
Residue−Residue Contact Changes during Functional Processes
Define Allosteric Communication Pathways
Xin-Qiu Yao* and Donald Hamelberg*

Cite This: J. Chem. Theory Comput. 2022, 18, 1173−1187 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Allosteric regulation plays a central role in orchestrating
diverse cellular processes. A prerequisite for allostery is a flexible biomolecule
within which two distal sites can communicate via concerted or sequential
conformational changes. We introduce a computational method to elucidate
allosteric communication pathways, comprising critical allosteric residues, in
biomolecules by taking advantage of conformational changes during a
functional process. Conformational changes are modeled explicitly since they
modulate the network of residue−residue interactions, which could propagate
allosteric signals between two or more distal sites. The method implements
the suboptimal path analysis in the framework of the difference contact
network analysis or dCNA. The method identifies key experimentally verified
allosteric residues in imidazole glycerol phosphate synthase (IGPS), a well-
studied allosteric protein system. By contrast, some of the most important
allosteric residues are not captured using methods that do not consider conformational changes, such as those that solely rely on
examining the individual bound or unbound state of the protein. Using the dCNA path analysis along with conventional analyses, we
gain several new biological insights into IGPS. Interestingly, different binding processes in the thermodynamic cycle generally use a
similar group of residues in defining the allosteric communication pathways, with some residues being more specific to a certain
binding process. We also observed that the fine-tuning of allosteric coupling depends on the strength of effector binding. Our results
are robust against small variations of parameters and details of the network construction. The dCNA path analysis method is general
and can be easily applied to diverse allosteric systems.

1. INTRODUCTION
Allosteric regulation is a physiochemical phenomenon prevalent
in diverse cellular processes, including enzyme catalysis, signal
transduction, cell division, and intracellular trafficking.1−3 At the
molecular level, allosteric regulation manifests a coupling of
activities at distal sites within a biomolecule, such as cooperative
substrate binding or the modulation of catalysis upon effector
binding. Aberrant allosteric regulations underlie many human
diseases including cancer.4 Hence, elucidating the mechanism of
allosteric regulation is essential for understanding physiological
and pathophysiological processes, and the knowledge obtained
may be leveraged in drug discovery.4,5 The critical importance of
allosteric effects has also gained increasing attention in modern
rational protein design.6,7

Biomolecular internal motions or conformational dynamics
are the key to understanding allosteric regulation. Proteins, for
example, are intrinsically flexible (malleable), populating a
rugged (free) energy landscape around the native folded
conformations, consisting of many nearly isoenergetic basins
(conformational substates).8 Protein activity is determined by
the ensemble of conformations generated under certain
thermodynamic conditions. The protein’s malleability and
degrees of freedom that are subjected to conformational
changes are primarily responsible for the fine-tuning of activity

(i.e., allosteric regulation): effector binding and other physical or
chemical perturbations alter the energy landscape and shift the
conformational ensemble due to the malleable dynamical
changes, leading to modified functions of biomolecules. This
general description gives a qualitative explanation of allostery
but does not provide detailed description and the structural basis
of allosteric communication pathways within biomolecules. An
important question here is what are the key residues that directly
mediate the allosteric coupling (i.e., the allosteric pathway)?
Apparently, comparing different conformational ensembles
during a functional process (allosteric effector binding, e.g.) is
essential to answering this question.
An increasingly popular approach for understanding allosteric

regulation applies ideas from network science to biomolecular
structures.9−15 For example, using the network formalism, one
can perform the path analysis to map allosteric communication
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pathways.9−11,14−16 The hypothesis is that the allosteric signal
propagates from one site to another via the shortest (or optimal)
and near-shortest alternative (suboptimal) paths. Here, a path is
defined by a set of network edges connecting the two end sites or
nodes (usually represented by residues) and the path length is
the sum of edge weights (defined by geometric, dynamic, or
energetic properties depending on the type of the network).
Each microscopic path represents a potential route for the
allosteric signal to transmit, and the (suboptimal) path analysis,
summarizing the ensemble of paths, helps identify critical
residues that are on many paths (assumed to be crucial for the
allosteric communication).
A major limitation of many conventional network methods,

including the representative dynamical network (DN)11 and
protein contact network (PCN)13 methods, is that each time
only a single (experimental) structure, or a conformational
ensemble average generated, for example, from a single
molecular dynamics (MD) simulation, is used to define the
topology of the network. Hence, in thesemethods, the difference
between conformational ensembles (representing the end states
of a functional process) is not considered explicitly, which
prevents these methods from capturing the full picture of
allosteric regulation.
In some of the studies using conventional network methods,

networks representing distinct functional states (e.g., ligand-free
and -bound) are compared. However, the results of such
comparisons either are hard to interpret or can only be
understood in terms of changing of the allosteric mechanism.
For example, in some studies, shortest path-based network
parameters are calculated and compared between different
networks.10,16 Considering the hypothesis underlying the path
analysis, such a network comparison means looking for a change
of the allosteric pathway ormechanism. On the other hand, if the
difference of path analysis results is used to explain allostery, it
will be rather elusive to know the meaning of individual
microscopic paths and signals they transmit.
In this work, we introduce a new method to delineate

allosteric pathways at residue-level resolution that combines the
suboptimal path analysis17−20 with a novel network construction
method based on residue−residue contact changes during

functional processes. Different from conventional single-
ensemble network methods, our method compares two or
more conformational ensembles (as a special implementation of
our general comparative perturbed-ensemble analysis21) and
identifies malleable dynamic contacts that change (i.e.,
modulated) during functional processes. These malleable
contacts are hypothesized to mediate the allosteric communi-
cation between distal sites. Our method is also fundamentally
different from the comparison of network or topological
parameters because our method uses “changes” as the input
rather than the output of the network analysis; here, the path
analysis is regarded as a step in postprocessing the detailed,
physically meaningful dynamical input that is derived from the
functional process. The same ensemble-comparison principle,
but with different network construction procedures, has been
applied previously to develop our difference contact network
analysis (dCNA) method.22 The dCNA method has been used
to perform the community analysis, which identifies intrinsic
residue clusters and outputs a coarse-grained representation of
conformational changes that provides an overall picture of the
allosteric communication. The new method here, called dCNA
path analysis, is designed to identify the residue-wise allosteric
communication pathway. The method can be applied to
ensembles obtained from both MD simulations and exper-
imental structural data.
We carry out a thorough test of our method on imidazole

glycerol phosphate synthase (IGPS), a well-studied allosteric
system and an important metabolic enzyme, that catalyzes
critical steps in histidine and purine biosynthesis in micro-
organisms.23,24 The protein system has two active sites separated
by ∼30 Å (Figure 1A): the glutamine (Gln) binding site located
in the HisH subunit contains the catalytic triad hC84, hH178,
and hE180 (here, we follow the convention to name each residue
prefixed with the subunit name: h for HisH and f for HisF) and
catalyzes the hydrolysis of glutamine into glutamate and
ammonia; the ribonucleotide (PRFAR) binding site in the
HisF subunit accepts the ammonia transferred from HisH
through a central (β/α)8 barrel and catalyzes the synthetic
process involving PRFAR. The glutaminase activity of IGPS is
enhanced by ∼4900 times upon PRFAR binding, suggesting an

Figure 1. IGPS catalyzes coupled reactions separated by a long (∼30 Å) distance. (A) IGPS is represented as cartoon color-coded by subunits.
Substrate (Gln) and allosteric effector (PRFAR) are displayed as sticks color-coded by atom types. Key residues identified from the list of experiments
in Table S1 are shown as spheres color-coded by the effects of mutations at these sites: orange, at least one mutation causing a strong decoupling
between the glutaminase activity and the effector binding; green, moderate decoupling; blue, at least one mutation causing enhanced coupling. The
reaction scheme is shown on the left. (B) Thermodynamic cycle to bind Gln and PRFAR in IGPS.
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allosteric coupling between the two distal sites.25 However, the
detailed mechanism of how the two sites communicate remotely
remains to be elucidated. To investigate this prototypical
allosteric system, we have performed four 10 μs atomistic MD
simulations, each for a unique ligand-bound state of IGPS in the
thermodynamic cycle (Figure 1B).
The remaining contents of this paper are organized as follows.

