fine-tuning on
the mixed datasets, training for 500 epochs on ILC melting temperature
data and 1000 epochs on ILC clearing temperature data. When fine-
tuning to the ammonium datasets, the model was trained for 300
epochs. Batch sizes used were the same as in the multilayer perceptron
models. Again, performance was validated using 5-fold CV repeated 20
times for the larger datasets, and LOOV repeated 3 times for the smaller
datasets.

4. Results and Discussion

The performance of models trained on the mixed clearing tempera-
tures is shown in Table 1. Performances of mixed melting temperatures,
ammonium clearing temperatures, and ammonium melting tempera-
tures are provided in the Supplemental Information.

Our models yield reasonable test performances; while our datasets
had a relatively small size and contained a diverse selection of cation
types, all MAEs were less than 30°. Our manually crafted ILC dataset has
not been investigated elsewhere in the literature, so comparing our
scores to a baseline is impossible. Nevertheless, it is possible to make an
approximate comparison with other studies on ionic liquids. Namely,
regression metrics of best performing models on the mixed ILC tasks
from this study may be compared with scores found from other studies
on predicting ionic liquid melting temperatures using the dataset of
2212 ionic liquids that was employed as a source model in this study.
Our datasets are similar to this ionic liquid dataset in that both contain a
diverse distribution of core structure types (e.g. imidazolium, pyr-
idinium, etc). Thus, it can be expected that satisfactory performance
metrics for the mixed ILC datasets should be comparable to those of the
ionic liquid dataset. Following this, Table 2 presents a comparison of
performance metrics. The R? scores of our study are very close to the top

Table 1

Performances of models trained on the large dataset of clearing temperatures,
achieved through averaging the performance of all the folds after 5-fold cross-
validation repeated 20 times. MAEs and RMSEs are in degrees Celsius. Both
CNNs and MLPs were employed, and the CNN architecture is shown in Fig. 4.
Performances of both methods were evaluated without transfer learning as well
as with transfer learning having pre-trained on ionic liquid melting temperatures
and ILC melting temperatures.

TRAINING TESTING
Model RMSE R? RMSE R?
(MAE) (MAE)
CNN without transfer 5.6 (4.6) 0.99 32.7(23.8) 0.59
CNN with transfer from ionic liquid 6.0 (4.8) 0.99 32.3 (24.6) 0.60
model
CNN with transfer from ILC melting 5.4 (4.3) 0.99 31.5(23.5) 0.62
temperatures
Fingerprints without transfer 6.2 (4.7) 0.99 34.1 (23.3) 0.55
Fingerprints with transfer from ionic ~ 7.1(5.8) 0.98 31.1(21.9) 0.63

liquid model
Fingerprints with transfer from ILC
melting temperatures

9.9 (8.52) 0.96 29.5(21.3) 0.67

R? scores of Venkatraman et al. [80], the original study that produced
the ionic liquid dataset. Our metrics are worse than those of Low et al.
[72], who used ECFP circular fingerprints to predict ionic liquid melting
temperatures. The reason that our study did not attain the same per-
formance metrics could be because ECFP fingerprints were ineffective
when tried on our dataset, and so different methods had to be imple-
mented. For this reason, a direct comparison cannot necessarily be made
between our ILC dataset and the ionic liquid dataset. Nevertheless, it is
noteworthy that overall our study managed to achieve scores around the
same range as what was achieved with a dataset almost a magnitude
larger.

Regression metrics appear to be more favorable for the ammonium
datasets. However, it is not certain that the models trained on the
ammonium datasets necessarily are very useful; the majority of the
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Table 2
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Performance metrics of our dataset with that of other studies on the dataset of 2212 ionic liquids. The results of this study, which employed a datasets of size 230 and
271 ILCs, are loosely comparable to the results found in the literature on predicting ionic liquids of size 2212.

230 ILC clearing temperatures
(our dataset)

271 ILC melting temperatures
(our dataset)

2212 ionic liquid melting temperatures
(Venkatraman et al. [80])

2212 ionic liquid melting temperatures
(Low et al. [72])

R? 0.67 0.66 0.67 0.74
Mean Average 21.3 14.4 33 29.8
Error
Root Mean 29.5 22.3 45 39.8
Squared error
cations in the dataset have very similar structures, which will likely lead Table 3
able

to high bias when attempting to generalize to other ammonium ILCs,
though the high performance metrics still indicate good accuracy when
extrapolating to similarly structured ILCs. The training errors for the
models trained on mixed datasets are all very low, which likely indicates
overfitting. However, increased regularization and decreasing the
number of model parameters techniques did not decrease the training
error significantly and did not yield significant performance
improvements.

