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ABSTRACT

A design method is shown that leverages the parameters of a base off-axis conic to eliminate the need
for additional surface astigmatism and coma in freeform designs. A design example is given. Impact on
testability estimates is discussed. © 2021 The Author(s)
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1. INTRODUCTION

In this paper, we show, via a design example, how to leverage the parameters of a base off-axis conic to design freeform
optical systems using the full-field display driven aberration-based design method discussed in [1].

Off-axis conic sections are often considered when designing unobscured or non-axisymmetric systems, including as base
surfaces for freeform optics [2-8]. Likewise, design methods that use nodal aberration theory and full-field displays to
gain insight into the aberrations of freeform systems have been demonstrated to be effective at generating starting points
and performing designs (e.g., [1, 9-11]). However, in these aberration-based design methods, a central consideration is
the correction of coma and astigmatism, which often involves the introduction of orthogonal polynomial astigmatism
and coma terms (i.e.., Z5/Z6 and Z7/Z8 for the Fringe Zernike polynomials). These terms are often major contributors to
freeform departures, thus reducing or eliminating the need for orthogonal polynomial astigmatism and coma may
improve interferometric testability estimates based on the magnitude of freeform departures.

Consequently, in this paper, we leverage the parameters of base off-axis conics to follow the aberration-based design
method without the use of additional orthogonal polynomial astigmatism and coma terms. While an off-axis conic is not
exactly equivalent to a sphere plus astigmatism and coma, it is shown via a design example that re-designing with base
off-axis conic parameters from the start can yield a new design that achieves equivalent optical performance without
orthogonal polynomial astigmatism and coma. When these design methods are coupled with design methods aimed at
reducing surface departures, significant improvements in interferometric testability estimates can be achieved, including
when compared to fitting freeform surfaces designed with base spheres with the best-fit off-axis conic after optimization.

For comparison, the design study in this paper is conducted twice: once using base off-axis conics with Fringe Zernike
sag departure terms (excluding Zernike astigmatism and coma), and once using base spheres with Fringe Zernike sag
departure terms (including Zernike astigmatism and coma).

2. FREEFORM SURFACES WITH BASE SPHERES AND OFF-AXIS CONICS

In this paper, freeform surfaces are characterized as a base surface plus freeform departures from that base surface. For
example, a freeform surface with a base sphere and departures characterized with Fringe Zernike polynomials has a sag
equation given as

z=f(p,0) =
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where u = p/pporm is the normalized radial coordinate and C; is the coefficient of the j® Fringe Zernike polynomial Z {2
When the base surface is null testable, the magnitude of the freeform departures can be used as an interferometric
testability estimate [12-19]. While metrology is highly multidisciplinary and testability is more than just a number [20],
reductions in freeform departures tend to facilitate improvements in interferometric testability when comparing designs
that differ primarily in terms of freeform departures.

As noted above, the design methods in this paper leverage off-axis conic parameters to eliminate the need for additional
Zernike astigmatism and coma. That is, if the sag equation of freeform surfaces with a base sphere plus Zernike
departures is re-written as

z = f(p,0) = Sag of Sphere + Z5/ Z6,Z7/ Z8 + Higher Order Terms,
then the sag of the freeform surfaces with base off-axis conics can be written as
z = f(p,0) = Sag of OAC + Higher Order Terms.

To characterize the sag of the off-axis conic, we use the parameterization initially discussed by Cardona-Nunez et al. and
recently implemented in CODE V [21, 22]. The off-axis conic is parameterized via R, k, and @, where R and & are the
radius and conic constant of the parent surface, and  is the offset angle formed by the parent surface’s axis and off-axis
segment’s center surface normal. This parameterization grants smooth access to maximally off-axis ellipses, for which

w = 90°.

Orthogonal polynomial sag departure is added to the base off-axis conic via use of the Zernike polynomials. As noted
above, Zernike astigmatism and coma terms are not used with the base off-axis conic, which both facilitates reductions
in freeform departures and breaks the degeneracy with the base off-axis conic parameters. It is expected that other
orthogonal polynomial sag departure descriptions, such as 2D-Qs, could be used successfully as well, but examining this
expectation is beyond the scope of this paper.