In Section 2, the algorithm of the new dCNA path analysis, along
with other computational technical details, is introduced. In
Section 3, the main results are discussed. First, the new method
is compared with the conventional DN and PCNmethods using
an experimental benchmark (Section 3.1). Then, new biological
insights obtained by using the dCNA path analysis and
conventional analyses are discussed (Section 3.2). The
convergence and robustness of the results are also carefully
examined (Section 3.3). Concluding remarks are made in
Section 4.

2. THEORY AND COMPUTATIONAL METHODS

2.1. Difference Contact Network Suboptimal Path
Analysis. We propose a suboptimal path analysis in the
framework of dCNA described previously.22 In dCNA, a key
statistical feature is the difference in the probability of the
occurrence of residue−residue contacts between two ensembles.
Here, a contact is defined by two residues with minimal
nonhydrogen atomic distance less than or equal to a distance
cutoff, dc. An optimal cutoff has been found to be dc = 4.5 Å.26

Different from our previous dCNA-based community analysis,
which builds a consensus network across ensembles first and
summarizes contact changes between communities detected
based on the consensus network,22 the new method directly
utilizes the residue-wise differential contact probabilities from
one ensemble to the other to build the network. The idea to
compare contact maps for understanding protein functions has
been adopted in previous studies.27−30 First, for each ensemble,
an examination of contact strength is performed for each pair of
residues by
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where p is the probability of forming a contact between the
corresponding residue pair, kB is the Boltzmann constant, and T
is the temperature (300 K). A threshold of probability, pc, is
applied to separate “dynamic contacts” (pc≤ p≤ 1− pc), where
the contact strength is proportional to the log-odd of p, from
other contacts, where the contact strength is determined by a
constant, ε. The introduction of pc and ε is to resolve the
numeric instability of the log-odd function when p goes to 0 or 1.
In this work, we set pc = 0.2 and ε = 2.0 kcal/mol. Tests show
that a choice of 0.1−0.2 for pc and 1.5−2.5 (kcal/mol) for ε
produces reasonable and robust results (see Section 3.3). For
simplicity, we ignore the parameter nc that defines nonlocal
contacts (i.e., between residues i and i + n, n ≥ nc). This
parameter has been shown to have little influence on the
difference contact analysis.26 Note that by comparing ensembles
(see below), covalently bonded residue neighbors are automati-
cally excluded from the analysis because the contact probability

(and hence the strength) for such neighbors is always identical
(p = 1) among all conformational ensembles.
A protein structural network is then constructed, where each

node is represented by a residue, and the edge between nodes is
determined by the difference between contact strengths from
two distinct conformational ensembles, ΔΔg = Δg2 − Δg1
(assuming a process from ensemble 1 to 2). Specifically, an
edge is added between two nodes if (1) the corresponding |ΔΔg|
> 0 or (2) the two residues form a dynamic contact in any of the
ensembles under consideration. Each edge of the network is
weighted by

= ΔΔ − ΔΔ +w g g amin ( )
all edges (2)

where a is an arbitrary constant to make the weights of all edges
positive. According to eq 2, a “distance” network is constructed
where a larger edge weight represents a longer “distance” (less
important) and vice versa. Note that the value of a in eq 2 is
unimportant as long as it is positive because in the suboptimal
path analysis, only relative distances between edges matter. A
noticeable feature of eq 2 is that the direction of contact changes
is considered (e.g., the process from ensemble A to B is different
from B to A). In particular, we assume in eq 2 that contact
strengthening (negativeΔΔg or increase of contact probability)
is more important (smaller edge weight or “distance”) than
contact weakening (positive ΔΔg or decrease of contact
probability). A test on the influence of the direction of changes
is given in Section 3.3.
Once a network is built, the suboptimal path analysis

previously described19 can be implemented. In brief, a pair of
“source” and “sink” residues (nodes) are chosen first; these
residues can be, for example, from the allosteric and active sites,
respectively. Then, the algorithm described in ref 31 is applied to
find k loopless shortest paths between the source and sink.
Normalized node degeneracy is calculated by summing up the
number of paths going through each residue divided by the total
number of paths, k. Higher node degeneracy is assumed to be
more critical for the allosteric coupling between the source and
sink.

2.2. MD Simulations. MD simulations were performed
using Amber20.32 The initial structure of IGPS was taken from
the crystallographic structure (Protein Data Bank33 or PDB
entry ID: 1GPW).24 The coordinates for the ligands were
modeled based on PDB 3ZR434 and 1OX535 for the substrate
(glutamine) and the effector (PRFAR), respectively. All crystal
water molecules in 1GPW were kept except for those
overlapping with modeled ligands. The Amber ff14SB force
field was employed for the protein.36 For the substrate, the
zwitterionic form of glutamine was adopted with parameters
from ref 37 obtained from http://amber.manchester.ac.uk/. For
PRFAR, the parameters were generated by Antechamber of
Amber20 using GAFF238 and AM1-BCC.39,40 The protonation
state of ionizable groups at pH = 7.0 was determined based on
the pKa value calculated by PROPKA41,42 called through
PDB2PQR.43,44 In particular, Asp130 and Asp176 were set to
neutral. The tautomer state of the imidazole side chain of neutral
histidine residues was determined by PDB2PQR along with the
visual inspection of the local structural environment of the
residue. Specifically, all histidine residues were set to HID
(Amber naming convention indicating the protonation at the δ-
nitrogen), except for His84, which was set to HIP (the
protonated form). Totally, four systems were prepared with
both Gln and PRFAR absent (apo/apo or state 1 in Figure 1B),
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with Gln present but PRFAR absent (holo/apo or state 2), with
Gln absent but PRFAR present (apo/holo or state 3), and with
both Gln and PRFAR present (holo/holo or state 4). All missing
atoms were added by the LEaP program of Amber. Each system
was solvated in an octahedron box filled with pre-equilibrated
TIP3P water molecules45 extended by 10 Å from the surface of
the solute to each box face. Counter ions (Na+ or Cl−)46,47 were
added to neutralize each system.
During the energy minimization, 2000 steps of the steepest

descent followed by 3000 steps of the conjugate gradient were
performed, with harmonic positional restraints (force constant
of 600 kcal·mol−1·Å−2) applied to all solute atoms. Then, each
system was heated from 100 to 300 K by eight rounds of
simulations totaling 9.3 ns under NVT periodic conditions
(Langevin thermostat with collision frequency γ = 1.0 ps−1),
where position restraints were applied to the solute with the
force constant of restraint gradually reduced from 500 to 400,
300, 200, 100, 50, 25, and 5 kcal·mol−1·Å−2 from one round to
the next. Equilibration was run by 10 ns with a 2 fs time step and
no restraint under NPT (300 K, 1 bar; Monte Carlo barostat
with coupling constant τp = 1.0 ps) periodic conditions. A 9 Å
cutoff was used for short-range nonbonded interactions. The
particle-mesh Ewald summation method48 was employed to
treat long-range electrostatic interactions. All bonds involving
hydrogen atoms were constrained with SHAKE (nonwater)49 or
SETTLE (water).50 Production simulations were performed
under the same conditions as equilibration by 10.2 μs for each
system, totaling 40.8 μs, with each trajectory saving every 1 ps.
The last 10 μs of each trajectory was used for the analyses.
2.3. Application of the dCNA Path Analysis in IGPS. Six