In the ammonium datasets, one of the ILCs, 1,1,1-trialkyl-3,4,5-trial-
kyloxyanilinium tetrafluoroborate 1(8/BF4), whose structure is shown
in Fig. 6, was not included in the ammonium dataset. Only its melting
temperature (161 °C) was found in the literature, which the ammonium
models consistently gave poor predictions for, as shown in Table 3. The
reason for this under prediction becomes apparent when inspecting
literature data from Kuo et. Al [67] in Table 4. When comparing the
transition temperatures of 1(8/BF,4) with the other ILCs in the ammo-
nium dataset whose structure only differed by alkyl chain length in the
cation, it appears that crystal transition temperatures of 1(8/BF4) as
well as the aforementioned model predictions are close to the melting
temperatures of the other ILCs, but not the actual melting temperature of
1(8/BF,) itself. In fact, the melting temperature of 1(8/BF4) is anoma-
lously high compared to the other ILCs. The model naturally extrapo-
lated that the melting temperature of 1(8/BF4) would be close to the
other melting temperatures, so its melting point prediction for 1(8/BF4)
ended up in the same range as its crystal transition temperatures and far
away from its true melting temperature. From merely inspecting the
literature data in Table 4, it can be theorized that the mechanism behind
melting in 1(8/BF,) is closer to the mechanism behind clearing than
melting in the other ILCs because their temperatures are so close
together, though the reason why such chemical differences arise is un-
known. Had 1(8/BF4) not displayed such anomalous behavior and
exhibited a liquid crystal phase in place of the two solid crystal phases it
transitions to at 38 °C and 43 °C, it would have a melting point of either
38 °C or 43 °C. Then, model predictions would be more in-line. Overall,
predictive models trained on literature data may not be robust against
cases of ILCs that exhibit deviant thermotropic behavior, which is a
problem that could also occur for predicting clearing temperatures,
because there could also be ILCs with anomalous clearing temperatures
that models may not be robust against. This is unlikely to be a fault in

Structure of 1(n/BF))

CH,(CH,)_,0

CH,(CH,) 0

CH,(CH,) .0

Fig. 6. Chemical structure of the 1(n/BF,4) ILC.

Predictions for the melting temperature of 1(8/BF4), made by the best-
performing models trained on the small dataset of ammonium ILCs.

Model Prediction (°C) Error (°C)

CNN trained on ammonium ILCs 32.4 128.6

MLP trained on ammonium ILCs 54.8 106.2
Table 4

Transition temperatures of 6 ILCs that were present in the ammonium dataset as
well as the excluded 1(8/BF,), taken from Kuo et al [67]. Recorded melting
temperatures are bolded and clearing temperatures are shown with a *. Note
that the melting temperature of 1(8/BF,) is in the same range of the clearing
temperatures of the other ILCs. Cr = Solid crystalline phase, Col,, = hexagonal
columnar liquid crystalline phase, Col, = rectangular columnar liquid crystalline
phase, Iso = isotropic liquid phase. The ‘1’ and ‘2’ designations refer to different
morphologies of the liquid crystalline phase-further elaboration on liquid
crystal behavior is found in the aforementioned references. Note how 1(8/BF,4)
does not display any liquid-crystalline behavior, and thus, its melting temper-
ature is significantly higher than the others, leading to poor prediction perfor-
mance for it.

Value of n in 1(n/BF4) Transition temperatures (°C)

8 Cr 38 Cr 43 Cr 161 Iso

9 Cr 29 Col,, 155 Col,, 173* Iso

10 Cr 35 Col,; 59 Col,» 151 Col;, 187* Iso
11 Cr 38 Col,1 63 Col,, 141 Coly, 192* Iso
12 Cr 45 Col;q 87 Col,» 141 Col,, 196* iso
13 Cr 47 Col;; 90 Col,, 130 Col, 197* Iso
14 Cr 53 Col,; 103 Col,» 134 Col}, 196* Iso

hyperparameter and architecture selection, but rather that existing
models in the literature as well as in this study have not been developed
to predict the specific thermotropic behavior such as the number of
different phases and the different types of phases of an ILC. Further in-
vestigations in this area could therefore address this problem by creating
models that simultaneously predict all the transition temperatures of a
compound as well as their associated phases, instead of being limited to
predicting one specific transition temperature.

