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Abstract

1.

Macroevolutionary studies frequently characterize the phylogenetic signal in phe-
notypes; however, analytical tools for comparing the strength of that signal across

traits remain largely underdeveloped.

. We developed a non-parametric, permutation test for the log-likelihood of an evo-

lutionary model, plus a standardized statistic, Z, from this test, which can be con-
sidered a phylogenetic signal effect size. This statistic can be used in two-sample

tests to compare the strength of phylogenetic signal for multiple traits.

. We performed simulation experiments that revealed that Z had a linear associa-

tion with Pagel's A, which could be predicted by tree size, plus could be quickly
interpreted as a hypothesis for phylogenetic signal based on a standard normal
distribution. We additionally found that the permutation test had greater statisti-
cal power for detecting phylogenetic signal than parametric likelihood ratio tests,

especially for small trees.

. The analytical framework we present extends the phylogenetic comparative

methods toolkit, allowing for statistical comparison of phylogenetic signal in mul-
tiple traits. Future studies could also consider this framework for the comparison

of different evolutionary models, especially in light of different null processes.
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the hierarchical structure of the tree of life generates trait covari-

ation among taxa (Blomberg et al., 2003; Felsenstein, 1985; Revell

The shared evolutionary history of closely related species often im-
plies the trait similarity among them, a pattern referred to as ‘phylo-
geneticsignal’ (Blomberg et al., 2003; Felsenstein, 1985; Pagel, 1999).
Many phylogenetic comparative methods (PCMs) seek to address
the non-independence of species' traits (Felsenstein, 1985; Harvey
& Pagel, 1991) in their analytic framing, by conditioning data on
the phylogenetic relatedness among observations (Adams, 2014b;
Adams & Collyer, 2018; Beaulieu et al., 2012; Garland & Ives, 2000;
Grafen, 1989; Martins & Hansen, 1997; O'Meara et al.,, 2006;
Rohlf, 2001). Indeed, under numerous evolutionary models, phy-

logenetic signal is expected, as stochastic character change along

et al., 2008). Quantifying and comparing phylogenetic signal among
traits, however, remains quite challenging.

Several analytical tools have been developed to quantify
phylogenetic signal in phenotypic datasets (Abouheif, 1999;
Adams, 2014a; Blomberg et al., 2003; Gittleman & Kot, 1990;
Klingenberg & Gidaszewski, 2010; Pagel, 1999), and their statisti-
cal properties—namely type | error rates and statistical power—have
been investigated to determine under what conditions phylogenetic
signal can be detected (Adams, 2014a; Boettiger et al., 2012; Diniz-
Filho et al., 2012; Molina-Venegas & Rodriguez, 2017; Miinkemdiller
et al., 2012; Pavoine & Ricotta, 2013; Revell, 2010; Revell
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et al., 2008). One of the most widely used methods for character-
izing phylogenetic signal is Pagel's 1 (Pagel, 1999), which transforms
the lengths (by compression) of the internal branches of the phy-
logeny, while leaving the tips unaffected, to improve the fit of data
to the phylogeny via maximum likelihood (Freckleton et al., 2002;
Pagel, 1999). To infer whether phylogenetic signal differs from no
signal or a Brownian motion (BM) model of evolutionary divergence,
the observed model fit using 2 may be statistically compared with
that using A = 0 or A = 1 via likelihood ratio tests (Bose et al., 2019;
Cooper et al., 2010; Freckleton et al., 2002) or confidence limits
(Vandelook et al., 2019).

Another widely used measure is Blomberg's K (Blomberg
et al., 2003), which characterizes phylogenetic signal as the ratio of
observed trait variation to the amount of variation expected under
BM. Blomberg's K can be treated as a test statistic by using a per-
mutation test to generate its sampling distribution (Adams, 2014a;
Blomberg et al., 2003) for determining whether significant phyloge-
netic signal is present in data. Both 4 and K seem intuitive to inter-
pret, as a value of O for both corresponds to no phylogenetic signal,
and a value of 1 corresponds to the amount of phylogenetic signal
expected under BM. Thus, it is tempting to regard both 1 and K as
descriptive statistics (and effect sizes, Minkemdiller et al., 2012) that
measure the relative strength of phylogenetic signal, providing an
estimate of its magnitude for comparison.

The potential appeal of Pagel's 1 and Blomberg's K as effect sizes
is that they provide a basis for interpreting ‘weak’ versus ‘strong’
phylogenetic signal; that is, small versus large values of 7 orK, re-
spectively, in a comparative sense (De Meester et al., 2019; Pintanel
et al., 2019; Su et al., 2019). They are also important statistics in
hypothesis tests. The optimized value of lambda, 7, is the location
where the log-likelihood is maximized, and is, therefore, compelling
for finding the maximum phylogenetic signal in the data, which can
be deemed ‘significant’ by rejecting the null hypothesis of A=0 in
a likelihood ratio test. Although Pagel's A has an upper bound of 1,
Blomberg's K can measure phylogenetic signal that is greater than
expected under BM, as it has no upper bound. Blomberg's K—or
more specifically, the GLS estimation of variance that is a part of its
calculation—can serve as a test statistic in a permutation test that
randomizes ‘tip data’ in random permutations. However, K is quite
sensitive to tree size, exhibits high type Il error rates for intermedi-
ate strength of phylogenetic signal, has higher type | error rates than
likelihood ratio tests based on /):, and exhibits greater uncertainty for
strong phylogenetic signals (whereas 7 has greater uncertainty at in-
termediate phylogenetic signal strength: Miinkemidiller et al., 2012).
Both of these statistics offer good support as test statistics for de-
termining whether phylogenetic signal exists in a trait, but they are
limited for comparing phylogenetic signals between traits.

Here, we present an alternative, standardized effect size calcula-
tion, which can be used in hypothesis tests to compare phylogenetic
signals for different traits, and which is based on a normalized distri-
bution of random log-likelihoods of a phylogenetic model, generated
from a model of phylogenetic independence. Much like a likelihood

ratio test for Pagel's 4, this non-parametric approach can assess the

significance of the observed phylogenetic signal, but unlike the para-
metric test, the standardized location of the observed likelihood can
be used as an effect size, which can be statistically compared with
similarly calculated effect sizes to consider hypotheses regarding
the relative strengths of phylogenetic signal for multiple traits. We
use simulation experiments to compare this standardized effect size
to 4 and K and demonstrate its utility with an empirical example.
Comprehensively we illustrate that this standardized effect size pro-
vides an additional necessary tool to the phylogenetic comparative
toolkit.

