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We consider spherically symmetric accretion onto a small, possibly primordial, black hole residing at the
center of a neutron star governed by a cold nuclear equation of state (EOS). We generalize the relativistic
Bondi solution for such EOSs, approximated by piecewise polytropes, and thereby obtain analytical
expressions for the steady-state matter profiles and accretion rates. We compare these rates with those found
by time-dependent, general relativistic hydrodynamical simulations upon relaxation and find excellent
agreement. We consider several different candidate EOSs, neutron star masses and central densities and find
that the accretion rates vary only little, resulting in an accretion rate that depends primarily on the black hole
mass, and only weakly on the properties of the neutron star.
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I. INTRODUCTION

Multiple authors have suggested that neutron stars may
act as dark-matter detectors (e.g., [1–8]). In one scenario,
primordial black holes (PBHs), which may either contrib-
ute to or even account for the dark matter in the Universe,
may be captured by neutron stars and subsequently accrete
the entire star [9,10]. The observed existence of neutron star
populations has been invoked to constrain primordial black
holes in a mass window of about 10−15 M⊙ ≲MBH ≲
10−9 M⊙ (see [5]) that is poorly constrained by other
arguments and observations (see e.g., [11–15]). Even this
constraint assumes that both the capture and accretion
processes are sufficiently fast. While different authors have
arrived at different estimates for the rates of the former
[5,8,16,17], we will derive analytical rates for the latter in
this paper, even for neutron stars governed by realistic
nuclear equations of state (EOSs).
In an alternative scenario, other candidate dark-matter

particles, possibly including axions, also can be captured
by neutron stars. Under sufficiently favorable conditions,
these particles may coalesce to form a high-density object
that then collapses to a small black hole (e.g., [1–3,6]),
thereby resulting in the same accretion process as the
scenario above. Independently of the precise scenario, it is
of interest to explore the rate at which a central “endopar-
asitic” black hole disrupts its host neutron star.
Spherically symmetric, steady-state accretion onto a

point mass of a fluid that is homogeneous and at rest far
from the mass is described by the Bondi solution in
Newtonian physics [18]. Most treatments of Bondi accre-
tion, or its relativistic counterpart describing accretion onto

a Schwarzschild black hole [19] (see also Appendix G in
[20], hereafter ST), focus on soft EOSs with adiabatic
indices 1 ≤ Γ ≤ 5=3, which is suitable for most astrophysi-
cal plasmas. While the EOS governing the cores of neutron
stars is not known, most realistic candidates for the EOS at
nuclear densities are stiff. As we discussed in [21] (here-
after RBS), accretion for stiff EOSs with Γ > 5=3 shows
some qualitative differences from that of soft EOSs. In
particular, there exists a minimum steady-state accretion
rate for stiff EOSs. As shown in Appendix A of [22], these
results also hold for a black hole inside a neutron star, as
long as the black hole mass MBH is much smaller than that
of the neutron star,MBH ≪ MNS. In this case the relativistic
Bondi formalism yields the accretion rate as measured by a
“local asymptotic observer,” i.e., one who is far from the
black hole, but deep inside the neutron star. The above
minimum accretion rate therefore results in a maximum
survival time for neutron stars harboring a black hole [23].
A number of authors have also performed numerical

simulations of accretion onto endoparasitic black holes
inside neutron stars. East and Lehner [7] considered black
holes with masses MBH ≥ 10−2MNS and adopted nuclear
EOSs (modeled with the “piecewise-polytrope” approxi-
mation described below). In particular, they observed
that the accretion rate is proportional to M2

BH, as expected
from the relativistic Bondi formalism [see Eq. (11) below],
and that the effects of rotation are small (see also [24]).
Focusing on nonrotating configurations and stiff Γ-law
EOSs, we performed simulations for much smaller black
holes with masses MBH ≳ 10−9MNS, and found that the
accretion rates agree very well with those predicted by the
Bondi formalism, even quantitatively [22].
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In this paper we generalize the results of RBS and [22] to
allow for realistic, nuclear EOSs, approximated by piece-
wise polytropes (PWPs). We review the PWP treatment of
EOSs in Sec. II, and then derive analytical expressions for
the stationary accretion rates onto small black holes inside
neutron stars governed by such EOSs in Sec. III. We
perform time-dependent, numerical simulations in full
general relativity for these EOSs as described in Sec. IV.
Once these numerical solutions have relaxed into a qua-
sistationary solution, they agree very well with the ana-
lytical solutions, as shown in Sec. V. Briefly summarizing
in Sec. VI, we find that, for these realistic nuclear EOSs,
the accretion rates depend only weakly on the EOS and the
neutron star’s density, and hence mainly on the black hole
mass. These rates are just slightly larger than the minimum
accretion rates that RBS and [23] computed under the
assumption of Γ-law EOSs. Unless noted otherwise we use
geometrized units with G ¼ 1 ¼ c in this paper, and adopt
the solar mass 1 M⊙ ¼ 1.99 × 1033 g ¼ 1.47 × 105 cm ¼
4.9 × 10−6 s as the fundamental unit.