For most models, transfer learning brought performance improve-
ments. When the larger ILC datasets were the target task (i.e. pre-trained
models were fine-tuned on the larger ILC datasets of size 230 or 271),
there were mixed results, and transfer learning led to larger performance
improvements when fingerprints were employed over CNNs, as seen in
Fig. 7. While the improvements seen using CNNs are small, it is likely
that they are due to using the pre-trained weights, as the 20 cross-
validation repetitions would have canceled out many differences due
to stochastic processes and instabilities from random shuffling while
cross-validating. On the other hand, when observing the results from
training on the ammonium datasets, CNNs uniformly saw higher dif-
ferences in performance between models with and without transfer
learning, as shown in Fig. 8.

When comparing transfer learning using a source model trained on
ILC properties versus using a source model trained on ionic liquid
melting points, using a source model trained on the opposite ILC prop-
erty almost always yielded slightly greater improvements over transfer
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Fig. 7. Graph of model performances trained on datasets of ILCs of various cation types, with and without transfer learning. Transfer learning with molecular
fingerprints yields greater improvements than with CNNs and has the best performance overall.
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Fig. 8. Graph comparing model performances trained on small-sized datasets of ammonium-based ILCs. For the ammonium-based ILCs, CNNs show greater per-
formance differences between training with and without transfer learning than standard neural networks (Fig. 7). However, when comparing final scores for the
ammonium ILCs, CNNs only outperform fingerprints in predicting clearing temperatures.

learning using the ionic liquid melting temperature source model,
except in the ammonium clearing temperature model trained on fin-
gerprints. This can also be seen in Figs. 7 and 8. This trend is not un-
expected, as training a source model on ILC data already teaches the
neural network important structural information on the ILCs for the
target task. However, while using the models to extrapolate to ILCs
outside of the test domain, the models pre-trained on ILC properties may
not necessarily outperform models pre-trained on the ionic liquid
melting points, since models pre-trained on ILC properties may be
overfitted on ILCs in the dataset, and for ILCs that have structural
properties that differ from those in the ILC dataset, models pre-trained
on ionic liquid melting temperatures may perform better. The reason
the ammonium clearing temperature model does not follow this trend is
unclear. In fact, there was negative transfer (where using pre-trained
weights decreased performance) when transferring from ILC melting
points to ammonium ILC clearing points, which is unexpected since the
source domain of ILC melting points was not expected to be radically
different from that of ammonium clearing points. It is not clear why this
occurred, and negative transfer is a recent field of study in machine

learning whose causes are an active area of investigation [81]. It may be
that because the ILC melting temperature dataset contains ILCs that are
not in the clearing temperature dataset, the neural network learns fea-
tures that are inversely correlated or unrelated to clearing temperatures
of the ammonium ILCs. However, this is merely speculative, and there
could also be other stochastic processes that are influencing perfor-
mance, which are currently unknown and may be subject to future
studies. These exceptions to the trend reveal that intuition alone is not
enough to definitively reveal which source models will be useful for a
certain target task, and that it is useful to create as many source models
as possible and test them individually to maximize perform-
ance—despite negative transfer from ILC melting points, transfer
learning still brought performance improvements for the ammonium
clearing temperature dataset when pre-trained on ionic liquid melting
points.

