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Theoretical predictions and numerical simulations are used to determine the transition
to bubble and conical vortex breakdown in low-Mach-number laminar axisymmetric
variable-density swirling jets. A critical value of the swirl number S for the onset of the
bubble (S∗

B) and the cone (S
∗
C) is determined as the jet-to-ambient density ratio Λ is varied,

with the temperature dependence of the gas density and viscosity appropriate to that of
air. The criterion of failure of the slender quasi-cylindrical approximation predicts S∗

B that
decreases with increasing values ofΛ for a jet in solid-body rotation emerging sharply into
a quiescent atmosphere. In addition, a new criterion for the onset of conical breakdown is
derived from divergence of the initial value of the radial spreading rate of the jet occurring
at S∗

C, found to be independent of Λ, in an asymptotic analysis for small distances from
the inlet plane. To maintain stable flow in the unsteady numerical simulations, an effective
Reynolds number Reeff , defined employing the geometric mean of the viscosity in the
jet and ambient atmosphere, is fixed at Reeff = 200 for all Λ. Similar to the theoretical
predictions, numerical calculations of S∗

B decrease monotonically as Λ is increased. The
critical swirl numbers for the cone, S∗

C, are found to depend strongly on viscous effects;
for Λ = 1/5, the low jet Reynolds number (51) at Reeff = 200 delays the transition to
the cone, while for Λ = 5 at Reeff = 200, the large increase in kinematic viscosity in the
external fluid produces a similar trend, significantly increasing S∗

C.

Key words: vortex breakdown, jets

1. Introduction

Swirling flows are found in a variety of geophysical and engineering applications,
including hurricanes, tornadoes, jet engines, turbopumps and combustion chambers.

† Email address for correspondence: bwkeeton@ucsd.edu
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For sufficiently large values of the swirl number S, a measure of the ratio of circumferential
to axial inlet velocity components, vortex breakdown, characterized by the formation of
an internal stagnation point and a reversed axial flow (Leibovich 1978), is known to occur.
Despite numerous theoretical investigations, the mechanism for vortex breakdown is not
yet fully agreed upon, as discussed in a variety of review papers (Hall 1972; Leibovich
1978, 1984; Escudier 1988; Althaus, Brücker & Weimer 1995; Lucca-Negro & O’Doherty
2001). One such theory, proposed independently by Squire (1960) and Benjamin (1962),
suggests that vortex breakdown can be attributed to a jump in the criticality of the flow
and its ability to support infinitesimal standing waves. An alternative theory by Brown
& Lopez (1990) states that vortex breakdown occurs as the result of the production of
negative azimuthal vorticity that follows from an initial divergence of the vortex core.
A portion of the difficulty in obtaining a comprehensive understanding of the

phenomenon arises from the variety of swirl-production methods and geometrical
configurations studied. Controlled experiments have been performed in pipes and
containers with a rotating end wall, while more recently, unconfined swirling flows
have been studied and were found to exhibit entirely new forms of breakdown. The
considerations in the present work will focus specifically on unconfined swirling jets, for
which a round swirling jet core with a stagnant or slow swirl-free coflow discharges into
an open atmosphere.
The first studies that were motivated by applications to combustion assumed constant

density and focused on the turbulent regime. Chigier & Chervinsky (1967) calculated the
spreading and entrainment of swirling jets, fitting empirical equations to the measured
flow for varying degrees of inflow swirl. By considering two separate inflow swirl profiles,
Farokhi, Taghavi & Rice (1989) found that the use of a single integrated swirl parameter
was insufficient to determine the onset of vortex breakdown. Coherent structures and
instabilities later became a focus of experimental investigations (Panda & McLaughlin
1994; Oberleithner et al. 2011, 2012). Despite these studies, the fundamental physical
aspects determining the onset of breakdown remain elusive, and progress can be made
by analysing the laminar regime, which is the focus of this paper. Vortex breakdown in
turbulent flows exhibits some phenomena not addressed here and requires a number of
modelling hypotheses for its analysis.
The seminal experimental investigation by Billant, Chomaz & Huerre (1998) unveiled

the existence of two distinct types of vortex breakdown. Besides the well-documented
bubble state, they found a new cone configuration in which the vortex takes the
form of an open conical sheet. These two breakdown modes, axisymmetric for Re ≤
400, experience transitions into corresponding asymmetrical states for sufficiently large
Reynolds numbers, for which the stagnation point displays a precessing motion around
the jet axis in a direction co-rotating with respect to the upstream vortex flow. Conical
breakdown has also been observed in the same experimental apparatus by Gallaire, Rott
& Chomaz (2004), and although not explicitly indicated, signs of conical breakdown were
apparent in the experimental investigation by Liang & Maxworthy (2005). Based on these
observations, a critical swirl number S∗ can be defined as the lowest swirl number at which
each breakdown first occurs as the swirl is gradually increased, and the subscripts B and
C are used to denote the transition to the bubble and cone states. In the remainder of this
paper, the term transition refers to a change in the state of the solution to the governing
equations.
The axisymmetric numerical simulations conducted by Fitzgerald, Hourigan &

Thompson (2004) were able to reproduce the conical breakdown studied experimentally
by Billant et al. (1998). They also found that for sufficiently large values of the
Reynolds number the flow became unstable directly, and bubble breakdown was bypassed.
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Moise & Mathew (2019) studied numerically the range of existence and the structures of
the bubble and cone through a series of three-dimensional time-dependent simulations
at fixed Reynolds number and differing S, beginning with a particular initial flow field
defined by the inlet boundary condition profile in (2.8) prescribed at all axial locations. At
the critical value S∗

B, the smooth pre-breakdown state was found to experience a transition
to a bubble state upon breakdown. Further increase in S revealed a second critical swirl
number S∗

C, at which the bubble opened rapidly into a conical structure. For moderate
swirl, the conical sheet exhibited a near-90◦ opening angle, enclosing a single recirculation
zone. For larger values of the inflow swirl, a wide-open cone appeared with increasing
values of S, as the sheet turned perpendicular to the jet axis at an off-axis location, bending
upstream at large radial distances for larger S; it was not determined how abrupt the
transition from the cone to the wide-open cone was because the computational expense of
wide-open-cone simulations prevented computations from being performed in sufficiently
small increments of S.
Hysteresis, in which transitions occur at different values of S, depending on whether

S is being increased or decreased, with the initial flow field taken to be the steady-state
flow field at the previous value of S, was identified experimentally by Billant et al.
(1998) and also studied numerically by Moise (2020) through time-dependent inflow-swirl
computations in the configuration of Moise & Mathew (2019). These three-dimensional
time-dependent computational results confirmed the bi-stability of the bubble and the
cone, and emphasized that the value of S∗ at which transition occurs may depend, in
general, on the initial conditions. Douglas, Emerson & Lieuwen (2021) used bifurcation
analysis to study the stability and dynamics of fully-developed swirling jets in a slightly
different configuration; their steady, axisymmetric base-flow calculations identified all
three forms of breakdown: bubble, cone and wide-open cone (referred to as a wall-jet
in that study).
Unlike the previous constant-density studies, the density in a combustion chamber

exhibits large spatial variations, exceeding a factor of five, associated with the temperature
changes induced by the chemical heat release. Vortex breakdown is used to stabilize
the flame by providing a low-velocity region preheated by the combustion products
recirculating from downstream (Huang & Yang 2009; Candel et al. 2014). There is
interest, therefore, in characterizing effects of varying density on vortex breakdown of
laminar jets, extending the previous constant-density analyses to gas-jet configurations
with jet-to-ambient density ratios that differ from unity. Such effects were investigated
experimentally by Adzlan & Gotoda (2012) for a coaxial configuration involving
either an air jet or a carbon dioxide jet, both discharging into an air coflow. The
experiments revealed that the heavier carbon dioxide jet exhibits a greater degree of
flow divergence and lower critical swirl numbers than the air jet, and that augmenting
the coflow velocity decreases the flow divergence and tends to suppress vortex
breakdown.
The stability of low-Mach-number variable-density swirling jets has also been