II. NUCLEAR EOSS: APPROXIMATION BY
PIECEWISE POLYTROPES

As demonstrated by [25], a large class of candidates for
realistic, cold nuclear EOSs can be approximated remark-
ably well with piecewise polytropes (PWPs). Specifically,
we write the pressure P as a function of the rest-mass
density ρ0 as

P ¼ Kiρ
Γi
0 ð1Þ

where the constants Ki and Γi take different values in four
different density “regions” labeled by the index 0 ≤ i ≤ 3.
The different regions are separated by three “boundary
densities” that can be chosen to be the same for all EOSs
(see Table I). We follow [26] in our implementation of the
PWP EOS; in particular, we model the low-density crust
with only one piece rather than the four pieces adopted by
[25] (see their Table II), and we also choose the values for
the boundary densities as in [26]. The different values Γi, as
well as one of the constants Ki, can be found from fits to

each EOS; the remaining values of Ki are then related to
each other by imposing continuity of P across the boun-
daries between different regions. The specific internal
energy ϵ then takes the form

ϵ ¼ bi þ
Ki

Γi − 1
ρΓi−1
0 ð2Þ

[see Eq. (5) in [25]] where the bi are constants of
integration that are chosen to make ϵ continuous across
the boundaries between different regions. In the lowest-
density region the constant b0 vanishes, but in general
bi ≠ 0 for i > 0.1 The total mass-energy density ρ is then

ρ ¼ ρ0ð1þ ϵÞ ¼ ρ0 þ biρ0 þ
Ki

Γi − 1
ρΓi
0 : ð3Þ

While P, ϵ and ρ are continuous across density boundaries,
the speed of sound a, computed from

a2 ¼
�
dP
dρ

�
s
¼ ρ0

ρþ P

�
dP
dρ0

�
s

¼ ΓiKiρ
Γi−1
0

1þ bi þ ΓiKiρ
Γi−1
0 =ðΓi − 1Þ ; ð4Þ

where the subscript s denotes constant entropy, in general is
not continuous—in fact, a may not even grow monoton-
ically with ρ0. In each region i we may invert (4) to find

ΓiKiρ
Γi−1
0 ¼ a2ð1þ biÞ

1 − a2=ðΓi − 1Þ ; ð5Þ

but, since a may neither be a continuous nor a monotonic
function of ρ0, we may not be able to invert (4) globally.
A list of the Γi for a large number of EOSs is given in

Table III of [25]. In this paper we consider representatives
of four different families of EOSs, namely the SLy [27],
AP3 and AP4 [28], MS1 [29], and H4 [30] EOSs, which
represent different theoretical approaches to constructing
realistic nuclear EOSs. For these EOSs we provide all the
above PWP parameters in Table II. All these EOSs result in
maximum allowed masses that are consistent with all
observed neutron star masses, including the largest cur-
rently known mass of 2.08þ0.07

−0.07 M⊙ (where the errors
represent a 68.3% credibility interval), reported for the
millisecond pulsar J0740þ 6620 from measurements of
the relativistic Shapiro effects (see [31,32]; see also [33] for
NICER and XMM analysis of the same pulsar, resulting
in a consistent value for its mass, as well as [34] for
constraints on the EOS resulting from NICER radius
measurements of J0740þ 6620). Other high-mass neutron

TABLE I. Values of the “boundary” rest-mass densities that
separate the different regions in the PWP approach. For each i,
the constants Γi, Ki, and bi listed in Table II apply between the
densities ρ0;i and ρ0;iþ1. Values for the rest-mass density ρ0 in cgs

units, ρcgs0 , are related to those in units of solar masses, ρM⊙
0 , by

ρcgs0 ¼ ρM⊙
0 c2G−1ðM⊙=1.47 × 105 cmÞ2.

