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We introduce our approaches, in particular, the modifications of the primitive recovery procedure,
to handle bare quark stars in numerical relativity simulations. Reliability and convergence of our
implementation are demonstrated by evolving two triaxially rotating quark star models with different mass
as well as a differentially rotating quark star model which has sufficiently large kinetic energy to be
dynamically unstable. These simulations allow us to verify that our method is capable of resolving the
evolution of the discontinuous surface of quark stars and possible mass ejection from them. The evolution
of the triaxial deformation and the properties of the gravitational-wave emission from triaxially rotating
quark stars are also studied, together with the mass ejection of the differentially rotating case. We find that
supramassive quark stars are not likely to be ideal sources of a continuous gravitational wave as the star
recovers axisymmetry much faster than models with smaller mass and gravitational-wave amplitude decays
rapidly in a timescale of 10 ms, although the instantaneous amplitude from more massive models is larger.
As with the differentially rotating case, our result confirms that quark stars could experience non-
axisymmetric instabilities similar to the neutron star case but with a quite small degree of differential
rotation, which is expected according to previous initial-data studies.
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I. INTRODUCTION

The detection of gravitational-wave (GW) signals from
binary neutron star (BNS) merger events (GW170817 and
GW190425) [1,2], as well as the electromagnetic (EM)
counterparts [3], have provided significant insights into the
equation of state (EOS) of neutron stars (NSs). On the one
hand, the inspiral GW signal puts a constraint on the tidal
deformability of NSs [4–7], which translates into a con-
straint on the radius of NSs. On the other hand, the EM
counterparts indicate the fate of the merger remnant, which
is tightly related to the maximum mass of cold and
nonspinning NSs (or Tolman-Oppenheimer-Volkov maxi-
mum massMTOV) and the total mass of the binary. Various
constraints have thus been put on the EOS of NSs
accordingly [8–12]. Nevertheless, the state of matter at
density as high as in NSs, particularly the role of quark

matter, is still an open debate. Recent studies have revealed
that the existence of deconfined quark matter is possible in
the high density core part of massive NSs, confronted with
the most recent astrophysical observations [13]. Many
attempts aimed at searching for evidence of such a
strong-interaction phase transition (from conventional had-
ronic matter to quark matter) inside NSs from astrophysical
observations have also been made [14,15]. As another
possibility, three-flavor quark matter could be the abso-
lutely stable state of matter at high density [16,17]. This
may result in the existence of the so-called strange quark star
(QS). Such an object could exist above a certain NS mass
(i.e., the two-family scenario [18–22]), and hence could be
formed during the merger of BNSs. Alternatively, there are
also suggestions that QSs could exist even for the normal NS
mass range [23] and following this assumption, the binary
QS (BQS) merger scenario has also been studied in terms of
the tidal deformability and mass ejections [24–26].
Figuring out the differences between the merger events

involving QSs and NSs and verifying them with multi-
messenger observations could greatly enrich our under-
standing of the nature of strong interaction. This requires
the modeling of QSs with the tool of general relativistic
hydrodynamics as a first step. Previously, various efforts
have been made in the calculation of the (quasi)equilibrium
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structures of uniformly and differentially rotating QSs in
general relativity (GR) [27–32] as well as the configuration
of BQSs in the last orbits [33]. Despite all these attempts to
construct initial data for QSs, the progress in the dynamical
evolution of them is quite limited. In fact, there has been
only one successful simulation of BQSs [25,26], in which
only approximate GR and the smooth particle hydrody-
namics method are adopted. It is both necessary and helpful
for us to improve our understanding by pushing forward to
evolve QSs in full GR grid-based hydrodynamics, which
has not been performed yet.
The problem with directly evolving QSs results from the

structural difference between QSs and NSs. QSs are self-
bound by strong interaction and the surface density is
nonzero (hence, also referred to as a “bare” QS). Handling
this discontinuity on the surface of QSs is a challenge in
numerical simulation. In addition, the specific enthalpy of
QSs calculated in the conventional way does not go to unity
as pressure goes to zero [31], and it may cause a problem
when we recover fundamental thermodynamic variables
from conserved variables which are directly evolved in
numerical relativity (NR) (the so-called primitive recovery
procedure). Realizing this, we have tried to modify the NR
code SACRA-MPI [34,35] to resolve these two problems and
achieved successful evolution of single QSs. In this paper,
we report the details of our methods to handle QSs in NR
and the first results of dynamical evolution of two triaxially
rotating QS models and a differentially rotating QS model.
There are several motivations for us to tackle the problem

of evolving triaxially and differentially rotating QSs as a
first step. First, these systems provide us a good test-bed
problem for evolving BQSs, for which we have to handle
the motion of the sharp density discontinuity at the surface.
The nonzero density surface of the triaxial QSs naturally
moves in the computational domain during the evolution.
This is also the case for differentially rotating stars with
sufficiently large values of the T=jWj ratio (the ratio of
kinetic energy T to gravitational potential energy W) to be
unstable for dynamical bar modes [36,37]. Thus, an
essential technical element needed to handle the merger
of BQSs can be tested by the simulation for these systems.
Second, previous studies indicated that triaxial deformation
could play a more important role for QSs than for NSs, as it
could reach higher values of T=jWj [31,38]. Specifically,
supramassive triaxial QSs (i.e., those with mass larger than
MTOV) could exist for a large parameter space, while
normally no such solution for NSs is present unless the
EOS is extremely stiff in the crust and softer in the core
[31,39]. Therefore, a newly born QS in supernova or binary
merger events may be a source for ground-based GW
detectors and is worth being investigated. Third, determining
the properties ofmass ejection from binarymerger events is a
key to understanding theEMcounterparts, andwewould like
to make sure that our approach is capable of capturing the
ejected mass. Mass ejection is expected from differentially

rotating compact stars during the growth of the dynamical
bar-mode instability [37] if T=jWj is large enough. Thus, we
can confirm the ability of our methods by evolving such
unstable differentially rotating configurations.
The paper is organized as follows: In Sec. II, we describe

the EOS model used in this work and how we treat it in our
numerical implementation. Details about the setup of our
initial-data solver and dynamical evolution code as well as
the convergence tests are presented in Sec. III. The results
for the evolution of the QS models, as well as the physical
interpretation of the results are reported in Sec. IV. In the
end, we briefly conclude and discuss future prospects of
evolving QSs in Sec. V. More quantitative tests on the code
performance are found in the Appendix. Throughout this
paper, c and G denote the speed of light and the gravita-
tional constant, respectively.