distinct difference contact networks were constructed for the
path analysis in IGPS based on the different ligand binding
processes in the thermodynamic cycle (Figure 1B): the 1 → 2
network represents Gln binding in the absence of PRFAR, 1→ 3
is PRFAR binding in the absence of Gln, 1→ 4 is the binding of
both Gln and PRFAR, 2→ 4 is PRFAR binding in the presence
of Gln, 3→ 4 is Gln binding in the presence of PRFAR, and the
coupling network was constructed based on the difference of
two distinct PRFAR binding processes with and without Gln,
respectively (i.e., between 2 → 4 and 1 → 3). The coupling
network represents the coupled substrate and effector binding.
In the coupling network, the edges were determined by a
consideration of all four states and weighted by ΔΔg = ΔΔg2→4
−ΔΔg1→3. Note that equivalent networks can be obtained from
ΔΔg3→4−ΔΔg1→2 orΔΔg1→4−ΔΔg1→3−ΔΔg1→2. For 1→ 2
and 1→ 3 networks, a pseudonode was introduced to represent
PRFAR and Gln, respectively, and equally weighted edges were
added between the pseudonode and binding-site residues.
Binding-site residues were identified by contacts between the
ligand and protein residues that occurred over 90% of the
simulation trajectory where the ligand was present (i.e., the state
2 simulation for identifying binding-site residues of Gln and state
3 for PRFAR). By this setup, all networks had the same size and
so were easier to compare. A representative (2→ 4) network is
shown in Figure 2.
Nodes represented by PRFAR and Gln were chosen as the

source/sink for the suboptimal path analysis. For each network,
k = 5,000 suboptimal paths were searched. The influence of k on
the result is examined in Section 3.3.
2.4. DN Analysis and PCN Analysis. DN analysis was

performed as previously described11 for each of the four
simulations. In brief, each node of the network was represented
by a residue, and edges between nodes were determined by

residue−residue contacts that occurred over 75% of the
trajectory under analyses. For covalently linked residue pairs,
no edge was created. The edges were weighted by −ln(|Cij|),
where Cij is the dynamic cross-correlation between Cα atoms of
residues i and j. The edges were removed for uncorrelated
residue pairs (Cij = 0). Prior to calculating Cij, simulation frames
were superimposed based on all Cα atoms of IGPS excluding
flexible N- and C-terminal loops ( fM1−fK4, fH244−fL253,
hM1−hR2, and hC196−hR201). For PRFAR, the central C7
atom was used to calculate correlations with protein residues.
For systems where one or two ligands were absent, a
pseudonode was introduced for each absent ligand in a similar
manner as described in Section 2.3. PCNs were constructed the
same as DN, except that all network edges were equally
weighted. The same path analysis procedure as described in
Section 2.3 was performed in each of the DNs and PCNs.

2.5. Statistical Errors. Statistical errors of path analysis
results were estimated through bootstrapping. Each production
trajectory was grouped into 50 (200 ns) chunks. Then, these
chunks were randomly picked up (inclusively) to construct a
new sample with the same length of data as the original
trajectory (10 μs). This random procedure was repeated 10
times, and for each time, the newly generated sample was used to
calculate residue−residue contact probabilities and do the path
analysis. Node degeneracies for each residue were collected from
the 10 samples, and the standard deviation of these degeneracies
was adopted as the statistical error of the prediction for the
residue (Tables S2−S4).

2.6. Software Used in the Analyses. Trajectories were
processed with the CPPTRAJ program of AMBER.51 Network
analyses were performed with Bio3D19,52,53 and in-house scripts.
Molecular graphics were rendered by VMD54 and PyMol
(Schrödinger, LLC). All other figures were generated by
ggplot2.55 All figures were assembled with Illustrator 2021
(Adobe, Inc.).

Figure 2. Example of protein structural network for the dCNA path
analysis of IGPS. Contact changes from state 2 to state 4 (2→ 4) (see
Figure 1B) are used to define network edges, which are mapped as
colored cylinders on an IGPS structure and as transparent squares on a
2D plane. Radii of cylinders (or sizes of squares) are scaled by the
magnitude of contact changes (|ΔΔg|;ΔΔg is in the range of−4.0 to 2.6
kcal/mol) and colors by the sign of changes: blue, contact
strengthening (negative ΔΔg or increase of contact probability); red,
contact weakening (positive ΔΔg or decrease of contact probability).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00669
J. Chem. Theory Comput. 2022, 18, 1173−1187

1176

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00669/suppl_file/ct1c00669_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00669?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00669?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00669?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00669?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00669?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3. RESULTS AND DISCUSSION

3.1. dCNA Path Analysis Reveals Critical Allosteric
Residues Omitted by Conventional Network Analysis
Methods. The dCNA path analysis identifies the key
experimentally verified allosteric residues in IGPS. Here, the 2
→ 4 network (i.e., PRFAR binding in the presence of Gln;
Figure 1B) is examined. Changes induced during the 2 → 4
process are expected to be the most relevant to the allosteric
activation of the glutaminase activity by PRFAR.56 The
performance is evaluated on a benchmark developed by
McCullagh and co-workers,57 which contains mutations with
varying changes (reduction or enhancement) in the activity of
the PRFAR-dependent hydrolysis of glutamine, identified by
extensive experimental mutagenesis experiments collected from
the literature (Table S1 and Figure 1A).25,58−60 Some of these
residues are suggested to be key to mediate the allosteric
coupling in IGPS. The path analysis identifies multiple regions
exhibiting a high normalized node degeneracy, indicating the
importance of these regions for the allosteric coupling between
PRFAR and Gln (Figure 3A,B and Table S2). Importantly, three
residues including fK19, fD98, and hN12, which have been
identified by experiments to be crucial for the allosteric coupling,

all show significant (>0.1) node degeneracies. Especially, fD98
shows the highest (excluding source and sink) degeneracy
(0.64), which has also been found to have the most drastic
impact on the allosteric coupling upon mutation by experi-
ments: an alanine substitution for fD98 almost completely
deletes the allosteric effect of PRFAR binding to activate the
glutaminase activity (fold change of the activity of the activated
state drops from 4900 of the wild type to 1.8; Table S1).
Similarly, hN12 has a high degeneracy (0.47), and an alanine
substitution for hN12 causes a dramatic drop of fold change to
100 (Table S1). For fK19, a smaller but notable degeneracy
value (0.29) is found, while the mutations of this residue display
similar levels of fold-change drop to hN12A (Table S1).
The dCNA path analysis also detects fV12 (0.48), fK99

(0.15), and fQ123 (0.55) to be of significant node degeneracies
(Figure 3A). The mutations of all three residues have been
shown to either moderately reduce or enhance the allosteric
coupling (Table S1). Note that the path analysis is to identify
critical allosteric residues, not to precisely predict the effect of
specific mutations that may span a broad range of severities
because of the diverse properties of amino acids. For example,
even though the mutation fQ123A is found to only reduce the