2 | CONCEPTUAL DEVELOPMENT

A hypothesis test for phylogenetic signal involves calculating the
variance among taxa trait values, conditioned on phylogenetic co-
variances (evolutionary rates) and comparing this variance to a
variance that assumes phylogenetic independence. This can be ap-
preciated by the GLS log-likelihood equation for a BM phylogenetic
model of a univariate trait (Blomberg et al., 2003; Freckleton, 2012;
Freckleton et al., 2002; Garland & Ives, 2000):

l0g(0IV) = - 2log[2aV| - 3 [ty - EWIVy —E()], @

where, yis a vector of N trait values, y — E (y)is a vector of phylogenetic
residuals, V is an N x N phylogenetic covariance matrix, equal to ¢2C,
and |V| represents its determinant. The N x N covariance matrix, C, is
a matrix of phylogenetic variances along the diagonal, and covariances
that are proportional to or exactly the covariances from a BM model
of evolution (Revell et al., 2008). The variance (evolutionary rate), 62 is
calculated as 62 = N-1(y—E(y))"C~1(y — E(y)), where T represents vec-
tor transposition. N1 is used for the maximum likelihood estimate of
6% (N—1)"1is used in place of N for the restricted maximum likelihood
(REML) estimator (Freckleton, 2012). The expected value (tree root) is
computed as E(y) = (17C"11)-117C~'y, where 1 is an N x 1 vector of
1s. Because V = ¢2C, Equation 1 can be expanded, that is,

log#(51V) = - §log(2x)~ Nlogo? - 2log Il - 3 [ty—EGIV "y ~EW))].
2)

This expansion helps to elucidate the portions of the log-
likelihood equation that are constant when comparing traits. In
Equation 2, glog(Zn) is a constant and (y — E(y))V~1(y — E(y)) = N for
any traits and any trees, for a BM model of evolution. We can, there-
fore, update Equation 2:

log2(o1V) = - Slog(2e)- Jlogo? - ZiogIcl - 2 [ty-EVty—E(y)]
=~ 5 [ioet2e) +iogo?+ log €1 + 3 [tv-Evty -0
=— % log(27) +logo? + %Iog ICl + %N]

= —g |0g02+%|0g|C| +Iog(2n)+1] .

Thus, Equation 2 can be simplified:
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logZ(c|V) = — g

1
logo? + N|og|C| +C|, 3)

where C is a constant for all of the parts in Equation 1 that would not
be changed by changing C. Equation 3 helps one appreciate that in a
likelihood ratio test to compare estimates of evolutionary rates (e.g.
02_,and a%), Nand C are the same in the two likelihood calculations; the
only parts that change are C (as a proportional change in covariances,
based on E) and the values of 62, as a result of C. Therefore, a likelihood
ratio test is a direct comparison of evolutionary rates.

Pagel's 1 is a scaling parameter by which the covariances (i.e. the
off-diagonals) of C are multiplied (Pagel, 1999). A value of O changes
all covariances to O (a star phylogeny or phylogenetic independence),
and a value of 1 does not change the covariances from those ex-
pected by a BM model of evolution. (If A = 0 and the tree is ultramet-
ric, C is a diagonal matrix proportional to an N x N identity matrix,
l. It is convenient in this case to refer to | rather than C as a model
of evolutionary independence because the lengths of branches in a
star phylogeny—all equal—are inconsequential in estimation of the
trait variance.) The value of 1 that minimizes logo? + %Iog |C| max-
imizes the log-likelihood. This value can be found for the interval
between 0 and 1, yielding the optimized value, 7. 1n a likelihood ratio
test, the log-likelihood at 7 can be compared with the log-likelihood
found at A4 = 0; rejection of the null hypothesis indicates ‘significant’
phylogenetic signal. Likelihood ratio tests could also be used to ex-
plicitly test 7 against a model of pure BM (1 = 1).

By contrast, Blomberg's K finds (y — E(y)) and calculates variance
(mean-squared error) from these residuals two different ways:
MSE, = (N=1)"Xy—E(y)"(y — E(y)) and MSE = (N— 1)~ (y=E(y)TC "}y — E(y)),
where Cis typically the untransformed covariance matrix based on a
BM model of evolutionary divergence (1 = 1). The only difference
between MSE and 62 in Equation 2 is the use of the REML estimator
(N — 1 degrees of freedom) for MSE. MSE,,, however, ignores phyloge-

netic covariances in its estimation (does not correct for phylogenetic

MSE,
MSE

under BM for a given phylogeny; that s, K = observed (“::SEED ) Jexpected (“::SEED )

relatedness). Blomberg's K is the ratio, ™%, divided by its expectation

(Blomberg et al., 2003). This equation could be equivalently calcu-
lated (Revell et al., 2008), as

trace(Cgy) — N(17C5 1)1
N-1 ’

(y—E(y))T(y — E(y))

- (4)
(y—E(y))TC *(y — E(y)

K=

where trace is the sum of diagonal elements, and we use the subscript,
BM, to indicate this is an untransformed (A = 1) version of C. Typically,
Cpy is also used in the calculation of (y—E(y))TC Xy — E(y)), but this
need not be the case, as least for considering K as a test statistic rather
than a descriptive statistic. K will tend toward O if there is no phyloge-
netic signal, and tend toward or exceed 1 if there is. Whereas a like-
lihood ratio test can be used for Pagel's A, a permutation test (which
randomizes the trait data across the tips of the phylogeny) is used
to generate random distributions of MSE (e.g. Blomberg et al., 2003)
or K (e.g. Adams, 2014a). A p-value is found as the percentile of the

observed statistic in its sampling distribution. Because a permutation
test and likelihood ratio test are non-parametric and parametric solu-
tions for different test statistics, respectively, it might not be surpris-
ing that they could produce different results with respect to the same
null hypothesis of no phylogenetic signal. However, it is because of
the potential difference in 4 values used in calculation of the test sta-
tistics more so than the statistic or method used that different results
are possible. With the same A used to calculate C, and thus, MSE, the
two tests should produce similar results. This can be appreciated by
considering the process that generates variation in the permutation
test.