Following this construction and using tildes to denote the coordinates of the off-axis segment, the sag equation for
freeform surfaces with base off-axis conics is given as [21]

z=f%3) = > 6z(wd),
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calculated using Cardona-Nunez et al.’s approach but with a YZ-plane symmetric conic rather than the XZ-plane
symmetric conic originally considered.

where, as in [8], the terms @ = %(1 + kcos?w), B =

3. DESIGN EXAMPLE

We use a three-mirror LWIR telescope, originally designed by Fuerschbach et al. [9] and recently revisited by Takaki et
al. [8, 23], as a design example. This design example is well-known in the literature, including assembly and testing [24],
which makes it a useful example to revisit.

This design achieves an average RMS wavefront error over the field of 0.0085 waves at A = 10 pm, which is well below
the diffraction limit. To facilitate comparison, we aim for roughly equivalent performance. A cross-section of the final
design is shown in Figure 1, which has been reproduced from [8]. For full specifications, see Table 1, which has also
been reproduced from [8].
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Figure 1. Cross-section of the final design, as originally shown in [8].

Table 1. Three-Mirror Telescope Specifications

Parameters Specifications
Full Field-of-View (deg.) 8 X6
Entrance Pupil Diameter (mm) 30

Focal Length (mm) 57

Average RMS WFE of Benchmark (A= 10 pm) 0.0085 waves
Distortion (%) <3

Volume (ml) <820

Ball Geometry Radius (mm) 70

As noted in the introduction, two design processes are adopted and compared. The first design process adopts the
aberration-based design method using spherical base surfaces and orthogonal polynomials to describe sag departures [1].
Full-field displays are used to identify aberrations, and orthogonal polynomial contributions are introduced to correct
these aberrations. In the second design process, aberrations are still identified via full-field displays, but off-axis conic
parameters are used to correct the initial limiting aberrations of the system, namely field-constant astigmatism and
field-constant coma [2, 5-7].

Both designs use the same starting point, which has a similar layout and geometry as the final design but uses only
spherical surfaces with no freeform contributions and therefore has virtually no aberration correction. A cross-section of
the starting point design is shown in Figure 2.

Figure 2. Cross-section of the starting point design. The design has the same layout and geometry as the final design but
uses only spherical surfaces with no freeform contributions and has virtually no aberration correction.

Full-field displays, shown in Figure 3, are then used to analyze the initial limiting aberrations of this design. As a
reminder, each symbol in a full-field display corresponds to a field-point, with the size and orientation of the symbol
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corresponding to the magnitude and balance of the given aberration. As can be seen in Figure 3, the design is initially
limited by 20 waves of field-constant astigmatism.
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Figure 3. Full-field displays for the starting-point design. Note that the design is initially limited by twenty waves of field-
constant astigmatism.

As noted by Fuerschbach et al., field-constant astigmatism can be corrected in the base sphere design by optimizing
Zernike astigmatism terms, while leaving the power and geometry fixed. For the off-axis conic design, the goal is to
achieve similar correction without the use of Zernike astigmatism. To facilitate this correction, we turn to maximally
off-axis ellipses, for which the off-axis segment is located as far away from the axis of the parent as possible. As an
example, consider the ellipse shown in Figure 4 below. For that ellipse, the segment in the blue square is centered on the
major axis of the ellipse, which is also the axis of revolution used by an optical ellipse. On the other hand, the segment in
the red square is centered maximally far away from this axis of revolution: if the red square were moved any further
away, then it would get closer to the axis of revolution on the other side. As noted earlier in this presentation, maximally
off-axis ellipses correspond to ellipses for which w = 90°.

Maximally Off-Axis Ellipse

On-Axis Ellipse

Figure 4. Maximally off-axis segments of ellipses for which w = 90°, versus on-axis ellipses for which w = 0°.

Maximally off-axis ellipses are fully plane symmetric (that is, are symmetric with respect to both the XZ and YZ plane)
and differ from spheres primarily in terms of surface astigmatism (although other terms, such as surface spherical
aberration, are also present). Importantly, because of this plane symmetry, maximally off-axis ellipses have no coma
contributions. Consequently, to isolate and correct field-constant astigmatism, we require the use of maximally off-axis
segments of ellipses by setting w to 90°. We then constrain the geometry and off-axis conic power contributions (via the
effective radius of curvature R, ¢, defined in Schiesser et al. [25]), and then optimize both the conic constant k and
radius of curvature R of the parent.