II. QUARK STAR EQUATION OF STATE

The most widely used EOS for QSs is the MIT bag
model, which is initially used as a phenomenological model
for hadrons [40]. Modern versions of the model take into
account more nuclear physics details, such as perturbative
quantum choromodynamics (QCD) corrections due to the
gluon-mediated interaction between quarks as well as the
finite mass of strange quarks [41,42]. As our first attempt to
evolve QSs, we neglect these details and stick with the
simplest form of the MIT bag model, which could be
written as

p ¼ 1

3
ðe − 4BÞ; ð1Þ

where p is the pressure for given energy density e, and B is
the bag constant which is related to the finite surface
density. Ideally, the pressure of quark matter vanishes at
e ¼ 4B and density drops to 0 discontinuously across the
surface; that is, Eq. (1) is valid only for e ≥ 4B. However,
matter with density lower than the surface density exists in
nature. Even for the case of bare QS (which is exactly the
model considered in this paper) that is not supposed to
possess a low density crust consisting of conventional
hadronic matter, such low density matter is still relevant
when mass ejection is present (for instance, in the cases
of dynamically unstable models and BQS mergers).
Theoretically, the exact form and fate of the material
ejected from a BQS merger are unclear. Some previous
studies suggested that the ejection from QSs is likely to be
in the form of strange quark nuggets [43,44], which are also
self-bound as the bare QS itself (i.e., the pressure is also
zero on the surface of the ejected nuggets). The main source
of pressure from the low density ejecta of QSs is therefore
the thermal contribution. Nevertheless, more recent studies
indicate that the possibility of ejected quark matter
decaying into normal nucleon matter does exist [45,46].
In this paper, we will not consider more complicated
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nuclear physical process at the moment and model such
matter as ideal gas (the details of which are found in
Sec. III B).
To obtain the rest-mass density and specific enthalpy

which are variables necessary for relativistic hydrodynam-
ics, we need the more explicit form of the MIT bag
model as

p ¼ Kρ4=3 − B; e ¼ 3Kρ4=3 þ B; ð2Þ

where ρ could be regarded as the rest-mass density1 and K
is constant. The choice of K is usually determined by
details of interactions between quarks in the system
[41,42,47,48], namely, K ∼ a−1=34 in which a4 is a model
parameter that characterizes the perturbative QCD correc-
tions. However, as discussed in many previous studies
[31,47,49], the choice of a4 (hence, K) has only negligible
influence on the EOS model once the bag constant is
fixed. In particular, in the case where we neglect the mass
of strange quarks (which is exactly the case assumed in
this work), the choice of K has no impact on the EOS
model at all. This could be easily understood if one
eliminates ρ from Eq. (2) to recover Eq. (1), regardless of
whatever value of K is used. Consequently, we could
employ a value of K which is most convenient for
us to implement numerically, and ρ becomes a purely
auxiliary variable.2

With the expression of Eq. (2), the specific enthalpy is
written as

h ¼ eþ p
ρ

¼ 4Kρ1=3: ð3Þ

On the surface of the QSs, the density ρs is determined by
the fact that the pressure ps should vanish:

ps ¼ Kρ4=3s − B ¼ 0; ð4Þ

which reads

ρs ¼
�
B
K

�
3=4

: ð5Þ

Hence, the specific enthalpy on the surface of QSs in this
model is

hs ¼ 4Kρ1=3s ¼ 4K3=4B1=4: ð6Þ

Now it becomes obvious that normally with a choice of K
that is motivated by nuclear physics, hs does not approach
c2. This could bring another source of discontinuity,
because for the case of the normal matter for which the
internal energy is much smaller than the rest-mass energy,
the specific enthalpy approaches c2. In particular, most of
the physically motivated choices of K for the quark matter
results in hs < c2. This implies that the specific enthalpy is
not only discontinuous across the surface but also not
monotonic, and ρ as a function of h is not even a single-
valued function. This could make the primitive recovery
procedure extremely complicated, if ever possible.
Taking into account the fact that changing K does not

matter much to the EOS modeling for our purpose, it is then
quite straightforward to make a choice for K such that
hs ¼ c2, which requires

K ¼
�

c8

256B

�
1=3

: ð7Þ

This implies that for every choice of the bag constant, we
could determine a unique choice for Eq. (2) that resolves
the issue of an ill-behaved function of hðρÞ. The EOS
parameters adopted in this work and also properties of the
spherical QSs are listed in Table I and the mass-radius
relation is shown in Fig. 1.
Although shock heating does not play an important role

for the evolution of a single star, we still employ the Γth
prescription to take into account finite temperature effects as
we ultimately will try to deal with BQS systems. In this
model, the pressure is expressed as a sumof two components,
the cold part [pcoldðρÞ] determined by Eq. (2) and a thermal
part related to the specific internal energy density as

p ¼ pcoldðρÞ þ ðΓth − 1Þρϵth; ð8Þ

TABLE I. Parameters for the MIT bag model adopted in this
paper. B and K are the bag constant and coefficient as in Eq. (2).
ρs is the rest-mass density on the surface of the QS. The numbers
listed for the EOS parameter are the values in centimeter-gram-
second units. Mass and radius of the maximum-mass spherical
solution as well as radius and tidal deformability of the 1.4 M⊙
solutions are also listed. This model is consistent with the
observations of the most massive pulsars [50,51] as well as
the upper limit of tidal deformability [1].

B ðerg cm−3Þ 8.3989 × 1034

K ðg−1=3 cm3 s2Þ 3.1191 × 1015

ρs ðg cm−3Þ 3.737 × 1014

MTOV ðM⊙Þ 2.100
RTOV (km) 11.5
R1.4 (km) 11.3
Λ1.4 598

1A more popular version of this explicit form is written in
terms of the number density n rather than the rest-mass density ρ.
We can always rewrite it by assuming certain rest mass for
quarks. For example, 931 MeV=c2 is usually assumed for three
quarks [47].

2In this sense, baryonic mass of the star could alter with
different choice of K. However, it does not affect any other
quantities and hydrodynamics [47].
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where ϵth is the thermal part of specific internal energy
density defined by

ϵth ¼ ϵ − ϵcoldðρÞ: ð9Þ

Here we follow the normal definition such that specific
internal energy density ϵ ¼ e=ρ − c2. It is worth noting that
only with the choice ofK according to Eq. (7), arewe able to
guarantee that ϵcold approaches zero on the surface of the star.

In this work, Γth is chosen to be 4=3, which makes the
primitive recovery process much easier to do for QSs
(which we will demonstrate later in Sec. III B), although, in
principle, any other values are also possible to be employed
at a higher computational cost.

III. NUMERICAL SETUP

A. Initial data

The quasiequilibrium configurations of rotating QSs
are calculated by the initial-data solver COCAL (Compact
Object CALculator) [52,53]. The implementation of QS
EOS models as well as convergence and accuracy tests are
found in our previous papers for the axisymmetrically
uniformly/differentially rotating and triaxially uniformly
rotating cases [31,32].
For the triaxial rotation case, as mentioned before, one

significant difference between NSs and QSs is that supra-
massive triaxially rotating QSs could exist for a vast space
of parameters. To explore both the supramassive case
(which could be formed during a binary merger event)
as well as a relatively standard mass case (which could be
formed in a supernova), we have built two solution
sequences with different values of the central density.
The way of constructing the solution sequences is the

same as in [31]: We construct the sequence of solutions for
a fixed value of the central density with decreasing Rz=Rx
ratio without imposing axisymmetry during the calculation.
Here the direction of the z axis corresponds to the angular
momentum direction of the rotating star, and Rz refers to
the coordinate radii of the star along z axis. Since we are
considering triaxial configuration here, Rx refers to the
coordinate radii of the longest axis in the equatorial plane
and Ry to the shortest. As a consequence, in the presence
of the solution with Rz=Rx small enough to possess a
sufficiently high value of the T=jWj ratio for bifurcating
into the triaxial solution branch, a star with Ry=Rx < 1 is
spontaneously obtained. We then pick up a triaxial solution
with mass that is astrophysically interesting and use it as
our initial data.
As with the differential rotation case, the widely used