With a few exceptions, CNNs appear to generally underperform
compared to molecular fingerprints. Generally, when using molecular
fingerprints, transfer learning appears to bring more improvements, and
there are clearer differences in performance when using different source
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models. Furthermore, fingerprints lead to more desirable scores in
almost all models. This result is unsurprising, and is in-line with the
hypothesis that CNN models need larger data sets in order to learn
chemical features. Furthermore, in our CNN models data augmentation
was not used; data augmentation is a commonly used technique when
training CNNs, where input images undergo certain transformations like
a random rotation or reflection. This process allows CNNs to become
more robust by learning features regardless of their initial orientation on
the image, and was employed in the development of Chemception and
Chemnet mentioned in Section 3. While data augmentation appeared to
yield small increases in performance in this study, it was not employed
due to its computational cost. The image processing during data
augmentation would drastically slow down the time needed for the
models to converge, and combined with the need to train on 20 different
cross-validation shuffles for our mixed datasets, data augmentation
became impractical. Despite this setback, one exception where CNNs
slightly outperform molecular fingerprints is when predicting ammo-
nium ILC clearing temperatures. This is surprising, as it was expected
that CNNs would perform poorly universally. This may be because when
preprocessing low-variance features of the fingerprint vectors, the
amount of data points (30) is significantly smaller than the feature
vector length (4636 columns), which causes overfitting. However,
different fingerprint algorithms and different variance thresholds when
removing low-variance columns were experimented with, which all
yielded approximately the same or worse performance, so this is not a
particularly strong explanation. Another possible explanation is that
because many ammonium ILCs in the datasets had a very large molec-
ular size, as shown in Fig. 9, and emergent properties like transition
temperatures start to depend on the overall shape of the ions, computer
vision techniques, such as CNNs, are more adept at capturing them.
Further investigation on the efficacy of CNNs could be in this area, and it
may be worth testing CNN performance on small datasets of other
complex compounds beyond ILCs to see if CNNs perform better for
complex molecules overall. Currently, however, the exact mechanisms
are unclear, especially since CNNs underperformed at all the other tasks.
Overall, while CNNs underperformed compared to molecular finger-
prints, this is a rather expected outcome, given how CNNs usually need
larger datasets to learn raw chemical and structural properties; if large
ILC datasets become available containing tens of thousands of data
points, the comparative performance of CNNs may be worth revisiting.

As an ablative study, the effect of image blurring, which decreases
the spatial resolution of the images, is investigated on model prediction
power. Although common sense would dictate that blurring the image
would decrease predictive power, from a chemical standpoint, this may
be a compelling study because blurring may force the models to learn
holistic structures of the molecules instead of analyzing individual
atoms and bonds. In this study, a Gaussian blur of different kernel sizes is
applied to the images using the OpenCV python library [82] and then
trained on the ammonium ILC melting temperature task without transfer
learning. The value of sigma of the Gaussian blur is calculated as being
dependent on the kernel size n, using Equation (1):

6=03 (\/m - 1) 0.8 )
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The performance metrics are displayed in Table 5.

It is clear that Gaussian blurring monotonically decreases model
performance, negating the earlier hypothesis regarding learning holistic
structures. Thus in order for a model to perform effectively, the images
should keep a high resolution and display as many details about the
molecule as possible.

Finally, we compare the differences in performance of images
created from the MolstoGridlmage function in rdkit with the image
descriptors introduced in Chemception, which will be referred to as
“chemcepterizations”, which we copy exactly as described in the
Chemception study by Goh et al. [73] In order to “chemcepterize” a
molecule, the 2-D coordinates of the atoms are plotted on a dark back-
ground: pixels where atoms are located are given a value equal to the
atomic number of the atom, and bonds between atoms are drawn as
lines, with pixels representing a section taking a value equal to 2. This is
because 2 is the atomic number of helium, which is not present in any of
the molecules in the datasets used, so the number 2 can be used as a
unique representation for the chemical bonds. Chemcepterized images
of size 50x100 (the same as for MolstoGridImage) were created and used
for the ammonium tasks. Overall, these chemcepterized images struggle
to match the performance of MolstoGridimage. As an example, perfor-
mance metrics for the ammonium ILC melting temperature task is
included in Table 5 in the Supplementary Material. This is unexpected
but not too surprising, as MolstoGridImage contains approximately the
same amount of chemical information as chemcepterizations. Images
created by MolstoGridimage are similar to chemcepterized images in
that in MolstoGridImage, different elements in the molecules are given a
unique color, analogous to different atomic numbers used by chem-
ception. MolstoGridImage also draws double bonds, unlike chemcepte-
rization which only uses the number 2 for all bonds. The only
information that chemcepterization includes that MolstoGridImage does
not is the exact atomic numbers, as MolstoGridImage picks an arbitrary
color and thus an arbitrary value for different elements, yet this
advantage may end up being irrelevant if the goal of the model is to learn
to differentiate molecular structures. Futhermore, chemcepterizations
may suffer from sparsity more than MolstoGridImage. For example, if an
anion consists of only one atom, such as bromide, then it is represented
by one pixel in its entire size 50x50 image representation, increasing the
model’s risk of overfitting. In contrast, MolstoGridlmage creates a
traditional structural diagram of the molecule, where atoms are repre-
sented by their chemical symbol and thus take up more space on the
image. At the same time, the inferior performance of chemcepterizations
may be because the 50x100 sizes of the images are too small, negatively

Table 5

Different filters are used on the ammonium ILC images before being used for to
the melting temperature task. Gaussian blurring is seen to monotonically
decrease performance.