considered because of its influence on the precessing vortex core (PVC) in combustion.
The convective/absolute stability of a typical bubble breakdown encountered in lean
premixed combustion was studied by Manoharan et al. (2015). The authors showed that
the baroclinic torque acted to stabilize the absolute first (m = 1) precessing mode, in
agreement with the suppression of the PVC encountered in flames. Their later work
(Manoharan et al. 2020) further clarifies aspects of PVC in turbulent flows. Rukes et al.
(2016) identified experimentally a similar suppression of the global mode by implementing
a heating source near the breakdown.
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The present work employs theoretical and numerical techniques to study vortex
breakdown in variable-density laminar swirling jets. Unlike the experimental analysis
by Adzlan & Gotoda (2012), our work addresses a wide range of jet-to-ambient density
differences and provides a systematic approach to identifying the onset of both forms
of breakdown, which has not previously been done. To test the methods and investigate
possible quantitative differences from the results published previously for constant-density
swirling jets, the flow conditions considered include, in particular, those of the previous
numerical investigations (Ruith, Chen & Meiburg 2004; Moise & Mathew 2019; Moise
2020). For low-Mach-number gaseous jets considered here, differences in density emerge
in connection with differences in composition or temperature between the jet and
the ambient gas. We focus on the latter by considering the particular case of a jet
discharging into an atmosphere of the same gas at a different ambient temperature, the
transport-property variations of the gas taken to be those of air. Since the composition is
uniform, the density becomes inversely proportional to the temperature, as follows from
the equation of state, so that the boundary temperatures are related to the jet-to-ambient
density ratio Λ.
The approach in the analysis and the organization of the paper are as follows.

The problem is formulated in § 2 with the governing equations and inflow boundary
conditions. Critical vortex breakdown conditions for axisymmetric variable-density jets
are derived in § 3 by application of different theoretical considerations. This section
includes comparisons of predictions of S∗

B based on the so-called quasi-cylindrical
approximation (Hall 1967) with those obtained by numerical integration of the steady
axisymmetric Navier–Stokes (NS) equations for large values of the Reynolds number. It is
found that the steady NS computations are incapable of detecting conical breakdown, so
the results of unsteady NS simulations are presented in § 4 to test the theoretical and steady
predictions of S∗

B as well as the theoretical predictions of S∗
C. Consistent with the intended

focus on axisymmetric flow configurations, axisymmetric equations are employed in the
unsteady simulations, which is beneficial in view of the high computational cost associated
with running fully three-dimensional simulations across the entire range of Λ and S to be
investigated. For large Reynolds numbers in the unsteady calculations, the flow becomes
unstable and the pre-breakdown state transitions directly to the cone, bypassing the bubble
state. To allow comparisons with the theoretical predictions that assume steady flow, the jet
Reynolds number is modified with Λ so that the flow remains stable. Finally, concluding
remarks are given in § 5.

2. Formulation

A schematic of the unconfined axisymmetric swirling jet and coordinate system considered
is shown in figure 1.

2.1. Governing equations
The standard dimensional variables, denoted by ′, are made dimensionless in the
following way. The jet radius a and axial velocity Uj are used to scale the time
t = t′/(a/Uj), cylindrical coordinates (x, θ, r) = (x′/a, θ, r′/a), and velocity components
v = (vx, vθ , vr) = (v′

x/Uj, v
′
θ /Uj, v

′
r/Uj). The temperature, density, viscosity and thermal

conductivity are scaled with their jet values to give the dimensionless variables T = T ′/Tj,
ρ = ρ′/ρj, μ = μ′/μj and k = k′/kj. The axisymmetric NS equations are written for
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Vortex breakdown in variable-density gaseous swirling jets

Inlet Outflow

r

a

T

x

vxvθ

Figure 1. The swirling jet investigated here. The plot shows the velocity and temperature profiles at the inlet,
evaluated from (2.8) and (2.10) with δ = 0.2 and ε = 0.1, and the streamlines (projected onto the meridional
plane) corresponding to the flow with S = 1.5, Λ = 1/2 and Re = 111, a configuration for which vortex
breakdown leads to a bubble state.

constant specific heat cp in the standard low-Mach-number non-dimensional form

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + 1

Re
∇ · τ, (2.2)

ρ

(
∂T
∂t

+ v · ∇T
)

= 1
RePr

∇ · (k∇T), (2.3)

where Pr = μjcp/kj = 0.72 is the Prandtl number evaluated in the jet stream, τ = μ(∇v +
∇vT) is the dimensionless non-isotropic component of the viscous stress tensor, and p
represents the sum of the pressure difference with respect to the ambient value and the
isotropic component of the viscous stress tensor (scaled with the characteristic dynamic
pressure ρjU2

j ). The jet Reynolds number

Re = ρjUja
μj

(2.4)

is defined based on the jet radius and velocity, and the properties of the jet. For the low
Mach numbers considered here, the small pressure differences can be neglected when
writing the equation of state

ρT = 1. (2.5)

The viscosity and thermal conductivity are assumed to vary with temperature according
to the power-law expressions

μ = k = Tσ , (2.6)

with a value σ = 0.7 selected for the exponent, as is appropriate for air.

2.2. Inlet boundary conditions
Similar to the previous numerical studies (Ruith et al. 2004; Moise &Mathew 2019; Moise
2020), we focus on an inner swirling jet under solid-body rotation with angular speed Ω

surrounded by a small swirl-free coaxial stream with velocity εUj; the coflow parameter
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ε here was α−1 in the previous studies. The swirl number is chosen as the ratio of the
circumferential to axial velocity at the edge of a uniform-axial-velocity jet in solid-body
rotation and can be defined by

S = Ωa
Uj

. (2.7)

To facilitate computations, smooth radial distributions of axial and azimuthal velocity
components vx and vθ , given by the so-called Maxworthy profiles (Ruith et al. 2004)

vx − ε

1 − ε
= vθ

Sr
= 1

2
erfc

(
r − 1

δ

)
, vr = 0, (2.8)

were prescribed at the inflow boundary x = 0, and the radial velocity vr was set equal to
zero. Here r is the radial distance to the axis, erfc is the complementary error function, and
δ represents the relative thickness of the mixing layer separating the jet from the ambient
coflow. Note that the canonical case of a jet with uniform velocity and solid-body rotation
discharging into a stagnant atmosphere is recovered from the above expressions by taking
the limit ε � 1 and δ � 1.
As discussed by Moise & Mathew (2019), the use of a prescribed velocity field at the

inlet plane is questionable for cases when the breakdown occurs near the inlet, since the
downstream evolution then may be expected to modify the flow field upstream from this
boundary, but accounting for such effects would complicate computations considerably.
All of the computations in Moise & Mathew (2019) and Moise (2020) were for δ = 0.2
and ε = 0.01, but other values are to be addressed as well in the present work.
For the case considered, a jet at temperature Tj is surrounded by an ambient coflow at

temperature Ta, so that the boundary temperatures are related to the jet-to-ambient density
ratio ρj/ρa by

Λ = ρj

ρa
= Ta

Tj
. (2.9)

For consistency, the same mixing-layer thickness δ is introduced in defining the associated
inflow boundary temperature profile

T − Λ

1 − Λ
= 1

2
erfc

(
r − 1

δ

)
. (2.10)

The inlet boundary conditions (2.8) and (2.10) are shown in figure 1, along with a
representative computational result of a bubble breakdown.