j-const law [54–60]

jðΩÞ ¼ A2ðΩc −ΩÞ ð10Þ

is chosen to construct the solutions, in which A is a
parameter that characterizes the degree of differential
rotation, and a normalized version Â ¼ A=re is also often
used where re is the equatorial coordinate radius of the star
(for smaller values of Â, the differential rotation degree is
higher). Previous initial-data studies [30,32] show that the
properties of differentially rotating QSs for a given value of
Â are quite different from that of NSs. In particular,
continuous transition to toroidal sequences (i.e., type C
solution according to the classification of [55]) happens at
lower degree of differential rotation (at Â ∼ 3 for QSs while
at Â ¼ 1 for NSs). In previous studies for NSs [37,61], the
Â parameter is typically chosen to be unity or smaller for
the case of NSs to explore the dynamical bar-mode
instability. Taking the difference between QSs and NSs
mentioned above into account, we choose Â ¼ 3.0 for the
MIT bag model and pick up a solution with T=jWj large
enough as the initial data. In addition, we evolve a differ-
entially rotating NS model with the APR4 EOS [62] and
Â ¼ 1.0 for comparison purposes.
The quantities estimated for the initial-data models we

consider in this work are listed in Table II. In the following,
the triaxial model with lower mass will be referred to as
MIT148 and the supramassive triaxial model as MIT265,
according to their Arnowit-Deset-Misner (ADM) mass.
The differential rotation models will be referred to as
MIT275dr and APR206dr for the QS and NS cases,
respectively.

B. Dynamical evolution

The dynamical evolution of the initial data is performed
with our numerical relativity code SACRA-MPI. To solve
Einstein’s evolution equation, a moving puncture version
of the Baumgarte-Shapiro-Shibata-Nakamura formalism

FIG. 1. Mass radius relation for cold nonrotating QSs with the
MIT bag model adopted in this paper. Labeled by the filled
circle is the maximum mass solution, with MTOV ¼ 2.100 M⊙
and RTOV ¼ 11.5 km.
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[64–67] is employed in the code. A constraint propagation
prescription similar to the Z4c scheme [68] is also imple-
mented in part of the computational domain (cf. [69] for
details). More details about SACRA-MPI, such as the finite
differencing schemes as well as the adaptive or fixed mesh
refinement (FMR) setups are found in [35].
In numerical hydrodynamics, we employ a high-

resolution shock capturing scheme. For this case, one
always has to impose a small but nonzero density for
the exterior of the star to recover the 4-velocity (which is a
primitive variable) from the momentum density (which is
an evolved variable). In this work, this density is set to be
10−12 times the surface density of our QS model.3

Nevertheless, the situation is a bit more complicated than
the NS cases, even if we manage to choose a model
according to Eq. (7) such that the specific enthalpy is now
well behaved across the surface of QSs. For the NS cases,
Eq. (8) is valid in the entire computational domain, with
pcold calculated with the same EOS both for the NS and the
region outside the NS. However, it is obvious that this is not
the case for QSs, because pcold vanishes for ρ < ρs. As a
consequence, only the thermal component in Eq. (8) exists
for the region outside the QSs,

p ¼ ðΓth − 1Þρϵ; ð11Þ

and we choose Γth ¼ 4=3 for ρ < ρs, which is the same as
the thermal contribution of the matter in the QSs such that
the EOS model is consistent throughout the inside and
outside of the star.
Having to use two different EOS models for the QS and

the other brings another problem. In relativistic hydro-
dynamics, the conserved variables are evolved in every
time step, and the primitive variables (such as the rest-mass
density, 4-velocity, and specific internal energy) have to be

determined from the conserved variables with the help of the
EOS and the normalization relation of the 4-velocity (i.e., by
the so-called primitive recovery procedure). However, since
we have no idea about the value of the rest-mass density
before the primitive recovery, we do not know whether the
part of matter whose primitive variables to be recovered is
inside the QS or not. As a result, we do not knowwhich EOS
model is adopted for the primitive recovery procedure in
advance. Therefore, we have to modify the primitive recov-
ery part to incorporate QS EOS models. We will briefly
explain our strategy in the following.
For our implementation of relativistic hydrodynamics,

the conserved variables which are directly evolved are

ρ� ¼ ρw
ffiffiffi
γ

p
; ð12Þ

Si ¼ ρ�hui; ð13Þ

S0 ¼ ρ�

�
hw −

p
ρw

�
; ð14Þ

where
ffiffiffi
γ

p
is the determinant of the 3-metric on the spacelike

hypersurface γij and is solved during the time evolution, ui is
the spatial component of the 4-velocity of the fluid element,
andp, ρ,h, andw are the total pressure (including the thermal
contribution), rest-mass density, specific enthalpy, and
Lorentz factor of the fluid, respectively, which we would
like to recover. Including the three components inui, we have
in total seven unknown variables and only five relations
between them [Eqs. (12)–(14)], and hence, additional two
relations are needed. For this, one is the EOS model and the
other is the normalization relation of the 4-velocity, which is
rewritten to the definition of Lorentz factor as

w2 ¼ 1þ γijuiuj ¼ 1þ γij
SiSj
ρ2�h2

; ð15Þ

where Eq. (13) was used for the second equality. Here we
define q2 ≡ γijSiSj=ρ2� (which is purely determined during
the evolution) in the following to simplify the expressions.

TABLE II. Quantities of three single QS models and one NS model considered in this work, as estimated according to the initial-data
solutions. Rx is the coordinate (proper) equatorial radius and Rz=Rx is the ratio of coordinate radius along the z and x axis, and Ry=Rx is
the y-to-x-axis ratio. ρm is the maximum rest-mass density inside the star. MADM, Mb, J, T=jWj, Pc, and Â are Arnowit-Deset-Misner
mass, baryonic mass, angular momentum, ratio between kinetic and gravitational potential energy, the central rotation period, and the
differential rotation parameter in the j-const law, respectively. Definitions can be found in the Appendix of [63]. _E is the luminosity of
the GWat t ¼ 0 as estimated by the quadrupole formula which is a good approximation for the instantaneous GW strain in the beginning
of the dynamical evolution.