Figure 3. Comparisons of performance between dCNA, DN, and PCN. For dCNA, the 2→ 4 process (see Figure 1B) is used. For the DN and PCN,
state 4 is considered. (A)Normalized node degeneracy over 5000 (sub)optimal paths for eachmethod. Experimentally verified key residues are labeled
and color-coded by the same scheme as in Figure 1A. (B−D) Optimal and suboptimal paths mapped onto an IGPS structure. Paths are represented as
colored lines with the radii of paths scaled by path lengths. Experimental key residues are shown as spheres color-coded the same as in (A). Substrate
(Gln) and effector (PRFAR), which are used as the source/sink in the path analyses, are shown as sticks color-coded by atom types.
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fold change by about a half of the wild type, other amino acid
substitutions may cause a severe impact as suggested by the high
degeneracy (0.55) at this residue site.
Four key residues, including fR5, fV48, fT104, and hK181,

which are found to exhibit either severe or moderate mutational
effects by experiments (Table S1), have low or zero degeneracies
in dCNA for the 2→ 4 process (Figure 3A). The residues fT104
and hK181 show a low (<0.1) but nonzero degeneracy,
indicating that both are still identified to contribute to the
allosteric communication. Residues fR5 and fV48, however,
apparently deviate from the predicted allosteric pathway because
of their zero degeneracies for this binding process. Detailed
inspections on fR5 and fV48 are given in Section 3.2.2.
The DN and PCN methods predict node-degeneracy profiles

largely different from those predicted by dCNA. The DN-based
suboptimal path analysis using the state 4 (Figure 1B)
simulation as the input shows an allosteric pathway highly
concentrated near two α-helices in HisF, fα4 and fα5 (Figure
3A,C and Table S3). Surprisingly, almost all experimentally
verified key residues are off the predicted pathway, except for
fQ123 (degeneracy 0.80). Interestingly, in PCN, which is
constructed the same as the DN except that all edges are
weighted equally, the paths are generally more spread out and
some experimentally verified key residues are shown to have
significant degeneracies (Figure 3A,D and Table S4). Most
notably, fR5 and fV48, which are not identified by dCNA for the
2 → 4 process, show significant degeneracies (0.15 and 0.18,
respectively) in the PCN. Also, fK99, fQ123, and hK181 have
significant degeneracies (0.17−0.40) in the PCN. However,
several key residues are missed by the PCN, including the most
important fD98.

Predictions by the DN are sensitive, whereas those by the
PCN are invariant, with the input simulation. Both methods are
also tested using the state 1, state 2, and state 3 (Figure 1B)
simulations as the input. Pathways in the DN vary dramatically
(Figures S1 and S4 and Table S3), indicating that the DN
method is sensitive to the choice of the ensemble to build the
network. In using the state 2 simulation, the DN identifies fR5
(degeneracy 0.33) and fV48 (0.21), but all other experimentally
verified key residues are of low or zero degeneracies. In contrast,
largely invariant degeneracy profiles are observed in the PCN,
indicating that the PCN is less sensitive to the choice of the
ensemble (Figures S2 and S4 and Table S4). Neither the PCN
nor the DN detects the key residues, fK19, fD98, fN104, and
hN12, no matter the ensemble (state) used.
In summary, our results suggest that dCNA has a distinct

behavior in identifying allosteric communication pathways
compared to the DN and PCN. This is not very surprising
considering the distinct principles behind the two types of
methods: dCNA takes the difference or changes during a process
(i.e., the malleable dynamical residue−residue contacts) to
define the network whereas the DN and PCN use stable (mostly
invariant during a process) structural features. Both fD98 and
hN12 show significant degeneracies in dCNA but nearly zero
degeneracies in the DN and PCN, no matter which ensemble is
used for the analysis. We speculate that fD98 and hN12 directly
participate in relaying the allosteric signal by undergoing
significant contact changes upon PRFAR binding; their
importance is hidden without using dCNA or inspecting the
conformational changes directly. Further discussion about the
roles of fD98 and hN12 is given in Section 3.2.2.

Figure 4. Representative conformational changes during IGPS activation captured by MD simulations. (A) Enlarged view of the HisH active site. The
catalytic triad (hC84, hH178, and hE180), the oxyanion strand (hβ3; pink) residues (hG50, hV51, and hG52), and the substrate are shown as sticks
color-coded by atom types. (B−D) Probability distributions of the backbone dihedral angle ψ of hG50 (B), φ of hV51 (C), and ψ of hV51 (D) for all
four simulations. (E) The Cα atoms of fF120, hW123, and hG52 are used to define the angle (θ) describing the inter-subunit “breathing”motion. (F)
Probability distributions of θ. In (B−D,F), the “inactive” and “active” labels indicate values calculated based on the chains A/B and E/F, respectively,
from the crystallographic structure (PDB: 7AC8).
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3.2. New Biological Insights into the Allosteric
Mechanism in IGPS. In this section, we discuss our main
findings about the allosteric regulation in IGPS. A popular
model to explain the enhanced glutaminase activity upon
PRFAR binding in IGPS is based on the “oxyanion hole” theory
of hydrolytic reactions.23,35 In this model, two amide nitrogen
atoms, one from the residue immediately next to the nucleophile
(hC84) and the other from a β strand (hV51 of hβ3) adjacent to
the active site containing the conserved sequence hP49−hG50−
hV51−hG52 (also called “oxyanion strand”), are assumed to
stabilize the negative charge generated during the catalysis
(Figure 4A). In the basal, PRFAR-free state, the nitrogen of
hV51 points away from the active site, resulting in a low catalytic
activity. PRFAR binding causes conformational changes
involving a flip of the peptide around hV51, making the nitrogen
of hV51 point toward the active site and forming the oxyanion
hole that is required by the catalysis.
Despite a tremendous number of experimental and computa-

tional studies, the allosteric mechanism in IGPS remains
elusive.12,16,25,34,56−69 This is partly because somewhat con-
troversial conclusions exist in the field. For example, a recent
study using a combined approach of nuclear magnetic resonance
(NMR) and X-ray crystallography has identified an “active”
conformational state of the enzyme upon binding both the
substrate and the allosteric effector.56 This study suggests a
significant conformational change occurring during IGPS
activation, which contradicts the previous studies showing that
effector binding enhances protein dynamics without changing
the mean conformation.59,61 The recent study used the hC84S
IGPS mutant.56 Hence, it remains unclear if the observed
conformational change was due to the loss-of-function mutation
or was an intrinsic property of the wild-type IGPS. As a
complement to experiments, MD simulation provides structural
information at a high spatiotemporal resolution and is thus an
important tool to help gain new insights into the biological
system. New computational simulation-based studies are still
necessary despite the many existing similar studies on
IGPS12,16,57,58,60,63,65−69 because (1) simulations in the previous
studies were usually too short (≤10−7 s) compared to the
biologically meaningful timescale (>10−6 s), except for one
study that performed ∼2.5 μs simulations but only focused on
IGPS/allosteric inhibitor interactions;67 (2) the many previous
studies using conventional network analysis methods may not
fully or properly interpret the MD data, and new methods, such
as those developed in this work, can help make new discoveries
even applied to existing simulations.
In this work, we attempt to address the following specific

biological questions:

1. Do the conformational changes described previously56

occur during the activation of the wild-type IGPS?
2. What are the roles of the experimentally verified key

residues (Table S1) in the allosteric communication in
IGPS?

3. Does IGPS use the same or different allosteric pathways
for distinct ligand binding processes in the thermody-
namic cycle (Figure 1B)?

