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ABSTRACT: An oxocarbenium-olefin cross metathesis occurs during
Bronsted acid catalyzed reactions of 1H-isochromene acetals with vinyl
diazo compounds. Formally a carbonyl-alkene [2 + 2]-cyclization ™ RIS ope
between isobenzopyrylium ions and the vinyl group of vinyl
diazoesters, the retro-[2 + 2] cycloaddition produces a tethered .
alkene and a vinyl diazonium ion that, upon loss of dinitrogen,
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diverse products whose formation is controlled by reactant
substituents. Polysubstituted benzobicyclo[3.3.1]oxocines,
benzobicyclo[3.2.2]oxepines, benzobicyclopropane, and naphthalenes

65% yield, >19:1 dr 6 examples,
up to 91% yield
Q oxocarbenium-alkene metathesis Q skeleton rearrangement

Q diverse selectivities Q extensive Isotopic tracer experiments

are obtained in good to excellent yields and selectivities. Furthermore,
isotopic tracer and control experiments shed light on the oxocarbenium-olefin metathesis/rearrangement process as well as on the

origin of the interesting substituent-dependent selectivity.

B INTRODUCTION

Vinyl diazo compounds, especially vinyl a-diazoacetates, are
easily accessible versatile reagents that have provided an
attractive platform for a variety of metal carbene trans-
formations (Scheme la-left), including C—H insertion, C—C
bond formation, and cycloaddition." The site of electrophilic
attack by the transition metal catalyst on the vinyl diazo group
in all of these cases is the diazo carbon rather than the vinyl
group, although subsequent nucleophilic attack on the metallo-
vinylcarbene often occurs at the vinylogous position.” In
contrast, synthetically effective cationic addition reactions with
vinyl diazo compounds that could realize new transformations
via the formation of vinyl diazonium ion or vinyl carbocation”
intermediates have rarely been explored (Scheme la-right).
We recently reported that bis(trifluoromethanesulfonyl)imide
(HNTY,) serves as a uniquely efficient Bronsted acid that
selectively protonates the vinylogous position of vinyl diazo
compounds forming reactive vinyl diazonium ions.* Brewer has
developed the Lewis acid mediated dehydroxylation of j-
hydroxy-a-diazo carbonyl compounds that also forms vinyl
diazonium ion intermediates,” and they are also accessed from
N-nitrosoamides® and, possibly, vinyl triazines.” For reactions
with diazo compounds, the vinyl diazonium ion is formed
either _boy elimination of a leaving group a to a diazo functional
group™® or by proton addition to a vinyl diazo compound.” In
each process, synthetically viable electrophilic reactions of the
vinyl diazonium ion or the vinyl cation formed by dinitrogen
extrusion have been reported. With access to vinyl diazonium
ions through proton addition validated, could alternative

© 2021 American Chemical Society

7 ACS Publications

electrophiles undergo similar vinylogous addition to vinyl diazo
compounds and, thereby, produce vinyl diazonium ion
intermediates that dissociate dinitrogen to form highly reactive
vinyl cations?*

Isobenzopyrylium species, which are generated by metal or
acid catalysis,” are examples of alternative electrophiles that
could undergo reactions with vinyl diazo compounds.
Generally, metal catalyzed [4 + 2]-cycloadditions occur
between isobenzopyrilium salts and alkenes, affording 1-
ketonyl-1,2-dihydronaphthalenes.® Very recently, Liu and co-
workers reported gold-catalyzed bicyclic annulations or formal
[4 + 3]-cycloadditions of 2-alkynyl-1-carbonylbenzenes with
vinyl diazo ketones that serve as five- or three- atom building
units (Scheme 1b).” These intriguing transformations are
initiated by concerted [S + 4]- or [4 + 2]-cycloadditions of
vinyl diazo compounds with gold complex-stabilized iso-
benzopyrylium intermediates, followed by ring opening and
rearrangement. Instead of gold catalysis with ortho-alkynyl-
benzaldehydes, we surmised that the reaction of 1H-
isochromene acetal with Brensted acid catalysts would give
ionic isobenzopyrylium salts'® that could also undergo
vinylogous addition to vinyl diazo compounds with overall
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Scheme 1. Research Background for Reactions of Vinyl Diazo Compounds with Isobenzopyrylium Ions and This Work