Model Rx (km) Rz=Rx Ry=Rx ρm ðg cm−3Þ MADM ðM⊙Þ Mb ðM⊙Þ J (erg s) T=jWj Pc (ms) Â _E ðerg s−1Þ
MIT148 14.0 (18.3) 0.457 (0.469) 0.719 (0.728) 5.0 × 1014 1.488 1.636 1.81 × 1049 0.1712 0.955 � � � 3.51 × 1053

MIT265 13.5 (21.9) 0.458 (0.486) 0.781 (0.802) 7.6 × 1014 2.655 3.109 5.23 × 1049 0.1872 0.774 � � � 8.50 × 1053

MIT275dr 14.4 (22.3) 0.313 (0.327) � � � 5.0 × 1014 2.757 3.121 7.35 × 1049 0.2867 0.705 3.0 � � �
APR206dr 13.8 (19.6) 0.250 (0.260) � � � 6.0 × 1014 2.060 2.251 3.92 × 1049 0.2599 0.409 1.0 � � �

3Note that COCAL calculates QS initial data with finite surface
density. Consequently, the floor density of 10−12ρs has to be
imposed in the beginning of the evolution. An initial tiny specific
internal energy density of 4Kρ1=3floor is assigned to the floor density
to be consistent with Eq. (3) in the p ¼ 0 limit.
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Another given quantity is defined using Eqs. (12)
and (14) as

e0 ¼
S0
ρ�

¼ hw −
p

ffiffiffi
γ

p
ρ�

: ð16Þ

Note that the EOS provides us p as a function of w [since ρ�
and

ffiffiffi
γ

p
are obtained during evolution, ρ can be obtained once

w is determined according to Eq. (12)] and h. Therefore,
Eqs. (15) and (16) are two equations for two unknowns h
and w. Thus, the primitive recovery, in essence, is to find a
solution for h andw using the above two algebraic equations.
For the region outside the QSs, for which the EOS is

Eq. (11), the following algebraic equation for h is obtained
by substituting out w from Eqs. (15) and (16):

e20ðh2 þ q2Þ − Γ−2
th ½h2 þ ðΓth − 1Þhþ Γthq2�2 ¼ 0; ð17Þ

which we can solve by root finding methods. For the QS
with Γth ¼ 4=3, we have realized that the equation can be
greatly simplified and Eq. (16) becomes

e0 ¼ h

�
w −

1

4w

�
þ B

ffiffiffi
γ

p
ρ�

; ð18Þ

with which we obtain the following equation for w:

ðs2 − q2Þw4 þ
�
q2

2
− s2

�
w2 −

q2

16
¼ 0: ð19Þ

Here, we defined s ¼ e0 − B
ffiffiffi
γ

p
=ρ�. A solution can be

obtained analytically4 for w2 as long as s4 − ð3=4Þq2s2 is
larger than 0. We can then take the root for w2 which is
larger than 1, if it exists, and recover the value for ρ to see
whether it is indeed larger than ρs. In the case that the
recovered value of ρ is actually smaller than ρs or there
exists no root for w2 that satisfies w ≥ 1, we treat the fluid
as the nonquark matter and solve Eq. (17) with the Newton-
Raphson method to find a solution. We succeeded in
evolving the two triaxially rotating models and one differ-
entially rotating QS model with this implementation. In
particular, it is worth mentioning that for the case of triaxial
solutions and the dynamically unstable differentially rotat-
ing solution, the surface of a QS is moving in the
computational domain. This implies that there exists certain
grid points on which the fluid is sometimes inside the QS
and sometimes outside. The fact that the triaxial solutions
can be evolved with this method verifies its reliability. We
will focus on the tests of the code performance in the next
subsection.

C. Code tests

We employ three different grid setups in this work to
explore the accuracy and convergence behavior of the code in
evolvingQSs. Nine FMR levels, which are all centered at the
QS core, are constructed for all three grid configurations,
with every level doubling the size and grid intervals of its
finer level. In every refinement level, uniform and vertex-
centered Cartesian coordinates are used to cover the x, y, and
z directions with 2N þ 1; 2N þ 1, and N þ 1 points (equa-
torial plane symmetry is assumed) and we choose N ¼ 80,
120, and 160 for three different setups. The distance from the
coordinate origin to the boundary of the finest level along
each axis is set to be 16GM⊙=c2 (≈23.6 km) for all three
setups; i.e., an outer boundary of the entire FMRdomain is as
large as 16 × 28 ¼ 4096GM⊙=c2 ≈ 6048 km. The boun-
dary is much larger than the typical GW wavelength of the
models we considered here, λgw ∼ π=Ω, which is of the order
of 100GM⊙=c2 ≈ 147.7 km according to the rotational
period found from the initial data. It is straightforward to
find the grid resolution in the finest level as Δx ¼
Δy ¼ Δz ¼ 295, 197, and 148m for three different
resolutions.
We monitor both the volume-averaged and density-

weighted Hamiltonian constraint violations for all three
resolutions up to t ¼ 30 ms and show them in Figs. 2 and 3
for models MIT148 and MIT265, respectively. The initial
constraint violation, which is mainly a result of the
interpolation of the initial data from the surface fit
coordinate employed in COCAL to the Cartesian coordinates
in SACRA-MPI, is significantly reduced at the early stage of
the dynamical evolution due to the constraint violation
propagation scheme. After that, the constraint violation
stays at a relatively low level for the entire duration of
the run.
The convergence behavior is also studied by analyzing

this result. A certain quantity evaluated at one grid
resolution fN could be expressed as

fN ¼ fexact þ AfΔ
ζ
N; ð20Þ

where fexact is the exact solution if one has infinitely fine
resolution, ΔN is the grid interval associated with the
resolution N, Af is a constant, and ζ is the convergence
order of the code. For constraint violations, one should
expect zero violation at infinite resolution. Hence, we could
directly divide the constraint violation value at a given time
in different resolutions and figure out ζ, given the ratio of
grid intervals between two resolutions. By doing so, we
have found approximately linear order convergence
(ζ ≈ 1.0) for volume-averaged constraint violation for
any given time in the simulation. This agrees with our
expectation: On one hand, we have already shown in our
previous study that in the case of QSs, many quantities
obey first-order convergence [31] for constructing initial

4In the case of other choices of Γth, terms of other powers of w
are involved in the equation and no analytical solution can, in
general, be obtained. Instead, we have to do a root finding for
more general choices of Γth.
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data due to the presence of the density discontinuity at theQS
surface; on the other hand, as a minimum modulus flux-
limiter function (for details, cf. [70]) is used in SACRA-MPI,
the order of the interpolation accuracy during reconstruction
could decrease to approximately linear order if we encounter
strong discontinuity to avoid unphysical oscillations. This is
exactly the case on the surface of aQS. The density-weighted
result shows a convergence order of≈1.4 forMIT265 and 1.5
for MIT148, which further supports this understanding. The
inner part of theQS, forwhich no discontinuity is present and
thus the reconstruction is made with higher-order interpo-
lation, has larger density than the surface, and hence, the
density-weighted result should show a higher conver-
gence order.