3. Theoretical predictions of vortex breakdown

Before presenting results of numerical computations, it is of interest to determine the
critical swirl numbers S∗

B and S∗
C by applying different vortex breakdown theories. Besides

classical theories, a new criterion will be derived on the basis of considerations of flow
alignment. Most predictions pertain to jets with uniform velocity and solid-body rotation
discharging into a stagnant atmosphere, corresponding to values of ε = 0 and δ = 0 in
(2.8) and (2.10). We begin below by reviewing results based on inviscid flow, and address
influences of molecular transport later.
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Vortex breakdown in variable-density gaseous swirling jets

3.1. Outermost bounds of critical swirl numbers
We begin by addressing predictions based on purely inviscid flow for a steady cylindrical
jet having uniform axial velocity vx = 1 and solid-body rotation vθ = Sr surrounded by
stagnant fluid with uniform pressure p = 0. The transverse pressure distribution across the
jet at the inlet plane,

p(r) = −S2

2
(1 − r2), (3.1)

follows from integrating the simplified momentum equation ∂p/∂r = v2θ /r subject to the
condition p = 0 at r = 1.
As shown by Billant et al. (1998), a criterion for vortex breakdown can be derived by

investigating the conditions needed for emergence of a stagnation point. Conservation of
head along the axis yields p0 = (1 − S2)/2 for the pressure at the stagnation point. In
the conical type of breakdown, the velocities inside the recirculating conical region lying
downstream from the stagnation point are small. If they are neglected, then the pressure
inside the cone must be uniform, equal to p0, and if the conical region extends to infinity,
then p0 = 0, thereby yielding the breakdown prediction S∗

C = 1 for conical breakdown. For
bubble breakdown, it is reasoned (Billant et al. 1998) that the stagnation pressure cannot
exceed the surrounding pressure, leading to the weaker condition p0 ≤ 0 and associated
lower bound

S∗
B ≥ 1, (3.2)

for the critical swirl number.
Alternative breakdown predictions can be derived by analysing the criticality of the

jet flow, that is, its ability to support infinitesimal stationary disturbances in the form
of sinusoidal waves (Squire 1960; Benjamin 1962). As explained by Hall (1972), the
analysis considers stationary axisymmetric disturbances described by the perturbation
stream function F(r)eγ x, where the function F must satisfy the Sturm–Liouville problem

d2F
dr2

− 1
r
dF
dr

+
(

γ 2 − 1
vx

d2vx
dr2

+ 1
rvx

dvx
dr

+ 1
r3v2x

d(rvθ )
2

dr

)
F = 0, F(0) = F(1) = 0.

(3.3)
For the case vx = 1 and vθ = Sr considered here, the problem can be solved to give the
eigensolutions Fn = rJ1[(γ 2

n + 4S2)1/2r] and corresponding eigenvalues γ 2
n = ξ2n − 4S2,

where ξn are the zeros of the Bessel function of order unity, J1. If all eigenvalues γ 2
n

are positive, then the flow is supercritical, whereas existence of at least one negative
eigenvalue implies that the flow is subcritical, in that it can support stationary disturbances.
Since the smallest eigenvalue γ 2

1 = ξ21 − 4S2 is determined by the first zero ξ1 � 3.8317,
the transition from supercritical to subcritical is associated with the boundary value
S = ξ1/2 � 1.916 at which γ 2

1 = 0.
Different interpretations of the significance of the critical state for jet vortex breakdown

have been proposed, as discussed by Hall (1972). According to Squire (1960), vortex
breakdown must occur when the flow is exactly critical, so that in that case, S∗ � 1.916
provides a precise prediction for the breakdown swirl number. In contrast, Benjamin (1962)
characterizes breakdown as a sudden transition from supercritical to subcritical flow. No
precise prediction for S∗ follows from this alternative interpretation, the value S∗ � 1.916
being instead an upper bound. Based on these ideas, therefore, it can be inferred that the
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swirl number for the discharging jet must satisfy the constraint

S∗ ≤ 1.916, (3.4)

as needed for the flow upstream from the breakdown location to be either critical (S =
1.916) or supercritical (S < 1.916).

3.2. Transition to the bubble: theoretical
Hall (1967) proposed an entirely different approach to the computation of vortex
breakdown based on the failure of the quasi-cylindrical (QC) approximation of viscous
axisymmetric flow. This approach applies specifically to bubble breakdown, when the
flow upstream from the stagnation point is steady and varies only gradually in the axial
direction. Hall’s approach (Hall 1967) builds on ideas developed in connection with
two-dimensional boundary layers, where the separation is predicted based on the failure
of the downstream-marching numerical integration of the boundary layer equations. For
swirling flows, it is reasoned that if in the course of the calculation of a QC vortex core
for a given value of S the results develop a singularity at a given location, characterized by
rapid increase of axial gradients and radial velocities, then there must also be appreciable
axial gradients at that location in the associated real vortex core, corresponding to vortex
breakdown. In this approximation, the predicted critical swirl number S∗

B (the smallest
value of S for which a singularity develops), is independent of Re. Results will be computed
below for different values of the jet-to-ambient density ratio Λ, thereby complementing
previous results pertaining to constant-density jets (Revuelta, Sánchez & Liñán 2004) and
light compressible jets (Gallardo-Ruiz, Pino & Fernandez 2010).

3.2.1. Slender jet equations
For the moderately large values of Re considered, the jet remains slender for values of
S smaller than S∗

B, which is of order unity. The slender flow includes a development
region x′ ∼ Rea where the axial velocity v′

x is of order Uj and the radial velocity v′
r is

of order Uj/Re � Uj. If the Reynolds number is also sufficiently low for the flow to
remain stable, then the velocity in the far field approaches the well-known Schlichting
solution (von Schlichting 1933), with accompanying weak swirling motion given by the
Görtler–Loitsianskii solution (Loitsianskii 1953; Görtler 1954).
To facilitate the presentation, it is useful to describe the azimuthal motion in terms

of the dimensionless circulation per unit azimuthal angle Γ = (r′v′
θ )/(Ωa2) = rvθ/S and

use the characteristic scales of the slender jet development region to define a rescaled axial
distance x̂ = x′/(Re a) = x/Re and a rescaled radial velocity v̂r = v′

r/[(μj/ρj)/a] = Revr.
In terms of these new variables, the conservation equations (2.1)–(2.3) can be written in
the steady form

∂

∂ x̂
(ρvx) + 1

r
∂

∂r
(ρrv̂r) = 0, (3.5)

ρ

(
vx

∂vx

∂ x̂
+ v̂r

∂vx

∂r

)
= −∂p

∂ x̂
+ 1

r
∂

∂r

(
μr

∂vx

∂r

)

+ 1
Re2

[
∂

∂ x̂

(
2μ

∂vx

∂ x̂

)
+ 1

r
∂

∂r

(
μr

∂v̂r

∂r

)]
, (3.6)
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ρ

(
vx

∂v̂r

∂ x̂
+ v̂r

∂v̂r

∂r

)
= Re2

(
S2ρ

Γ 2

r3
− ∂p

∂r

)
+ 1

r
∂

∂r

(
2μr

∂v̂r

∂r

)

− 2μ
v̂r

r2
+ ∂

∂ x̂

(
μ

∂vx

∂r

)
+ 1

Re2
∂

∂ x̂

(
μ

∂v̂r

∂ x̂

)
, (3.7)

ρ

(
vx

∂Γ

∂ x̂
+ v̂r

∂Γ

∂r

)
= 1

r
∂

∂r

(
μr

∂Γ

∂r
− 2μΓ

)
+ 1

Re2
∂

∂ x̂

(
μ

∂Γ

∂ x̂

)
, (3.8)

ρ

(
vx

∂T
∂ x̂

+ v̂r
∂T
∂r

)
= 1

r
∂

∂r

(
k
Pr

r
∂T
∂r

)
+ 1

Re2
∂

∂ x̂

(
k
Pr

∂T
∂ x̂

)
, (3.9)

which will be useful in analysing molecular-transport effects.

3.2.2. Quasi-cylindrical equations and boundary conditions
In the absence of breakdown, the flow is slender, so that with the scalings selected in
(3.5)–(3.9), all dimensionless variables and their derivatives remain of order unity. Steady
solutions can be described by integrating for x̂ > 0 the QC equations

∂

∂ x̂
(ρvx) + 1

r
∂

∂r
(ρrv̂r) = 0, (3.10)

ρ

(
vx

∂vx

∂ x̂
+ v̂r

∂vx

∂r

)
= −∂p

∂ x̂
+ 1

r
∂

∂r

(
μr

∂vx

∂r

)
, (3.11)

0 = S2ρ
Γ 2

r3
− ∂p

∂r
, (3.12)

ρ

(
vx

∂Γ

∂ x̂
+ v̂r

∂Γ

∂r

)
= 1

r
∂

∂r

(
μr

∂Γ

∂r
− 2μΓ

)
, (3.13)

ρ

(
vx

∂T
∂ x̂

+ v̂r
∂T
∂r

)
= 1

r
∂

∂r

(
k
Pr

r
∂T
∂r

)
, (3.14)

obtained by taking the limit Re 
 1 in (3.5)–(3.9), with boundary conditions
vx − ε

1 − ε
= Γ

r2
= T − Λ

1 − Λ
= 1

2
erfc

(
r − 1

δ

)
at x̂ = 0, (3.15)

and
vx − ε = Γ = T − Λ = 0 as r → ∞, (3.16)

both consistent with (2.8) and (2.10), supplemented with
∂vx

∂r
= v̂r = Γ = ∂T

∂r
= 0 at r = 0, (3.17)

corresponding to the regularity condition at the axis.