ρ0 [g cm−3] ρ0 [M−2
⊙ ]

ρ0;1 1.46 × 1014 2.37 × 10−4

ρ0;2 5.01 × 1014 8.11 × 10−4

ρ0;3 1.00 × 1015 1.62 × 10−3
1Note that [25] used symbols ai for these constants; we choose

bi here in order to avoid confusion with the sound speed a below.
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stars include PSR J1614-2230 with a mass of M ¼
1.93 M⊙ (see [35]), and PSR J0348þ 0432 with a mass
of M ¼ 2.01 M⊙ (see [36]). With the exception of MS1
and H4, the above EOSs are also consistent with the
neutron star masses and tidal distortions inferred from the
gravitational wave signal GW170817 and electromagnetic
follow-up observations [37]; while both MS1 and H4
appear to be ruled out based on tidal distortions, we include
them regardless as examples of stiff EOSs.

III. BONDI ACCRETION FOR PIECEWISE
POLYTROPES: ANALYTICAL SOLUTION

We now generalize the Bondi solution [18–20], describ-
ing stationary, adiabatic, spherically symmetric fluid flow
onto a Schwarzschild black hole, for PWPs. We follow the
derivation in Appendix G of ST up to their Eq. (G.22)
(hereafter ST.G.22) unchanged, since it does not yet make
any assumptions about the EOS. In particular (ST.G.21),
the integrated continuity equation

4πρ0ur2 ¼ const; ð6Þ

as well as (ST.G.22), the integrated Euler equation

�
ρþ P
ρ0

�
2
�
1 −

2MBH

r
þ u2

�
¼ const; ð7Þ

remain valid, as does (ST.G.17) for the relations at the
critical radius,

u2s ¼
a2s

1þ 3a2s
¼ MBH

2rs
ð8Þ

(provided this critical radius exists; see our discussion
below). In the above equations r is the areal radius and u≡
jurj the inward radial component of the fluid’s four-velocity;
note that the above expressions employ Schwarzschild
coordinates.
Rather than adopting a single polytrope, as in ST and

RBS, we now adopt the PWPs described above. In particular,

the first factor on the left-hand side of (7) then takes
the form

ρþ P
ρ0

¼ 1þ bi þ
Γi

Γi − 1
Kiρ

Γi−1
0 : ð9Þ

Note also that, using (5), we may relate the density at the
critical point to that in the “local asymptotic region,” denoted
by a subscript �, by

ρΓs−1
0s ¼ Γ�K�

ΓsKs

Γ� − 1 − a2�
Γs − 1 − a2s

Γs − 1

Γ� − 1

1þ bs
1þ b�

a2s
a2�

ρΓ�−1
0� ð10Þ

[cf. Eq. (10) in RBS, hereafter RBS.10]. Inserting this
into (6), and using (8), we may now write the accretion
rate as observed by a local asymptotic observer (hence the
superscript �) as

_M�
0 ¼ 4πλ

�
MBH

a2�

�
2

ρ0�a�; ð11Þ

which assumes the same form as, e.g., (ST.G.33) or
(RBS.11), except that the dimensionless accretion eigen-
value λ is now given by

λ ¼
�
as
a�

�ð5−3ΓsÞ=ðΓs−1Þ
ρðΓ�−ΓsÞ=ðΓs−1Þ
0�

ð1þ 3a2�Þ3=2
4

×

�
Γ�K�
ΓsKs

Γ� − 1 − a2�
Γs − 1 − a2s

Γs − 1

Γ� − 1

1þ bs
1þ b�

�
1=ðΓs−1Þ

: ð12Þ

Note that this reduces to Eq. (RBS.12), as expected, when the
critical point is in the same density region as the asymptotic
observer, so that Γs ¼ Γ�, Ks ¼ K� and bs ¼ b�. Note also
that MBH on the right-hand side of (11) is the black hole’s
gravitationalmass, while the left-hand side is the rate atwhich
the rest mass crosses the black hole’s horizon.
In order to evaluate λ for given asymptotic values we

need to relate as to a�, which we will do using Eq. (7). We
start by inserting (5) into (9) to obtain

TABLE II. List of EOSs considered in this paper together with their PWP parameters. The adiabatic coefficients Γi as well as the
constants bi are dimensionless, while, in geometrized units, the coefficients Ki have units of length (or mass) to the power 2ðΓi − 1Þ,
which we express in units of solar mass. We use Γ0 ¼ 1.35692 in the lowest density region for all EOSs, adopting the value for the
highest-density crust piece in [25] (see their Table II). We also provide the maximum gravitational mass Mmax of nonrotating neutron
stars, and the corresponding central density ρmax

0c .