Apart from the relatively low convergence order, we
emphasize that our method for resolving the discontinuous
density across the surface of the QS shows no sign of the
problem. To clarify this point, we generate contour plots for
the rest-mass density ρ on the x-y plane together with the
3-velocity field (Figs. 4 and 5). The figures illustrate that
the primitive recovery scheme we introduced works well
for QSs. First, it is found that the density drops from the
surface density of the QS (which is approximately
3.737 × 1014 g cm−3) for 2 orders of magnitude within
approximately three grid points; this is indicated by the
rapid color change from orange to green, blue, and
eventually to white within three grid points near the surface.
We note that this sharp discontinuity is still resolved by
approximately three grid points after 20 ms as in the
beginning of the simulations for both models (see the lower
panels of Figs. 4 and 5). No sign of the diffusion of this
finite surface density is observed. Second, the velocity
field, which is related to the Lorentz factor w obtained by

FIG. 3. Same as Fig. 2 but for model MIT265.FIG. 2. The Hamiltonian constraint violation for model
MIT148 during the evolution. The upper panel shows the
volume-averaged result and the lower one the density-weighted
result. Results of resolutions from low to high correspond to the
curves from top to bottom (green for N ¼ 80, orange for
N ¼ 120, and blue for N ¼ 160).
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the primitive recovery, shows a smooth configuration as
found from the figures; the velocity field inside the QSs
follows a rigid bulk rotation and the outside does not (since
we did not put any initial velocity for the atmosphere, as
found from the upper panels of Figs. 4 and 5). In particular,
if we focus on the points near the surface of the QSs, it is

FIG. 5. Same as Fig. 4 but for model MIT265.FIG. 4. Contour plots of the rest-mass density ρ on the x-y plane
for model MIT148 at 0.02, 10.00, and 20.00 ms after the
beginning of the simulation. The rapid color change in the
vicinity of the surface indicates the existence of the surface
discontinuity. The arrows show the 3-velocity field of the fluid.
The lower limit for the density in the color bar is set to be
1012 g cm−3 which is already 2 orders of magnitude lower than
ρs. For most of the part outside the star, density is as small as
10−12ρs as explained in Sec. III B.
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found that the velocity on any point that is inside the
surface follows the bulk motion of the QS, while the
velocity on the points which are one grid outside the star
deviates from the bulk motion. Since the surface of the QSs
is moving in the domain (i.e., points inside/outside the QSs
at one time step might move to their outside/inside at the
next time step), the fact that the velocity field is well
recovered for the main body of the QSs indicates the
success of our implementation.

IV. RESULTS

A. Triaxial rotation case

It has been suggested previously that a fast rotating
compact star formed during collapse of a massive star or
merger of a binary system could actually be in a configu-
ration similar to those of Jacobi ellipsoids [71]. The
evolution of such configurations as well as the GWemission
properties have been investigated both analytically and
numerically [36,71–74]. According to these studies, the
general understanding is that due to angular momentum
loss by GW radiation, such triaxial star settles toward an
axisymmetric configuration. The frequency of GWs is twice
the spin frequency. In this stage, the angular velocityof the star,
i.e., the GW frequency, increases as a result of the decrease of
themoment of inertia during the reconfiguration of the triaxial
star. When the star approaches the axisymmetric bifurcation
point, other secular instabilities such as Dedekind instability
and Chandrasekhar-Friedman-Schutz instability could be
induced [71,73]. However, such instabilities only take place
in a timescale much longer than the dynamical one as

τgw∼2×10−5
�

M
1.4M⊙

�
−3
�

R
10 km

�
4

ðβ−βsecÞ−5 s; ð21Þ

where β and βsec are the T=jWj ratio of the star and that of the
onset of the secular instability, respectively. Although QS
models indeed could reach a higherT=jWj ratio thanNSs, and
so is the case of the two models considered in this paper, this
timescale is still as long as∼40 s forMIT265 and∼2000 s for
MIT148,which aremuch longer than the timescale that can be
covered by NR simulations. Hence, the simulation for
secularly unstable stars is beyond the topic of this paper.
On the other hand, the dynamical timescale is approximately
written as

τdyn ¼
�
GM
R3

�
−1=2

; ð22Þ

which is the same order of magnitude as the spin period,
≲1 ms, of the models we considered and much shorter than
the timescale that can be covered by NR simulations.
Therefore, we can conclude that triaxial QSs are dynamically
stable if the QSs still maintain their structure after tens of
rotation periods.

Figures 4 and 5 indicate that the configuration of the QSs
settles toward an axisymmetric one. Quantitatively speak-
ing, after 10 ms, the length of the equatorial radius along
the longer axis shrinks to 12.4 km (which is 11% shorter
than the initial value of Rx) for model MIT148. On the other
hand, for MIT265, Rx shrinks to 10.6 km and becomes
approximately identical to Ry. This implies that the QSs
lost nearly all the triaxial deformation in the first 10 ms. As
the triaxial deformation decays during the evolution, the
same occurs in the GW amplitude. As shown in Fig. 6,
specifically, the GW strain amplitude decays exponentially
with time. This indicates that the GW dissipation would be
indeed the dominant mechanism for the reconfiguration of
the triaxial QSs.
A similar numerical result was found previously for

NSs [74]. The authors in [74] suggested that the timescale
for reconfiguration of the stars might be incompatible with
the estimation of the GW dissipation timescale that they
assume:

τgw;dis ¼ T= _E; ð23Þ

where T is the rotational kinetic energy of the star and _E is
the GW luminosity. They showed that this timescale is of
the order of 1 s, and hence, it cannot account for the change
in the stellar shape that proceeds in a timescale of 10 ms.
However, Eq. (23) is not appropriate for estimating the
relevant timescale and actually overestimates the timescale
by a factor of ∼100. The reason for this is that the triaxial
stars only need to lose the extra angular momentum (or
extra rotational kinetic energy) relative to that of the
bifurcation configuration, rather than all their angular
momenta (or rotational kinetic energy), to settle to the
axisymmetric configuration. Therefore, a better estimation
should be given by

τgw;dis ¼ ΔJ= _J; ð24Þ

where ΔJ is the angular momentum difference between
the initial configuration and that of the bifurcation point
solution (see the illustration in Fig. 7), and _J is the angular
momentum loss rate due to the GW emission which is
related to _E approximately as _J ≈ _E=Ω. According to the
previous studies [31,76], triaxial stars can only obtain a
maximum of 10% extra angular momentum relative to that
of the bifurcation point Jb. In particular, for the stars with
the larger compactness, the smaller amount of the extra
angular momentum can be reached (cf. Fig. 8 in [31] or
Table V in [76]). For the high compactness case, the extra
angular momentum could be as small as ∼1% of Jb.
Therefore, it is reasonable that the triaxial stars settle to an
axisymmetric configuration in a timescale of tens of milli-
seconds by the GW emission. In fact, according to the
exponential fit shown in Fig. 6, this timescale is 17.85ms for
MIT148 and 4.35 ms for MIT265. These values are
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consistent with the argument that ΔJ is smaller for higher-
compactness QSs.
The decay of the triaxial deformation results not only in

the damping of the GWamplitude but also in the shift of the
GW frequency, as the triaxial star spins up a little bit. We
analyze the evolution of the GW frequency by performing
Fourier transformation for the GW strain in different time
intervals. The result is shown is Fig. 8. For model MIT148,

the GW signal is approximately monochromatic with the
dominant frequency at f ¼ 2.14 kHz5 up until 35 ms,
although the power decreases by a factor of 5 in ∼30 ms.
On the other hand, for model MIT265, the frequency of the
dominant peak shifts from f ¼ 2.64 kHz in the first time
bin to f ¼ 2.74 kHz in the second time bin. The compari-
son between models MIT148 and MIT265 indicates that
due to angular momentum dissipation by GW radiation, the
reconfiguration of the triaxial star toward axisymmetry is
faster for models with higher mass, which is again a result
of the fact that higher-compactness stars contain much less
extra angular momentum relative to that of the axisym-
metric bifurcation point.
In addition, it is worth noting that, although the instanta-

neous GWamplitude in the beginning for model MIT265 is
larger than that for model MIT148 (the same occurs for the
GW amplitude estimated in the initial data), it is unlikely
that supramassive triaxial QSs are stronger GW sources.
This is again due to the fact that the decay timescale of the
GW amplitude is too short for the supramassive cases, and
in the realistic detection, the signal-to-noise ratio could be
less gained. This fact can be directly understood from