4. Can the allosteric coupling be fine-tuned by the binding
pose or strength of the effector?

3.2.1. MD Captures the Representative Conformational
Changes during IGPS Activation but Does Not Completely
Reproduce the Active Conformation Observed in Experi-
ments. The 10 μs MD simulations capture the backbone

flipping of hV51 required for the formation of the oxyanion hole,
but the phenomenon is only observed in the ligand-free (state 1
or apo/apo; Figure 1B) simulation. To detect potential
conformational changes, we calculate probability distributions
of three consecutive backbone dihedral angles, ψ of hG50 and φ
and ψ of hV51, for all four simulations (Figure 4A−D). We use
the recent crystallographic structure (PDB: 7AC8) to define
reference conformations for the “inactive” and “active” states, as
described before.56 The φ value of hV51 is found to be the most
relevant, with the reference active- and inactive-state values
exhibiting a large, ∼150° separation; by contrast, the references
of the other two angles exhibit a separation of ∼35°. The
backbone dihedral angles show the largest overall flexibility in
the state 1 simulation. Interestingly, in the state 1 simulation, the
angle φ-hV51 samples, infrequently but significantly, values very
close to the reference active-state value (∼50° vs ∼70°; Figure
4C), indicating the backbone flipping of hV51 during the
simulation. However, binding of either Gln or PRFAR, or both,
stabilizes the “inactive” conformation. Similar backbone
stabilization by ligands is observed in ψ-hG50 (Figure 4B). ψ-
hV51 is flexible in both state 1 and state 3 simulations and
samples values (−50° to +50°) not observed in the crystallo-
graphic structure; Gln binding suppresses such angular sampling
(Figure 4D).
Another representative conformational change during IGPS

activation is the hinge-like bending or “breathing”motion at the
inter-subunit interface. The functional relevance of this motion
has been discussed before.56,60,64,67 Here, we measure the
motion by calculating probability distributions of the angle, θ,
defined by the Cα atoms of hG52, hW123, and fF120 over the
simulations (Figure 4E,F). The reference values are 25 and 10°,
respectively, for the inactive and active states, suggesting a
subunit−subunit closing upon activation.56 It shows that even
though none of the simulations captures the closed con-
formation suggested by the crystallographic structure, a clear
trend of subunit closing upon ligand binding is observed (Figure
4F). Overall, θ is the largest in the state 1 (apo/apo) simulation
(∼27° on average) and the smallest in the state 4 (holo/holo)
simulation (∼23°); θ in the state 2 (holo/apo) simulation is
smaller than that in the state 3 (apo/holo) simulation (∼24° vs
∼26°). Interestingly, even though the average θ in state 2 is
slightly larger than that in state 4, θ samples a small value (∼15°,
which is close to the active-state reference, 10°) more frequently
in the state 2 simulation than in the state 4 simulation (Figure
4F).
In summary, 10 μs MD simulations capture the representative

conformational changes during IGPS activation, including the
backbone flipping of the oxyanion strand and subunit−subunit
closing, but a full reproduction of experimental observations has
not been established yet. The backbone flipping of hV51 only
observed in the ligand-free simulation suggests that the flipped
conformation (forming the oxyanion hole) is from an intrinsic
functional substrate of IGPS, but the enzymemay need to across
a higher free energy barrier to access that conformation in the
presence of the substrate and/or the effector. Our results are
consistent with the model where the inter-subunit interface is
closed upon binding of both the substrate and the effector,
although the magnitude of closing is much smaller in
simulations. The discrepancy between simulations and experi-
ments may be explained by the timescale problem (IGPS
activation happens in milliseconds,56 whereas the simulations
are 2 orders of magnitude shorter), but we cannot exclude the
possibility that the largely closed and backbone-flipped “active”
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conformation is due to the hC84S mutation used in the
experimental study.56 The above basic geometric analyses, along
with the significant contact changes observed during network
constructions in dCNA (e.g., Figure 2), suggest that IGPS
activation is not simply an alteration of flexibility or entropy.
Hence, our results support the conformational change
hypothesis of IGPS activation.
3.2.2. Key Residues Playing Dynamic, Structural, or Dual

Roles in the Allosteric Communication in IGPS. In this
subsection, we describe in-depth analyses of the two distinct
allosteric pathways revealed by dCNA (2 → 4 network)- and
PCN (state 4)-based suboptimal path analyses, respectively
(Figure 5). Within HisF, the dCNA pathway mainly (defined by
node degeneracy ≥ 0.1) consists of residues located in loop
regions including Lfβ1−fα1 (loop1), Lfβ2−fα2, Lfα2−fβ3,
Lfβ3−fα3, Lfα3−fβ4, Lfβ4−fα4, Lfα4−fβ5, and Lfβ8−fα8
(Figure 5A and Table S2). Four major regular secondary
structures, fβ1, fβ2, fα2, and fβ4, also contribute to the pathway.
The side chains of the pathway residues mainly fill the regions
between the α and β elements. In the subunit interface, the
pathway residues are more scattered and span a region close to
where the breathing motion occurs.56,60,64,67 In contrast, the
PCN pathway goes through more major regular secondary
structures, including fβ1, fα1, fβ2, and fβ4−6, besides loops

Lfα1−fβ2, Lfα2−fβ3, Lfβ4−fα4, Lfα4−fβ5, and Lfβ8−fα8
(Figure 5B and Table S4). The side chains of the pathway
residues protrude toward both the inside of the central (β/α)8
barrel and between the α and β elements. In the interface, the
pathway residues cluster around the “hinge” (hW123−fR249)
of the breathing motion. In HisH, both pathways go through
different catalytic residues: dCNA goes through hH178 and
hE180, whereas the PCN passes through hC48 and hH178
(Tables S2 vs S4). It is important to point out that bothΩ−loop
(hN12) and the oxyanion strand (hV51) are included in the
dCNA pathway but not in the PCN pathway. Previous studies
suggest that conformational changes around these regions are
crucial for the activation of glutaminase activity.12,56

Both key residues, fD98 and hN12, are found to primarily play
a dynamic role in the allosteric communication. The divergent
allosteric pathways corroborate the distinct predictions by
dCNA- and PCN-based suboptimal path analyses. To further
understand why some of the experimentally verified key residues
are detected by dCNA but not by the PCN and vice versa, we
compare local properties of the networks and the structural
environment around these key residues. The most drastic
differences in the predictions are for the key residues fD98 and
hN12. Both residues show high node degeneracies (0.64 and
0.47, respectively) in dCNA but zero degeneracies in the PCN.

