

Hydrodynamics of Regional and Seasonal Variations in Congo Basin Precipitation

Kerry H. Cook and Edward K. Vizy
Department of Geological Sciences
The University of Texas at Austin
Austin TX

Reference: Cook KH, Vizy EK (2021) Hydrodynamics of Regional and Seasonal Variations in Congo Basin Precipitation. *Climate Dynamics*, DOI 10.1007/s00382-021-06066-3

37 ABSTRACT

38 The processes that determine the seasonality of precipitation in the Congo Basin are
39 examined using the atmospheric column moisture budget. Studying the fundamental determinants
40 of Congo Basin precipitation seasonality supports process-based studies of variations on all time
41 scales, including those associated with greenhouse gas-induced global warming.

42 Precipitation distributions produced by the ERA5 reanalysis provide sufficient accuracy
43 for this analysis, which requires a consistent dataset to relate the atmospheric dynamics and
44 moisture distribution to the precipitation field. The Northern and Southern Hemisphere regions of
45 the Congo Basin are examined separately to avoid the misconception that Congo Basin rainfall is
46 primarily bimodal.

47 While evapotranspiration is indispensable for providing moisture to the atmospheric
48 column to support precipitation in the Congo Basin, its seasonal variations are small and it does
49 not drive precipitation seasonality. During the equinoctial seasons, precipitation is primarily
50 supported by meridional wind convergence in the moist environment in the 800 hPa to 500 hPa
51 layer where moist air flows into the equatorial trough. Boreal fall rains are stronger than boreal
52 spring rains in both hemispheres because low-level moisture divergence develops in boreal spring
53 in association with the developing Saharan thermal low. The moisture convergence term also
54 dominates the moisture budget during the summer season in both hemispheres, with meridional
55 convergence in the 850-500 hPa layer as cross-equatorial flow interacts with the cyclonic flow
56 about the Angola and Sahara thermal lows. Winter precipitation is low because of dry air advection
57 from the winter hemisphere subtropical highs over the continent.

58
59 Key words: Congo Basin rainfall; central Africa precipitation; African rainfall seasonality; African
60 precipitation; Angola low; African precipitation processes; Saharan heat low

61 *1. Introduction*

62 Equatorial western and central Africa comprises the second-largest river basin on the
63 planet, the Congo Basin, and the second-largest tropical forest. The Congo River Basin is nearly
64 half the size of the continental U.S., and the region's tropical forest is the largest contiguous tract
65 of forest in Africa (Shapiro et al. 2020). The most extensive peatland complex is also located here,
66 underlying the swamp forests of the central Congo Basin and storing an estimated 30.6 Pg of
67 carbon (Dargie et al. 2019). The basin boasts high numbers of aquatic, avian, and mammalian
68 species, and the river provides about 30% of Africa's freshwater resources (Harrison et al. 2016).

69 Despite its size and importance on both local and global scales, precipitating systems are
70 poorly understood and sparsely observed. The number of reporting stations has declined since the
71 1980s (Washington et al. 2013; Maidment et al. 2015; Nicholson et al. 2018), limiting
72 opportunities to calibrate and evaluate satellite-based observations (Nicholson et al. 2019). The
73 annual rainfall total is thought to be barely adequate for maintaining the tropical forest vegetation
74 in most of the Congo Basin (Guan et al. 2015), suggesting a potential vulnerability to climate
75 change.

76 Our understanding of the fundamental hydrodynamics of Congo Basin rainfall is
77 incomplete on all scales, and this impedes our ability to develop confidence in observed and
78 projected trends through physical attribution. Here we focus on regional space scales and
79 climatological time scales to advance our fundamental understanding of the region's rainfall
80 seasonality. We quantify the individual roles of evapotranspiration and atmospheric moisture
81 convergence in supporting rainfall throughout the seasonal cycle in various regions, and identify
82 the atmospheric processes that lead to regional and seasonal variations in precipitation.

83 Background on our current understanding of the hydrodynamics of Congo Basin rainfall is
84 provided in the following section. Section 3 details the methodological approach, and the results
85 are in section 4. Section 5 provides a summary and conclusions, including a discussion of the
86 potential implications of the analysis for understanding observed and predicted greenhouse gas-
87 induced climate change in the Congo Basin.