FIG. 6. Distance-normalized GW strain for the hð22Þþ component
extracted from the simulations for models MIT148 (upper panel)
and MIT265 (lower panel). Results from three different reso-
lutions are shown by the solid lines with different colors (blue for
N ¼ 160, red for N ¼ 120, and green for the N ¼ 80 case). The
black dashed horizontal line indicates the GW strain estimated by
the quadrupole formula according to the initial data to show
consistency. We find that the norm of the GW strain (i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2þ þ h2×
p

) can be well fitted with an exponential decay. We
show the fit according to the best resolution results with the blue
dashed curve. The best fitting exponential decay timescale is
17.85 ms for MIT148 and 4.35 ms for MIT265. The fixed
frequency integration method [75] is used for obtaining the GW
strain. The time shown here is the retarded time tret ∼ t − 1.5 ms
as GW signal is extracted at r ¼ 300GM⊙=c2.

FIG. 7. Illustration of the difference between ΔJ and total
angular momentum for triaxially rotating solutions. The eccen-
tricity [e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRz=RxÞ2

p
, where Rz and Rx are the coordinate

lengths of the polar and equatorial radii] and angular momentum
J of a solution are shown for both axisymmetric solutions (solid
line) and triaxial solutions (dashed line) with the same baryonic
mass as model MIT148 considered in this work. The triangle and
cross indicate model MIT148 and the bifurcation point, respec-
tively. There exists no triaxial solutions if the angular momentum
is smaller than that of the bifurcation point. Therefore, after losing
the extra angular momentum with respect to the bifurcation point
(ΔJ in the figure), axisymmetry is resumed for MIT148 model.

5Note that the time window has a size of 10 ms for performing
the Fourier transformation, the resulting frequency resolution is
100 Hz, and thus, in principle, we cannot resolve if the frequency
shift is smaller than 100 Hz.
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Fig. 8, as the power spectrum is indeed stronger at any
given time bin for model MIT148 than for MIT265. At any
rate, the signal still decays too fast to become ideal
continuous GW sources even for MIT148 unless the triaxial
configuration could be maintained by external angular
momentum supplies (by accretion for example) known
as the forced GW emission scenario [77,78].

B. Differential rotation case

It is analytically shown that an incompressible Maclaurin
spheroid becomes dynamically unstable to bar formation in
Newtonian gravity if T=jWj is larger than a critical value of
∼0.27 [36]. Such a high T=jWj ratio could be reached by
rapidly spinning NSs and QSs only in the presence of
differential rotation. Previous studies have shown that also
in GR, the dynamical bar-mode instability could be induced

for differentially rotating NSs with a sufficiently high value
of T=jWj, and the critical value is found to be slightly
smaller than the Newtonian value (∼0.25 in GR) depending
weakly on the stiffness of the EOS models [37,61,79,80]. It
has been shown that for such NSs, barlike perturbation
grows exponentially in the early stage until saturation is
reached. Beyond the saturation, the evolution differs for
models with different T=jWj values: Spiral arms are formed
and mass ejection subsequently occurs for relatively large
values of T=jWj, while for models with T=jWj close to the
critical value, no significant sign of the spiral arm structure
and mass ejection is found [37]. In this paper, both
MIT275dr and APR206dr possess T=jWj larger than
0.26. Thus, we expect that the spiral arm structure is
formed. These models could be also useful for under-
standing the similarity or difference between the bar-mode
instability of QSs and NSs.
The l ¼ m ¼ 2mode GW strain, which is directly related

to the m ¼ 2 bar mode, during the evolution is shown in
Fig. 9. It is worth noting that we do not impose any barlike
perturbation in the beginning of the evolution, which is
different from the treatments in previous studies [37,61], as
our main focus is not to explore the parameter space for (un)
stable differentially rotating QSs, but to understand the
capability of the code as well as the difference between
QSs and NSs. In our evolution, bar-mode instability sponta-
neously sets in from a random perturbation that should
present in any numerical simulation and exponentially grows
from the tiny perturbation spending ∼10–20 ms for both
models. Saturation is achieved approximately at tret ¼
19.75 ms for model MIT275dr and at tret ¼ 12.25 ms for
model APR206dr, and then, the GW strain decreases to a
relatively lower level.
The snapshot of density contours on the equatorial plane

straightforwardly demonstrates the growth of the bar mode
(see Figs. 10 and 11). The evolution of the density contours
for model APR206dr is quite consistent with the previous
results of differentially rotating compact stars with a
relatively large value of T=jWj [37,61]: The star is
significantly distorted when the bar-mode growth saturates
(the middle panel, which we choose the time when the peak
of the GW strain is reached) and the spiral arm structure
forms afterward (the lower panel). On the contrary, the
result of model MIT275dr is similar to the previous results
with T=jWj slightly larger than the critical value: The star
adjusts to ellipsoidal structure without formation of
spiral arms.
Despite all the differences mentioned above, it is found

that the growth rate of the bar-mode instability is quite
similar for the two models considered in this work if we
normalize the simulation time by the central rotation
frequency (cf. Fig. 12). For both models, the GWamplitude
grows for about 3 orders of magnitude in the duration of
Ωct ¼ 100–200. More careful analysis yields an e-folding
timescale of about 2.24 central rotation periods for model
APR206dr and 2.04 for model MIT275dr. This result is

FIG. 8. Distance-normalized power spectrum of GW for
models MIT148 (upper panel) and MIT265 (lower panel). The
Fourier transformation is performed at different time bins to study
the evolution of the dominant frequency. The time indicated is the
retarded time as in Fig. 6.
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also consistent with the range derived in previous studies
[37,61], indicating that the instabilities found in this work
are indeed the dynamical bar-mode one.
The mass ejection is also studied (as shown in Fig. 13) by

applying the criterion that matter becomes unbound if ut is
smaller than −1.0. For model APR206dr, a burst of mass
ejection is found approximately at the same time when the
GW strain reaches the maximum value and in total about
6 × 10−4 M⊙ is ejected in the end. However, the situation is
a bit more complicated for the QS case due to the artificial
mass ejection in the beginning. The main reason for this
artificial mass ejection is the existence of matter with
density smaller than the surface density near the surface

FIG. 9. Distance-normalized GW strain for the hð22Þþ component
extracted from the simulations for models MIT275dr (upper
panel) and APR206dr (lower panel) in the highest-resolution
case.

FIG. 10. Contour plots of the rest-mass density ρ on the x − y
plane for model MIT275dr at 0.02, 19.76, and 26.50 ms after the
beginning of the simulation. Note that at tret ¼ 19.76 ms, the

maximum value of hð22Þþ is achieved during the simulation
(cf. Fig. 9) and at tret ¼ 26.50 ms, the GW amplitude decreases
to a relatively low level.
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when initial data are interpolated to the grid points for
dynamical evolution. Such matter has to be treated as ideal
gas once the dynamical evolution starts, and this may drive
part of that matter away from equilibrium. Nevertheless, a

rise in the ejected mass is still found at t ∼ 20 ms, which
corresponds to the duration of the growth in the GW strain.
A total mass ejection of about 3.5 × 10−4 M⊙ is found after
subtracting the mass ejection before t ¼ 18 ms (i.e., before
the bar mode begins to exponentially grow). A more careful
study of this artificial ejection is shown in Appendix B. It is
found that, for the current implementation, the quantitative

FIG. 11. Same as Fig. 10 but for model APR206dr. The time of
the snapshots is selected in the same way as that in the caption of
Fig. 10.