3.2.3. Preliminary considerations
Radial integration of a combination of (3.11) and (3.14) provides the integral momentum
balance ∫ ∞

0
2r[ρvx(vx − ε) + p] dr = M, (3.18)

to be satisfied by the QC solution at any downstream location. The constant M is
the so-called flow force, which can be evaluated at x̂ = 0 using the velocity and
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temperature profiles (3.15) along with the corresponding boundary pressure distribution
p = −S2

∫ ∞
r ρΓ 2/r3 dr, obtained from (3.12). Since the pressure is negative, the value of

M decreases for increasing values of S. The conditionM > 0 imposes a natural upper limit
on the value of S for which the flow can develop downstream as a slender jet. For example,
for the canonical case ε = δ = 0, the flow force reduces to

M = 1 − S2/4, (3.19)

so values of S > 2 necessarily result in vortex breakdown, an upper bound in quantitative
agreement with Benjamin’s criterion (3.4).

3.2.4. Quasi-cylindrical predictions
The problem defined in (3.10)–(3.17) was integrated numerically for given values of S and
Λ by marching downstream from x̂ = 0. The integration of the parabolic QC equations
employed an implicit method using first-order/second-order approximation schemes for
axial/radial derivatives, respectively. At each axial location, a Newton method is first
utilized to compute vx and v̂r from (3.10) and (3.11). Next, (3.13) and (3.14) are integrated
to determine Γ and T , and the result is used to compute the radial distribution of pressure
from (3.12). A fixed-point iteration scheme is applied until convergence is achieved.
Typical values of the grid spacing are δr = 10−2 and δx̂ = 10−4, with finer grids being
needed for increasing S.
The typical evolution of the axial velocity along the axis is shown in the solid curves of

figure 2 for the constant-density jet (Λ = 1) with ε = 0.01 and δ = 0.2 (the dashed curves
correspond to results of integrations of the steady NS equations, to be discussed below).
The adverse pressure gradient induced by the jet swirl leads to a significant deceleration of
the flow that becomes more pronounced for larger values of S. The non-monotonic velocity
variation observed at S = 1.31, associated with the emergence of a small region of swelling
centred around x̂ � 0.03, has been reasoned to characterize pre-breakdown conditions in
the numerical simulations of Moise & Mathew (2019). The numerical integration could
no longer converge for S = 1.312, with the axial gradients developing a singularity at
x̂ � 0.026. According to Hall (1967), this breakdown of the QC approximation at a given
downstream location identifies the critical swirl number S∗

B as the pre-breakdown slender
jet transitions to the bubble, an aspect of the problem to be explored further in § 3.2.5.
The critical swirl number S∗

B associated with the development of a singularity in
the numerical integration was calculated for values of the density ratio in the range
0.1 ≤ Λ ≤ 10, with results represented by curves in figure 3. Besides the canonical case
ε = δ = 0, integrations were performed for small coflow ε = 0.01 with two different
values of the shear-layer thickness, δ = 0.1 and δ = 0.2. As can be seen, although the
critical swirl number varies with Λ, the variation is not very pronounced, especially for
δ = 0.2 (the most gradual transition from the inner swirling jet to the outer non-swirling
flow at the inlet), when small relative changes of order 4% are observed as Λ increases
from Λ = 0.1 to Λ = 10. The decrease of S∗

B with increasing Λ for sharp entry conditions
may be attributed to an increase of the centrifugal force with an increasing ratio of
swirling-jet-fluid-to-ambient density.

3.2.5. Comparisons with steady NS computations
The QC approximation assumes that the flow is steady and slender upstream from the
breakdown point, which requires that the Reynolds number be moderately large, so that
the laminar jet remains stable. Under such conditions, the bubble mode prevails when
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

S = 0.0

S = 0.8

S = 1.20

S = 1.31

0.09 0.1
0

0.2

0.4

0.6

0.8

1.0

S = 1.312

S = 1.35 S = 1.33

vx(x̂, 0)

x̂
Figure 2. The axial velocity along the axis as obtained for Λ = 1 and different values of S from numerical
integrations of the QC problem (3.10)–(3.17) (solid curves) and from numerical integration of the steady form
of the NS equations (2.1)–(2.3) with Re = 800 (dashed curves).

10–1 100 101
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Re = 25

Re = 50

Re = 100

Re = 100 Re = 375
Re = 750
Re = 1500

δ = 0.2

δ = 0.1

δ = 0

Λ

Re = 200
Re = 400SB

∗

Figure 3. The variation with Λ of the critical swirl number S∗
B determined by the development of a

singularity in the numerical integration of the QC problem (3.10)–(3.17) for (δ, ε) = (0, 0) (bottom curve),
(δ, ε) = (0.1, 0.01) (intermediate curve) and (δ, ε) = (0.2, 0.01) (top curve). The crosses represent values
of S∗

B determined for Λ = (1/5, 1, 5) from numerical integrations of the steady form of (2.1)–(2.3) with
(δ, ε) = (0.2, 0.01) and different values of Re.

vortex breakdown first occurs on increasing the swirl number, so that the value S∗ of S
at which the numerical integration of the QC equations fails, shown in figure 3, can be
reasoned to correspond to the critical swirl number S∗

B.
To explore this aspect of the problem further and ascertain the predictive capabilities of

the QC description, the results of the QC approximation were compared with numerical
integrations of the steady NS equations (2.1)–(2.3) for a range of large values of Re,
shown in figure 4. The numerical integration employs a root-finding scheme involving a
Newton–Raphson algorithm, thereby enabling the description of steady solutions even for
large values of the Reynolds number for which the flow is unstable. This type of description
is needed, for example, in base-flow computations for global linear stability analyses (see,
for example, Moreno-Boza et al. (2016, 2018) for recent sample computations involving

936 A1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

18
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
CS

D
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 S
an

 D
ie

go
, o

n 
08

 F
eb

 2
02

2 
at

 1
4:

38
:3

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2022.18
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


B. Keeton and others

0 0.02 0.04 0.06 0.08 0.10

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.02 0.04 0.06 0.08 0.100
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0.4

0.6

0.8
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0.02 0.04 0.06 0.08 0.100

0.2

0.4

0.6

0.8

1.0
Re = 25
Re = 50
Re = 100
Re = 200
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QC approx.

Re = 50
Re = 100
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Re = 400
Re = 800
QC approx.

Re = 190
Re = 375
Re = 750
Re = 1500
Re = 3000
QC approx.

vx(x̂, 0)

x̂ x̂ x̂

(a) (b) (c)

Figure 4. The variation with streamwise distance x̂ = x/Re of the axial velocity determined numerically for
(δ, ε) = (0.2, 0.01) and Λ = (1/5, 1, 5) from integration of the QC problem (3.10)–(3.17) (solid curves) and
from integration of the steady form of the axisymmetric NS equations (2.1)–(2.3) for selected values of Re. (a)
S = 1.3, Λ = 1/5, (b) S = 1.3, Λ = 1, and (c) S = 1.3, Λ = 5.