The full-field displays for astigmatism are shown for the base off-axis conic design and the base sphere design in Figure
5. While not exactly equivalent, comparable correction of field-constant astigmatism has been achieved. For the base
off-axis conic design, only maximally off-axis ellipses are used to reduce field-constant astigmatism from 20 waves
down to approximately 1.7 waves. For the base sphere design, Zernike astigmatism is used to fully correct the field-
constant astigmatism (the node is slightly off-center to balance with other aberrations), leaving 3.7 waves of astigmatism
remaining.
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Figure S. Full-field displays for astigmatism after correcting the initial field-constant astigmatism for the base off-axis conic
design (left) and the base sphere design (right). Note that the correction is not exactly equivalent, but it is comparable. Note
also that the base off-axis conic design only uses maximally off-axis ellipses, while the base sphere design uses Zernike
astigmatism.

Next, the full-field displays are again examined: Figure 6 shows the full-field displays for the base off-axis conic design,
with the base sphere design showing similar performance.

Defocus Primary Astigmatism Primary Coma
RMS WFE @ A=10000 nm Z4 Z5/6 Z7/8

Avg: 249 A 92 Max: -0.778 \ 52 Max: 1.67 A 92 Max: 6.68 A 92
> 060000000 | ot e e e e e e e _
© 212322%89399¢ 73 I 2 2
= 1
[ =t |
<0 0} 0 0
3 |
22 2 I 2 -2
8 |98586666060600 | ssiiiilllll

Figure 6. Full-field displays for the base off-axis conic design after correcting the initial field-constant astigmatism. Note
that the limiting aberration is now field-constant coma, although field-asymmetric field-linear astigmatism can also be seen
in Figure 5 above. The base sphere design yields similar performance (not shown).

For the base sphere design, the next step is to optimize Zernike coma at and away from the stop, which corrects both
field-constant coma and field-asymmetric field-linear astigmatism. For the off-axis conic design, the segment’s location
is allowed to shift away from maximally off-axis (see Figure 7), while leaving the power of the base off-axis conic
constrained. It is noted that that the parent conic no longer needs to be an ellipse, and the conic constant was constrained
to be at most negative ten, to limit extreme hyperbolae.
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Figure 7. To correct field-constant coma and field-asymmetric field-linear astigmatism, the location of the off-axis segment

is now allowed to deviate from maximally off-axis. This deviation is represented above with the shift from the maximally
off-axis segment in dotted red lines to a non-maximal off-axis segment shown in solid red.

As with the correction of field-constant astigmatism, the correction of field-constant coma is not exactly equivalent
between the two designs, but it is comparable. For the base off-axis conic design, only off-axis conic parameters have
been leveraged, to achieve 0.7 waves of field-symmetric coma. For the base sphere design, Zernike astigmatism and
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coma have been optimized to achieve 0.56 waves of field-symmetric coma. Full-field displays of coma are shown in
Figure 8 below.
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Figure 8. Full-field displays for coma for the base off-axis conic and base sphere designs after correcting field-constant
coma. While the correction is not exactly equivalent, it is comparable. Note that the base off-axis conic design uses only
base off-axis conic parameters for this correction, while the base sphere design uses Zernike astigmatism and coma terms.

At this point, the methods for the base off-axis conic design and the base sphere design are equivalent. In both cases, the
next step is to introduce rotationally invariant Zernike terms (e.g., Z9 & Z16) to correct the field-symmetric aberrations.
Later, when optimizing the power in the base sphere designs, we instead release the power constraints on the base off-
axis conic. While it is noted that the base off-axis conics will have some rotationally invariant sag contributions relative
to a base sphere, the three parameters for the off-axis conic have already been used to account for the surface power,
astigmatism, and coma contributions. Zernike spherical aberration terms can thus be introduced to both designs.