Kernel Size (n x n) No filter (baseline) 3 5 7 9
R? 0.69 0.55 0.43 0.39 0.36
Mean Squared Error 10.0 11.7 13.7 14.2 14.5
Mean Average Error 12.4 14.9 16.6 17.3 17.8
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Fig. 9. Several different cations of ammonium-based ILCs. The large size and complexity of these cations may be a driving factor for the superior performance of

CNNs over molecular fingerprints.
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affecting the resolution as too many atoms are crammed into a few
pixels. However, increasing the image size and therefore resolution did
not improve performance, so this hypothesis is not particularly
compelling.

5. Conclusion

This study is the first known example where transfer learning has
been conducted with CNNs to aid in the prediction of one experimental
property using data of another experimental property, applied to small
dataset sizes realistically encountered in chemistry problems. While
there was more difficulty in yielding very large differences in model
performance through transfer learning with CNNs than with molecular
fingerprints, there were still concrete improvements when using CNNs
that hint at the possibility of utilizing transfer learning more effectively
in other studies. Furthermore, molecular fingerprints have been
demonstrated to reliably yield significant performance improvements
through transfer learning, and the results of this study show that
different transition temperatures have “related” domains that are
transferrable to each other. Thus, it may be worthwhile to investigate
the efficacy of transfer learning on other transition temperatures, like
glass transition temperatures and decomposition temperatures, for
which data is scarcer.

There are several takeaways on improving the predictive abilities of
CNNs. One is the need for computing power; image processing methods
like data augmentation can drastically slow down the training process
by an order of magnitude, at which point the availability of computa-
tional resources becomes a bottleneck. Small dataset sizes can also lead
to increase instability, necessitating the need to repeat cross-validation
many times. This study did not use data augmentation for these rea-
sons. Furthermore, multi-task transfer learning was not employed to first
predict computable chemical descriptors of the chemicals in the dataset
before fine-tuning to the target tasks, as described in Chemnet. This is
because the authors were interested in the ability of CNNs to learn raw
transferable features between experimental properties without the aid of
engineered descriptors. It may be possible that using such a technique,
combined with transfer learning between different experimental prop-
erties, would bring CNN performance to be on-par with fingerprints.
However, this is not done easily—for this specific study, this would be
best implemented with a large dataset of thousands of different unla-
beled organic cations and anions for pre-training, which to the authors’
knowledge does not yet exist.

While this study investigated applications of CNNs and molecular
fingerprints, current paradigms in computational chemistry/materials
science are geared towards applications of Graph Convolutional Net-
works (GCNs), with the emergence of MoleculeNet, a quantitative
structure property relationship (QSPR) study which revealed the supe-
rior performance of several different GCN algorithms over molecular
fingerprints [83]. When applied to ILC transition temperature tasks,
GCNs may have mixed performance, especially GCN algorithms that
involve analyzing the radial paths in a molecular graph. An example of
this is that developed by Duvenaud, et al [84]. This is because they may
have difficulty in differentiating compounds with the same core struc-
ture but varying lengths of alkyl chains, a problem that appeared when
attempting to use circular fingerprints on the ILCs in this study. How-
ever, GCNs are a very active field of research and there are various
approaches to molecular graph convolutions, so future studies could still
investigate their performance on ionic liquid crystal property prediction
tasks. GCN and CNN performances both rely on large datasets to learn
raw chemical features, and their performances will likely improve
relative to molecular fingerprints in the future as dataset sizes grow.
While it is unclear whether CNNs will catch up to molecular fingerprints
in the future, there may be a niche for CNNs in learning properties of
large, complex molecules if it is true that they perform better than
molecular fingerprints in such tasks.
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