EOS Γ1 Γ2 Γ3 K0 K1 K2 K3 b1 b2 b3
Mmax
[M⊙]

ρmax
0c

[g cm−3]

SLy 3.005 2.988 2.851 0.089492 84572.6 74935.5 31071.4 0.0104711 0.0102419 0.00234129 2.06 2.01 × 1015

AP3 3.166 3.573 3.281 0.0747568 270916 4906280 751390 0.00888779 0.0128859 −0.00322345 2.38 1.67 × 1015

AP4 2.83 3.445 3.348 0.0851938 18679.1 1486420 796972 0.00976174 0.0154307 0.011658 2.20 1.92 × 1015

MS1 3.224 3.033 1.325 0.2032526 1970000 307447 5.26309 0.0243216 0.0175589 −1.66799 2.74 1.08 × 1015

H4 2.909 2.246 2.144 0.194153 82323.1 735.161 381.707 0.0224696 −0.00640722 −0.0239386 2.00 1.70 × 1015
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ρþ P
ρ0

¼ ð1þ biÞ
�
1þ a2

Γi − 1 − a2

�
: ð13Þ

Evaluating the left-hand side of (7) both at rs and in the
local asymptotic region, where r� ≫ M and u� ≪ 1, then
yields

�
1 −

2M
rs

þ u2s

�
ð1þ bsÞ2

�
1þ a2s

Γs − 1 − a2s

�
2

¼ ð1þ b�Þ2
�
1þ a2�

Γ� − 1 − a2s

�
2

ð14Þ

(cf. ST.G.29), or, taking the inverse of both sides and
using (8),

ð1þ 3a2sÞ
�
1 −

a2s
Γs − 1

�
2

¼
�
1þ bs
1þ b�

�
2
�
1 −

a2�
Γ� − 1

�
2

ð15Þ

(cf. ST.G.30). As for a single polytropic EOS, the relation
(15) forms a cubic equation for x ¼ a2s that we may write as

x3 þ Ax2 þ Bxþ C ¼ 0 ð16Þ

with

A ¼ 1

3
ð7 − 6ΓsÞ

B ¼ 1

3
ð1 − ΓsÞð5 − 3ΓsÞ

C ¼ ðΓs − 1Þ2
3

�
1 −

�
1þ bs
1þ b�

�
2
�
1 −

a2�
Γ� − 1

�
2
�

ð17Þ

(cf. RBS.19). Unlike in RBS, however, we now need to
evaluate the constants bi and Γi in the regions correspond-
ing to ρ0� and ρ0s (or, equivalently, a� and as). For a given
value of ρ0�, we know how to choose b� and Γ�, but, unless
the local asymptotic values are in the highest-density region
i ¼ 3 already, we do not know a priori in which density
region the critical point will be. Stated differently, solving
(15) for as requires values bs and Γs, but choosing those
depends on what region as ends up in. We can solve this
problem as follows.
Say ρ0� is in density region j. Assuming that ρ0s ≥ ρ0� we

then consider all regions i ≥ j, and solve Eq. (15), using
Cardano’s formula as described in RBS, to obtain candidate
solutions asi for each one, disregarding unphysical solutions
for which a2si < 0. We then evaluate (5) for the remaining
solutions asi in region i and keep only those candidate
solutions for which the corresponding rest-mass density ρ0i
is indeed in region i. In some cases, for low values of a�, we
still find viable solutions in multiple regions from this
procedure. For each one of these remaining solutions we

can then construct fluid profiles by integrating
Eqs. (ST.G.10) both inwards and outwards away from the
critical radius rsi. For the examples that we considered, at
most one solution asi resulted in global solutions with
exactly one critical point. In the following we always adopt
this solution as the analytical Bondi profile. We show an
example of such a profile for the SLy EOS, extending over
all four density regions, in Fig. 1. The above approach
reduces to the simpler single Gamma-law case treated in
[22], of course, if ρ0� is in the highest-density region already.
Also note that the above procedure is not guaranteed to

yield solutions. As demonstrated in Appendix G in ST, the
existence of a critical radius is guaranteed if all functions
are continuous. Specifically, ST argue that, since their
function