low-Mach-number variable-density flows). As in Moise & Mathew (2019), this set of
simulations employed the parametric values δ = 0.2 and ε = 0.01 for the inlet boundary
profiles. The cylindrical computational domain used in the integrations and the boundary
conditions applied on the lateral and outlet boundaries are those described in § 4.1 in
connection with the accompanying unsteady computations.
The asymptotic theory underlying the QC approximation envisions the QC velocity

field as the limiting solution for Re 
 1 of the steady NS equations, provided that the
flow remains slender. This fundamental assumption is tested in figure 4 by comparing the
QC predictions of velocity distributions along the axis with solutions to the steady NS
equations with Λ = (1/5, 1, 5) and increasing values of Re. The value S = 1.3 is selected
for the swirl number, thereby placing the system near the breakdown conditions predicted
by the QC approximation, represented by the top curve in figure 3. The comparisons
exhibit the expected convergence when Re increases. Close quantitative agreement of NS
and QC results requires values of Re that are higher for the cold jet Λ = 5 than for the
hot jet Λ = 1/5, as is to be expected given the temperature dependence of the kinematic
viscosity and the accompanying associated reduction in effective Reynolds number with
increasing Λ (see also the discussion in § 4.3).
To investigate the failure of the QC approximation, additional NS results corresponding

to the constant-density jet with Re = 800 are presented in figure 2. For this large Reynolds
number, the QC and NS profiles are virtually indistinguishable for S = (0, 0.8, 1.2). The
agreement deteriorates as the axial gradient increases for larger S. The QC velocity profile
undergoes a rapid evolution as the swirl number increases from S = 1.3, the case shown in
the central panel of figure 4, with the profile for S = 1.31 in figure 2 showing a local region
of non-monotonic variation that serves as a precursor for the singularity developing when
S = 1.312. By way of contrast, the development of non-monotonicity in the NS velocity
distribution occurs for slightly larger values of S � 1.33 and results in the development of
multiple streamwise oscillations, eventually leading to the emergence of a stagnation point
along the axis, as the bubble first develops, with corresponding streamlines represented in
figure 5. The observed streamline pattern, involving a standing wave downstream of the
stagnation point, is indicative of transition from supercritical to subcritical flow, an aspect
of the problem investigated in earlier studies (Oberleithner et al. 2012; Moise & Mathew
2019).
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Figure 5. Projected streamlines in the meridional plane for Λ = 1 and Re = 800 determined numerically by
integration of the steady form of the axisymmetric NS equations (2.1)–(2.3) for (a) S = 1.33 and (b) S = 1.35.

The value S∗
B of S at which the integrations of the steady NS solutions first exhibit a

stagnation point along the axis was computed for δ = 0.2, ε = 0.01, Λ = (1/5, 1, 5) and
selected values of the Reynolds number. Results are compared in figure 3 with the QC
predictions for δ = 0.2 and ε = 0.01 (i.e. the top curve of this figure). The results indicate
that the S∗

B predicted by the NS computations decreases for increasing Re, approaching
from above the QC prediction, as may be expected from the stabilizing influence of
viscosity.
To describe the growth of the steady bubble, the numerical integration was extended

to values of S > S∗
B. Contrary to Douglas et al. (2021), who identified a steady cone,

considering an inlet region having a Poiseuille axial velocity inflow and a wall preventing
the external coflow, in our steady NS computations the bubble was seen to persist
as the value of S was increased beyond the critical transition value S∗

C predicted by
the unsteady simulations (to be discussed in § 4.5). The persistence of the bubble,
consistent with the results of previous numerical studies addressing hysteresis (Moise
2020; Moise &Mathew 2021), is illustrated in figure 6, which shows projected streamlines
corresponding to Λ = 2 and Re = 361, for which S∗

C = 1.51. Instead of transitioning
to a cone, the bubble recirculation region in the steady computations increases in size
until the Newton–Raphson algorithm fails to converge. For example, for Λ = 1 and
Re = (100, 200, 400), convergence fails at S = (1.895, 1.958, 1.968), values far larger
than S∗

C found in the theoretical predictions (§ 3.3) and the unsteady numerical simulations
(§ 4.5). For Λ = 1/5 and Re = 51, similar convergence issues were encountered, and no
steady solution was found for S > 1.75. These observations indicate that for the specific
boundary conditions considered in our analysis, the description of conical breakdown
necessitates consideration of unsteady computations, to be addressed in § 4.

3.3. Transition to the cone: theoretical
As shown in experiments (Billant et al. 1998) and numerical computations (Moise &
Mathew 2019), flows undergoing conical breakdown exhibit near the inlet plane radial
velocities v′

r that are comparable to Uj, with the stream surface bounding the jet opening
up very rapidly. Correspondingly, the scaling v′

r ∼ Uj/Re � Uj used in (3.5)–(3.9),
appropriate for slender jets, can be expected to fail when conical breakdown occurs,
leading to diverging values of v̂r = v′

r/(Uj/Re) at the jet inlet. These considerations
suggest that a theoretical prediction for the critical value S∗

C associated with conical
breakdown can be derived by investigating the structure of the flow near the inlet plane.
To simplify the analysis and reduce the number of parameters in the results, attention is
focused on the case δ = ε = 0. The near-field solution at distances x̂ � 1 will be shown
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Figure 6. Projected streamlines superimposed on colour contours of temperature for Λ = 2 and Re = 361
obtained from the steady NS simulations (b,d) and corresponding results obtained by time-averaging the
solution of the unsteady NS computations (a,c). As S is increased beyond the value S∗

C = 1.51 predicted by
the unsteady NS simulations (§ 4.5), the steady NS solutions (b,d) are unable to detect conical breakdown. (a)
S = 1.47, (b) S = 1.47, (c) S = 1.55, and (d) S = 1.55.

to include an inviscid core extending over radial distances in the range 1 ≥ 1 − r 
 x̂1/2
surrounded by a mixing layer of small thickness x̂1/2 centred at r = 1. Matched asymptotic
expansions will be used to describe the flow and determine the conditions at which conical
divergence is first encountered.

3.3.1. The inviscid core
In the inviscid core, where T = 1 (and therefore ρ = 1), the perturbations to the initial
inlet distributions are of the form

vx − 1 = x̂ u1(r) + x̂3/2 u2(r) + · · · ,
v̂r = v1(r) + x̂1/2 v2(r) + · · · ,

p + S2(1 − r2)/2 = x̂ p1(r) + x̂3/2 p2(r) + · · · ,
Γ − r2 = x̂ g1(r) + x̂3/2 g2(r) + · · · .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.20)

The first-order corrections satisfy the linear equations

u1 + 1
r

d
dr

(rv1) = u1 + p1 = 2S2

r
g1 − dp1

dr
= g1 + 2rv1 = 0, (3.21)

which can be combined to give the second-order linear equation

r2
d2v1
dr2

+ r
dv1
dr

+ (4S2r2 − 1)v1 = 0. (3.22)

Integration of (3.22) with boundary condition v1(0) = 0 provides the normalized
distribution v1(r)/v1(1) = J1(2Sr)/J1(2S) in terms of the unknown value of the transverse
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velocity at the jet surface v1(1), thereby yielding

u1 = −p1 = −2S
J0(2Sr)
J1(2S)

v1(1) and v1 = −g1
2r

= J1(2Sr)
J1(2S)

v1(1), (3.23a,b)

where J0 and J1 represent Bessel functions of the first kind.

3.3.2. Chapman–Lessen mixing layer
The mixing layer that develops from the orifice rim, of characteristic thickness
r − 1 ∼ x̂1/2, admits a self-similar solution. The description is facilitated by
introduction of the stream function ψ for the axial and radial motion. The analysis
employs a rescaled similarity coordinate η = (r2 − 1)/(2x̂1/2) along with expansions
ψ = x̂1/2 F0(η) + x̂ F1(η) + · · · , P = x̂1/2 P0(η) + x̂ P1(η) + · · · , Γ = G0(η)+
x̂1/2G1(η) + · · · and T = T0(η) + x̂1/2 T1(η) + · · · , with corresponding velocity
components given by ρvx = F′

0 + x̂1/2F′
1 + · · · and ρv̂rr = x̂−1/2[ 12 (ηF

′
0 − F0) +

x̂1/2(12ηF
′
1 − F1) + · · · ], where the prime is used to denote differentiation with respect

to η. Introducing these expansions into (3.11)–(3.14) and collecting terms in decreasing
powers of x̂ provides a series of problems that can be solved sequentially. Boundary
conditions for the mixing layer are obtained by matching at each order with the solution in
the surrounding stagnant flow, where u = Γ = T − Λ = 0, and in the inviscid jet, where
T = 1, with accompanying velocity and pressure given in (3.20).
At leading order, the problem reduces to that of integrating

[Tσ
0 (T0F′

0)
′]′ + 1

2F0(T0F′
0)

′ = 0, F′
0(−∞) − 1 = F0(−∞) − η = F′

0(∞) = 0,
(3.24)

(Tσ
0 G

′
0)

′ + 1
2F0G′

0 = 0, G0(−∞) − 1 = G0(∞) = 0, (3.25)

T0P′
0 − S2G2

0 = 0, P0(∞) = 0, (3.26)

(Tσ
0 T

′
0)

′ + Pr
2
F0T ′

0 = 0, T0(−∞) − 1 = T0(∞) − Λ = 0. (3.27)

The boundary condition F0(−∞) − η = 0 implies that at this order, the mixing layer
entrains fluid only from the stagnant side. Equations (3.24) and (3.27) can be integrated
to obtain the temperature and the axial and radial velocity components, which are
independent of the swirling motion at this order, so that the solution reduces effectively to
that described by Chapman (1949) and Lessen (1950). Once T0(η) and F0(η) are known,
integration of (3.25) provides G0 = T0F′

0 for the circulation, which can be used in (3.26)
to yield the pressure distribution P0 = S2[T0F0F′

0 + 2Tσ
0 (T0F′

0)
′].