(a) Strategies for the transformation of vinyl diazo compounds.
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(c) Bronsted acid catalyzed formal oxocarbenium-olefin metathesis/rearrangement reactions (this work)
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[4 + 3]-cycloaddition like that of Scheme 1b through vinyl
diazonium and vinyl carbocation intermediates. Instead, we
discovered a metathesis transformation that forms tunable

rearranged products in high yields and diastereoselectivities.
Herein, we report the oxocarbenium-olefin metathesis/

rearrangement reactions of 1H-isochromene acetals with

induced by bis-

vinyl diazo

(trifluoromethanesulfonyl)imide (HNTF,) catalysis'® (Scheme

compounds

lc). Polysubstituted benzobicyclo[3.3.1]oxocines,
benzobicyclo[3.2.2]oxepines, benzobicyclopropane, and naph-
thalenes that form the structural cores of various bioactive
molecules, such as an antiproliferative sesquiterpenoid, the
alkaloid stephadiamine, the hydroquinone terpenoid euchro-
quinol C, and the anticancer agent podophyllotoxin,'” are

produced in good to excellent yields and selectivities.
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B RESULTS AND DISCUSSION

To effect selective protonation of 1H-isochromene acetal 1a in
the presence of ethyl 3-methyl-2-diazo-3-butenoate 2a, several
Lewis and Brensted acids were surveyed to determine the most
suitable reaction conditions for isobenzopyrylium ion addition
to the vinyl diazo compound (Table 1). Use of 10 mol % of
triflimide catalyzed an immediate reaction that converted 1a to
its benzopyrylium ion and methanol but, instead of the
anticipated [4 + 3]-cycloaddition product (3), rearrangement
product 4aa was formed in 83% yield with high diastereocon-
trol. Other acids were also effective in forming this rearrange-
ment product (>19:1 dr), with common Lewis acids giving
variable reaction efficiency but less acidic Brensted acids,
including trifluoroacetic acid, showing no product formation.
Superacid HNTT, applied with short reaction times gave 4aa in
the highest yield. Longer reaction times and larger amounts of
HNTY, caused the loss of 4aa.

https://doi.org/10.1021/jacs.1c07271
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Table 1. Optimization of Reaction Conditions”

Sl

Ph CH3

] Ph ©;:r HNT, (10 mol%) CoE
via
® HiL__COE 1a OCH, CHyCly, 1t
HiC i O‘ Me‘+ D T Ph
S8 -N,, MeOH CH . H
EOC O = 2, M 3 >19:1 dr OCH,
3 4aa

HWCOZB <A'min

H 2a N,

entry variation from the standard reaction conditions yield of 4aa” (%)

1 none 83
2 B(CgF;);, 10 mol %, 10 min 44
3 BF;-Et,0, 10 mol %, 10 min 64
4 Sc(OTf)5, 10 mol %, 10 min 77
S In(OTf);, 10 mol %, 10 min 67
6 CF;COOH, 10 mol %, 24 h no reaction
7 TfOH, 10 mol %, 10 min 60

“Reactions were performed with 1a (0.1 mmol), catalyst (10 mol %),
and 2a (0.12 mmol) in CH,Cl, at rt for 1 min to 24 h; the dr values
were determined by 'H NMR. PIsolated yield.

A wide range of 1H-isochromene acetal substrates with
varied substituents reacted with 2a using HNTY, catalysis to
form rearrangement products 4aa-4sa (Scheme 2) in good
yields and high diastereocontrol. Alkoxy groups, specifically
OCH,, O'Pr, OBn, and the acid-sensitive Oallyl, were tolerated
in the reaction, furnishing the corresponding products (4aa-
4da) with their component alkoxy groups intact in 65%—83%
yields. Both electron-donating (le and 1f) and electron-
withdrawing (1g—1k) substituents on the phenyl ring of the
isobenzopyrylium ions had little influence on the product,
forming 4ea-4ka in 57%—85% isolated yields. 2-Thienyl
substituted 1H-isochromene acetal (11) was a suitable
substrate and so were 3-alkyl substituted 1H-isochromene
acetals (Im and lo). However, when 3-H substituted 1H-
isochromene acetal (In, R*> = H) was reacted under the
optimized condition, a complex mixture was obtained; but this
problem was overcome by adding 2.0 equiv of CH;O0H to
accelerate the reaction process, providing desired product 4na
in 71% isolated yield with low diastereocontrol (1.3:1 dr).
Furthermore, 1H-isochromene acetals bearing functional
groups (OAc and OTBS) and natural product units (s-
naproxen and gemfibrozil acid) also underwent metathesis/
rearrangement with 2a in 30%—37% yields with excellent
selectivities.

