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Abstract— It is shown that due to high speed and large 

volume of production, anisotropic wet etching of Si is a unique 

method of manufacturing high quality micropyramidal arrays 

for silicon photonics. Four types of arrays were fabricated: (i) 

square pyramids with the 54.7° slope of the sidewall surface, (ii) 

microcones with the 45° slope of sidewall surface, (iii) inverted 

square pyramids with 54.7° slope, and (iv) inverted triangular 

pyramids with different angles of the sidewalls. It is shown that 

the first type of arrays has a capability to produce tightly focused 

mid-wave infrared (MWIR) beams at the tips of the pyramids. 

Other arrays can be also used as light concentrators and various 

multifunctional microphotonic components. 

Keywords—silicon photonics, infrared imaging, light 

concentrators, focal plane arrays  

I. INTRODUCTION 

In recent years, there appeared two proposals of light-
concentrating structures based on using direct [1] or inverted 
[2] Si micropyramidal arrays where the sidewall surface was 
covered with a thin layer of metal. Concentration of energy in 
such structures is provided due to adiabatic compression of 
plasmons towards the apex of pyramids. These structures can 
be used for coupling electromagnetic energy into extremely 
compact photodetectors to increase the photon collection 
efficiency in infrared focal plane arrays (FPAs). These 
structures already demonstrated almost up to a hundred times 
enhanced photoresponse in comparison with the conventional 
flat designs of FPAs. 

At the same time, light concentrating properties were 
proposed and realized using purely dielectric components such 
as microspheres [3-6] or microcones [7-12] placed in contact 
with the photodetectors. Similar to the case of plasmonic 
concentrators, the technology of anisotropic wet etching of Si 
has been found to be particularly attractive for fabricating high-
index microcones [9-11]. Besides increased photon collection 
efficiency, these structures can resonantly trap light inside the 
microcones leading to strong spectral peaks in sensitivity of 
photodetectors integrated with such microcones. It can be used 
for increasing the sensitivity, reducing the size and, 
consequently, the thermal noise of uncooled mid-wave infrared 
(MWIR) imaging devices [13, 14]. 

 Most of these structures and designs are based on using 
anisotropic wet etching of Si as the main fabrication tool. This 
technology has been studied by the microelectromechanical 
systems (MEMS) community for several decades [15-20]. 
Many properties of this technological process have been 
understood. These include such factors as the crystallographic 
orientation of the wafer ((100), (110) or (111)), use of different 
Si etchants (tetramethylammonium hydroxide (TMAH) or 
KOH) and photoresists, and use of surfactants reducing the 
undercutting of the photoresist caps (Triton X-100). However, 
the central effort was on the fabrication of structures for 
MEMS applications. The optical applications were relatively 
limited and, as a result, the capabilities of this technology for 
fabricating light concentrators, back reflectors, diffractive 
gratings and other functional photonic microstructures have not 
been systematically studied in the previous work. 

In this work, we developed fabrication of four types of Si 
structures for photonic applications by using anisotropic wet 

etching: (i) square pyramids with the 54.7° slope of the 
sidewall surface illustrated in Figs. 2(a, b); (ii) microcones with 

the 45° slope of the sidewalls illustrated in Figs. 2(c, d); (iii) 

inverted square pyramids with 54.7° slope illustrated in Figs. 
2(e, f); (iv) inverted triangular pyramids with different angles 
of the sidewalls illustrated in Figs. 2(g, h). Using MWIR laser 
illumination, we experimentally demonstrate that the 
micropyramidal arrays of the type (i) have a capability to 
tightly focus light at the smaller bases of the pyramids. 
However, the efficiency and concentration factors require 
further studies.  The fabricated structures can be integrated 
with the photodetector FPAs. It can be achieved either by 
depositing such metals as Ni or Au to form metal/silicide 
Schottky barrier photodetectors for operation in SWIR or 
MWIR ranges, respectively [21, 22]. Alternatively, such 
structures can be heterogeneously integrated with the front-
illuminated FPAs fabricated in various material systems with 
high quantum yield [13, 23]. Fabricated high-index periodic 
mesoscale structures can in principle possess interesting 
reflection/diffraction properties [26]. The individual 
microcones can potentially be used as contact superlenses 
similar to the case of high-index microspheres [27-29], 
however all these possibilities require further studies. 
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II. FABRICATION 

The microstructures all follow similar fabrication steps, but 
differ due to mask alignment, type of photoresist used, and 
whether or not the surfactant Triton X-100 was used, which 
helps reduce the undercutting of the silica mask during 
anisotropic wet etching with TMAH. Fig. 1 shows the 
photolithography pattern used to create the four different 
microstructures represented in the four rows of Fig. 2. 