D ¼ u2 − ð1 − 2MBH=rþ u2Þa2
uρ0

ð18Þ

(see ST.G.13) is negative for large r but positive for small r
approaching the black hole horizon, it must have a root,
which then provides the condition (8). In our treatment
here, D must still change sign, but since, for piecewise
polytropes, it can no longer be assumed to be continuous
everywhere, this does not imply that it necessarily has a
root. For most examples that we considered, we were able
to find critical points without any problems. For small
densities for the MS1 EOS, however, the above procedure
did not yield any solutions, which we believe is related to
the large discontinuity in the sound speed resulting from the
large difference between Γ2 and Γ3. In Fig. 2 we show
numerical results demonstrating that, in this case, a dis-
continuity in the sound speed leads to a “jump” across the
critical point at which the last two terms in Eq. (8) are

FIG. 1. Analytical Bondi accretion profiles for the SLy EOS
and an asymptotic density ρ0� ¼ 10−4 M−2

⊙ ¼ 6.2 × 1013 g cm−3.
The critical (areal) radius rs ¼ 2.057MBH is marked by the dots.
The horizontal dotted lines in the top panel mark the boundaries
between the four density regions (see Table I); note the small
discontinuities in the sound speed a at the corresponding
locations.
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equal, so a strict root of D does not exist. Clearly, this
behavior is an artifact of the piecewise-polytropic treatment
of the EOS, which results in these discontinuities.

IV. NUMERICAL TREATMENT

We complement our analytical results by performing
numerical simulations of the accretion onto black holes at
the center of neutron stars as follows.
We construct initial data from a solution to the Tolman-

Oppenheimer-Volkoff equations [38,39] for a given EOS and
a given central density. Following [22] we then adopt a
generalized puncture method to place a black hole with
puncture mass M at the center of the neutron star, and we
solve the Hamiltonian constraint for the conformal factor ψ,
assuming a moment of time symmetry, to obtain solutions to
Einstein’s constraint equations. As demonstrated in Sec. III.
C. 1 of [22], for M ≪ MNS the black hole’s gravitational
mass is well approximated by MBH ≃ ψNSM, where ψNS
is the conformal factor at the center of the unperturbed
neutron star.
We then evolve these data using the Baumgarte-Shapiro-

Shibata-Nakamura (BSSN) formalism ([40–42]; see also
[43] for a textbook discussion), implemented in spherical
polar coordinates [44,45] with the help of a reference-metric
formalism [46–49]. We adopt moving-puncture coordinates,
i.e., “1þ log” slicing for the lapse [50] and a “Gamma-
driver” condition for the shift [51,52], starting with a
“precollapsed” lapse α ¼ ψ−2 and vanishing shift. We
evolve the equations of relativistic hydrodynamics using a
Harten-Lax-van-Leer-Einfeld approximate Riemann solver

[53,54] together with a simple monotonized central-differ-
ence limiter reconstruction scheme [55].

Even though we start with initial data describing cold
fluids, we allow for heating (e.g., by shocks) by adding to
the cold pressure (1) thermal contributions. Specifically,
we compute thermal contributions to the internal energy
density U ≡ ρ0ϵ from

Uth ¼ U −Ucold ¼ ρ0ðϵ − ϵcoldÞ; ð19Þ

where ρ0 and ϵ are computed from the dynamically evolved
quantities, and ϵcold is given by (2). We then write Uth ¼
Unucl þ Urad, where Unucl accounts for finite-temperature
corrections to an ideal, nonrelativistic, nucleon Fermi gas,

Unucl ¼
ð3π2Þ1=3mB

6ℏ2
n1=3ðkBTÞ2; ð20Þ

and Urad for contributions from radiation,

Urad ¼ ηaradT4 ð21Þ

(compare, e.g., [56]). In the above equations mB is the
baryon rest mass (which we take to be equal to the neutron
rest mass), n ¼ ρ0=mB the baryon number density, kB the
Boltzmann constant, ℏ Planck’s constant, T the temper-
ature, and arad the radiation constant, and the nondimen-
sional constant η depends on which particles contribute to
the radiation. Allowing for photons (ηph ¼ 1), three flavors
of neutrinos (ην ¼ 3 × 7=8), as well as electron-positron
pairs (ηpairs ¼ 7=4), we have η ¼ ηph þ ην þ ηpairs ¼ 43=8.
We insert (20) and (21) into (19) and use a root-finding
method to find the temperature T. Knowing T, we can
finally compute the pressure P ¼ Pcold þ Pth using

Pth ¼ Pnucl þ Prad ¼ ðΓth − 1ÞUnucl þ
1

3
Urad ð22Þ

where Γth ¼ 5=3 for nonrelativistic nucleons.
In all our simulations we observe a transition from our