The outcomes from structural variations in the vinyl
diazoacetate were also examined (Scheme 2). Analogous /-
alkyl substituted vinyl diazo compounds (2b—2d) reacted with
the oxonium ijon generated from acetal la to produce
corresponding products 4ab-4ad in moderate yields. For j-
aryl substituted vinyl diazo compounds (2e—2I), both
electron-withdrawing (2g, 2h and 2l) and electron-donating
(2e and 2f) substituents on the para-position of the phenyl
ring of vinyl diazo esters were compatible with the formation of
products 4ae-4al in good yields and selectivities, and a
methoxy substituent at the meta-position did not influence the
reaction outcome (4ai). The structure of 4ae was confirmed by
X-ray diffraction.'® Benzyl ester 2j also reacted with 1a to form
4aj in good yield and diastereoselectivity, and without
debenzylation. The [-2-naphthyl substituted vinyl diazo
compound 2k underwent reaction with 1a, and its product
(4ak) was isolated in only 50% yield.

The generality of this unexpected rearrangement process
necessitated our speculation about its origin. We had

anticipated cycloaddition reactions, not unlike those previously
reported”” for vinyl diazo compounds with isobenzopyrylium
ions (Scheme 1b), but no trace of such compounds could be
found in thorough analyses of reaction product mixtures. That
4 could not have arisen from initial protonation of the vinyl
diazo ester that results in a vinyl diazonium ion is established
in the formation of a C—C bond to the vinylic carbon of the
carbon—carbon double bond of the vinyl diazo ester.”
However, in the formation of 4 the reaction pathway must
account for the apparent cleavage of the C=C bond of the
reactant vinyl diazo ester and the apparent cleavage of a C—O
bond of the isobenzopyrylium ion intermediate. Recent
identification and elaboration of carbonyl-olefin metathesis
reactions' "' pointed to a solution to the mechanistic
dilemma. They are catalytic and have shown considerable
generality with Lewis acids,'* notably FeCls,'** but they are
limited in scope using trityl cation salts'® or Bronsted acids.'®
With triflimide-catalyzed reactions between 1H-isochromene
acetals and f-aryl/alkyl vinyl diazo esters [2 + 2]-cyclization
between the activated carbonyl group (oxonium ion) of the
isobenzopyrylium ion and the C=C of the vinyl diazoesters to
form a diazo activated oxetanium intermediate that undergoes
retro-[2 + 2] cycloaddition (Scheme 3), accounts for bond
connections that are evident in the product.

Reactions with deuterium-labeled reactants were performed
to certify atomic positions in the rearranged product (Scheme
4). Deuterium labeled substrates 2a-d; (99% D) and 2e-d,
(96% D) were prepared and, together with 1H-isochromene
acetal la, were treated with TLNH under the standard
reaction conditions, and products 4aa-d; and 4aa-d, were
isolated in 81% yield (>19:1 dr) and 78% yield (>19:1 dr),
respectively. '"H NMR analysis of these products (4aa-ds and
4aa-d,) located the terminal vinyl carbon in 2a-d; and 2e-d, at
the C11-position of benzobicyclo[3.3.1]oxocine products, and
the oxygen at the 2-position of the acetal became attached to
the f-carbon position of the reactant vinyl diazoacetate (eq 1
and 2). Labeling of 1H-isochromene acetal 1a at the 1- and 4-
positions (1a-d;, 80% D at C1, and la-d,, 90% D at C4 with
99% D at the methoxy group) was also performed, and their
reactions with vinyl diazo ester 2a were run under standard
conditions. '"H NMR analysis of the product (4aa-d,)
suggested that the C1(SM) ended up at CI1(P) and that it
was still attached to oxygen (eq 3). Also, "H NMR analysis of
the product (4aa-d,) located the C4(SM) at the C6(P)
attached the methoxy group (eq 4). These labeling studies are
consistent with the linkage of atoms brought about by
metathesis in Scheme 3, but they do not reveal the mechanistic
steps that take int-III to the observed product 4.