88
89 *2. Background*
90 The Congo Basin precipitation climatology is often described in the literature as being
91 bimodal, but classification studies do not agree with this characterization. Using a 13-year satellite-
92 observed rainfall climatology from TMPA (Huffman et al. 2007), Herrmann and Mohr (2011)
93 classified rainfall seasonality regimes across Africa. A narrow band (2° - 3° wide) along the equator
94 extending from the Atlantic coast to the Rift Valley was identified as “humid”. Nearly all of the
95 remainder of the Congo Basin was found to have one wet season, with either one peak or two
96 within a single rainy season, with the latter being more common in the eastern Congo Basin.
97 Knoben et al. (2019) agree with these classifications except they identify the narrow band along
98 the equator as bimodal using harmonic analysis of the TMPA precipitation.

99 As is typical of tropical forest climates, the recycling of water between the
100 evapotranspiration and precipitation fields provides significant support for precipitation in the
101 Congo Basin throughout the year. Recycling ratios have been estimated in the 25% - 50% range
102 (Pokam et al. 2012, Dyer et al. 2017, Sori et al. 2017). Crowhurst et al. (2021) note that basin-wide
103 evaporation is lower in boreal fall than in boreal spring despite a similarity in precipitation due to
104 lower leaf area indices and vapor pressure deficits in the southern rainforest.

105 The atmospheric circulation further supports Congo Basin rainfall through moisture
106 transport and moisture convergence. During the solstitial months (December, January, February,

107 June, July, and August), moisture convergence in central equatorial Africa occurs when cross-
108 equatorial flow from the winter hemisphere tropics and subtropics into the summer hemisphere
109 converges with cyclonic flow around the summer hemisphere thermal low (Cook and Vizy 2020).
110 In the Northern Hemisphere, the Saharan thermal low migrates to the north through the spring and
111 intensifies across the Sahara in summer (e.g., Lavaysse et al. 2009). In the Southern Hemisphere,
112 The analogous feature in the Southern Hemisphere, the Angola low, is weaker and smaller than its
113 Northern Hemisphere counterpart, but still recognized as a dominant feature of the summer climate
114 (Howard and Washington 2018). This dynamics points to the southeastern Indian Ocean as a
115 primary source of Congo Basin moisture during boreal summer, and the northeastern Indian Ocean
116 during boreal winter.

117 During the equinoctial seasons, the primary moisture source for central equatorial Africa
118 is southeasterly flow from the South Indian Ocean in association with the Southern Hemisphere
119 component of the low-level Somali jet (Dyer et al. 2017; Cook and Vizy 2020).

120 Low-level westerlies from the equatorial Atlantic have also been suggested as an important
121 moisture source for Congo Basin rainfall (Pokam et al. 2012, Dezfuli and Nicholson 2013),
122 especially in boreal fall when the inflow is stronger than in boreal spring (Dyer et al. 2017).
123 However, the Atlantic is a more minor source of moisture than the Indian Ocean (e.g., van der Ent
124 and Savenije 2013; Dyer et al. 2017; Cook and Vizy 2019). While Nicholson and Grist (2003)
125 suggest that the South Atlantic anticyclone is instrumental in controlling onshore flow from the
126 Atlantic, other studies associate it with a Walker (or Walker-like) circulation with rising over the
127 Congo Basin and subsidence over the equatorial eastern Atlantic (Schwendike et al. 2014; Pokam
128 et al. 2014; Cook and Vizy 2016; Zhao and Cook 2020; Longandjo and Rouault 2020).

129 Studies exploring the variability of Congo Basin rainfall help advance our understanding
130 of connections to the large-scale circulation. Laing et al. (2011) find that convection is more
131 widespread in the Congo Basin during active phases of the Madden-Julian Oscillation. On longer
132 time scales, Dezfuli and Nicholson (2013) suggest that there is sensitivity on interannual time
133 scales to global SSTs along the Atlantic coast and the eastern Congo Basin during the boreal fall
134 rainy season. In a coupled GCM simulation with water tagging, Dyer et al. (2017) find that there
135 is a northward shift of the primary moisture source from the southeastern Indian Ocean to the
136 equatorial Indian Ocean during wet years in their simulation.

