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β-Aryl/alkyl vinyl diazoacetates were investigated in metallo-vinylcarbene reactions with nitrones, revealing a Rh2(OAc)4-catalyzed cyclopropene 

dimerization reaction and a copper(I) catalyzed [3+3]-cycloaddition of nitrones. The chiral cyclopropyl-In-SaBox ligand with copper(I) catalysis could realize 

the asymmetric versionof the cycloaddition reaction, delivering various 3,6-dihydro-1,2-oxazine derivatives in good yield and with excellent 

enantioselectivity under mild conditions.  
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Introduction 

Because of their dipolar character, vinyl diazo compounds are uniquely 

suited to undergo a greater diversity of transformations than their alkyl, 

aryl, or acyl counterparts.[1-5] Polarization from the diazo functional group 

renders the vinylogous carbon of vinyl diazo compounds nucleophilic and 

for metallo-vinylcarbenes electrophilic (Scheme 1).  This is especially 

evident in vinylogous addition and cycloaddition reactions of 

styryldiazoacetates and enoldiazoacetates catalyzed by dirhodium(II), 

copper(I), and gold(I) catalysts.[6-9] 

 

Scheme 1. Umpolung from vinyl diazo compounds to metallo-vinylcarbenes. 

There are differences in the outcome of reactions with 

styryldiazoacetates and their alkyl counterparts compared to those with 

enoldiazoacetates, and an explanation has been given in dirhodium(II) 

catalyzed reactions with nitrones that this difference is due to the 

configurational differences of the intermediate vinylogous ylides.[10] In 

comparison, however, silyl-group protected enol diazo compounds have 

shown a remarkable facility to undergo [3+n, n = 1-5]-cycloaddition 

reactions.[11] An example of the differences of vinyl diazoacetates with γ-

aryl or alkyl groups[10] compared with those having a β-siloxy group[12] in 

cycloaddition reactions with nitrones is provided in Scheme 2. This 

divergence was reported to be due to conformational influences by the 

carbene on the dirhodium(II) framework.[10] Our explanation of the 

difference in product formation is that the stabilization afforded the 

intermediate by electron donation from the silyl ether (B) is not available to 

vinyl diazoacetates with γ-aryl or alkyl groups (A). We anticipated that 

other electron donating groups at the β position would also allow 

cycloadditions like those of enoldiazoacetates, and we have selected β-aryl 

and alkyl substituents for this study. Obviously, strong electron-donating 

groups in place of the siloxy group (e.g., OR, OAc, halide) in these vinyl 

diazo compounds should facilitate cycloaddition reactions with the same or 

similar yields and selectivities, but these compounds are not yet accessible. 

 

Scheme 2. (A) The γ-alkyl or aryl group of vinyl diazo compounds favors cycloaddition 

to the carbon-carbon double bond. (B) The β-siloxy group of vinyl diazo compounds 

provides a pathway for [3+3]-cycloaddition. 

Results and Discussion 

We began our investigation by choosing ethyl 2-diazo-3-phenylbutanoate 

(1a) as the model substrate. We anticipated that, like enoldiazoacetates, 1a 

would form its corresponding donor-acceptor cyclopropene via its metallo-

vinylcarbene intermediate,[13] but that this cyclopropene would be a resting 

state for the metallo-vinylcarbene.[14]  Instead, using commercially available 
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Rh2(OAc)4 as the catalyst, dimerization of the anticipated donor-acceptor 

cyclopropene proceeded with high efficiency in DCM at room temperature. 

The corresponding product 2a was isolated in 75% yield with 1:1 dr, and the 

structure of derivative 3a was confirmed by X-ray diffraction (Scheme 3).1  

This result confirmed the formation of donor-acceptor cyclopropene 4 as 

the reaction intermediate and its dimerization by a presumed 

intermolecular ene reaction to give the final product 2a.[15-16]    

 

Scheme 3. Rh2(OAc)4-catalysed dimerization of β-phenylvinyldiazoacetate 1a.  

Would the intermolecular ene reaction prevent access by β-

arylvinyldiazoacetates to [3+n]-cycloaddition reactions? To address this 

question, we turned our attention to the metal catalyzed [3+3]-

cycloaddition reaction of 1a with nitrone 5a. Various metal catalysts were 

employed, and the results are summarized in Table 1. Use of Rh2(OAc)4 and 

AgNTf2 catalysts, which were efficient catalysts in previous cycloaddition of 

enoldiazo compounds,[5, 7, 10] gave only trace amounts of the cycloaddition 

product 6a. Spectral analyses showed that dimerization was the dominant 

process (Table 1, entries 1 and 2). In addition, gold(I) catalysts, including 

IPrAuCl, JohnPhoAuCl, and even JohnPhoAu(CH3CN)SbF6, were less 

reactive, and mostly starting material remained after a reaction time of 2 h 

(Table1, entries 3-5). Fortunately, when the reaction was performed in the 

presence of copper(I) catalyst Cu(CH3CN)4BF4, the desired [3+3]-

cycloaddition reaction occurred instead of the dimerization reaction, 

affording 6a in 67% yield (Table 1, entry 6). These reactions suggested that 

the donor-acceptor cyclopropenes are formed at a much slower rate with 

Cu(I) than with either Rh(II) or Ag(I) catalysts, presumably because Cu(I) 