Because the methods are equivalent moving forward from this stage of the design, we skip to the final design. Full-field
displays of the RMS wavefront error are shown in Figure 9 below. Both designs achieve 0.006 waves of RMS wavefront
error, which is below our target. Both designs also show approximately equivalent performance across the field.
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Figure 9. Full-field displays for the RMS wavefront error for the final designs. In both cases, optical performance is
equivalent. Both designs achieve 0.006 waves of RMS wavefront error, with very similar field dependences. For the base
off-axis conic design on the left, no additional Zernike astigmatism or coma has been used, although other Zernike terms are
introduced. For the base sphere design, freeform departures include Zernike astigmatism and coma, as well as other Zernike
terms.

4. REDUCED DEPARTURES IN DESIGNS WITH OFF-AXIS CONICS

The above result is interesting on its own, but its full impact is best demonstrated by combining the off-axis conic design
methods discussed above with methods focused on improving surface testability estimates. Specifically, the square-sum
penalty described in [23] is used in conjunction with use of up to the 36® Fringe Zernike term (although Zernike
astigmatism and coma are still excluded for the base off-axis conic design), and testability estimates are examined at
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intermediate points to prevent unnecessary sag departures from being introduced. This design approach is conducted for
both the base off-axis conic design and the base sphere design.

The freeform departures, in terms of both PV sag departure and maximum gradient normal departure, are then examined
for both the base sphere and base off-axis conic designs. For the base sphere design, departures are first reported relative
to the best-fit sphere, and then relative to the best-fit off-axis conic. For the base off-axis conic design, departures are
reported from the base off-axis conic. In all cases, departures are reported for each of the three mirrors individually and
summed across all three mirrors. This sum is not a testability estimate in-and-of-itself, but it helps to verify that the
overall testability estimates are improving, instead of being just shifted from one mirror onto another.

These testability estimates, which are shown in Table 2 below and visualized in the sag departure profiles in Figure 10,
indicate that fitting an existing design with the best-fit off-axis conic yields some improvement in testability estimates,
such as the improvement in PV sag departure from 225 pm to 54 pm for Mirror 3. However, fitting with the best-fit off-
axis conic does not yield uniform improvement; Mirrors 1 and 2 show little change in PV sag departure, for example. On
the other hand, re-designing with the base off-axis conic from the start yields new designs that have improvements in
testability estimates by as much as an order of magnitude, even relative to fitting with the best-fit off-axis conic: the PV
sag departure and maximum gradient normal departure improve from 54 pum and 0.41° to 5 pm and 0.07° for Mirror 3,
with Mirrors 1 and 2 showing similar trends. The departures on the base off-axis conic design are potentially low enough
to facilitate interferometric testing using conventional interferometers without additional null optics like
computer-generated holograms, provided that the added complexity involved in nulling the base OAC can be overcome.

Please note that the results in this section have already been published in [8]. They are included because they
demonstrate the impact of the design method proposed in this paper.

Table 2. Optical performance and testability estimates of (left) the base-sphere design with departures from best-fit sphere, (center)
the base-sphere design with departures from best-fit off-axis conic, and (right) the base off-axis conic design with departures from the
base off-axis conic.

Testability Estimates for the Three-Mirror Telescope Designs

Base Sphere + Zernikes Base Sphere + Zernikes Off-Axis Conic + Zernikes
Departures from Best-Fit Sphere Departures from Best-Fit Departures from
Off-Axis Conic Off-Axis Conic
Mean RMS WFE Mean RMS WFE Mean RMS WFE
0.0084 A (A =10 pm) 0.0084 A (A =10 pm) 0.0085 A (A= 10 um)
PV Sag Max Gradient PV Sag Max Gradient PV Sag Max Gradient
Departure Normal Departure Normal Departure Normal
Departure Departure Departure
Ml 26 um 0.25° 23 um 0.35° 4 um 0.05°
M2 9 um 0.08° 8 um 0.03° 3 um 0.02°
M3 225 pm 0.68° 54 um 0.41° 5 um 0.07°
SUM 260 um 1.01° 85 um 0.79° 12 um 0.14°
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Figure 10. Sag departure profiles for: (left) the base sphere design with departures from best-fit sphere, (center) the base
sphere design with departures from best-fit off-axis conic, and (right) the off-axis conic designs with departures from base
off-axis conic. The scales of the color bars are in units of microns.
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