(astrophysically artificial) initial data to a nearly time-
independent equilibrium solution describing accretion onto
the black hole. Especially for initial data with smaller initial
densities, we see that this transition launches an outgoing
shock wave; the accretion solution is then attained inside
this shock wave. While this shock wave does lead to some
heating, we find that this heating is small, especially for
large initial densities, and presumably transient, so that we
still find good agreement between our numerical and
analytical solutions, even though the latter has been
constructed for a cold gas.
In order to measure the accretion rate, we monitor the

flux F of the rest mass through spheres S of radius r,

FIG. 2. Numerical profiles of the last two terms in the condition
(8) for a critical point, namely MBH=ð2rÞ and a2=ð1þ 3a2Þ, for
the MS1 EOS with ρ0 ¼ 7.5 × 10−4 M−2

⊙ at coordinate times
t ¼ 1.4 × 103MBH, after the evolution has relaxed into stationary
equilibrium. The crosses show grid points used in our simulation.
The discontinuity in the sound speed a prevents an equality of the
two terms in this case, so the analytical procedure of Sec. III does
not yield a critical point (compare the discussion at the end of
Sec. III).
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F ðrÞ ¼ −
Z
S

ffiffiffiffiffiffi
−g

p
ρ0urdθdφ; ð23Þ

where g is the determinant of the spacetime metric (see,
e.g., Appendix A in [57]). The accretion rate is then given
by the flux F evaluated on the horizon

_M0 ¼ F ðrhorÞ: ð24Þ

As in (11), this rate measures the accretion of rest mass
rather than the change of the black hole’s gravitational
mass. Note also that (24) measures the accretion rate as
seen by an observer at infinity, i.e., at large distances
r ≫ RNS from the neutron star, while (11) measures that as
seen by a local asymptotic observer withMBH ≪ r ≪ RNS.
As discussed in Sec. III. C. 2 of [22], we may compute the
former from the latter using

_M0 ¼ α� _M
�
0; ð25Þ

where α� is the lapse function in the local asymptotic
region.

V. RESULTS

We perform numerical simulations for the EOSs listed in
Table II. For our analytical treatment, we adopt as the

central density of the unperturbed neutron star a value just
below that of the maximum mass configuration, as well as
some smaller densities, for each EOS (see Table III). We
then compute the analytical accretion rates from (11). We
compare these rates to our numerical simulation values
from (24), adopting neutron star models with the central
densities in the absence of the black hole identical to those
chosen above. We provide details of all our results in
Table III; in particular, we list the analytical and numerical
values for the accretion rates as measured by an observer
at infinity.
As we discussed in Sec. III, the analytical approach

described there does not yield analytical solutions for the
MS1 EOS for our smaller central densities. Recall that this
approach relies on identifying a critical point defined by
equality between the three terms in Eq. (8). The first of
these three points, us, is a gauge-dependent quantity, but
the last two terms are gauge invariant. In Fig. 2 we therefore
show numerical profiles of these two terms for the MS1
EOS and ρ0 ¼ 7.5 × 10−4 M−2

⊙ ¼ 4.65 × 1014 g cm−3 at a
sufficiently late time for the evolution to have settled into a
stationary equilibrium solution close to the black hole.
We see that the difference between the two terms,
MBH=ð2rÞ − a2=ð1 − 3a2Þ, does indeed change sign; how-
ever, this difference does not have a root because of
the discontinuity of a, as we had discussed in Sec. III.

TABLE III. Accretion rates for different EOSs and neutron star densities, all for black holes with puncturemassM ¼ 10−6 M⊙. The rest-
mass densities ρ0� refer to those observed by a local asymptotic observer, and they are very similar to the central density of the corresponding
neutron star in the absence of a black hole. For each EOS and central density we list, all in units of solar masses, the resulting black-hole
gravitational mass MBH, the total gravitational mass M, the accretion eigenvalue λ (12), the value of _M�

0=M
2
BH from (11), the resulting

analytical accretion rate _M�
0 asmeasured by a local asymptotic observer, this observer’s value of the lapseα� and the corresponding analytical

accretion rate asmeasured byanobserver at infinityα� _M
�
0 [see (25)], aswell as the numerical accretion rate _M0 as computed from (24). For the

MS1 EOS and for the smaller central densities, the analytical approach of Sec. III did not yield solutions; see text for details.