Blomberg et al. (2003) proposed that y — E(y) could be replaced
in Equation 3 by y — u, where u is the ordinary least squares (OLS)
mean of y. A permutation test that randomizes tip data performed
with this altered K statistic or MSE produces a distribution of values
that are perfectly rank correlated because the only random element
recalculated in each permutation is (y—E(y))"C~1(y — E(y)). (All other
portions of the K calculation would be constant.) It can be appreci-
ated why Blomberg et al. (2003) suggested MSE as a statistic, and as-
serted that using C that is transformed (e.g. by 7) would mean having
greater statistical power to detect phylogenetic signal. It can be seen

from Equations 3 and 4 that for the same C,

(y—E(y)TC*y — Ely))
N-1

x Iog82+%log|C| . (5)

If one optimizes A via maximum likelihood, uses this value to
transform C, and performs a permutation test on K, using MSE as
the test statistic, then a test on 7 and a test on K are commensu-
rate. Furthermore, such a permutation test can be considered a
non-parametric alternative to a likelihood ratio test. (We provide ad-
ditional empirical detail in Appendix 1 of the Supporting Information
that confirms rank correlation.)

Randomizing tip data is a simplified form of randomization of
residuals in a permutation procedure (RRPP). RRPP works best if
residuals are the most appropriate exchangeable units under the
null hypothesis (Adams & Collyer, 2018; Commenges, 2003). RRPP
is a process that randomizes null model residuals and adds them to
null model fitted values in every random permutation to create ran-
dom pseudodata used to fit alternative models. If the null hypoth-
esis is phylogenetic independence, a star phylogeny is assumed,
C x|, E(y) = u, the OLS mean, y — E(y) are the OLS residuals, and
random outcomes of y* = E(y) + (y—E(y))*, where = indicates ran-
domization, are the pseudodata produced in each permutation. If
E(y) = u, then randomizing residuals is the same as randomizing tip
data (the root and data mean are the same). This process preserves
first- and second-moment exchangeability; that is, the OLS mean
and variance of the trait are constant across random permutations.
(If phylogenetic independence is not assumed, RRPP still functions
the same, but has a GLS solution with second-moment exchange-
ability only.) It is important to understand that when the portions of
the log-likelihood expression for phylogenetic independence (sum-

marized as C in Equation 3) are held constant, p-values found from
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the sampling distributions of either component of Equation 5, the
log-likelihood, or the likelihood ratio statistic, — 2 (log%, — logZ¢),
will be exactly the same (as log% is also constant in every random
permutation). Therefore, a permutation test with RRPP is a non-
parametric application of the likelihood ratio statistic in a hypothesis
test (Potter, 2005), which does not rely on a mixture of parametric
probability distributions as a proxy of the true sampling distribu-
tion (Molenberghs & Verbeke, 2007; Self & Liang, 1987). However,
it remains to be seen if a permutation test, using the log-likelihood
statistic and RRPP, is as reliable as a parametric likelihood ratio test.

Assuming a comparable tree transformation, Pagel's 1 and
Blomberg's K can be considered two phylogenetic signal effect sizes
(Minkemdiller et al., 2012), but a test of phylogenetic signal, as
demonstrated above, is more explicitly an assessment of the rarity of
the observed loge? in a hypothetical distribution of logs?, if A =0 is
the null model process. This process can be applied with RRPP and a
sampling distribution of either 62 — glogaz, or log%¢ can be gener-
ated, and all would provide the same p-values for the same RRPP
permutations (see Appendix 1 of the Supporting Information for an
example of this outcome). However, sampling distributions from per-
mutation tests do not need to be a means to an end, a tool to merely
find a p-value. The location of the observed statistic in its sampling
distribution can also be considered an effect size (Adams &
Collyer, 2016, 2018, 2019; Collyer et al., 2015). From, Equation 3,
either the non-constant portion of the log-likelihood equation,
- (Ioga2 + %Iog |C|), or the log-likelihood itself, are good statistics

for estimating effect sizes (Equation 3 demonstrates that the log-

likelihood is a linear transformation of — (|0g0'2 + %Iog |C| ), so effect

sizes estimated from the RRPP distributions of either will be the
same. We will henceforth refer to the random forms of log%, for
simplicity.) The location of the observed value in a standardized dis-
tribution of random log % outcomes, based on the appropriate null
hypothesis of phylogenetic independence, provides a standardized
(statistical) effect size that can be used in comparative tests (Adams
& Collyer, 2016, 2018, 2019; Collyer et al., 2015).

Letting 6 = f (log%c ), where f represents a normalizing function
(if random logZc are not sufficiently normally distributed), the stan-

dardized effect size of phylogenetic signal for a trait is estimated as,

o
7=kl (6)

Oy

where fi, is the mean of the sampling distribution and &, is the stan-
dard error (the standard deviation of the sampling distribution, not the
trait). (The " indicates these values are estimated, based on the number
of random permutations used, which is probably fewer than the finite
but large possible number of all permutations.) As a standard deviate,
we would expect correspondence between a p-value estimated from
the location of Z in a standard normal distribution and the percentile
of log%¢ in its sampling distribution. Therefore, it is obvious that, e.g.
Z = 2.5 means significant phylogenetic signal and Z = 0.7 means phy-

logenetic signal that is not significant, based on a significance level of

a = 0.05. More importantly, because sampling distributions are ap-
proximately normal, two effect sizes can be compared in a hypothesis
test, by finding the two-sample test statistic,

(elobs - ﬁgl) - (92obs - ‘ayz)

The Z,, statistic can be assumed to follow a standard normal dis-

Zyy = (7)

tribution, meaning a p-value can be obtained for a null hypothesis test
that the phylogenetic signals for two separate traits are the same.
There is no explicit expectation that the traits have to come from the
same phylogeny, but the scope for comparison of traits is something
that can only be considered by examining the behavior of these effect
sizes for varied tree sizes and phylogenetic signal strength.