 

Fig. 1. Photolithography patterns of (a) 3.6 µm squares with 15.0 µm pitch, (b) 
25.5 µm squares with 30.0 µm pitch, (c) 4.5 µm square grid patterns with 30.0 
µm pitch, and (d) 4.5 µm horizontal and diagonal stripes forming triangles with 
24.0 µm side length with the inverted triangles occurring every 30.0 µm pitch. 

The microstructures were fabricated on single-side polished 
(100) n-type Si wafers with 300 nm thermal silica on both 
sides. First, the wafers were cleaned with isopropyl alcohol and 
a dehydration bake on a hot plate for 75 seconds at 115˚ C was 
performed.  In order to apply positive photoresist, the adhesion 
promoter hexamethyldisilazane (HMDS) was spin coated at 
4000 RPM for 45 seconds with a ramp rate of 400 RPM/s and 
then baked for 75 seconds at 115˚ C to ensure a direct transfer 
of the photoresist pattern later in the fabrication. Afterwards, 
the same procedure was repeated to spin coat Microposit 
S1813 positive photoresist (Fig. 1(a, b, d)). In order to apply 
negative photoresist, no adhesion promoter was used but 
instead NR9-1500 negative photoresist was spin coated with 
the same specifications (Fig. 1(c)). The wafers were then 
patterned through photolithography, and developed with CD-
26 for positive photoresist and with RD6 for negative 
photoresist. Next, the wafers were placed in an O2 plasma 
cleaner for 4 minutes to remove any photoresist that may 
remain after developing. Afterwards, the pattern was 
transferred to the silica layer by placing the wafers in a 10:1 
buffered oxide etchant (BOE) bath for 7.5 minutes. These steps 
were completed in order to fabricate the four different 3-D Si 
structures shown in the four different rows of Fig. (2). 

The different 3-D microstructures were then ready to be 
fabricated through anisotropic wet etching. The fabricated 
microstructures differ due to mask alignment, type of 
photoresist used, and whether or not Triton X-100 was used. 

The pattern in Fig. 1(a) was defined with S1813 positive 
photoresist and etched with 200 ml of 25% TMAH plus 0.4 ml 
Triton X-100 at 80˚ C for 25 minutes to obtain Fig. 2(a-b). 

 

Fig. 2. SEM images of 2.4 µm top and 15.0 µm pitch Si micropyramids with 
54.7˚ sidewall angles taken from (a) angled and (b) top-down views. SEM 
images of 7.3 µm top and 30.0 µm pitch Si microcones with ~45˚ sidewall 
angles taken from (c) angled and (d) top-down views. SEM images of 2.0 µm 
bottom and 30.0 µm pitch inverted Si square micropyramids with 54.7˚ 
sidewall angles taken from (e) angled and (f) top-down views. SEM images of 
23.3 µm long and 20.7 µm wide Si triangular micropyramids with the one side 
aligned to the <110> direction having 54.7˚ sidewall angle and with the two 
sides not aligned to the <110> direction having ~48˚ sidewall angles, taken 
from (g) angled and (h) top-down views. 

The pattern in Fig. 1(b) was defined with S1813 positive 
photoresist and etched with 200 ml of 25% TMAH at 80˚ C for 
20 minutes to obtain Fig. 2(c-d). 

The pattern in Fig. 1(c) was defined with NR9-1500 
negative photoresist and etched with 200 ml of 25% TMAH at 
80˚ C for 20 minutes to obtain Fig. 2(e-f). 

The pattern in Fig. 1(d) was defined with S1813 positive 
photoresist and etched with 200 ml of 25% TMAH plus 0.4 ml 
Triton X-100 at 80˚ C for 25 minutes to obtain Fig. 2(g-h). 

The microstructures in Fig. 2(a-b, e-f) all have 54.7° 
sidewall angles due to etching along the (111) planes, while the 

microstructures in Fig. 2(c-d) have ~45° sidewall angles. Also, 
the microstructures in Fig. 2(g-h) have one side aligned to the 
<110> direction with 54.7˚ sidewall angles, and two sides not 

aligned to the <110> direction with ~48° sidewall angles. 