FIG. 12. Distance-normalized GW strain norm
(jhj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2×

p
) for the l ¼ m ¼ 2 component extracted from

the simulations for models MIT275dr (lower panel) and
APR206dr (upper panel) in the highest-resolution case. We have
multiplied the time by the central angular velocity (shown as the x
axis in the bottom) of the two models, respectively, such that the
horizontal axis is now proportional to the number of central
rotation periods (shown as the x axis on the top).

FIG. 13. Amount of mass ejected according to the criterion
ut < −1.0 for models APR206dr (red solid line) and MIT275dr
(blue solid line) during the evolution. To remove the effect of
artificial mass ejection in the early stage of the QS case, we have
subtracted out the mass ejection before t ¼ 18 ms, and the
residual is shown as the blue dashed curve. The black curve
indicates the absolute value of change in baryonic mass for model
MIT275dr. When matter is ejected and moving out of the finest
FMR level to coarser levels, baryonic mass conservation might be
violated but still stays by 1 order of magnitude lower than the
amount of ejected material.
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measurement of the ejecta is reliable for slowly rotating
models, but uncertainty will significantly increase for
models with extremely large angular velocity (as is the
case for MIT275dr) due to artificial ejection.
An interesting feature is that although model MIT275dr

possesses a higher T=jWj value than model APR206dr
(cf. Table II), the spiral arm formation and mass ejection are
much less significant than the NS case, showing that the
critical T=jWj value is likely to be higher for the QS model
we considered here. There are several possible reasons for
this. First of all, for QSs the density profile is much more
uniform than for NSs, and hence, the T=jWj ratio is
possible to be higher to approach the limit for incompress-
ible stars. Second, previous studies concentrated on a
differential rotation degree around Â ¼ 1.0 for NSs and
found weak correlation between the critical T=jWj and Â
parameter. However, for the MIT275dr model considered
here, a quite large Â parameter (3.0) is adopted, and for NSs
with such small differential rotation degree it is not possible
to find dynamically unstable solutions. The parameter
space for dynamical bar-mode instability for such a large
Â parameter might be different, and we need to perform
more systematic studies for differentially rotating QSs with
different parameters to fully understand this in the future.

V. DISCUSSION AND CONCLUSION

In this paper, we introduced our approach to perform NR
simulations for QSs which have a finite surface density. We
made two major efforts for successfully implementing QSs
described by the MIT bag model into our NR code SACRA-
MPI. First, we appropriately chose the EOS parameters in
such a way to make specific enthalpy continuous and
monotonic across the surface of the QS, without changing
any quantities of the QSs described by this model. Second,
we developed a procedure for the primitive recovery
suitable for QSs. Specifically, in our approach, the primi-
tive recovery is performed separately for matter inside and
outside QSs, and in addition, we introduced an analytical
approach for the QS part. We then examined the imple-
mentation by performing simulations for two triaxial QS
models with different mass and a differential rotation model
which is dynamically unstable to the bar-mode deforma-
tion. The surface of the QSs with the finite density is found
to be well resolved for the entire time during the evolution,
and the primitive recovery is correctly executed for matter
both inside and outside the QSs. Convergence studies
revealed a first-order convergence as in the case of
initial-data construction for QSs [31]. The success in
capturing the evolving surface of QSs and mass ejection
from it is also the important gain for us to move to the
simulations for BQSs. In addition, this method can, in
principle, be extended to perform simulations on compact
stars with a first-order strong-interaction phase transition

(for which there is a density jump inside the star). We plan
to explore this topic in the future.
For the triaxially rotating QSs, the results were found to

be qualitatively similar to the case of NSs [74]. The triaxial
deformation of QSs decays as it radiates angular momen-
tum by the GW emission in a timescale of 10 ms, which
was found to be consistent with the GW dissipation
timescale. As a result, the amplitude of GWs decays
exponentially. It was also found that for higher compact-
ness, the QS settles to an axisymmetric configuration faster
due to a smaller amount of the extra angular momentum
contained in comparison with that of the bifurcation point
solution. We found that the GWemission of the model with
typical mass of an individual compact star is approximately
monochromatic, while the GW emission of the supra-
massive case shifts to a higher frequency within ∼10 ms
as the star resumes axisymmetry at this time and the GW
amplitude is significantly reduced. As a conclusion, despite
the fact that rotating QSs could reach a T=jWj ratio higher
than that of NSs, and thus, supramassive triaxially rotating
QSs do exist, it is unlikely that such supramassive triaxial
rotating QSs could be a better source for continuous GWs,
as the signal from such objects does not last for more
than ∼10 ms.

For the case of differentially rotating stars, we confirmed
that QSs with much smaller differential rotation degree
could still experience the bar-mode instability as long as the
T=jWj ratios are large enough (i.e., ≳0.27), as expected in
our previous initial-data studies [32]. In particular, even
without initially artificial barlike perturbation, the bar-
mode deformation of QSs still exponentially grows in a
comparable timescale of the NS cases. The result is
consistent with the previous results of NSs with T=jWj
ratios not much larger than the critical value [37,61]. This
might be a result of the difference between the structure of
QS and NSs or the fact that the Â parameter considered here
for QSs is quite different from previous studies of NSs. To
fully understand the parameter space of bar-mode insta-
bility of differentially rotating QSs, a more systematic
investigation needs to be done in the future.
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APPENDIX A: TESTS OF TOV SOLUTIONS

In order to more quantitatively understand the validity of
our numerical implementation, it is helpful to investigate
models which are simple but the evolution of them could be
predictable. Evolution of TOV solutions, i.e., nonrotational
solutions which should be static, is one good choice to
understand the accuracy and convergence behavior of our
methods quantitatively.
For this purpose, we have prepared an evolution of a

TOV solution withMADM ¼ 2.07 M⊙, which is quite close
to the TOV maximum mass of our EOS model, in three
different resolutions. As introduced in Sec. III C, nine FMR
domains are used for the simulation and the half size of the
finest level being 8GM⊙=c2 ≈ 11.8 km for this test run.
There, different resolutions with Δx ¼ Δy ¼ Δz ¼ 148,
98.4, and 73.8m are chosen, which corresponds to
N ¼ 80, 120, and 160 grid points along one direction.
Because of numerical perturbation, which is present in

any code, the central density will oscillate in dynamical
timescale even for TOV solutions of NSs. Since we are
considering the TOV solution whose mass is very close to
its maximum, the QS will become unstable and collapse to
a black hole (BH) if the numerical method is not reliable.
Hence, it is important to check the convergence behavior on
the oscillation of the central density for this test. As can be
seen in Fig. 14, the oscillation amplitude of the central
density decreases with time for all three resolutions. The
amplitude is ∼3% in the beginning and then stabilizes to
roughly 1% after 2 ms. Particularly, the oscillation ampli-
tude is smaller in higher resolution and can be used to
estimate the convergence order.
According to Eq. (20), we can define