tetrakis(acetonitrile) is less capable of association with the polarized C=C 

than are either rhodium(II)acetate  or AgNTf2.  

Table 1. metal-catalyzed [3+3]-cycloaddition of β-phenyl vinyl diazoacetate 1a and 

nitrone 5a. 

 

Entry[a

] 

Cat X mol% Yield of 6a (%)[b] 

1 Rh2(OAc)4 2 mol% 5% (84% yield of 2a) 

2 AgNTf2 5 mol% trace (90% yield of 2a) 

3 IPrAuCl 5 mol% No reaction 

4 JohnPhoAuCl 5 mol% No reaction 

5 JohnPhoAu(CH3CN)SbF6 5 mol% trace 

6 Cu(CH3CN)4BF4 5 mol% 67% (trace amount of 2a) 

[a] Reactions were performed with 1a (0.2 mmol) and 5a (0.2 mmol) in DCM (2 mL) for 

2 h. [b] Yields of isolated product. 

Recent progress with enantioselective cycloaddition reactions of 

enoldiazo compounds[17-19] prompted us to examine enantiocontrol in the 

[3+3] cycloaddition of β-aryl/alkyl vinyldiazoacetates with nitrones 

catalyzed by copper(I) complexes with chiral ligands. Various Box ligands 

coordinated with Cu(CH3CN)4BF4 were evaluated, and the results are 

summarized in Table 2. Bidentate ligands (bis-oxazoline) (L1-L3), double-

side arm bisoxazoline (Sabox) ligands (L4 and L5), and a tridentate ligand 

(Pybox) (L6) revealed that 6a was generated in only low to moderate yields 

and enantiomeric excesses (Table 2, entries 1-5). Fortunately, the In-SaBox 

ligands showed a higher reactivity and enantioselectivity (Table 2, entries 

6-9),  and the cyclopropyl-In-SaBox L9 stood out as the best choice (entry 

9) with 6a formed in 40% yield with 86% ee. Further optimization by 

changing the ratio of reactants revealed that use of 1.5 equivalent vinyl 

diazoacetate 1a improved the yield of 6a to 70% (Table 2, entries 10 and 11). 

The counter ion of tetrakis(acetonitrile) copper(I) complexes has little 

influence on the results (Table 2. entries 11 and 12) but use of copper(I) 

triflate resulted in a significant decrease in product yield.  Decreasing the 

reaction temperature to 0 oC and prolonging the reaction to 24 h gave the 

best results (Table 2, entry 14). 

Table 2. Optimization of copper(I) catalyzed asymmetric [3+3]-cycloaddition of β-

phenyl vinyl diazoacetate 1a and nitrone 5a. 

 

Entry[a] CuX/Ligand Yield of 6a (%)[b] ee of 6a (%)[c] 

1 Cu(CH3CN)4·BF4/L1 72 race 

2 Cu(CH3CN)4·BF4/L2 55 14 

3 Cu(CH3CN)4·BF4/L3 12 40 

4 Cu(CH3CN)4·BF4/L4 10 86 

5 Cu(CH3CN)4·BF4/L5 30 9 

6 Cu(CH3CN)4·BF4/L6 72 race 

7 Cu(CH3CN)4·BF4/L7 31 70 

8 Cu(CH3CN)4·BF4/L8 13 73 

9 Cu(CH3CN)4·BF4/L9 40 86 
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10[d] Cu(CH3CN)4·BF4/L9 55 86 

11[e] Cu(CH3CN)4·BF4/L9 70 86 

12 [e],[f] Cu(CH3CN)4·PF6/L9 75 86 

13[e],[f] (CuOTf)2·toluene/L9 45 86 

14[e],[f] Cu(CH3CN)4·BF4/L9 78 86 

15[e],[g] Cu(CH3CN)4·BF4/L9 <10 - 

[a] Reactions were performed with 1a (0.2 mmol), 5a (0.2 mmol), CuX (5 mol%) and 

ligand (6 mol%) in DCM (2 mL) for 12 h. [b] Yield of isolated product. [c] ee value was 

determined by HPLC. [d] 1.5 equiv. 5a was used. [e] 1.5 equiv. 1a was used. [f] Reaction 

was carried out at 0 oC for 24 h. [g] Reaction was carried out at -20 oC for 24 h. 