Figure 5.Distinct allosteric pathways identified by dCNA and the PCN. The 2→ 4 process (see Figure 1B) is used in dCNA and state 4 is used in the
PCN. (A,B) Residues with a node degeneracy above 0.1 are shown as pink (dCNA) and purple (PCN) cartoon and sticks to exhibit the allosteric
pathway, with the secondary structure elements where the residues are located labeled (loops begin with the letter “L” except for loop 1 andΩ-loop).
Substrate (Gln) and effector (PRFAR) are shown as sticks color-coded by atom types. (C,D) Enlarged views of the pathways and networks around
fD98 and hN12 (shown as sticks color-coded by atom types) for dCNA (C) and PCN (D), respectively. In (C), the network edges are shown as blue
and red cylinders in the same way as in Figure 2. In (D), the network edges are represented by white cylinders. Predicted key residues are shown as
spheres color-coded the same as in (A). (E,F) Enlarged views of the subunit interface centered at the central barrel. The four “gating” ionic residues are
shown as sticks color-coded by atom types. (G,H) Enlarged views around fV48. Hydrophobic residues surrounding fV48 are shown as a white surface.
Predicted key residues are shown as a transparent surface color-coded the same as in (A). Half of the central barrel ( fβ4−fβ7) is removed for clarity.
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In the dCNA network, multiple (8 and 11, respectively,
compared to an average of 2.6 across all nodes) significant
contact changes associated with fD98 and hN12 are observed
(Figure 5C). Especially, fD98, whose mutational effect is the
most drastic, plays a pivotal role in the network integrity by
mediating four significant contact changes (all are contact-
strengthening) across the subunits. In contrast, in the PCN, the
number of edges associated with fD98 and hN12 is small (3 and
2, respectively, compared to the network average of 6.7), and
there is only one inter-subunit edge connecting fD98 and hK181
(Figure 5D), implying that fD98 or hN12 is not critical for the
structural stability of IGPS. Hence, our results suggest that both
fD98 and hN12 play a dynamic rather than a structural role in
the allosteric communication between the effector, PRFAR, and
the substrate, Gln.
The key residue fR5 may play both structural and dynamic

roles in the allosteric communication, whereas the residue fV48
primarily plays a structural role. Neither fR5 nor fV48 is found
in the pathway for the 2→ 4 process using dCNA, but both are
present in the PCN pathway with significant degeneracies using
a single ensemble (0.15 and 0.18, respectively; Figure 5E−H).
Inspections on the networks around these residues show that
both residues have a higher connectivity (11 and 8 edges,
respectively) than the average (6.7) in the PCN, suggesting their
important roles in maintaining the structural integrity of the
protein. In dCNA, fR5 only shows a slightly higher connectivity
(3 edges) than the average (2.6). This residue, together with
fK99, fE46, and fE167, forms the “gate” of the central (β/α)8
barrel for the ammonia transfer.24 Upon PRFAR binding,
apparent contact weakening is observed between the four ionic
residues, indicating gate opening (Figure 5E). The mutations of
fR5 may disrupt the concerted gating motion, hindering the
ammonia transfer process, leading to reduced glutaminase
activity in the activated state. Alternatively, because of the high
node connectivity in the PCN, the mutations of fR5 may simply
compromise the structural integrity of HisF and decouple the
two active sites. In contrast, fV48 has a low connectivity (1
edge) in dCNA, indicating its little participation in conforma-
tional changes. Examination of the local environment around
fV48 reveals a hydrophobic cluster at the bottom of the central
barrel close to the PRFAR binding site (Figure 5G,H). The
mutations of fV48 may disrupt the cluster and eventually affect
ammonia transfer and/or PRFAR binding. The importance of
hydrophobic interactions in a similar region that define an
allosteric pathway in IGPS has been stressed previously.12

Together, we propose that fR5 has a dual (structural and
dynamic) role, while fV48 primarily plays a structural role in the
allosteric communication between the effector and the substrate.
The differences in the network approaches discussed in this

work and some of the discrepancies with experiments could be
explained by the following three possible reasons. First, they
suggest the complexity in interpreting the results of experimental
mutagenesis. The fidelity of allosteric regulation is conditioned
by an optimal balance between the stability and flexibility of a
protein. While dCNA primarily identifies residues involved in
dynamic residue−residue contacts (e.g., fD98 and hN12), the
PCN and similar approaches mainly identify residues that
significantly contribute to the stability (e.g., fV48) and may
constitute the scaffold to sustain the propagation of conforma-
tional changes mediated by the dynamic residues. The
mutations of either type would disturb the stability−flexibility
balance and compromise the allosteric coupling. In this regard,
we argue that simply using mutagenesis data without further

interpretations by, for example, MD simulations cannot fully
elucidate the allosteric mechanism. Second, they may reflect
limitations of each network approach discussed here. In this
work, we use residue−residue contacts to describe conforma-
tional dynamics. Conformational changes below and beyond the
distance cutoff used to define a contact are neglected. This may
underlie the omission of fR5 by dCNA, which contributes to
both the stability and flexibility. This residue may lie on an
alternative pathway dominated by subtle structural changes not
captured by residue−residue contacts. Third, it is possible that
certain residues do not actively participate in certain processes
(such as 2 → 4) or a specific ensemble and would not show in
the pathway. Each of the binding process in the thermodynamic
cycle potentially defines a specific allosteric pathway. Mutations
on any of these pathways may affect the final strength of the
allosteric coupling. Examining processes other than 2 → 4 may
help capture some of the omitted key residues. We discuss this
aspect in more detail in Section 3.2.3.

3.2.3. Similar Group of Residues Define the Allosteric
Communication Pathways for Distinct Binding Processes in
IGPS. The allosteric pathways are largely similar for the different
binding processes in the thermodynamic cycle (Figure 1B),
except for some variations in individual residue degeneracies
(Figures 3A,B, S3, and S4 and Table S2). A consensus allosteric
pathway across all inspected processes is found to be Lfβ3−fα3,
Lfα3−fβ4, fβ4, Lfβ4−fα4, Lfα4−fβ5, Lhβ1−hα1 (Ω-loop), and
Lhβ3−hα2 (oxyanion strand). Six critical residues that are
shared by all the allosteric pathways are also identified: f I83,
fD98, fN103, fQ123, hN12, and hV51. The constantly high
degeneracies, especially at fD98 and hN12 that are far away from
both binding sites (with degeneracies 0.51−0.68 and 0.22−0.56,
respectively), indicate pivotal roles of these residues in the
allosteric regulation of both substrate binding and catalysis. The
overall similar pathways from distinct processes suggest a
common mechanism exploited by the protein to regulate
activities under different conditions.
Differences in exact node degeneracies between the allosteric

pathways can help identify process-specific critical allosteric
residues. For example, the main differences between the
coupling-network (see Section 2.3) pathway and the 2 → 4
pathway occur near the PRFAR binding site, where the former
shifts from loop 1 to a region near the loop Lfβ4−fα4 (Figure S4
and Table S2). As a result, node degeneracies of the key residues
fV12 and fK19 reduce from 0.48 and 0.29, respectively, to
nearly zero, whereas that for the key residue fT104 increases
dramatically from 0.04 to 0.46, from 2 → 4 to the coupling
network (Figure S3E and Table S2). Significant changes of
degeneracy are also observed in other regions including the key
residues fK99 and fQ123. Similar biases toward Lfβ4−fα4
( fT104 degeneracy 0.18−0.46), rather than loop 1 ( fK19
degeneracy < 0.1), are observed in the 1→ 2, 1→ 3, 1→ 4, and
3 → 4 pathways (Figures S3A−D and S4 and Table S2),
suggesting that loop 1 is specific to the 2 → 4 pathway. We
speculate that residues specific to the 2 → 4 pathway may be
primarily responsible for the regulation of catalysis. A support to
this hypothesis is the fact that catalytic residues hH178 and
hE180 are detected by the 2→ 4 network with significant node
degeneracies (0.46 and 0.21, respectively) but not by the
coupling network (which is assumed to be responsible for the
regulation of substrate binding). Also, the relevance of loop 1 to
IGPS activation has been discussed before.56,68 In contrast,
fT104 (on Lfβ4−fα4) is shared by all the pathways except for 2
→ 4, suggesting that the residue may be mainly responsible for
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regulating Gln binding. However, more evidence is required to
validate the hypotheses as the pathway around the PRFAR
binding site is found to be slightly sensitive (in terms of the
precision of the node degeneracies) to the model parameter pc,
and we cannot exclude the possibility that the difference is

simply due to the choice of pc = 0.2 (see Section 3.3 for more
detail). These new insights into process-specific allosteric
residues can be useful for future experimental design.