3.3.3. The eigenvalue problem
The perturbations to the radial velocity and pressure in the inviscid jet enter in the
boundary conditions for the mixing-layer equations at the following order, providing an
eigenvalue problem that determines v1(1) as an eigenvalue. The associated equations are

1
2F

′
0(F

′
0T1 + T0F′

1) − 1
2F0(F′

0T1 + T0F′
1)

′ − (T0F′
0)

′F1

= −1
2(P0 − ηP′

0) + {
Tσ
0 [(σT1/T0 + 2η)(T0F′

0)
′ + (F′

0T1 + T0F′
1)

′]
}′

, (3.28)

T0P′
1 + S2G0[(T1/T0 + 4η)G0 − 2G1] = 0, (3.29)

936 A1-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

18
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
CS

D
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 S
an

 D
ie

go
, o

n 
08

 F
eb

 2
02

2 
at

 1
4:

38
:3

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2022.18
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


B. Keeton and others

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
10–2

10–1

100

101

102

103

104

Λ = 1

Λ = 5

Λ = 1/5

S

v1(1)

Figure 7. The radial velocity at the jet surface obtained from integration of the boundary-value eigenvalue
problem stated in (3.28)–(3.33).

1
2(F

′
0G1 − F0G′

1) − G′
0F1 = {

Tσ
0 [G

′
1 − 2G0 + (σT1/T0 + 2η)G′

0]
}′

, (3.30)

1
2 (F

′
0T1 − F0T ′

1) − T ′
0F1 = 1

Pr

{
Tσ
0 [T

′
1 + (σT1/T0 + 2η)T ′

0]
}′

, (3.31)

with corresponding boundary conditions

F′
1 = F1 + v1(1) = P1 − 2S

J0(2S)
J1(2S)

v1(1) = G1 − 2η = T1 = 0 as η → −∞, (3.32)

F′
1 = P1 = G1 = T1 = 0 as η → +∞. (3.33)

The solution depends on S and Λ, the latter entering in the determination of the
leading-order profiles through the boundary condition given in (3.27). For each pair of
values of S and Λ, a solution can be found for a single value of v1(1), with results given
in figure 7 for selected values of Λ.
As expected, the boundary velocity v1(1), which measures the jet divergence rate,

increases with increasing values of the swirl number S and also with increasing values
of the jet-to-ambient density ratio Λ. The integrations unveil an unexpected singular
behaviour, in that the value of v1(1) blows up as the swirl number approaches the critical
value S∗

C = 1.494, suggesting a breakdown of the presumed scaling v′
r ∼ Uj/Re, consistent

with the sudden transition to a conical state. This value of S∗
C is larger than that predicted

earlier for S∗
B using the QC approximation for the jet with δ = ε = 0 (i.e. the bottom curve

of figure 3), indicating that for steady jets, conical breakdown necessitates higher swirl
levels, in agreement with previous numerical findings (Moise & Mathew 2019).

3.4. Conclusions from theoretical investigations
These simplified theoretical considerations, applicable at large Reynolds numbers that
are unstable in the unsteady numerical calculations, mainly addressing the flow fields for
δ = ε = 0, thus show that S∗

C is slightly less than 1.5, independent ofΛ, while S∗
B decreases

with increasing Λ, from a value less than 1.4 at small Λ to a value greater than 1.0 at large
Λ, although that variation diminishes as δ is increased at ε = 0.01, approaching a nearly
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Vortex breakdown in variable-density gaseous swirling jets

constant value less than 1.4 at δ = 0.2. These transition values all respect the outermost
limits 1 < S∗ < 1.916 inferred from inviscid-flow considerations. They apply when the
flow upstream from the breakdown position is steady and laminar, thereby excluding
Reynolds numbers so large that instabilities likely would lead to time-dependent flow
there.

4. Unsteady NS simulations of vortex breakdown

4.1. Simulation description
While the steady NS solutions appear to describe bubble breakdown, they are unable to
provide information about conical breakdown. Unsteady NS solutions for axisymmetric
flow, which will also be used to calculate the transition to the bubble, are obtained by
integration of (2.1)–(2.3) with the high-order spectral element code Nek5000 (Fischer,
Lottes & Kerkemeier 2008). The spatial discretization is based on a weighted-residual
technique, with the solution represented in terms of Nth-order tensor-product polynomials
for each hexahedral element, and the temporal integration is performed with a high-order
splitting technique (Tomboulides, Lee & Orszag 1997). All simulations use a fixed time
step Δt = 0.01, determined to satisfy the Courant–Friedrichs–Lewy (CFL) condition.
A computational grid with 0 ≤ x ≤ xmax and 0 ≤ r ≤ rmax was used with xmax = 50

and rmax = 30 to ensure that the radial and axial boundaries were placed sufficiently far
away, thereby avoiding contamination of predictions by the boundary conditions applied
there. The nx × nr = 69 × 21 spectral elements of order N = 7, corresponding to a total of
71 001 grid points, were stretched to allow finer regions where the velocity and temperature
gradients were large, which primarily occur near the jet inlet.
At the inflow plane x = 0, the inlet conditions (2.8) and (2.10) are prescribed. Stress-free

adiabatic conditions −per + er · [μ(∇v + ∇vT)/Re] = 0 and er · ∇T = ∂T/∂r = 0 are
applied on the lateral boundary r = rmax, with er representing the unit vector in the radial
direction. At the outflow plane x = xmax, the convective condition was applied to the
velocity and temperature (Ruith et al. 2004).
Following Moise & Mathew (2019), the numerical integrations were initialized with

velocity and temperature radial distributions at all x given by the inlet boundary profiles
(2.8) and (2.10). For the isothermal jet, in addition to these columnar initial conditions,
numerical simulations were conducted with a stagnant-flow initial condition, the jet
discharging into a quiescent domain (v = 0 at t = 0), for the reference case δ = 0.2 and
ε = 0.01; the results reproduced the same values of the critical swirl numbers, thereby
indicating that the initial conditions play a negligible role in determining the critical swirl
numbers reported in this study.
To identify each critical swirl number, a series of numerical simulations were performed

in increments of S = 0.01 for each value of Λ. The flow near the first transition S∗
B was

considered to have reached a steady state when changes in velocity components were less
than 10−4 over a duration of Δt = 50, and the first bubble was distinguished from the
pre-breakdown state at S∗

B by the development of a recirculation zone near the jet axis. For
unsteady solutions, including all of the conical breakdown cases, a temporal average of
20 instantaneous fields spaced Δt = 50 apart was sufficient for determining the average
behaviour. The transition to the cone at S∗

C was identified by jumps in the peak radial
velocity along the line r = 1 as S was increased by 0.01, as is shown in a later figure
(figure 13a). All transitions exceed a 43% increase in the peak radial velocity, except for
Λ = 5, which will be discussed later.
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Varying δ Varying ε

δ ε S∗
B S∗

C δ ε S∗
B S∗

C

0.1 0.01 1.36 1.47 0.2 0 1.40 1.55
0.2 0.01 1.40 1.58 0.2 0.01 1.40 1.58
0.3 0.01 1.42 1.61 0.2 0.05 1.40 1.68

Table 1. Summary of results for unsteady NS simulations showing the dependency of S∗ on inflow
parameters, for varying δ (left) and varying ε (right) for Λ = 1 and Re = 200.