137 There is uncertainty in the literature about whether precipitation trends in the Congo Basin
138 have been definitively detected. Malhi and Wright (2004) report a negative trend over the 1960-
139 1998 period using the Climate Research Unit (CRU; New et al. 2000) rain gauge data. This dataset
140 is based on a network of ground-based observing stations that are not well distributed through the
141 Congo Basin [Fig. 2 in Malhi and Wright (2004)]. An examination of trends in eight precipitation
142 datasets for 1983-2010 by Maidment et al. (2015) finds disagreement among them over Central
143 Africa. Along with Dinku et al. (2018), they express concern that apparent drying occurs in blended
144 satellite-gauge datasets because of the ongoing negative trend in the number of reporting stations
145 in the Congo Basin. Nicholson et al. (2018) focus on the regionality of trends in analyzing rain
146 gauge measurements for 1921-2014. They find positive trends significant at the 90th percentile at
147 5°N - 10°N in boreal spring, but negative trends elsewhere that are not uniformly significant.

148 Cook and Vizy (2020) examine trends in Congo Basin rainfall in six observational datasets
149 and find a statistically-significant decline in annual rainfall over the 1979-2017 time period in all
150 datasets, with strongest trends from March through August. They associate the drying with a
151 mechanism that could plausibly be associated with greenhouse gas-induced global warming,

152 namely, poleward shifts of the continental thermal lows. However, they also find that the observed
153 trends are generally weaker and less significant over the more recent 1998-2017 time period,
154 especially in boreal spring. An exception is the boreal summer when robust trends persist in
155 association with the observed, greenhouse gas-induce strengthening and northward shift of the
156 Saharan thermal low (Cook and Vizy 2015, Vizy and Cook 2017).

157 Studies of Congo Basin vegetation and ecosystems are more consistent in suggesting
158 decline, although causes are unclear. Zhou et al. (2014) examine vegetation indices over the 2000-
159 2012 and find a browning trend in the Congo Basin for boreal spring. A connection with
160 precipitation observations is tenuous, however, since only one precipitation dataset is examined
161 and the anomalies are not statistically significant. Shapiro et al. (2021) estimate that less than 70%
162 of the Congolese rainforest remains intact, which is a decrease from 78% in 2000.

163 Evaluation and attribution of observed trends is hampered because we currently do not
164 have a thorough understanding of how the basic precipitation climatology of the Congo Basin
165 works. Developing confidence in projections is also impeded by this lack of knowledge, along
166 with poor performance by coupled GCMs (Creese and Washington 2016, 2018; Crowhurst et al.
167 2020) and regional-model intercomparison projects (e.g., Tamoffo et al. 2020) in the Congo Basin,
168 and disagreement among model projections (e.g., Christensen et al. 2013).

169 In this paper, we present a basic analysis of the Congo Basin rainfall climatology with
170 attention to regionality and seasonality, using the constraints of the column moisture budget to
171 understand connections to regional evapotranspiration and the larger-scale atmospheric
172 hydrodynamics. Such an analysis will be useful for evaluating model simulations at the process
173 level, and for interpreting and attributing any observed and simulated changes in Congo Basin
174 precipitation.

175
176

3. Methodology

177 The primary analysis region is 10°S to 10°N and 10°E to 30°E. This region is shown by the
178 red box in Figure 1a along with topography (shaded). Low points in the analysis region are the
179 coastal plains along the Atlantic and in central equatorial Africa near 17°E. Elevations increase to
180 600 m east of the Atlantic coastal plains and well over 2000 m in the Rift Valley region that bounds
181 the analysis region on the east. The Congo River and its many tributaries form a dense network
182 throughout the areas with elevations under 600 m (dark blue area).

183 The analysis region is not identical to the Congo River Basin, which is the sedimentary
184 basin of the Congo River, because our focus is on atmospheric processes. This hydrologic basin
185 extends to 6°N - 8°N over the Central African Republic, and to 12°S - 13°S over northern Angola,
186 southern Democratic Republic of Congo, and northeastern Zambia. We use the term “Congo
187 Basin” here for convenience, since the hydrologic basin overlaps substantially with the analysis
188 region and referring to “equatorial central and western Africa” is cumbersome.

189 The analysis region is also not coincident with the Congo tropical forest. The dark green
190 shading in Fig. 1b indicates tropical forest vegetation in Africa as specified in the ERA5 reanalysis,
191 showing that much of this ecosystem type in Africa is located in the Congo Basin.