3.2.4. Similar Network Topologies Underlie the Similar
Allosteric Pathways across Distinct Binding Processes in

Figure 6.Modulation of the network of malleable residue−residue interactions during distinct ligand binding processes. Differential contact strengths
(ΔΔg) are categorized based on the sign and magnitude of the change: negative (−), zero (0), or positive (+). Joint probability distributions of the
category of contact changes between distinct processes are then calculated and represented by a matrix with cells color-coded and labeled by the
probabilities. Residue pairs associated with a union set of network edges across all processes considered (1→ 2, 1→ 3, 2→ 4, and 3→ 4) are included
in the calculations. Definitions of states are given in Figure 1B.

Figure 7. Fine-tuning of allosteric coupling by different levels of effector binding tightness. The 2→ 4 process (effector binding in the presence of the
substrate) is considered. (A) Separation of the state 4 (holo/holo) simulation into two groups with the effector bound tightly and loosely, respectively.
(B) Correlation of contact probability changes between the tight network (i.e., built based on the portion of simulation where the effector is tightly
bound) and the loose network (using the portion of the simulation where the effector is loosely bound). The blue line represents a linear regression
analysis with R2 shown. (C) Comparison of node-degeneracy profiles obtained from the tight and loose networks. (D) Comparison of path length
distributions. The shortest path length of each network is indicated by a labeled circle.
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IGPS. Comparisons of residue−residue contacts of different
binding processes reveal a similarity in network topologies,
which may underlie the similarity of the allosteric pathways
revealed by dCNA. The joint probability distributions of the
type of contact changes, associated with a union set of network
edges across all processes considered (1→ 2, 1→ 3, 2→ 4, and
3 → 4), between two distinct processes are calculated (Figure
6). Differential contact strengths (ΔΔg) are categorized into
three classes based on their signs and magnitudes: negative (−),
zero (0), and positive (+). The class “zero” indicates the absence
of an edge in the network defined by the process. It shows that in
each comparison, the probabilities of changes that are nonzero
in one process and zero in the other are always the lowest
(Figure 6), indicating a low population of process-specific
network edges (i.e., network edges defined by the processes
largely overlap). The result suggests that the modulation of the
conformational ensemble by binding the substrate or effector
happens via a similar set of residues (or residue−residue
contacts), even though the direction and magnitude of the
modulation may vary among different processes.
In the comparison of certain network topologies, evident

positive or negative correlations between contact changes are
found. For example, the distinct processes to form a binary
complex (1→ 2 vs 1→ 3) exhibit a positive correlation, where
most positive (negative) changes in ΔΔg during the binding of
the substrate (1→ 2) also undergo positive (negative) changes
during the binding of the effector (1→ 3) and vice versa (Figure
6). This indicates a strong coupling between the two binding
processes. A similar but weaker positive correlation is observed
between the processes of formation of the ternary complex (2→
4 vs 3 → 4). The deviation of the network topology between
these two processes may be responsible for the unique features
of the allosteric pathway derived from the 2 → 4 network.
Interestingly, in comparing sequential processes to form the
ternary complex (1 → 2 vs 2 → 4 or 1 → 3 vs 3 → 4), a clear
negative correlation is observed (Figure 6). This suggests that
the modulation of the conformation upon binding the second
ligand is mainly to reverse or modulate the changes caused by
the binding of the first ligand. In contrast, the separate processes
of binding the same ligand (1→ 2 vs 3→ 4 or 1→ 3 vs 2→ 4)
exhibit the weakest correlation, indicating that response of the
system to the binding of the substrate depends on whether the
effector is present or not and vice versa. No matter whether the
changes are correlated or not, changes mainly happen in a similar
set of contacts, indicating that a common subnetwork of
residue−residue interactions in the allosteric system mediates
the response to different input signals (ligand binding).
3.2.5. Fine-Tuning of Allosteric Coupling via a Robust

Network of Malleable Residue−Residue Interactions. The
residue network mediating the propagation of allosteric signals
from PRFAR to Gln is robust against different effector binding
poses. In the 10 μs MD simulation of state 4 (Figure 1B), the
effector PRFAR exhibits a certain degree of flexibility in the
binding pocket. Examining a series of 200 ns simulation chunks,
we observe divergent effector binding poses, associated with
various levels of binding tightness measured by the average
contact strength, Δg, between PRFAR and the binding-site
residues (Figure 7A). We hypothesize that the magnitude of
allosteric coupling depends on the effector binding tightness. To
test this hypothesis, we group the simulation chunks by the
effector’s average Δg and construct two difference contact
networks, termed tight (with PRFAR more tightly bound) and
loose (PRFAR less tightly bound) networks, respectively, using

the same 10 μs state 2 simulation as the reference. As expected,
the overall (2 → 4) contact changes between the tight and the
loose networks are correlated (R2: 0.67; Figure 7B), suggesting
that a similar subnetwork of residue−residue interactions is
responsible for the allosteric communication in both tight and
loose networks. A slope of 0.7 obtained from a linear regression
analysis suggests that the magnitude of conformational changes
in the tight network is overall stronger than that in the loose
network.
Suboptimal path analyses further reveal a consistent allosteric

pathway, even though the precision of the node degeneracies
slightly varies between the two networks (R2: 0.79; Figures 7C
and S5). The pathway is overall similar to that using the full
simulation (Figure S5 vs Figures 3A,B and S4). Path lengths in
the tight network are overall shorter than those in the loose
network, consistent with the larger contact changes in the tight
network and implying an enhanced allosteric coupling by
tightening the effector binding (Figure 7D).
Collectively, our results suggest that the magnitude of

allosteric coupling in IGPS can be tuned by adjusting the
effector binding pose without altering the allosteric network and
communication pathway. A previous NMR study has tested a
series of small-molecule allosteric effectors with varying
activating efficacies and found widely dispersed and effector-
dependent allosteric pathways.62 These differing conclusions
could be explained as follows. In this work, we only compared
different binding poses of the same effector and hence cannot
exclude the possibility that more divergent pathways might be
observed in using different effectors as in the previous study.
Besides, the discrepancy might be because of the timescale
limitation in the μs-long MD simulations with respect to the
millisecond timescale discussed in the NMR study. On the other
hand, in the previous NMR study, only dynamics of backbone
amide or methyl groups of Ile, Leu, and Val were inspected. This
may limit the sensitivity of the method and reduce the chance to
find otherwise overlapped allosteric networks. However, our
computational studies fully support the NMR studies that the
allosteric regulation in IGPS is not simply an “on or off”
mechanism but can be fine-tuned by the identity or binding
poses of the effector in the allosteric site. This agreement also
aligns with a recent computational work, which has connected
the detailed force distribution in binding pockets with the type
of allostery (activation or inhibition) and allosteric pathways.70

These previous and present studies emphasize the importance of
inspecting detailed properties of the protein−ligand interaction,
in addition to the ligand binding location and affinity, in
acquiring desired allosteric output (e.g., in developing new
allosteric drugs with the desired efficacy).

