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There is a slight gap and error in Remark 3.4 of Ann. Probab. 41, no.

5 (2013), 3284–3305, that was not noticed before the first errata were pub-

lished (Ann. Probab. 46, no. 4 (2018), 2400–2405). We take this opportunity

to provide some additional updates as well.

(i) Proposition 2.6, whose proof was noted in the first errata to be incorrect without

stronger hypotheses, has been given a correct proof by Janson (2019).

(ii) Remark 3.4 is slightly incorrect and has a gap in its proof. It should read as follows.

If X is a metric space of strong negative type, then α : μ �→ aμ is injective on μ ∈ M1(X )

with finite first moment, as stated in Theorem 4.1 of Klebanov (2005) and later in The-

orem 3.6 of Nickolas and Wolf (2009). Conversely, if X is a metric space of negative

type and α is injective on M1(X ) with finite first moment, then there is, at most, one pair

μ,μ′ ∈ M1(X ) with D(μ−μ′) = 0 and ‖μ−μ′‖ = 2 (i.e., μ and μ′ are mutually singular).

Note that if there are no such pairs, then X has strong negative type.

The first part follows from the fact that if aμ = aμ′ , then strong negative type guarantees

that D(μ − μ′) =
∫

(aμ − aμ′)d(μ − μ′) = 0, whence μ = μ′. (It suffices here to assume

only that aμ = aμ′ on the support of |μ − μ′|.) For the converse, suppose that α is injective

on measures in M1(X ) with finite first moment. Let φ be an embedding of X . Then

aμ(x) =
∥

∥φ(x)
∥

∥

2
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whence if D(μ − μ′) = 0 (which is the same as β(μ) = β(μ′)),

aμ(x) − aμ′(x) =

∫

∥

∥φ
(

x′)
∥

∥

2
d
(

μ − μ′)(x′) =: V
(

μ − μ′)

does not depend on x and is not 0 if μ �= μ′ by injectivity of α. Suppose that for i = 1,2,

there are μi,μ
′
i ∈ M1(X ) such that D(μi − μ′

i) = 0 and ‖μi − μ′
i‖ = 2. Define

ν :=
μ1 − μ′

1

V (μ1 − μ′
1)

−
μ2 − μ′

2

V (μ2 − μ′
2)

.

Then aν(x) = 1 − 1 = 0 for all x. Since ν(X ) = 0, injectivity of α yields ν = 0. It follows

that μ1 − μ′
1 = μ2 − μ′

2, as desired.

There are metric spaces X of negative type with injective α but X not of strong neg-

ative type; for example, use ek , fk and vk as in the corrected Remark 3.3, but rather than

wk , use u0 := f1 and uk := −fk + fk+1/3 for k ≥ 1. Again, the collection {vk, uk;k ≥ 0}

has no obtuse angles and is affinely independent, yet (1/3)(v0 +
∑

k≥1 vk/2k−1) = 0 =

(2/5)(w0 +
∑

k≥1 uk/3k−1) exhibits the only pair of mutually singular probability mea-

sures with the same barycenter. At the same time, (1/3)(‖v0‖
2 +

∑

k≥1 ‖vk/2k−1‖2) �=

(2/5)(‖w0‖
2 +

∑

k≥1 ‖uk/3k−1‖2), so α is injective.
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Of course, if X has a sequence of selfisometries ιn such that limn→∞ d(x, ιn(x)) = ∞,

then there cannot be a unique pair μ,μ′ ∈ M1(X ) with D(μ − μ′) = 0 and ‖μ − μ′‖ = 2,

whence, in such a case, the conjunction of negative type and injectivity of α is equivalent to

strong negative type. For example, this holds if X is a Banach space.

On the other hand, there are metric spaces not of negative type for which α is injective

on the probability measures: for example, take a finite metric space for which the distance

matrix is nonsingular. The map α is injective also for all separable Lp spaces (1 < p < ∞);

see Linde (1986b) or Gorin and Koldobskiı̆ (1987).

(iii) Our paper dealt explicitly with metric spaces only, except for a hint in Remark 3.6

that the triangle inequality is not crucial for negative type. Schoenberg (1938) assumed only

that d is symmetric, is nonnegative and vanishes on the diagonal and that X is separable

in the topology given by this premetric. With the additional assumption that d vanishes only

on the diagonal, that is, that (X , d) is a semimetric, such conditions are sufficient for all

we do in Section 3, except when we want examples specifically of metric spaces. Note that

when (X , d) is a premetric space of negative type, then the embedding in a Hilbert space and

the parallelogram law there give a replacement for the triangle inequality, to wit, d(x, z) ≤

2(d(x, y) + d(y, z)).

Allowing semimetrics in Remark 3.19 gives additional results. For example, Remark 3.19

gives that (H,‖ · ‖2r) has strong negative type for 0 < r < 1, which was later proved as

Theorem 4.2 by Dehling et al. (2020) and then as Theorem 6.6 in Janson (2019).

More generally, separable spaces (Lp,‖ · ‖pr) have strong negative type for 0 < p ≤ 2 and

0 < r < 1. This is because (Lp,‖ · ‖p) has negative type, as shown by Schoenberg (1938).

(iv) It is also the case that the proof in Remark 3.19 may be slightly clearer if expressed

as follows, where we now include the case of semimetrics for convenience.

We claim that if (X , d) is a separable, semimetric space of negative type, then (X , dr) has

strong negative type when 0 < r < 1. When X is finite and so strong negative type is the

same as strict negative type; this result is due to (Li and Weston (2010), Theorem 5.4). To

prove our claim, we use the result of Linde (1986a) that the map α : μ �→ aμ of Remark 3.4

is injective on M1
1 (H,‖ · ‖p) for all p ∈ R

+ \ 2N. Since (H,‖ · ‖2r) has negative type by

Schoenberg (1938), it follows that (H,‖ · ‖2r) has strong negative type by Remark 3.4. Let

φ : (X , d1/2) → (H,‖ · ‖) be an isometric embedding. Then, φ also provides an isometry

from (X , dr) to (H,‖ · ‖2r), whence the claim follows.
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GORIN, E. A. and KOLDOBSKIĬ, A. L. (1987). On potentials of measures in Banach spaces. Sibirsk. Mat. Zh. 28

65–80, 225. MR0886854

JANSON, S. (2019). On distance covariance in metric and Hilbert spaces. Preprint. Available at https://arxiv.org/

abs/1910.13358.

KLEBANOV, L. B. (2005). N-Distances and Their Applications. The Karolinum Press, Charles University in

Prague.

LI, H. and WESTON, A. (2010). Strict p-negative type of a metric space. Positivity 14 529–545. MR2680513

https://doi.org/10.1007/s11117-009-0035-2

LINDE, W. (1986a). On Rudin’s equimeasurability theorem for infinite-dimensional Hilbert spaces. Indiana Univ.

Math. J. 35 235–243. MR0833392 https://doi.org/10.1512/iumj.1986.35.35014

LINDE, W. (1986b). Uniqueness theorems for measures in Lr and C0(�). Math. Ann. 274 617–626. MR0848507

https://doi.org/10.1007/BF01458597



2670 R. LYONS

NICKOLAS, P. and WOLF, R. (2009). Distance geometry in quasihypermetric spaces. I. Bull. Aust. Math. Soc. 80

1–25. MR2520521 https://doi.org/10.1017/S0004972708000932

SCHOENBERG, I. J. (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 522–536.

MR1501980 https://doi.org/10.2307/1989894


	Funding
	References