Other nucleophiles, including amine, indole, phenol, 1,3,5-
trimethoxybenzene, and thiophenol, were used in attempts to
trap carbocationic intermediates (for detail, see Supporting
Information). The amine quenched the reaction, as expected,
and neither indole, phenol, or trimethoxybenzene caused
formation of any product attributable to the combination of
the nucleophile with the reactants. However, the reaction of
acetal la, ethyl 3-methyl-2-diazo-3-butenoate 2a, and thio-
phenol gave product 4aa$ in 66% yield with >19:1 dr (eq ).
This nucleophilic outcome is consistent with competition
between the thiol and methanol for capture of the carbocation
that is the penultimate product.'”

To obtain additional information about this metathesis/
rearrangement reaction, we surveyed reactions of 1H-
isochromene acetals with f-phenyl substituted vinyl diazo

https://doi.org/10.1021/jacs.1c07271
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Scheme 2. Substrate Scope of Vinyl Diazoacetates with 1H-isochromene Acetals”
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0\, -CO,Et 4ag, 12 min, R = Cl, 82% yield; 07X, CO,Et Ph 0\, -COE
4ah® 10 min, R = Br, 66% yield; /
Q' Ph 4al, 5 min, R = CF,, 73% yield; O' Ph OCH; Q' -
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4ai, 25 min, 78% yield

4aj, 20 min, 86% vyield 4ak®, 5 min, 50% yield

“Unless otherwise noted, reactions were performed with 1 (0.2 mmol), HNTf, (10 mol %), and 2 (1.2 equiv., 0.24 mmol) in CH,Cl, at rt for 1
min; isolated yield; the dr values were determined by 'H NMR spectral analyses and, unless otherwise noted, dr is >19:1. bCH3OH (0.4 mmol)
was added. “Reactions were performed with 1a (0.2 mmol), HNTf, (5 mol %), and 2 (1.2 equiv., 0.24 mmol) in CH,Cl, at rt for 1—25 min;
isolated yield; the dr values were determined by 'H NMR spectroscopic analysis and, unless otherwise noted, the dr was >19:1.

compound 2e (Scheme 5). Surprisingly, the substituents on
the phenyl ring of acetal 1 (R) had a significant influence on
site selectivity for methanol quenching. Two rearranged
products are formed. The 1H-isochromene acetal with an
electron-donating methyl substituent (1f) afforded
benzobicyclo[3.3.1]oxocine 4fe in 72% yield with >19:1 dr
but also formed a regioisomer, benzobicyclo[3.2.2]oxepine Sfe,
in 9% yield with 11:1 dr (8:1 rr). This byproduct appears to
come from a common intermediate whose priority is
determined by electronic stabilization afforded to the
carbocation intermediate that is the precursor to 4.
Accordingly, fluoro-substituted 1H-isochromene acetal 1h
produced benzobicyclo[3.2.2]oxepine She as the major
product with only 7% benzobicyclo[3.3.1]oxocine 4he.
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However, with strong electron withdrawal,'® trifluoromethyl
substituted acetals 1g and 1t showed complete inversion of
regioselectivity with the benzobicyclo[3.2.2]oxepine com-
pounds Sge and Ste obtained in 78% yield (8:1 dr) and 72%
yield (8:1 dr), respectively. A search for benzobicyclo[3,2,2]-
oxepine byproducts in the reactions reported in Scheme 2
discovered these products as minor components (generally
<5% and often negligible).19

Because of the dominance of § when R = CF; we
synthesized varioustrifluoromethyl substituted 1H-isochro-
mene acetals (1g—1w) and investigated their reactions with
f-aryl substituted vinyl diazo compounds (2e—2j). In all cases,
the reaction proceeded with high efficiency, affording
benzobicyclo[3.2.2]oxepines § in good yields and diaster-

https://doi.org/10.1021/jacs.1c07271
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Scheme 3. Isobenzopyrylium Ion Metathesis with Vinyl
Diazoesters
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eoselectivities, with high regiocontrol (Scheme 6). Both 3-aryl
or 3-alkyl substituted 1H-isochromene acetals (l1g—1w)
underwent this metathesis/rearrangement (Sge-Swe), and
the structure of Sge was confirmed by X-ray diffraction. -
For f-aryl substituted vinyl diazo compounds (2e—2j), both
para-substituted electron-withdrawing (2g and 2h) and
electron-donating (2e and 2f) substituents of the f-phenyl
substituted vinyl diazo ester were compatible with the
formation of the benzobicyclo-[3.2.2]oxepine products (Sge-
5gh) in good yields and selectivities. Furthermore, a meta-
methoxy substituent of the phenyl ring of the 1H-isochromene
acetal or the benzyl ester of the vinyl diazoacetate had little
effect on product yield or selectivity.