3.3. Convergence and Robustness of the Results. All
the simulations are expected to be long enough (∼10 μs) to
converge. To confirm it, we inspect the variation of cumulative
contact statistics over time. We focus on contacts because they
are the basis of all the analyses. As shown in Figure S6A, the root-
mean-square deviation of contact probability (p) across all
dynamic (with p in the range of 0.2−0.8 defined by the full-
length simulation) contacts between two time points, t and t +
200 ns, becomes very small (<0.006) when the time t goes to the
end of simulation. The standard deviation of square deviations
(displayed as error bars in Figure S6A) also becomes small
(<0.004) with the increase of t. Additional examinations are
performed on the maximal deviation of contact probabilities,
which reduces to ∼0.016 at t = 10 μs (Figure S6B). Hence, the
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result strongly supports that all the simulations have converged
at least with respect to contact statistics.
The node degeneracy results are robust against variations of k

(number of paths) around the optimal value k = 5000. In the
suboptimal path analysis, it is hard to have all node degeneracies
to truly converge. This is partly because of the equal treatment of
all suboptimal paths in the definition of degeneracy: when k
becomes very large, distinct areas of the network will start to be
visited and formerly “stable” degeneracy values will vary again. A
simple solution is to apply a threshold of the path length and
only consider paths shorter than the threshold. However, such a
threshold is unknown a priori. Here, instead of finding the path-
length threshold, we identify an appropriate k by examining the
change of path length, L, with the increase of k. We adopt a
similar rule of thumb to that used in the principal component
analysis of protein structures to identify significant principal
components,21 that is, we choose a k value that lies in the
“elbow” of the L ∼ k curve, which is roughly around 5000
(Figure S7A). To confirm that the results are robust against
variations of k, we perform additional path analyses with k =
1000 and k = 10,000, respectively. It clearly shows that node-
degeneracy profiles are almost identical among different k’s,
proving the robustness of our results (Figure S7B,C). Similar
results are obtained for the DN and PCN (Figures S8 and S9).
The allosteric pathway identified by dCNA is invariant with

the parameter ε but slightly varies with the contact probability
threshold pc (eq 1). Besides the optimal pc = 0.20 and ε = 2.0, we
test different combinations of two alternative values of each
parameter: 0.10 and 0.15 for pc; 1.5 and 2.5 for ε. The node-
degeneracy profile is nearly identical with the change of ε
(Figure S10). However, slight variations are observed when pc is
lower than 0.20, which mainly contain reductions of degeneracy
in loop 1. As discussed in Section 3.2.3, the divergence of
pathways between the process 2→ 4 and other processes mainly
happens in loop 1. This divergence may have functional
implications or simply be a consequence of the particular choice
of pc = 0.20. Except for loop 1, degeneracy profiles are overall
similar to that with pc = 0.20. Importantly, all parameters tested
exhibit high degeneracy values for the key residues fD98 and
hN12. Note that we do not test pc’s above 0.20 as a larger pc
removes more contact changes, some of which are critical for the
integrity of the network. In summary, our method is generally
robust against small variations of parameters but may generate
differences in the precision of the node degeneracies with
different choices of pc.
The pathway by dCNA is also robust against variations in the

details of the network construction. We first investigate how the
result changes over modifications of eq 2 in Section 2.1. The
current dCNA framework discussed above (termed “strengthen-
ing” network below) considers the direction of conformational
changes, and contact strengthening from one state to the other is
treated as more important in the network than contact
weakening. Two additional networks are built (for the 2 → 4
process) for comparisons: one weights edges by the magnitude
of contact changes (i.e., |ΔΔg| or ignoring signs of changes;
termed “nondirectional” network) and the other reverses the
importance of direction, treating contact weakening (positive
ΔΔg or decrease of contact probability) as more important
(termed “weakening” network). All other procedures are the
same as in the strengthening network. The pathways derived
from the strengthening and the nondirectional networks are very
similar, with node degeneracies highly correlated over the entire
protein (R2: 0.87; Figure S11A). A slightly lower but still notable

correlation of node degeneracies is also observed between the
strengthening and the weakening networks (R2: 0.61; Figure
S11B). This suggests that the result is robust against the details
of how the network edges are weighted. However, the
strengthening network exhibits a slightly better performance in
detecting the experimentally verified key residues. For example,
the strengthening network predicts a much higher node
degeneracy for the most important fD98 than the weakening
network (0.64 vs 0.28; Figure S11B), suggesting a more
function-relevant allosteric pathway identified in the strengthen-
ing network than that in the weakening network. Note that the
choice of network also depends on the specific direction of the
process considered. For example, if the 4→ 2 process (effector
dissociation) is considered, the weakening network should be
used as it is equivalent to the strengthening network for the
effector binding process.
We further verify the robustness of the node degeneracy result

by dCNA using a different strategy of the network construction.
As an alternative approach to implement the idea of dCNA for
suboptimal path analysis, we build the network by simply adding
edges between all residue pairs with a nonzero contact
probability change (|Δp|>0). The edges are weighted in a
similar way as in the DN, that is, by −ln(|Δp|). Except for
variations in loop 1, the node-degeneracy profile of this method
is largely similar to that by the network based on differential
contact strengths (ΔΔg) (Figure S12 vs Figures 3A,B and S4).
Importantly, both fD98 and hN12 have a high node degeneracy
(0.37 and 0.49, respectively). Hence, the general principle of
comparing distinct conformational ensembles, rather than the
details of how the network is constructed, contributes the most
to the unique performance of the dCNA-based suboptimal path
analysis. Note that although both versions of dCNA have
comparable performance, the network weighted by differential
contact strengths or ΔΔg’s has a clearer physical interpretation
and is therefore preferable.

4. CONCLUSIONS
We introduce a new method for mapping the allosteric
communication pathways in biomolecules by implementing
the suboptimal path analysis within the dCNA framework. The
method exploits a protein structure network where the edges are
defined by changes of residue−residue contact statistics during a
functional process, such as the binding of an allosteric effector.
The method is thoroughly tested on the well-studied allosteric
system, IGPS, and is compared to conventional network
methods, including the DN and the PCN. Both dCNA and
the PCN identify experimentally verified key residues that do
not overlap, suggesting distinct behaviors of the two methods in
elucidating allosteric communication pathways. The key
residues detected by dCNA primarily play a dynamic role,
whereas those by the PCN are found to primarily play a
structural role in the allosteric communication. In contrast, the
DN method is found to be sensitive to the input simulation and
does not capture experimentally identified key residues very
well.
The dCNA-based path analysis, along with conventional

analyses, is also applied to examine distinct substrate/effector
binding processes in the thermodynamic cycle. The 10 μs MD
simulations identify the representative conformational changes
during IGPS activation, even though there are slight differences
between the interpretations of the computational and
experimental results. The dCNA path analysis reveals largely
similar allosteric pathways, except for slight variations in the
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exact node degeneracies, especially near the effector binding site.
The similarity in pathways is a consequence of a similar
subnetwork of residue−residue interactions (or a similar group
of residues) utilized by IGPS to propagate allosteric signals via
modulating the strengths of contacts. Similar subnetwork and
allosteric pathway are also utilized by the system to fine-tune the
allosteric coupling via changing the effector binding tightness.
Our method is generally robust against changes of parameters or
the details of the network construction, although slight
variations in the precision of the node degeneracy may occur
upon selecting different contact probability thresholds. Careful
examinations are also performed to assure the convergence of
the main results, including contact statistics and node
degeneracy calculations. Our study shows that dCNA-based
suboptimal path analysis is a powerful tool to identify critical
residues for the allosteric communication in IGPS. The dCNA
path analysis is general enough to be easily extended to other
systems.
Finally, we stress that the general dCNA framework enables

not only the community22 and suboptimal path analyses but also
other popular network analyses, such as the calculation of
betweenness centralities, which can be used to identify potential
key allosteric residues without knowing the coupled binding
sites a priori (Figure S13).
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