R ¼ f160 − f120
f160 − f80

¼ Δζ
160 − Δζ

120

Δζ
160 − Δζ

80

¼ 1 − ð4=3Þζ
1 − 2ζ

; ðA1Þ

in which f160, f120, and f80 here represent the oscillation
amplitude in three different resolutions, respectively. Since
the oscillation phase could be different in three configu-
rations and the amplitude could vary for every period, we
have chosen roughly ten oscillation cycles from t ¼ 3.5 to
5 ms when the oscillation is already more stabilized for all
three resolutions and define fN as the difference between
maximum and minimum value of the central density in this
duration for the corresponding resolution. With such a
definition, R is found to be 0.2516 which indicates that
second-order convergence is achieved for this quantity
(ζ ∼ 2). This higher-order convergence supports our
explanation for the relatively lower convergence order

found in the evolution of constraint violation (cf. the
discussion in Sec. III C): Indeed, the local hydrodynamic
quantity follows higher-order convergence if it is not close
to the surface.
Apart from local quantities, we have also investigated the

global density profile in the radial direction, which could
quantitatively demonstrate the capability of the implemen-
tation in resolving the discontinuous density across the
surface of a QS. The comparison of the initial and final (at
t ∼ 6.7 ms) density profile in the N ¼ 160 resolution case
is shown in Fig. 15. As can be seen, the density profile
inside the QS is approximately unchanged during the entire

FIG. 14. Evolution of the central density for the test on the TOV
solution case for three different resolutions.

FIG. 15. Density profile along the x axis as in the initial
condition (blue curve) and at the end of the test run (green curve,
t ∼ 6.7 ms) for the highest-resolution case (N ¼ 160). The inset
enlarges the region close to the surface. The x axis of the inset
indicates the index of the grid points in the finest FMR domain.
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evolution. The most obvious difference is the density
discontinuity across the surface, as can be seen from the
inset in Fig. 15: The very steep density drop at the surface
becomes smoother during the evolution. Nevertheless, the
density drop from ρs to 0 is resolved by approximately
three grid points in the end, which is similar to what can be
seen from the rotating solution cases.
Besides local quantities as mentioned above, we have

also examined the performance of our method by looking at
global quantities such as the conservation of baryonic mass
and mass that becomes unbound during the simulation.
Throughout the simulation, the change in baryonic mass
stays as low as ∼10−8 M⊙. The unbound matter is at a
negligible amount of ∼10−12 M⊙ even at its maximum,
which is as expected for a static solution.

APPENDIX B: ON THE ARTIFICIAL MASS
EJECTION

In Sec. IV B, it is mentioned that unphysical mass
ejection of ∼10−4 M⊙ is found in the very beginning of
the simulation for model MIT275dr. A possible explanation
for this artificial mass ejection is that when the initial data
are interpolated to the SACRA-MPI grids for evolution, it is
unavoidable that some part of the grids close to the surface
of the QS might obtain a density which is finite but smaller
than ρs, as it is not possible for the Cartesian coordinates

used in SACRA-MPI to cover exactly the surface of the QS.
Hence, this part of the matter will be treated as atmosphere
and might be driven off equilibrium in the later evolution.
Given a certain amount of initial energy perturbation due to
the reason above, it should always be easier to eject matter
from the surface of a QS if the angular velocity is larger as
the binding energy, for that matter is smaller.
To verify this explanation, and more importantly, to know

the reliability of the current implementation in estimating the
amount of ejecta for the binary merger case in the future, we
have prepared several uniformly rotating QS models with
different angular velocity and investigated the mass ejection
of those models in the early stage of the evolution. We have
constructed three models with ρc ¼ 1.152 × 1015 g cm−3
which is the same as the TOV solution we tested in the
previous section. The corresponding gravitational mass and
angular velocity of those models are ðM ¼ 2.15 M⊙;
Ω ¼ 4092.2 rad s−1Þ, ðM¼ 2.25M⊙; Ω¼ 5768.0 rads−1Þ,
and ðM ¼ 2.37 M⊙; Ω ¼ 7010.0 rad s−1Þ. In addition, in
order to verify that it is the angular velocity rather than mass
that determines the final amount of the spurious mass
ejection, we have constructed one additional model with
smaller central density (ρc ¼ 6.304 × 1014 g cm−3) and
with mass and angular velocity of ðM ¼ 2.25 M⊙;
Ω ¼ 7402.0 rad s−1Þ. Furthermore, in order to estimate
the maximum possible spurious mass ejection, we have
constructed a model with mass and angular velocity very
close to the mass shedding limit (M ¼ 2.95 M⊙;
Ω ¼ 8682.4 rad s−1).6
The result is shown in Fig. 16. The artificial mass

ejection monotonically increases with the angular velocity.

FIG. 16. The amount of unbound mass (according to the
criterion that ut < −1.0) for the four uniformly rotating QS
models described in Appendix B in the N ¼ 160 resolution case.
The solid red, green, and blue curves indicate the results of the
three models with central density of 1.152 × 1015 g cm−3 and the
dashed green curve is the model with central density of
6.304 × 1014 g cm−3, which possesses the largest angular veloc-
ity, although its mass is not the largest. The solid black curve
shows the result of the model close to the uniform-rotation mass
shedding limit. It is found that the artificial mass ejection is
strongly dependent on the angular velocity.

FIG. 17. The amount of unbound mass (according to the
criterion that ut < −1.0) for model MIT275dr in three different
resolutions.

6The uniform-rotation mass shedding limit of this EOS model
is found at M ¼ 3.02 M⊙ and Ω ¼ 9149.6 rad s−1.
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Particularly, the comparison between the dashed green
curve and the other curves clearly shows that the amount
of artificial ejection is affected mostly by the angular
velocity of the model instead of the mass. The dependence
still holds even if we consider the TOV solution case as
reported in Appendix A and the MIT275dr model. As a
consequence, the systematic uncertainty in the quantitative
measurement of physical ejection will be higher for models
with larger angular velocity. A maximum uncertainty will
be of the order of 10−4 M⊙ as indicated by the results of the
model M ¼ 2.95 M⊙.
In addition, since the initial artificial mass ejection is

related to the surface part of the star where both density and
pressure gradient are discontinuous, the convergence
behavior is expected to be worse than the other part of
the star. We have done the test on the model MIT275dr in

three different resolutions and the result is shown in Fig. 17.
As can be seen, the influence of the resolution on the
amount of ejecta is very weak. In particular, the result is
approximately the same for the N ¼ 120 and N ¼ 160
cases. Further increasing the resolution within the current
affordability of computational resources does not seem to
be a viable way to resolve the problem.
For the purpose of extracting the amount of ejecta for

binary quark star mergers, the relevant angular velocity
should be of the order of ∼2000 rad s−1 for a typical
1.4 M⊙–1.4 M⊙ binary at a separation of 40 km, for which
the initial artificial mass ejection should be much less than
the MIT275dr model considered in this paper. Our pre-
liminary BQS merger simulation confirmed this, and we
will cover more details about the binary case in the future.
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