The formation of benzobicyclo[3.3.1]oxocines 4 and
benzobicyclo[3.2.2]oxepine § appear to occur through a
common intermediate. To explain this, we propose that the
vinyl cation produced by dinitrogen extrusion from int-III
reacts with the proximal C=C to form oxo-stabilized int-IV
that cyclizes with the styryl double bond, forming int-V, which
with further cyclization produces a key intermediate int-VI
that is also an oxo-stabilized carbocation (Scheme 7).

Scheme S. Substituent Effects on Regioselectivity”
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19, R=CF; 4ge, R = CF;, <5% yield; Sge, R =CF;, 78% yield, 8:1 dr;
COQEt
Ph 2e(1.2equiv) COEt H
= _HNTE, (5 mol%)
OCH3
F3C DCM, rt 10 min
OCHs OCHs
1t 4te, <5% yield Ste, 72% vield, 8:1 dr

“Unless otherwise noted, reactions were performed with 1g (0.2
mmol), HNT%, (S mol %), CH;OH (2.0 equiv., 0.4 mmol), and 2 (2
equiv., 0.4 mmol) in CH,Cl, at rt for S min; isolated yield; the dr and
1t values were determined by 'H NMR spectroscopic analysis.

Intramolecular vinyl cation addition to alkenes has been
reported,”” and oxonium addition to alkenes is well
established.”’ The conversion of a benzyl carbocation to an
oxonium ion is classically found in carbocation rearrange-
ments.”” That nucleophilic attack on INT-VI can occur at
either positions a and b forming 4 or §, respectively, is
consistent with known r1n§ opening reactions of cyclo-
propylcarbonyl compounds.” Product 4 is favored when R'
= alkyl or aryl with an EDG on phenyl, and $ is favored when
R! = aryl and R = EWG.

The deuterium labeling experiment in eq 6 (Scheme 8) is
consistent with the proposed mechanism. Acetal 1g reacting
with 2e-d, yields Sge-d, with deuterium imbedded into the
carbons predicted from int-V and int-VL

INT-VI also predicts the feasibility of yet another mode of
methanol quenching of the intermediate oxonium ion (Scheme
9) and, accordingly, we also found the formation of
benzobicyclopropane product 7(65% yield, > 19:1 dr) when
the f-1-naphthyl substituted vinyl diazo compound was used
as the substrate. Naphthalene products 6ae-6re were obtained
via this pathway by performing the reaction in the presence of
10 mol % of HNTHY, for 24 h. Both f-alkyl (2a) and f-phenyl
(2e) substituted vinyl diazo compounds gave corresponding

Scheme 4. Labeling Experiments to Certify Atomic Positions in Rearranged Products 4
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(1) cat = Sc(OTf)3, 66% vyield, >19:1 dr;
(2) cat = HNTf,, 62% yield, >19:1 dr;
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Scheme 6. Substrate Scope of Trifluoromethyl Substituted
1H-Isochromene Acetals with fi-Aryl Substituted Vinyl
Diazoacetates”
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5gf, R = CH3, 69% vyield, 8:1 dr
5gg, R = Cl, 62% yield, 6:1dr
5gh, R = Br, 68% vyield, 7:1 dr

Swe P 46% yield, 4:1 dr

5gi, 63% yield, 6:1 dr 5gj, 72% yield, 8:1 dr

“Unless otherwise noted, reactions were performed with 1g (0.2
mmol), HNTY, (5 mol %), CH;OH (2.0 equiv., 0.4 mmol), and 2 (2
equiv., 0.4 mmol) in CH,Cl, at rt for 5 min; isolated yield; the dr and
rr values were determined by 'H NMR spectroscopic analysis. “No
CH;OH added.