Equation 3 implicitly assumes that the compared traits evolve
independently, which might be an illogical assumption for traits
measured on species from the same phylogeny. In such cases, there
are two options worth considering. First, one could generalize the
log-likelihood equation (Equation 2) for multivariate data (see, Revell
& Harmon, 2008) and consider the relative strength of multivari-
ate phylogenetic signal with respect to the univariate signals. This
is not necessarily a simple generalization, if one allows 7 to vary
among traits (requiring p(p — 1) /2 covariance matrix estimations
in the log-likelihood for p traits; see Appendix 2 in the Supporting
Information for further details). However, one could compare multi-
variate Z-scores between models that assume a common 7 or allow
1 to vary among traits, as a test of evolutionary independence of
traits; much like one can compare models with common or separate
evolutionary rates among traits (see, Adams, 2013). (We provide fur-
ther details for this future research consideration in Appendix 2 of
the Supporting Information.) Second, one could compare the relative
strength of phylogenetic signal between principal components of a
multivariate data set. With this option, the principal components
would be independent, but one would have to reconcile principal
component loadings with test results to determine whether suites of
traits have different phylogenetic signals.

Multivariate considerations are expansive and exceed the scope
of this paper. However, RRPP is a process that generates sampling dis-
tributions of log-likelihoods in a consistent manner, irrespective of the
number of traits. Research questions that require multivariate analysis
should have tractable solutions, provided log-likelihoods can be esti-
mated (residual covariance matrices are not singular). Regarding single
traits, we perform simulation experiments to determine type | error
rates, correspondence between hypothesis test outcomes, statistical
power, and the relationship between effect size and simulated phylo-
genetic strength, below. However, we first provide a simple example

to help illustrate the purpose of this type of analysis.

2.1 | lllustrative example

As an illustrative example, we simulated two traits on a phylog-

eny (N = 60), one with moderate phylogenetic signal and one with
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stronger phylogenetic signal. (Simulation details are explained in
the next section.) For one variable, X, 4, = 0.36, and for the other,
Y, ’/Ty =0.77. We performed RRPP to recalculate the GLS log-
likelihoods (using a covariance matrix for a tree transformed by ¥
for each variable), with 10,000 random permutations, each. These
distributions were normalized (with a Box-Cox transformation) and
standardized (Figure 1), yielding Z scores of 2.21 and 6.33 standard
deviations, respectively, each of which was significant at « = 0.05
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(b = 0.0146 for X and p = 0.0001 for Y). Performing parametric likeli-
hood ratio tests with a null model of A = 0 yielded slightly different
results y2 = 2.07, p = 0.0750, and y2 = 25.89, p < 0.0001, for X and
Y, respectively. The difference, as we show below, is likely due to
the limited statistical power (type Il error) of the parametric likeli-
hood ratio test. We performed a two-sample z-test to compare the
phylogenetic signal effect sizes; |Zyy| = 2.92, p = 0.0018, indicating
that the phylogenetic signal in Y was significantly larger than in X.

X

100 200 300 400 500 600 700

o ! =

[ T I T I T 1

-148 —146 —144 —142 -140 -138 -136
log-likelihood
Y
o
S _
=<}
o
s
©
o
S
<
o
(=
N
[~ |
I T I ) T 1
-135 -130 —125 -120 -115 -110
log-likelihood
Standardized and combined

(=]
Q
s}
(=]
S _
©
(=1
s |
<
o
g
N
o

[ T T 1

-6 -4 4 6

FIGURE 1 Plot of phylogenetic tree with x,y values, plus frequency histograms for the RRPP log-likelihood values for two variables, X
and Y. Vertical lines indicate observed values. In the last panel, histograms have been combined for standardized values
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Comparatively, Ky = 0.96 and Ky = 1.02, which like 7 is not as use-
ful for determining a significant difference between phylogenetic

signals.

3 | SIMULATION METHODS AND RESULTS

We examined the behavior of RRPP-based likelihood ratio tests and
standardized log-likelihood effect size with simulation experiments
that varied the strength of phylogenetic signal, for various sized
pure-birth phylogenetic trees. In our simulation experiments, we
sought to examine the statistical power of likelihood ratio tests with
RRPP compared to parametric tests, and the relationships between
effect size, Pagel's 4, and Blomberg's K.

3.1 | Simulation methods

Simulating data from a model with known phylogenetic signal is chal-
lenging, as the process requires an a priori definition of phylogenetic
signal, and there is no guarantee that the process will produce data
that are similar to the intended effect. It is possible to simulate data
with an intended 4, as this requires merely simulating a tree, rescal-
ing the tree, and simulating BM data on the rescaled tree (see, e.g.
Adams, 2014a; Molina-Venegas & Rodriguez, 2017). Alternatively,
a weighted average of data simulated with BM and without BM
could be used, which Minkemdller et al. (2012) described as the
(simulated) BM strength. However, with either approach, there is
no guarantee that 7 will resemble 4, especially for small trees (see,
e.g. Figure 2 of Mlnkemdliller et al., 2012). Furthermore, there is no
easily conceivable way to simulate data from a model with known
K. For previous studies that sought to evaluate statistical proper-
ties (type | or type Il errors, accuracy, and precision), defining A or a
weight of BM strength, as simulated, was sufficient for calculating
summary statistics over many simulation runs with the same input
value. However, we were more interested in understanding the as-
sociation of simulated phylogenetic signal strength and the effect
size estimated from the log-likelihood of an evolutionary model, over
a continuum from A =0to 1.

Initial trials to simulate data (sensu Adams, 2014a; Molina-
Venegas & Rodriguez, 2017) from a uniform distribution of A re-
vealed that, especially with smaller trees, distributions of 7 tended
to be skewed toward O or 1, despite uniform sampling of A. This was
consistent with the research of Minkemiiller et al. (2012). (see, e.g.
their Figure 2 and their Table 2, which indicates skewing of 7 to-
ward 0 or 1 for small trees.) Therefore, we used an algorithm to first
simulate A from a uniform distribution, and then simulate data that
produced 7 within 5% of 4 to assure that there was an approximately
uniform distribution of throughout the simulation runs.