Critical swirl numbers S∗
B and S

∗
C forΛ = 1 and Re = 200 were computed and compared

with the three-dimensional results of Moise & Mathew (2019). Although the structure
of vortex breakdown is asymmetrical for S > 1.48 (Moise & Mathew 2019), the current
axisymmetric simulations for their conditions (δ = 0.2, ε = 0.01) result in S∗

B = 1.40
and S∗

C = 1.58 – values that are identical to those obtained in the three-dimensional
simulations.

4.2. Effects of inflow parameters δ and ε

To explore the effects of the mixing-layer thickness δ and the coflow strength ε on
critical swirl numbers, calculations were performed for the isothermal jet at Re = 200 with
different values of these parameters, shown in table 1. The results indicate that S∗

B and S∗
C

decrease with decreasing values of δ for fixed ε, as may be expected from consideration of
an integrated swirl number. It is possible to define a constant-density integral swirl number
(Billant et al. 1998) as

Si =
(∫ ∞

0

v2θ (r, x0)
r

dr

)1/2

, (4.1)

the values of which, for δ = 0.1, 0.2 at fixed S = 1.40, are Si = 0.91, 0.84, respectively,
demonstrating that the effective swirl number increases with decreasing δ in these
computations, leading to the decrease in S∗. On the other hand, variation of ε from 0
to 0.05 had no effect on S∗

B, as indicated in table 1, but the transition from the bubble to the
cone, characterized by S∗

C, is significantly delayed when the coflow velocity is increased
by increasing ε.

4.3. Effects of the Reynolds number
For sufficiently large Reynolds numbers, the flow becomes unstable and transitions from a
pre-breakdown state directly to the cone, bypassing the bubble. This cannot be ascertained
from the preceding theoretical considerations (§§ 3.2 and 3.3) where the flow was assumed
to be steady. When direct transition to the cone occurs, S∗

C is the first critical swirl number
to appear, and S∗

B is not present. The kinematic viscosity ν′ = μ′/ρ′, normalized as in the
formulation, varies with temperature according to ν = T1+σ , so that ν, unity in the jet by
definition, is less than unity in the ambient gas (to be identified by the subscript a) for
Λ < 1, and greater than unity there for Λ > 1. For Λ < 1, the low kinematic viscosity in
the ambient region can render the flow unstable, so that the cone is the first to appear, while
for Λ > 1, the ambient viscosity increases and can significantly delay the transition to
conical breakdown. To maintain stable flow capable of exhibiting both types of breakdown,
an effective viscosity is defined as the geometric mean of the viscosities of the jet and
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Figure 8. Effect of Reynolds number on (a) S∗
B and (b) S∗

C for the unsteady NS simulations with δ = 0.2 and
ε = 0.01.

ambient streams, νeff = √
νa, whence, since νa = Λ1+σ , it follows that νeff = Λ(1+σ)/2.

The effective Reynolds number associated with these variable properties is defined by
scaling the jet Reynolds number with the effective viscosity,

Reeff = Re
νeff

. (4.2)

The effective Reynolds number was fixed at the value Reeff = 200 for all Λ, and the
resulting jet Reynolds number as a function of Λ is Re = ReeffΛ(σ+1)/2. The value of the
effective Reynolds number was chosen for consistency with previous numerical studies on
isothermal swirling jets (Ruith et al. 2004; Moise & Mathew 2019; Moise 2020). In the
axisymmetric constant-density study by Fitzgerald et al. (2004), the pre-breakdown state
transitioned directly to the cone for Reeff = Re > 300. Since the inlet profiles used in that
study were close to those of Billant et al. (1998), values much larger than 200 would not be
appropriate for the present work. In the current study, at values larger than Reeff = 230 for
Λ = 1/5, the flow becomes unstable and the cone is the first to appear, so 230 was selected
as an upper bound for a useful effective Reynolds number, and results are reported for both
200 and 230.
Table 2 and figure 8 show the unsteady simulation results for both of these effective

Reynolds numbers, and figure 9 compares these results with those of the previous
theoretical considerations. For the nominal inlet parameter values δ = 0.2 and ε = 0.01,
applicable to all of the remaining computational results to be discussed, the unsteady
simulation values of S∗

B are larger than the QC theoretical values of S∗
B, as may be

expected from the decrease of S∗
B with increasing Reynolds number, but compare quite

well with the steady NS values at similar Reynolds numbers (figure 3). For example,
for Re = (50, 200, 750) and Λ = (1/5, 1, 5), the steady NS simulations result in S∗

B =
(1.54, 1.39, 1.355), while for Re = (51, 200, 786) and Λ = (1/5, 1, 5), the unsteady NS
simulations result in S∗

B = (1.54, 1.40, 1.34). For the low Reynolds numbers considered
here, the first solutions of bubble breakdown at S∗

B were steady, justifying the use of
the steady NS and QC predictions. For turbulent jets, Manoharan et al. (2020) reason
that the unsteady behaviour in the flow for S > S∗

B is a result of intrinsic changes in
the time-averaged state at S∗

B, and further analysis would be needed to determine the
applicability of steady predictions for S∗

B.
The unsteady simulations exhibit very little dependence on the Reynolds number over

the range 200 ≤ Reeff ≤ 230, as shown in figure 8(a). For S∗
C shown in figure 8(b), on the

other hand, the effect of the Reynolds number is greater, and agreement with the theoretical
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Λ Re S∗
B S∗

C

1/5 51 1.54 1.88
1/2 111 1.45 1.60
1 200 1.40 1.58
2 361 1.37 1.51
5 786 1.34 1.75

Table 2. Summary of results for unsteady NS simulations with Reeff = 200, δ = 0.2 and ε = 0.01.
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S∗
C numerical

S∗
C theory

Λ

Figure 9. Comparison of theoretical predictions and unsteady numerical simulations. The numerical curves
(Reeff = 200) and the theoretical result for S∗

B use δ = 0.2 and ε = 0.01, while the theoretical prediction of S∗
C

uses δ = ε = 0.

predictions of an essentially constant S∗
C is achieved only at the higher Reynolds number

and only over the central range of Λ, the aforementioned viscosity effects influencing the
extreme values, actually producing a non-monotonic dependence on Λ. These effects are
addressed further in the following subsections.

4.4. Transition to the bubble: numerical
Similar to the QC prediction for δ = 0.1 in figure 3, the nominal (δ = 0.2) numerical
calculations of S∗

B in figure 9 display a weak dependence on Λ, monotonically decreasing
with increasing Λ. The effects of Λ on S∗

B can be understood better by comparing the
intermediate cases of Λ = (1/2, 1, 2) at fixed S = 1.5, for which the steady-state bubble
streamlines are shown in figure 10. As the value of Λ is increased, the imbalance of
the centrifugal force and radial pressure gradient increases, with the centrifugal force
becoming more dominant, as shown in figure 11(a), and this gives rise to an expansion
of the flow. The resulting axial pressure gradient along the jet axis, shown in figure 11(b),
increases as Λ increases, lowering S∗

B. The increased axial pressure gradient drives the
stagnation point upstream until it travels off the axis for Λ = 2, resulting in a two-celled
bubble, with a secondary breakdown at x = 6. Although the two-celled bubble has been
observed experimentally (Leibovich 1978; Billant et al. 1998), vortex breakdown has been
found to travel upstream into the nozzle exit for large values of S (Billant et al. 1998;
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Figure 10. Unsteady NS solutions: steady-state bubble projected streamlines superimposed on colour
contours of temperature for S = 1.5 and Reeff = 200. (a) Λ = 1/2, (b) Λ = 1, and (c) Λ = 2.
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Figure 11. Dependence, for S = 1.5 and Reeff = 200, of (a) ρv2θ /r − ∂p/∂r on r at x = 0.5, and of (b) ∂p/∂x
on x at r = 0.

Manoharan et al. 2020), allowing the possibility for effects from the prescribed steady
inflow profile (Moise & Mathew 2019).