192 The primary dataset for this analysis is the ECMWF Reanalysis 5 (ERA5; Hersbach et al.
193 2020), which provides hourly estimates of a large number of atmospheric, land, and ocean climate
194 variables at 0.25° resolution (30 km grid) on 137 vertical levels. While the ERA5 dataset extends
195 back to 1950, we use only values from the satellite era, forming a climatology by averaging from
196 1979 to 2020. We choose this source for evaluating the modeled hydrodynamic fields (e.g., winds,
197 geopotential heights, temperature, and moisture) because of its high resolution and good

198 performance in other regions of Africa, albeit with direct observations that are less sparse than the
199 Congo Basin (e.g., Vizy and Cook 2019; Danso et al 2019).

200 We also use precipitation and evapotranspiration fields from ERA5. For precipitation,
201 which has been less reliable in prior generations of reanalyses, we evaluate the ERA5 climatology
202 through comparison with the following observational datasets:

- 203 • ARC2 (0.1° resolution; Novella and Thiaw 2013); averaged 1983 – 2020
- 204 • CHIRPS2 (0.05°; Funk et al. 2015); averaged 1981 – 2020
- 205 • CMORPH (8 km resolution; Joyce et al. 2004); averaged 1998 – 2019
- 206 • IMERG (0.1° resolution; Huffman et al. 2018); averaged 2001 – 2020
- 207 • PERSIANN-CDR (0.25°; Sorooshian et al. 2000); averaged 1983 – 2020
- 208 • TAMSAT (4 km; Maidment et al. 2017); averaged 1983 – 2020
- 209 • TRMM TMPA (0.25° resolution; Huffman et al. 2007); 1998 – 2019

210 The years averaged to form climatologies vary slightly among the datasets due to their
211 availabilities.

212 In the ERA5 reanalysis, evapotranspiration values are calculated within a land surface
213 model component in the absence of daily observed distributions for assimilation. This model,
214 known as HTESSEL (Balsamo et al. 2009), is an update to the TESSEL land surface model (e.g.,
215 Viterbo and Beljaars 1995) and tracks surface water through 4 vertical layers. In addition to vertical
216 percolation, the model accounts for surface runoff and drainage with dependence on local
217 topography and soil type. It divides each grid box at the surface into sub-grids known as tiles to
218 capture the effects of smaller-scale surface inhomogeneities such as soil texture and vegetation.
219 Two types of vegetation, high and low, are specified along with their areal coverage and each
220 vegetation type is assigned characteristics such as canopy resistance and leaf area index. In regions

221 where an evaluation of surface and near-surface variables in ERA5 has been possible, large
 222 improvements compared with previous reanalyses have been reported (e.g., Betts et al. 2019;
 223 Johannsen et al. 2019). Crowhurst et al. (2021) evaluate a reanalysis production, ERA5-Land, that
 224 is closely related to the ERA5 reanalysis. In a comparison with the LandFlux-EVAL dataset
 225 (Mueller et al. 2013), they find that ERA5-Land slightly overestimate the seasonal cycle of
 226 evaporation by less than 1 mm/day.

227 Using precipitation and evapotranspiration values from ERA5 allows us to use reanalysis
 228 values consistently in the atmospheric moisture budget calculation. This calculation is used to
 229 quantify the roles of evapotranspiration and the vertically-integrated moisture flux convergence in
 230 supporting rainfall in different seasons and regions, and to understand relationships with the larger-
 231 scale atmospheric circulation. For a climatology, assuming there is no accumulation of water
 232 vapor, conservation of water mass in an atmospheric column requires that

$$233 \quad P = E - \frac{1}{g \rho_w} \int_{p_s}^0 [\nabla \cdot (\vec{q})]_{\perp} \, , \quad (1)$$