EOS ρ0� [g cm−3] MBH [M⊙] M [M⊙] λ _M�
0=M

2
BH [M−2

⊙ ] _M�
0
a α� α� _M

�
0
a _M0

a _M0=M2
BH [M−2

⊙ ]

SLy 1.99 × 1015 1.52 × 10−6 2.06 3.41 0.139 3.21 × 10−13 0.432 1.39 × 10−13 1.39 × 10−13 0.060
9.92 × 1014 1.25 × 10−6 1.56 1.55 0.0969 1.51 × 10−13 0.636 9.60 × 10−14 9.70 × 10−14 0.062
4.96 × 1014 1.08 × 10−6 0.579 0.442 0.0812 9.47 × 10−14 0.853 8.08 × 10−14 8.09 × 10−14 0.069

AP3 1.68 × 1015 1.58 × 10−6 2.38 4.67 0.099 2.47 × 10−13 0.398 9.83 × 10−14 9.91 × 10−14 0.040
8.37 × 1014 1.25 × 10−6 1.61 1.68 0.0682 1.07 × 10−13 0.645 6.90 × 10−14 6.83 × 10−14 0.044
4.19 × 1014 1.06 × 10−6 0.402 0.254 0.0595 6.69 × 10−14 0.890 5.95 × 10−14 5.95 × 10−14 0.053

AP4 1.80 × 1015 1.55 × 10−6 2.20 4.36 0.107 2.58 × 10−13 0.418 1.08 × 10−13 1.07 × 10−13 0.045
8.99 × 1014 1.22 × 10−6 1.37 1.35 0.0770 1.15 × 10−13 0.675 7.76 × 10−14 7.71 × 10−14 0.052
4.50 × 1014 1.05 × 10−6 0.36 0.201 0.0686 7.56 × 10−14 0.897 6.78 × 10−14 6.80 × 10−14 0.062

MS1 9.30 × 1014 1.45 × 10−6 2.69 6.57 0.141 2.96 × 10−13 0.474 1.40 × 10−13 1.42 × 10−13 0.068
4.65 × 1014 1.18 × 10−6 1.54 0.717 5.38 × 10−14 0.039
2.33 × 1014 1.05 × 10−6 0.39 0.910 4.35 × 10−14 0.039

H4 1.55 × 1015 1.40 × 10−6 2.00 1.98 0.176 3.45 × 10−13 0.508 1.75 × 10−13 1.766 × 10−13 0.090
7.75 × 1014 1.24 × 10−6 1.68 1.28 0.121 1.86 × 10−13 0.655 1.22 × 10−13 1.213 × 10−13 0.079
3.88 × 1014 1.10 × 10−6 0.81 0.772 0.0916 1.11 × 10−13 0.830 9.21 × 10−14 9.26 × 10−14 0.077

aValues for accretion rates _M0 in units of solar mass per year, _M0½M⊙=yr�, can be computed from the dimensionless values _M0

provided here using _M0½M⊙=yr� ¼ 6.43 × 1012 M⊙ yr−1 _M0.
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This discontinuity, and hence the absence of a point at
which equality in (8) holds, is an artifact of the PWP
representation of the EOS. We note, however, that the
numerical solution with its finite grid effectively interpo-
lates between the discontinuity, thereby passing through a
critical point and achieving a smooth flow and well-defined
accretion rate, as indicated in Table III.
In the last column of Table III we list the ratios _M0=M2

BH
and note that, for each EOS, these values depend only
weakly on the central density or, equivalently, the mass of
the neutron star host. Even between different EOSs these
values do not vary significantly. We may therefore approxi-
mate the accretion rate, for any of the EOSs and central
densities considered here, as

_M0 ≃ χðMBH=M⊙Þ2 ð26Þ

where, within about 30% or so, χ ≃ 0.06. Using M⊙ ¼
4.9 × 10−6 s ¼ 1.6 × 10−13 yr we may write (26) as

_M0 ≃ 4.0 × 10−9
M⊙

yr

�
MBH

10−10 M⊙

�
2

; ð27Þ

which is just slightly larger than the minimum accretion
rate reported in [23] (where it was computed under the
assumption of single Gamma-law EOSs).2