Thus, the performed studies showed multiple advantages of 
anisotropic wet etching for application in silicon photonics: a) 
parallel fabrication of large-scale 3-D arrays of direct or 
inverted micropyramidal arrays takes just few minutes, b) 

different sidewall slops (54.7° and 45°) can be realized for 
arrays fabricated on (100) wafer, and c) Very smooth sidewall 

surface can be obtained for 54.7° slopes that can reduce 
scattering losses in various photonic devices. 
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III. OPTICAL CHARACTERIZATION 

Optical characterization was performed for the 
micropyramidal arrays of the first type illustrated in Figs. 2(a, 
b). A typical array with ~11 µm top and 15.0 µm pitch is 
illustrated in Fig. 3(b).  The purpose of such optical 
characterization was to observe the spatial patterns of light 
scattered by the tips of the micropyramids and to study the 
theoretically predicted [9] light concentrating properties of the 
micropyramids. 

 

Fig. 3. (a) Diagram depicting the setup to examine the microstructures by 

illuminating with a 2.96 µm wavelength Sheaumann laser, where the light is 

then collected by the Spiricon camera. (b) 3-D confocal microscope image of 
~11 µm top with 15.0 µm pitch micropyramids. (c) Spiricon camera image of 

the same micropyramids showing potential for the microstructure to be used 

for light concentrating purposes. 

The experimental setup is illustrating in Fig. 3(a). The array 
with Si micropyramids was illuminated through an unpolished 
surface of the wafer using a collimated broad beam (~2 mm 
aperture) produced by the Er:YAG Sheaumann laser with λ = 
2.96 μm wavelength. Due to the small absorption of Si in 
MWIR range, the light traverses the Si slab without significant 
absorption losses and reaches the micropyramids from their 
wider bases, as schematically illustrated in Fig. 3(a). 
Propagation of the beams inside the micropyramids can be 
rather complicated and can have resonant properties [9]. 
However, these processes were outside the scope of our studies 
since we performed characterization at a single wavelength. 
The beams transmitted through the narrower bases of the 
micropyramids became visible due to light scattering at the tips 
of the micropyramids. The pattern of scattered light in this 
plane was observed by a Spiricon camera using a CaF2 lens, as 
also schematically illustrated in Fig. 3(a). 

The direct visualization of the transmitted beams is 
illustrated in Fig. 3(c). It is seen that the transmitted beams are 
centered with the axis of the micropyramids and that they are 
approximately diffraction-limited with full width at the half 
maximum (FWHM) ~ λ/(2NA) ~ 4 μm, where NA is a 
numerical aperture of the lens. Further studies of these effects 

using an objective with stronger magnification (to reduce the 
image pixilation introduced by the Spiricon camera) and larger 
NA are required to reveal the minimal FWHMs for the 
transmitted beams. Along with the minimization of the spot 
sizes, another important parameter is represented by the 
“power enhancement factor” [9]. It is determined as a ratio of 
the power measured by the compact photodetector with and 
without the light-concentrating microstructure. More detailed 
studies of these microstructure properties will be performed in 
our future work. 

IV. CONCLUSIONS 

Our results show that due to high speed and large 

production volume, anisotropic wet etching of Si is a unique 

method for producing high quality micropyramidal arrays for 

photonics applications. We demonstrated four different types 

of arrays including direct and inverted micropyramids with 

different cross sections and slopes of the sidewalls. Our 

research was driven by recent proposals of light-concentrating 

microstructures for enhancing the performance of MWIR 

FPAs [1,2, 7-12]. We experimentally demonstrated that one of 

the fabricated arrays formed by direct square pyramids with 

the 54.7° slope of the sidewall surface has light concentrating 

properties which are found to be in qualitative agreement  with 

the theoretical modeling results [9]. However, further studies 

are required to establish quantitative agreement with the 

theory. 

Besides the applications as light-concentrating 

microstructures, the fabricated arrays should possess 

interesting reflection/diffraction properties which can have 

some analogies with the properties of deeply etched photonic 

crystal structures [26]. Due to a complex interrelationship 

between the focusing and imaging applications, one can also 

suggest that in the mesoscale regime (characteristic 

dimensions comparable to the wavelength of light), high-index 

micropyramids placed in contact with the objects can operate 

as contact superlens in superresolution imaging applications 

similar to the case of high-index microspheres [27-29]. These 

possibilities show that anisotropic wet etching of Si can be an 

extremely useful tool for the fabrication of new structures for 

applications as light-concentrating structures, imaging 

superlenses, diffraction gratings, and other devices.    
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