Scheme 7. Regioselectivity in Methanol Quenching of Int-
VI
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Scheme 8. Labeling Experiment to Certify Atomic Positions
in Rearranged Products 5
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, St N, o
2e-d,, 96% D 5ge-dz, 96% D, 78% yield

products (6aa and 6ae) in good ylelds, and the structure of 6ae
was confirmed by X-ray diffraction.'’ In addition, 4-fluoro
(1h), 4-methyl (lf), 2-thienyl (11), and n-butyl (1r)
substituted 1H-isochromene acetals produced naphthalene
products 6he-6re in 62%—91% isolated yields. These results
indicated that both benzobicyclo[3.3.1]oxocines (4) and

Scheme 9. Catalytic Formation of Benzobicyclopropane and
Naphthalene Products

(@) Synthesis of benzobicyclopropane 7
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“Unless otherwise noted, the reactions were performed with 1 (0.2
mmol), HNTf, (10 mol %), and 2 (1.2 equiv., 0.24 mmol) in CH,Cl,
at rt for 24 h. Isolated yields.

benzobicyclo[3.2.2]oxepines (5) products could eliminate
methanol, affording naphthalene products (6) by prolonging
the reaction time to 24 h.

Finally, we also treated products 4aa, She, and 7 with 10 mol
% HNTHT, for 24 h, and the resulting naphthalene products 6aa,
6he, and 6am were obtained in 81%, 92%, and 40% vyield,
respectively (eqs 7—9 in Scheme 10). In consistency with
previous examples with 1-naphthyl derivatives,”* 'H NMR
evidence for rotamers of 6am was found.

On the basis of the experimental results for these reactions,
we propose in Figure 1 the probable mechanism of HNTTf,

Scheme 10. Formation of Naphthalene Products from
Rearranged Product 4aa, She, and 7
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Figure 1. Plausible mechanism for formal oxocarbenium-olefin metathesis/rearrangements of 1H-isochromene acetals with vinyl diazo compounds

catalyzed metathesis/rearrangement reactions of vinyl diazo
compounds with 1H-isochromene acetals. The reaction is
initiated by selective protonation of acetal compounds 1 with
HNTY, to give the corresponding bis(trifluoromethane-
sulfonyl)imide anion (Tf,N”) stabilized isobenzopyrylium
salt (int-I), which is captured by vinyl diazo compounds 2.
Instead of [4 + 2] cycloaddition, cation-induced stepwise [2 +
2]-cyclization occurs, forming the diazo activated oxetanium
intermediate int-II. Subsequently, the diazo functional group
facilitates retro-[2 + 2] cycloaddition to form vinyl diazonium
ion int-III. Further transformation into carbocation inter-
mediate int-IV occurs via loss of dinitrogen and carbocation
addition to the carbon—carbon double bond. Carbocation
induced cyclization delivers int-V, which undergoes oxygen
migration/rearrangement cascade processes aﬁording inter-
mediate int-VI<int-VI'. Finally, substituent-dependent selec-
tive ring-opening gives polysubstituted benzobicyclo[3.3.1]-
oxocines 4 (path a), benzbicyclo[3.2.2]oxepines S (path b)
and/or benzobicyclopropane 7 (path c). After prolonging the
reaction time, the thermodynamically stable naphthalene
products 6 are obtained in good to excellent yields via loss
of methanol and rearrangement (Figure 1).

B CONCLUSIONS

In summary, we have reported a Bronsted acid catalyzed
oxocarbenium-olefin cross metathesis/rearrangement of 1H-
isochromene acetals with vinyl diazo compounds. Formally, a
carbonyl-alkene [2 + 2]-cyclization between isobenzopyrylium
ions and the vinyl group of vinyl diazoesters produces a
tethered alkene and a vinyl diazonium ion that, upon the loss
of dinitrogen, undergoes a highly selective carbocationic
cascade rearrangements to products controlled by reactant
substituents. These results demonstrate an intriguing reactivity
of vinyl diazo compounds in Brensted acid catalysis via vinyl
cations intermediates and provide a fascinating methodology

15397

for the selective synthesis of polysubstituted
benzobicyclo[3.3.1]oxocines, benzobicyclo[3.2.2]oxepines,
benzobicyclopropane, and naphthalenes. Further studies are
ongoing to reveal the scope of oxocarbenium ion-alkene
cycloaddition/metathesis.
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