 

With the optimized reaction conditions in hand, we examined the 

scope of copper(I) catalyzed asymmetric [3+3]-cycloaddition of β-aryl/alkyl 

vinyl diazoacetates 1 and nitrones 5 (Scheme 4).  Vinyl diazoacetates with 

modest electron-withdrawing or electron-donating substituents on the 

para-position of phenyl ring produced the corresponding products 6b and 

6c in good yields and enantioselectivities (71% yield, 90% ee and 62% yield, 

88% ee, respectively). However, strong electron-withdrawing group (CF3) 

on the para-position of phenyl ring could only give the desired product 6d 

in 31% yield with 85% ee. In addition, substituents on the ortho- and meta-

position of the phenyl ring were also tolerated, and the ortho-

methoxyphenyl substituted vinyl diazoacetate afford the desired product 

6f in 86% yield with 92% ee. However, due to the strong electron-donation 

effect on the para position, the precursor for the synthesis of β-para-

methoxyphenyl substituted vinyl diazoacetaste was not accessible. The β-

naphthyl substituted vinyl diazo compound 1g underwent the reaction, 

giving  product 6g in 48% yield and 90% ee. As we expected, the β-alkyl 

substituted vinyl diazo compounds (1h-1j) reacted with nitrone 5a to 

provide the cycloaddition products (6h-6j) in lower yields and selectivities 

(20%-40% yields and 57%-83% ees).  

Since the ortho-methoxyphenyl substituted vinyl diazoacetate 1f 

provided the highest yield and stereocontrol, additional reactions with 

nitrones were performed with this reactant. The results (Scheme 5) show 

that electron-deficient (5b and 5c) or -rich (5d) substituents on the aryl 

group of the nitrone reacted with 1f smoothly to give the corresponding 

products in good yields (66–80%) and with excellent enantioselectivities 

(95% ee, 6k–6m). Heterocycle-substituted nitrones like 2-furyl nitrone (5e) 

and 2-thiophenyl (5f) also delivered the desired products with isolated 

yields above 78% and up to 97% ee. When the N-phenylnitrone with a C-

cyclopropyl group was used (5g), the cycloaddition product (6p) was 

obtained in moderate yield (47%) with excellent enantioselectivity (98% ee). 

In addition, large-scale reactions were performed between 1f and 5c or 5b, 

and the 3,6-dihydro-1,2-oxazine products 6l and 6k were isolated in 81% 

yield and 87% yield, respectively, with 95% ee (Scheme 5). Furthermore, the 

absolute configuration of 3,6-dihydro-1,2-oxazine 6k was determined to be 

(S) by X-ray diffraction of the derivative 7k.1 

 

Scheme 4. Scope of copper(I) catalyzed asymmetric [3+3] cycloaddition of β-

aryl/alkyl vinyl diazoacetates 1 and nitrones 5.  

 

1 CCDC 1864641 (3a) and 2085579 (7k) contain the supplementary 

crystallographic data for this paper. These data are provided free of 

charge by The Cambridge Crystallographic Data Centre.  
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Scheme 5. Large scale reaction.  

Based on the experimental data, a probable reaction mechanism for 

copper(I)-catalyzed [3+3]-cycloaddition of β-aryl vinyl diazoacetates with 

nitrones is proposed in Figure 1. The copper(I) complex reacts with vinyl 

diazoacetate 1 to give metallo-vinylcarbene intermediate int-I. 

Subsequently, int-II is captured by nitrone 5 to afford the int-II.  

Intramolecular cyclization of int-II, and elimination of copper(I) complex 

delivers the final 3,6-dihydro-1,2-oxazine product 6. Significantly, 

compared to the [3+3]-cycloaddition process using rhodium(II) or silver(I) 

catalysts, the copper(I) catalyzed formation of donor-acceptor 

cyclopropenes and their subsequent dimerization is much slower; only trace 

amounts of dimerization products were detected in the copper(I) catalysed 

reactions.  

 

Figure 1. Proposed Reaction Mechanism. 

Conclusions 

In summary, we have realized Rh2(OAc)4 catalyzed dimerization reaction of 

β-phenyl vinyl diazoacetate, and copper(I) catalyzed [3+3]-cycloaddition of 

β-aryl/alkyl vinyl diazoacetate with nitrones. In addition, the chiral 

cyclopropyl-In-SaBox ligand with a cationic copper(I) catalyst provides the 

asymmetric [3+3] version, delivering various 3,6-dihydro-1,2-oxazine 

derivatives in good yield and excellent enantioselectivity. 
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