We also show examples of accretion profiles, computed
both numerically and analytically, in Fig. 3. We note
that for many of the examples that we considered,
these profiles feature superluminal sound speeds a > c
in regions close to the black hole. This behavior
is not unexpected; as discussed in RBS, it is unavoidable
when Γ ≥ 3 and will also occur for softer EOS with
2 < Γ < 3 if the asymptotic densities are sufficiently high.
Reference [7] also noted the appearance of superluminal
sound speeds for some EOSs and artificially adjusted
those EOSs in the corresponding high-density regimes to
ensure that a < c. We instead allow the sound speed to
exceed the speed of light, both in our analytical and
numerical treatments.3 The possibility of the sound speed
becoming superluminal in ultradense matter has certainly
been discussed in the past (see, e.g., [58]). While the
equations admit such solutions without breaking down,
there are strong arguments for rejecting such behavior on
causality grounds, as it violates a basic principle of
relativity, as emphasized by [59].
The appearance of superluminal sound speeds may be a

consequence of either the underlying EOSs or their PWP
representation, of course. To justify some EOSs and their
PWP fits for treatments involving stable neutron stars,
it is sometimes argued that the sound speed at the stellar

FIG. 3. Analytical and numerical profiles of accretion flow onto a black hole at the center of a neutron star. On the left we show results
for the SLy EOS, starting with a central rest-mass density of ρ0� ¼ 0.0016 M−2

⊙ ¼ 9.92 × 1014 g cm−3, while on the right we show
results for the AP4 EOS with ρ0� ¼ 0.00145 M−2

⊙ ¼ 8.99 × 1014 g cm−3. The top panels show rest-mass densities, the middle panels the
sound speeds, and the bottom panels the flux F , all as a function of areal radius r. In each panel the dotted line represents analytical
results from the relativistic Bondi formalism, while the solid lines represent numerical snapshots at coordinate times t ¼ 1.4 × 103MBH,
after the solution has settled down to an equilibrium solution in a region around the black hole. The small insets show the rest-mass
densities in the entire star. The oscillations in the flux at large distances from the black hole emerge in the wake of the outgoing shock
wave that is triggered by the transition from our initial data to the steady-state accretion solution.

2Note that [23] provided estimates for the rate of gravitational
mass-energy accretion, which, during the quasistationary Bondi
accretion phase, is slightly larger than that for the accretion of rest
mass (see Table III in [22]).

3In the latter, the sound speed is needed in the approximate
Riemann solver. Transforming the sound speed from the fluid
frame to the coordinate frame involves taking the square root of a
number that may become negative if a > c. In order to prevent
the code from crashing we tried different approaches, including
setting this number artificially to zero. Comparing these different
approaches revealed very little difference in our results.
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core remains subluminal even for the maximum-mass
configuration. However, the solutions that we present here
provide examples of stationary equilibrium solutions in
which the densities significantly exceed superluminal
values for such configurations containing small black
holes, even outside black-hole horizons. These solutions
provide motivation for constructing nuclear EOSs and PWP
fits that do not exhibit unphysical superluminal behavior
even at these high densities.

VI. SUMMARY

We generalize relativistic Bondi solutions describing
accretion onto Schwarzschild black holes to allow for
realistic, nuclear EOSs approximated by PWPs. In most
cases, these solutions can be constructed by identifying a
critical point in the accretion flow, as for single Gamma-law
EOSs. In just a few cases, however, we found that the
discontinuities in the sound speeds, which result from the
PWP approximation of the EOS, prevent the identification
of the critical point in this approach. However, our time-
dependent numerical simulations encounter no problems
even for these cases and relax to stationary flows for all
cases considered. We apply our analytical solutions to
model accretion onto black holes harbored inside neutron
stars and find excellent agreement with the numerical
simulations of this scenario. The accretion rates are all
very close to a nearly universal minimum accretion rate (see
RBS); they depend primarily on the black hole mass and
only weakly on the EOS and the neutron star properties.
Ignoring the small differences in the accretion rates for rest

mass and gravitational mass (see [22,23]), we may also
integrate (27) to obtain the neutron star’s survival time

tsurv ≃
M⊙

χ

�
M⊙

M0

�
≃ 8.2 × 105 s

�
10−10 M⊙

M0

�
; ð28Þ

whereM0 is the initial black hole mass, and where we have
adopted χ ≃ 0.06 in the last equality. The survival time (28)
is slightly smaller but close to the maximum survival time
reported by [23], tmax ≃ 1.0 × 106 sð10−10 M⊙=M0Þ. This
timescale has been invoked to set constraints on the masses
of primordial black holes [5,8] (but see also [16,17]).

Finally, we caution that many of these solutions feature
superluminal sound speeds and emphasize the requirement
that any viable EOS and its PWP representation must avoid
this unphysical behavior at the supranuclear densities
encountered here.
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