We simulated 5,000 pure-birth, ultrametric trees (with a
branching rate of 0.05) for each of 257 sized trees (25,000 trees
total). All trees were created with the function, pbtree, from the

phytools R package (Revell, 2010). For each tree, we randomly

sampled A from a uniform distribution (minimum of 0, maximum of
0.99), scaled the tree branch lengths by 4, and simulated random BM
data on the transformed tree, using the sim.char function of the
geiger R package (Harmon et al., 2008). Subsequently, we found
the maximum likelihood estimate, 4 (see code in Appendix 3 of the
Supporting Information) from the data generated. We used an upper
limit of A = 0.99 because like Cooper et al. (2016), we observed a rare
but discernible trend for data simulated with A = 1 to not fit as well
with a BM model of evolutionary divergence as alternative models,
such as Ornstein Uhlenbeck models (Lande, 1976). By using a cut-off
of 0.99, instances of 71 =1 were still frequent, but anomalies from
simulating non-BM data were largely mitigated. For every tree we
simulated, we repeatedly simulated data until we found 7 within a
5% interval of A, and then retained the data for analysis.

For every simulated tree and its corresponding data, we per-
formed a parametric likelihood ratio test, with 1 = 1 (untransformed)
and 1=1 (transformed) adjustments of C. We also used RRPP to
generate distributions of 1,000 random log-likelihoods for each
tree:data combination, and for both untransformed and transformed
C matrices, from which the percentile of the observed statistic was
used to estimate a p-value. The parametric likelihood ratio test
performed for 1 = 7 and the permutation test performed for A =1
(null 2 = 0 in both cases) correspond exactly with the tests typically
performed for Pagel's 4 and Blomberg's K, respectively. We verified
p-values estimated this way were the exact same as using the distri-
bution of random MSE, more typically used for a test of Blomberg's K.

K results and standardized log-likelihood effect sizes were plot-
ted against 2, with points scaled and hued in association with 7 to
visualize patterns. In such plots, points were colored if significant,
based on the RRPP permutation test, or gray if not significant. We
anticipated that Z = 1.96 should correspond to the null hypothesis
rejection limit for a one-tailed test, a line we superimposed into plots
to visually determine the consistency of effect sizes and hypothesis
test results. (We expected colored points to lie above this line and
gray points to lie beneath, if effect sizes reflected hypothesis test
outcomes.)

Because we had p-values from both parametric and permuta-
tion tests, we could create 2 x 2 tables of hypothesis test outcome
correspondence, to assess the consistency of parametric and non-
parametric tests. These tables report both the consistencies (para-
metric tests and RRPP tests found same result) and two types of
inconsistencies: the parametric test finds a significant result but
RRPP does not, or RRPP finds a significant result, but the parametric
test does not. The inconsistent results were labeled in plots, along
with type | error rates (calculated from the frequency of occasions
that for 1~ 0, a significant result was observed). Because we had
5,000 g values, approximately uniform in distribution, we were able
to estimate statistical power curves as a moving proportion of null
hypothesis rejections across the landscape of 7 values. We esti-
mated the proportion of rejections for four test types: parametric/
RRPP/untransformed,

and RRPP/transformed. Proportions were estimated by culling data

untransformed, parametric/transformed,

by intervals of 7 and producing a vector of Os (did not reject null
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FIGURE 2 Plots of simulations including relative frequencies of ¥ generated (left column), K tested with A = 1 (middle column), and K
tested with A =1 (right column). Rows separate results by tree size. Points corresponding to non-significant results from permutation tests
are colored gray; significant results are scaled, colored and hued according to the magnitude of 7, as in the left column
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FIGURE 3 Plots of Z score simulations for untransformed C (left columns) and transformed C (right column). Points are scaled and colored
as in Figure 2. Inconsitencies (from a 2 x 2 correspondence table) between parametric likelihood ratio tests (LRT) and RRPP permutation
tests are noted, as well as type | error rates for 7 =0. The dashed line at Z = 1.96 indicates expected separation of significant and non-

significant results, based on a level of significance of a = 0.05

hypothesis) and 1s (rejected the null hypothesis), for each test type.
The means of these vectors were the proportion of tests for which
the null hypothesis was rejected. We found that an interval length of
0.1 assured more than 500 values for all interior points (;1\ =0.1:0.9),
and produced rather smooth curves that were qualitatively as infor-
mative as any curves produced with a greater number of intervals.

Additional functions and code for simulation experiments can be
found in Appendix 3 of the Supporting Information. Several support
functions from the RRPP R package (Collyer & Adams, 2018) were
used to create functions to estimate log-likelihoods and effect sizes
from RRPP distributions. In some initial simulations, we also consid-
ered balanced and pectinate trees. We found no qualitative differ-
ences and simulations could only produce new sets of data on the
same tree, so we did not consider them further.

3.2 | Simulation results

Figure 2 shows 7 and K results from simulations, and Figure 3 shows
Z score results, with corresponding points scaled and hued the same,
based on the value of 7 in the first column of Figure 2. The rela-
tive frequencies of ¥ suggested the simulations produced approxi-
mately uniformly distributed phylogenetic signals. A rejection of the
null hypothesis of no phylogenetic signal (significant phylogenetic
signal) resulted in points that were colored, with hue changing as ¥
increased; non-significant values were gray in color. These figures
allow for visual clarification of various attributes acquired from the
simulation runs, such that patterns are easy to interpret. Statistical
power curves are shown in Figure 4.

Regarding Pagel's 1 and Blomberg's K, our simulation results
tracked the results of Miinkemidiller et al. (2012) in one particular
way (Figure 2). It was possible to simulate larger K values for smaller
trees, but within any tree size, K tended to be less than 1 except
for the largest simulated 7 values. Despite this trend, the hypothesis
test results using alternative transformations of the C matrix for esti-
mation of MSE as a test statistic for K revealed profound differences.
In Figure 2, significant or non-significant K values can be found for
any 7,if A = 1is forced in the test statistic, which is the common way
this test is performed (middle column). The simple act of using 1 = g
and MSE as a test statistic (not K) alleviated this concern, and was
consistent with the assertion of Blomberg et al. (2003) that doing so
increases statistical power (Figure 4). Forcing 1 = 1 for hypothesis
tests of K also elevated type | error rates, but they were still close to
the nominal « = 0.05 level.