4.5. Transition to the cone: numerical
As the inlet swirl number increases beyond S∗

B, a critical swirl number S∗
C is encountered,

and the bubble transitions to a conical structure with a near-90-degree opening. Results
are discussed first for the intermediate values Λ = (1/2, 1, 2), where S∗

C varies in
a way similar to that of the numerical values of S∗

B, decreasing with increasing Λ.
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Figure 12. Time-averaged projected streamlines superimposed on colour contours of temperature before and
after the transition to the cone for Reeff = 200 and three values of Λ. (a) Λ = 1/2, S = 1.59, (b) Λ = 1/2,
S = 1.60, (c) Λ = 1, S = 1.57, (d) Λ = 1, S = 1.58, (e) Λ = 2, S = 1.50, and ( f ) Λ = 2, S = 1.51.
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Figure 13. Plots of (a) radial velocity at r = 1 and (b) pressure along the jet axis at S∗
C with Reeff = 200.

936 A1-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

18
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
CS

D
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 S
an

 D
ie

go
, o

n 
08

 F
eb

 2
02

2 
at

 1
4:

38
:3

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2022.18
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Vortex breakdown in variable-density gaseous swirling jets

20

10

60

50

40

30

20

10

0

60

50

40

30

20

10

0

0 1010 2020 3030 4040 5050 6060 7070 8080

20

10

0 1010 2020 3030 4040 5050 6060 7070 8080

1010 2020 3030 4040 5050 6060 7070 8080 1010 2020 3030 4040 5050 6060 7070 8080

1.0

0.8

0.6

0.4

0.2

5

4

3

2

1

r

r

x x

(a) (b)

(c) (d )

Figure 14. Time-averaged projected streamlines superimposed on colour contours of temperature for extreme
values of Λ at S∗

C with Reeff = 200. (a) Λ = 1/5, S = 1.87, (b) Λ = 1/5, S = 1.88, (c) Λ = 5, S = 1.74, and
(d) Λ = 5, S = 1.75.

The time-averaged streamlines, plotted in figure 12, show the abrupt transition from the
bubble to the cone, with the associated jump in radial velocity shown in figure 13(a). As
the recirculation zone increases, velocity magnitudes decrease and the pressure reaches a
value near the ambient, which corresponds to p = 0 with the normalization, and is shown
in figure 13(b). The assumption of axisymmetric flow leads to a two-celled recirculation
zone when the bubble first transitions to the cone, unlike the three-dimensional results for
which the unsteady vortex shedding leads to a time-averaged single-celled recirculation
zone with the pressure reaching zero by x = 1 (Moise & Mathew 2019).
For Λ = 5, the jet Reynolds number is Re = 786, and the non-dimensional viscosity in

the ambient gas increases to νa = 15.4. At low S, the transition from S = 1.44 to S = 1.45
displays a jump in the pressure along the axis towards p = 0 (not shown), a typical sign of
a transition to the cone. The increased viscosity in the ambient region, however, prevents
the opening of the bubble into the cone. As S is increased continuously, the bubble grows
to sizes comparable to the size of the cone, but it shows no signs of a sudden jump in
radial velocity near the inlet. At S = 1.75, the conical shear layer becomes unstable, and
the bubble transitions to a one-celled cone much larger than the first cone encountered
for the intermediate values Λ = (1/2, 1, 2), as seen in figure 14. To accommodate the
increased size, a new domain was adopted with nx × nr = 69 × 27 spectral elements
spanning xmax = 100 and rmax = 100, and elements were again stretched to allow finer
regions of high gradients. For sufficiently large time, the cone spreads and contamination
of the boundaries is observed. The increased viscosity of the ambient region thus delays
the transition to the cone, destroying the otherwise monotonic trend of decreasing S∗

C with
increasing Λ.
For Λ = 1/5, a similar delay in the transition to the cone is observed, but this time

it is due to the small jet Reynolds number Re = 51. The first conical breakdown occurs
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at a large value of the swirl number, S∗
C = 1.88, and the transition exhibits the open

one-celled recirculation zone found for Λ = 5, shown in figure 14. The larger domain
used for determination of S∗

C for Λ = 5 is again adopted because of the increased size of
the cone.
The decrease of S∗

C with increasing Λ may be caused by the increase in jet Reynolds
number with increasing Λ, associated with the fixed value Reeff = 200 for all Λ. In § 4.3,
when the effective Reynolds number, and thus the jet Reynolds number, was increased
by 15%, S∗

C began to flatten to a constant value of S∗
C = 1.48 for the intermediate values

Λ = (1/2, 1, 2), seen in figure 8(b). This value aligns well with the theoretical prediction
based on the radial spreading of the jet (S∗

C = 1.494).
ForΛ = 5, the increase in effective Reynolds number from 200 to 230 causes the bubble

to transition to the compact two-celled cone that is observed in the intermediate range,
rather than to the enlarged one-celled cone observed for Reeff = 200. This confirms that
the delayed transition from the bubble directly to the enlarged one-celled cone for Λ = 5
and Reeff = 200 is influenced strongly by viscosity. As the Reynolds number is increased
for Λ = 1/5, S∗

C decreases from 1.88 to 1.59, but is still found to exhibit a transition from
the bubble to the enlarged cone, indicating the existence of an instability within the shear
layer. It is thus understandable that for sufficiently large Reynolds numbers, S∗

C exhibits a
weaker dependence on Λ, corresponding to the theoretical predictions in § 3.3.

5. Concluding remarks

Although steady-state axisymmetric conservation equations may describe bubble
formation in vortex breakdown, any breakdown to flows that are conical necessitates
three-dimensional time-dependent conservation equations for their proper full description.
Average behaviours of the latter may, however, be described reasonably, with notable
computational savings, by time-dependent axisymmetric conservation equations as well as
simplified axisymmetric steady-state formulations. It is noted that despite the wide number
of different possible descriptions, values of swirl numbers for vortex breakdowns of any
type, in variable-density air flows, nevertheless always lie between 1 and 2.
Steady-state quasi-cylindrical slender jet conservation equations provide good

descriptions of pre-bubble-breakdown flows, including predictions of values of critical
swirl numbers for that breakdown and the dependence of such values on the jet-to-ambient
density ratioΛ, showing a significant decrease with increasingΛ for thin initial shear-layer
thicknesses but near independence of Λ for thicker initial shear layers. These successful
results have been verified here as being consistent with the large-Reynolds-number limit of
predictions of steady-state axisymmetric Navier–Stokes equations, even though the flow,
of course, necessarily becomes unstable at sufficiently large Reynolds numbers.
Despite the underlying fundamentally time-dependent behaviour, critical conditions

for vortex breakdown to form a cone can be addressed on the basis of steady-state
axisymmetric conservation equations for a jet in solid-body rotation, issuing into
a quiescent atmosphere, by analysing the conditions for existence of slender flow
in the jet-entrance region in an asymptotic analysis for large Reynolds numbers.
The solution develops a singularity when the swirl number is increased to 1.494,
independent of the value of Λ. This value lies below the critical value obtained from
representative solutions to time-dependent axisymmetric Navier–Stokes equations at
reasonable Reynolds numbers, as a consequence of viscous stabilizing effects in the
latter computations, but nevertheless, it may serve as a useful limiting estimate. The
Newton–Raphson method used in the steady NS computations was unable to detect the
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transition to the cone due to previously studied hysteresis effects, suggesting that the steady
cone is an unstable state.
While it was confirmed that critical swirl numbers were identical for the axisymmetric

and fully three-dimensional numerical simulations of isothermal jets, future work should
determine whether critical swirl numbers agree for jet configurations with variable density.
Our results are restricted to laminar flow; both quantitative and qualitative changes can be
expected when turbulence is present, that being the case in combustion applications, for
which the conical mode appears to be the dominant vortex-breakdown mode (Candel et al.
2014). Besides effects of turbulence, additional effects of variable density and variable
viscosity on vortex breakdown are also worthy of future investigation. For example, only
monotonic radial variations of the fluid density and viscosity have been considered here,
but, for example, in combustion chambers those variations may not be monotonic with
gaseous fuels; density minimums may occur in the vicinity of diffusion flames. Beyond
that, liquid-fuel jets may introduce new effects associated with phase changes. Influences
of additional phenomena such as these deserve attention. Much additional research on
vortex breakdown in variable-density swirling jets thus is warranted.
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