234 where P is precipitation, E is evapotranspiration, ρ_w is the density of water vapor, q is specific
 235 humidity, and \vec{v} is the 3-dimentional wind velocity. E is often interpreted as a “recycling” of
 236 moisture from the land surface. The second term on the right-hand-side of Eq. 1 is the vertically-
 237 integrated moisture flux convergence, M , which can be further decomposed into the sum of the
 238 vertically-integrated horizontal moisture convergence (C), the vertically-integrated horizontal
 239 moisture advection (A), and the orographic uplift (O) terms as follows:

$$240 \quad C = - \frac{1}{g \rho_w} \int_{p_s}^0 [q \nabla \cdot \vec{v}]_{\perp} \, , \quad (2)$$

$$A = -\frac{1}{g\rho_W} \int_{p_S}^0 \left[\vec{v} \cdot \vec{v} - v_{\perp}^2 \right] d\tau , \quad (3)$$

242 and

$$O = -\frac{1}{g\rho_w} (q\omega)_s. \quad (4)$$

244 C captures support of a precipitation field by wind convergence in the moist environment. The
245 advection term, A , measures contributions when the wind transports moisture in the presence of
246 specific humidity gradients. O captures the effects of orographic uplift. Defining the product of
247 the specific humidity and vertical p-velocity at the surface in Eq. 4 is problematic because of their
248 typical correlation on time scales of seconds and uncertainty in defining the surface vertical
249 velocity, so O is calculated as a residual and collects numerical error due to the necessity of
250 expressing the vertical integrals in Eqs. 2 and 3 as discrete sums and using finite differencing to
251 express derivatives.

252

253 *4. Results*

254 a. Evaluation of ERA5 precipitation

255 Caution is appropriate when using precipitation fields from reanalyses because rainfall
256 values are not assimilated. In this case, we are motivated to use the ERA5 reanalysis precipitation
257 fields in the moisture budget analysis (Eqs. 1 - 4) for internal consistency. We carefully compare
258 the precipitation climatology from ERA5 with observational datasets before proceeding with the
259 analysis.

260 Figure 2 shows daily precipitation values averaged from 10°E-30°E over three latitudinal
 261 ranges, namely, 0°-5°N (Fig. 2a), 5°S-0° (Fig. 2b), and 5°S-5°N (Fig. 2c) in the ERA5 reanalysis
 262 (red line) and seven observed climatologies (see section 3). In the 0°-5°N latitude band (Fig. 2a),

263 precipitation maxima in April and October are separated by a boreal summer period in which
264 rainfall rates are maintained above 4 mm/day. There is a single drier period in boreal winter when
265 rainfall rates are 1-2 mm/day, and highest rainfall rates occur in October.

266 Rainfall seasonality in the 5°S-0° latitude band (Fig. 2b) is similar, with a single dry period
267 in austral winter and a long rainy season with two peaks. As in the 0°-5°N latitude band (Fig. 2a),
268 highest rainfall rates are in boreal fall, but in November not October as in the Northern
269 Hemisphere.

270 As a point of comparison with other studies we also include an average from 5°S to 5°N in
271 Fig. 2c. However, choosing this averaging region gives the mistaken impression that Congo Basin
272 rainfall is characteristically bimodal. It is not, with the possible exception of a narrow region along
273 the equator, depending on how one defines the term “bimodal”. (see section 2). The spurious
274 bimodal pattern arises when the averaging regional spans the equator.

275 Differences among the observational datasets are about 1 mm/day or less, and precipitation
276 averages in the ERA5 climatology are similar to the observational datasets. The greatest difference
277 occurs in January, when ERA5 precipitation is about 1 mm/day higher than observed. ERA5
278 rainfall is also slightly (less than 1 mm/day) outside the observed range in August and September
279 in the Southern Hemisphere Congo Basin. Overall, however, the areal averages suggest that the
280 ERA5 reanalysis captures the seasonality and magnitude of Congo Basin precipitation well.

281 Four months with maximum and minimum rainfall according to Fig. 1 – January, April,
282 July, and October - are chosen for a regional comparison of the ERA5 precipitation with various
283 observational datasets, shown in Figures 3 and 4. In January, small-scale precipitation maxima
284 form along the equatorial Atlantic coast and the Rift Valley foothills, with a continental-scale
285 precipitation maximum south of 5°S (Fig. 3a). Precipitation rates are fairly uniform at 4-5 mm/day

286 from 7°S to 2°S, with strong meridional gradients and precipitation reductions from 2°S to 5°N.
287 January rainfall rates are very low north of 5°N in boreal winter.