Issues with A forced to be equal to 1 were also revealed by using
a standardized effect size based on the location of Z¢ in its RRPP-
generated sampling distribution. Significant and non-significant re-

sults spanned the entire range of p) (Figure 3). These results are not

surprising, as they do not seek to maximize likelihood, but help to
confirm that the permutation test with K, using MSE as a test statis-
tic, is flawed (since MSE might not be minimized via a best fit of the
tree to the comparative data). Furthermore, using Z as an effect size
if Ais forced to equal 1 makes little sense because of its curvilinear
association with 7 (Figure 3). However, for cases where 1 = 1, both
the permutation test on the log-likelihood statistic as well as the Z
score from the RRPP sampling distribution, as an effect size, had sev-
eral desirable attributes.

First, the permutation test for the log-likelihood of the evolu-
tionary model had greater statistical power than the parametric
likelihood ratio test (Figure 4). A statistical power advantage was
greatest for smaller trees, and the power curves of the two meth-
ods tended to converge with larger trees. The cases of inconsis-
tent results from the 2 x 2 hypothesis test correspondence tables
(Figure 3) were always due to the permutation test finding signifi-
cant results when the parametric likelihood ratio test did not, but
the rate of inconsistencies decreased with increased tree size. (By
contrast, if A = 1is forced, the rate of inconsistencies increased with
tree size.) A likelihood ratio statistic only asymptotically follows a
2 distribution, as N — oo (Wilks, 1938), so it is not surprising that a
parametric likelihood ratio test would have larger type Il error rates
with small tree sizes. Furthermore, the asymptotic null distribution
for a one-sided likelihood ratio statistic, in which null hypotheses
are at the limits of the constrained parameter space (A =0or A= 1),
is a mixture of two 2 distributions (Molenberghs & Verbeke, 2007;
Verbeke & Molenberghs, 2003). Generally, an unconstrained y?2 sta-
tisticis reported, but a p-value is considered to be 1/2 of the classical
% approximation, when mixture proportions are equal. Therefore, a
tendency toward high statistical power might be expected for traits
from large trees with likelihood ratio tests. Nonetheless, the statis-
tical power was as good or better with permutation tests in our re-
sults, irrespective of tree size. In addition to having greater statistical
power, the RRPP sampling distribution allows the standard deviate
of the observed log-likelihood to be used as an effect size (Z), which
also has nice attributes.

Second, Z based on a maximum likelihood estimate of 4 has a lin-
ear association with 1. The slope of this linear association increases
with tree size, unfortunately, as it is not possible to disentangle a
goodness of fit (2 from the size of a tree. Thus, one might consider
comparing effect sizes for traits from two vastly different trees with
caution. The range of simulated Z also increased with phylogenetic
signal strength and tree size (Figure 3). This result can be explained
by the fact that for a large value of 7, also fora large tree, the breadth
of possible 62* values in RRPP permutations increases, so it is also
possible to have a larger span of possible Z values.

Third, with @ = 0.05, there was a clear demarcation of Z above a

value of 1.96 corresponding to significant hypothesis test outcomes,
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FIGURE 4 Statistical power curves for indicated methods: parametric likelihood ratio test (LRT), and RRPP. Whether the C matrix is

transformed is noted

especially for tests with A = 4 (Figure 3). This is helpful, as an effect
size of say, Z = 2.5 reported from an empirical study, indicates sig-
nificant phylogenetic signal. We found sampling distributions to be
consistently normally distributed (see Figure 1 as an example), espe-
cially for larger trees. Results in Figure 3 (second column) had a dis-
tinction of significant results consistently for Z > 1.96. A reliance on
the normal distribution of RRPP sampling distributions means that
two-sample Z statistics are also reliable, and quick interpretation
of Z=25to, e.g. Z = 6, for two traits from the same tree, indicates
which has greater phylogenetic signal.

Ideally, there would have been no relationship between Z and
tree size, but such an expectation would be unwarranted, as phylo-
genetic signal is inherently related to the largeness of the phylogeny.
However, we determined that there was a precise relationship be-
tween tree size and the slope of Z with respect to 2. The slopes of

the lines in Figure 3 fit (nearly perfectly) the relationship,
Iog(%) = %IogN. Thus, the expected value of Z, given N and 1is

E(ZIN,7) = exp [%IogN + logZ|. One can calculate Z — E(Z|N, 7) for the

traits (see Figure 5) that are compared to ascertain if Z is larger (more
positive) or lesser (more negative) than expected, given the tree size
and optimized value of A. This adjustment could be seen at best as a
tool to help understand the multifarious nature of phylogenetic sig-
nal, rather than fix Z for comparative tests. For example, when com-
paring traits from two different trees, more positive values of
Z - E(Z|N,’/I) might be considered stronger phylogenetic signal, if g

are comparable.

4 | EMPIRICAL EXAMPLE
To demonstrate the utility of Z;,, we compared Z for two ecologically-

relevant traits in plethodontid salamanders (Figure 6): surface area

SA

to volume ratios (7) and relative (to snout to vent length) body

Bw
SVL

width ( ) (Baken & Adams, 2019; Baken et al., 2020). For this ex-
ample, surface area to volume ratios and relative body width meas-
ures were obtained from individuals of 305 species, from which
species means were obtained (Baken & Adams, 2019; Baken
etal., 2020). A time-dated molecular phylogeny for the group (Bonett
& Blair, 2017) was pruned to match the species in the phenotypic
dataset. The phylogenetic signal effect size in each trait was ob-
tained from 10,000 RRPP permutations, using functions described
in Appendix 3 of the Supporting Information. The absolute value of
the two-sample effect size (Equation 5) was calculated, as we had no
a priori expectation of direction in the hypothesis test; i.e. it was
treated as a two-tailed hypothesis test.

Although both traits contained significant phylogenetic signal

(Zew = 16.17;p =0.0001 and Zsx = 21.20;p = 0.0001), a test based
SVL 1

on Z,, revealed that the degree of phylogenetic signal was signifi-
cantly stronger in % (Z42] =7.10; p<0.0001: Figure 5).
Biologically, this observation may be interpreted by the fact that
the tropical species—which form a monophyletic group within

%, which covaries

plethodontids—display greater variation in
with disparity in their climatic niches (Baken et al., 2020). Thus,

greater phylogenetic signal in % is to be expected. Coincidentally,
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FIGURE 5 Zscores from Figure 3 (right column) after subtracting the expected value of Z, based on 7andN

7 was 0.76 and 0.91, and K was 0.25 and 0.76, for 2%

SA
SVL and v’

respectively.

5 | DISCUSSION

To be able to ask if traits differ in their amount of phylogenetic sig-
nal, resolving how to best measure phylogenetic signal is essential.
In this study, we considered the two most common measures of phy-
logenetic signal, and our simulation results did not dispute any issues
that were already known about these measures. For example, the
precision to estimate qis tree-dependent, with more taxa-rich trees
required for better precision (Boettiger et al., 2012; Miinkemdiller
et al., 2012). K does not scale linearly with increased phylogenetic
signal strength, and its variance is positively associated with phy-
logenetic signal strength (Diniz-Filho et al., 2012; Minkemdiller
et al., 2012). Our simulation results confirmed these attributes.
These issues make the comparison of phylogenetic signals chal-
lenging, even if only qualitatively comparing 7 or K between traits,
for the same phylogeny. That there has been no statistical test only
makes inference more speculative.

In this study, we made three important advances for the com-
parison of phylogenetic signals among different traits. First, we
demonstrated that a permutation-based procedure (RRPP) using
the log-likelihood as a statistic is not only reliable but performs bet-
ter than a parametric test, especially for smaller trees. Second, we
demonstrated that if the RRPP-log-likelihood permutation test is
used, a test of 7 and K are the same, provided that C is transformed

by 7 in the calculation of the GLS variance that is at the heart of

the calculation of either statistic. Indeed, Blomberg et al. (2003) in-
troduced K as a statistic that had an associated permutation test,
based on a distribution of MSE, not K, noting that statistical power
would be higher if MSE was calculated from a transformed ver-
sion of C that resulted in better fit of the tree to the data. Because
— MSE and Z are perfectly rank-order correlated for the same set
of RRPP permutations, viewing 7 and K as statistics that have differ-
ent hypothesis test outcomes is not necessary. Previous simulation
studies have found differences between them, but did so by relying
on adjudication of 7 by a parametric likelihood ratio test (C trans-
formed by 7), and K by a permutation test with no transformation of
C (A =1) (see, e.g. Molina-Venegas & Rodriguez, 2017; Miinkemiiller
et al., 2012). Our work reveals that these differences were the result
of the incommensurate transformation step, and not in test statis-
tic performance, per se. Third, having demonstrated that a test of
phylogenetic signal is a test of the rarity of the observed % in a
distribution of random outcomes, generated by a null model of phy-
logenetic independence, we can measure phylogenetic signal an al-
ternative way: as the standardized location of the observed Zcin the
RRPP-generated distribution of random values (i.e. as an effect size).
This alternative makes it possible to perform hypothesis tests for
the comparison of the strength of phylogenetic signal across traits.
This third advance is important but perhaps unsettling. The
convenience of 7 or K is that a value of 0 should mean data devoid
of phylogenetic signal, and a value of 1 should mean data have
a phylogenetic signal that matches a BM model of evolutionary
divergence. By contrast, a Z-score is a value measured in stan-
dard deviations that indicates a location in a normal distribution

relative to expectation (mean), given a null model of phylogenetic
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independence. As a measure of the degree of phylogenetic signal,
Z, might feel less intuitively comfortable. However, this discom-
fort is perhaps predicated on one's definition of phylogenetic sig-
nal. For example, in a tree with 128 taxa (Figure 3), for a value of
2=0527 might range from 2 to 17. If 7 is the definition of phylo-
genetic signal strength, the range of effect sizes suggest that Z is
not a good effect size to consider. Conversely, an effect size Z=5
might be found to have F) range from 0.1 to 1.0. That is, if Z is the
measure of phylogenetic signal, a corresponding 7 indicates the
tree transformation that best reveals the phylogenetic signal, not
the amount of phylogenetic signal. However, the appeal of Z is
that it allows a statistical comparison of the phylogenetic signals
from multiple traits, but those traits might also have quite differ-
ent values of 1 or K. The best analysis is probably one that sta-
tistically compares Z but also reports both 7 and K, as these two
statistics have important meaning: the optimized branch-length
transformation and a ratio that expresses the relative amount of
BM contribution to the GLS variance estimate, respectively. That

is, one can report Z, 4, K, and one p-value, and not have to view

phylogenetic signal statistics as a means to an end for different
statistical tests.

It is common for researchers to report ‘weak but significant’
phylogenetic signal when K is considerably less than 1 but the null
hypothesis test is rejected. We also demonstrated with our simula-
tions that it is possible to find ‘significant’ phylogenetic signal when
7 is small compared to a non-significant result when 4 is forced to
be equal to 1 (compare plots between left and right columns of
Figure 3). Our work demonstrates that it is not helpful to declare
‘weak but significant’ phylogenetic signal (especially if not simulta-
neously reporting ‘strong but not significant’ phylogenetic signal
by increasing 1), based on 7 or K values. However, we feel it is more
appropriate to declare Z =2 as weak but significant, compared
with say, Z =15, which is strong and significant. Phylogenetic
signal ‘strength’ can be viewed as measure of rarity to generate
such a strong signal by chance, which Z describes well. Although
7 and K are useful statistics, their ability to discern strong versus
weak phylogenetic signal is questionable. Only Z, which is a statis-

tical effect size, affords this statistical interpretation. However, an
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interpretation of phylogenetic strength still cannot be made inde-
pendent of phylogeny size.

One less desirable outcome of our simulations is that Z (more
precisely the slope between Z and 7) was positively associated with
N, the number of taxa represented in a tree. We were able to demon-
strate that the slope between Z and qis predicted by N, such that
one could find an expected value of Z, given N and 7. When com-
paring the same or multiple traits between trees, this added step
might help to better elucidate differences between a two-sample
test of phylogenetic signal, especially if Z,, is significant, but it is
not clear if the test result is because of differences in phylogenetic
signal strength or tree size. This would not be a panacea, as it would
also involve using ;1\, which could vary between traits, but it is a tool
that might assist inferences made about differences in phylogenetic
signal involving multiple trees, or different Z scores also involving
different 1 transformations.

Although using Z scores for comparative analysis offers new
opportunities, it also presents new challenges. Chief among the
challenges that will have to be addressed is how to generalize
the Z score as an effect size for multivariate data, especially if
the number of variables precludes calculating log-likelihood. We
see three possible approaches. First, like the generalization of
the K statistic for multivariate data (Adams, 2014a), it might be
possible to use the trace of the evolutionary rate matrix, rather
than the matrix determinant, which would not be variable-
limited (for example, logo? + %Iog|C| could be generalized by
taking either the trace or determinant of R, the multivariate gen-
eralization of ¢2). Research demonstrating the adequacy of this
approach would be needed, and certainly, the random outcomes
could not be called log-likelihoods, but if the sampling distribu-
tions of log-likelihoods and modified statistics using traces were
commensurate for comparable sets of variables, and yielded
similar Z scores, then using an alternative generalization would
be possible. Second, one could use a penalized-log-likelihood
based on a regularization of near-singular or singular R matrices
(Clavel et al., 2019). Because this approach assures a R matrix
that is positive-definite and invertable, it also assures that log%¢
can be estimated in every random permutation. Whether, the
distribution of random log%. obtained from RRPP, followed by
regularization in each permutation, yields appropriate sampling
distributions would remain to be seen. The statistical properties
have been adjudicated using a penalized-likelihood framework
for evaluating Wilks' A, with RRPP (Clavel & Morlon, 2020), so
there is promise that this framework would also work for calcu-
lating multivariate Z scores.

The third potential solution is to use phylogenetically aligned
component analysis (PACA; Collyer & Adams, 2021) as a dimension
reduction method. The perils of data reduction before likelihood
estimation have been clearly demonstrated (Uyeda et al., 2015),
but this was for cases where the data reduction method (principal
component analysis, PCA) did not find components specifically
aligned to phylogenetic signal. PACA specifically aligns components

to phylogenetic signal, such that greater phylogenetic signal—rather

than variance—is predominantly found in the first few components.
It might be possible to use a subset of data dimensions that con-
tain most or all phylogenetic signal to estimate pseudo-likelihoods.
Again, it might not be sufficient to refer to a statistic calculated
this way as model likelihood, but if random outcomes across many
permutations produce a sampling distribution that yields similar Z
values in fewer dimensions, it might be trusted for estimating Z for
highly multivariate data.

Regardless of these three possible solutions, another consid-
eration is whether different variables could have different 7 in the
estimation of log-likelihoods; that is, can it be assumed traits evolve
independently? In Appendix 2 of the Supporting Information, we
outline a method for calculating log-likelihoods for multivariate data,
both assuming common and independent A for traits. Model selec-
tion could be used to compare these two likelihoods to ascertain
if traits evolve independently, and if so, the two-sample Z test de-
scribed here could be used to determine which traits have greater
phylogenetic signal. However, appropriate optimization methods for
multiple A should be rigorously researched, in addition to the statisti-
cal properties of different likelihood estimators, before solutions for
multivariate traits are eagerly embraced.

Regardless of future challenges, the ability to estimate an ef-
fect size that can be used for hypothesis tests to compare phylo-
genetic signal in multiple traits, as a tool, is a boon for the PCM
toolkit. We feel that measuring phylogenetic signal is more nu-
anced than using a single statistic, but adding Z to the suite of
statistics used can help decipher between weak and strong phy-
logenetic signals, rather than misinterpreting values of 7 orK.Our
scope of investigation concerned BM models of evolutionary di-
vergence and one transformation parameter, Pagel's 1. Pagel's 1 is
generally considered to be most associated with phylogenetic sig-
nal, but one could also consider using RRPP with additional trans-
formation parameters, including 6 and « (Pagel, 1999). Because the
transformation of the C matrix is an a priori step and this transfor-
mation is retained through random permutations, it would be easy
to extend the RRPP-log-likelihood computations to additional C
matrix transformations. Furthermore, RRPP could be used with
alternative models of evolution (e.g. multi-rate Brownian, early
burst, OU, AC/DC), recognizing that the simplifications we made
from Equations 1 to 3 would not be the same. Random versions
of V in Equation 1 would have to be calculated in each RRPP per-
mutation, accounting appropriately for parameters that are fixed
or variable in each permutation. Insomuch as phylogenetic signal
effect size (using Z) is a measure of the fit of tree to compara-
tive data for a BM model of evolution, any similar approach can
be considered a model effect size for an alternative evolutionary
model. Thus, there could be some appeal with using the RRPP-
log-likelihood effect size as a model selection criterion, especially
because multiple models could be compared, not just assuming a
null model of phylogenetic independence, but other null models
as well. (For example, a single rate BM model could serve as null
model for various multi-rate alternative models. Comparison of

Z among the models, using both phylogenetic independence and
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BM as different null models, could be valuable for inferring the
best evolutionary model for trait data.)

In answering certain evolutionary questions, such as com-
paring the strength of phylogenetic signal, traditional parametric
approaches offer challenges. First, the parameter space of 4 is
bounded, and thus, a mixture of y2 distributions is required as a
proxy for a sampling distribution (Molenberghs & Verbeke, 2007;
Self & Liang, 1987; Verbeke & Molenberghs, 2003). Second, y2
distributions are asymptotically appropriate for likelihood ratio
statistics for very large sample sizes (Wilks, 1938), a situation
rarely afforded when working with phylogenies. The permuta-
tion test we presented is not constrained to use a parametric
probability distribution as a proxy, and is additionally capable
of providing effect sizes, which are comparable across data-
sets to evaluate comparative hypotheses. Prior work (Adams &
Collyer, 2018) has shown that empirical sampling distributions
generated from RRPP match nearly perfectly the parametric
F-distributions typically used in ANOVA, when data are simulated
to match the assumptions of ANOVA. Based on our work here,
one might speculate that RRPP-generated sampling distributions
are better proxies for statistics without appropriate parametric
sampling distributions and converge on parametric distributions
in cases where sampling distribution solutions are tractable.
When viewed from this perspective, permutation methods such
as RRPP should not be considered mere analytical band-aids to
be used for ill-conditioned datasets, or scenarios where standard
tests are not applicable. Rather, they are equivalent to parametric
procedures for ‘standard’ biostatistical problems and can super-
sede them in cases where parametric methods are not applicable.
Thus, our perspective is that this work helps to continue to pave
the way for advancement of PCMs as sets of tools that take ad-
vantage of the computational power of modern computers rather
than force evolutionary biology questions into limited traditional

statistics applications.
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