288 The equatorial maxima in the east and west remain in April (Fig. 3b), and there is a broad
289 region between them from about 8°S to 5°N with uniform rainfall rates of 5 mm/day. Note the
290 hemispheric asymmetry in the location of the regions of strong meridional precipitation gradients
291 to the north and south of this region; the region of uniform precipitation extends farther into the
292 Southern Hemisphere than into the Northern Hemisphere.

293 In the July precipitation distribution (Fig. 3c), a pronounced meridional precipitation
294 gradient is located near the equator, with opposite sign to January's gradient. The precipitation
295 maximum is 5°-10° off the equator and located west of 20°E along the Guinean coast and Cameroon
296 highlands, in contrast to January (Fig. 3a) when the precipitation maximum is farther off the
297 equator (largely outside of the analysis region) and more widespread.

298 Rainfall rates in October (Fig. 3d) are greater than in April (Fig. 3b) throughout the Congo
299 Basin, and the region of uniform rainfall extends farther north and south. The enhancements along
300 the Atlantic coast and the eastern topography are also stronger.

301 In the remaining figure panels of Fig. 3, and those of Fig. 4, the distinguishing features of
302 the seasonally-varying precipitation field as represented in ERA5 (Fig. 3a – d) are replicated. There
303 are certainly some variations among the datasets, but this would be expected with any set of
304 observed precipitation climatologies. We conclude that the ERA5 reanalysis climatology produces
305 a good representation of the Congo Basin precipitation distribution both regionally and seasonally,
306 sufficient for use in the moisture budget analysis.

307

308 *b. Seasonal cycle of precipitation: Roles of evapotranspiration and atmospheric moisture*
309 *convergence*

310 To gain a first-order quantitative understanding of the relative importance of
311 evapotranspiration and atmospheric moisture convergence in supporting rainfall throughout the
312 annual cycle, we average from 10°E to 30°E in swaths that are 5° of latitude wide (10°S-5°S, 5°S-
313 0°, 0°-5°N, and 5°N-10°N).

314 Figures 5a-e display the seasonal cycles of precipitation (P ; blue lines) and
315 evapotranspiration (E ; red lines) from the ERA5 climatology averaged over various latitudinal
316 ranges. When $P > E$ the vertically-integrated moisture flux convergence is positive and when
317 $P < E$ it is negative and there is moisture divergence in the atmospheric column (Eq. 1). These
318 times are indicated by C and D , respectively, in Figs. 5a-d. Green dashed lines in Figs. 5a-d are
319 skin temperature.

320 In the northern Congo Basin (5°N-10°N, Fig. 4a) there is a single rainy season. Precipitation
321 exceeds 3 mm/day from April through October and peaks at 7.8 mm/day in August. There is very
322 little precipitation in December, January, and February. Evapotranspiration rates are more constant
323 than precipitation rates, ranging from 1.6 mm/day in January to 3.8 mm/day in September and
324 October. The atmosphere converges moisture into this latitude band from April through October,
325 but in November, December, and January moisture diverges out of the region. The seasonal cycle
326 of evapotranspiration is in phase with precipitation but out of phase with surface temperature, with
327 warmest temperatures during the dry season.

328 There is also a single rainy season in the 0°-5° latitude band (see Figure 2a), but with two
329 maxima (Fig. 5b). Evapotranspiration and surface temperature are quite constant throughout the
330 year. Atmospheric moisture convergence prevails except during the dry season in December and

331 January, so some of the water that evaporates from the surface is carried out of the region during
332 boreal winter.

333 The moisture balance is similar in the 5°S-0° averaging band (Fig. 5c), with a shift in
334 seasons. Evapotranspiration and surface temperature do not vary much through the year. Moisture
335 converges in the atmospheric column during the long wet season and diverges during the short
336 austral winter dry season.

337 In the 10°S-5°S band (Fig. 5d), low rainfall prevails from May through much of August,
338 and the atmosphere diverges moisture out of the region from mid-April until September. Similar
339 to the 5°N-10°N latitude band (Fig. 5a), there is a single rainy season with precipitation supported
340 about equally by evapotranspiration and atmospheric moisture convergence.

341 Precipitation and evapotranspiration time series averaged over the entire analysis region
342 (10°S-10°N; solid lines) and a central Congo Basin region (5°S-5°N; dashed lines) are shown in
343 Fig. 5e. These are averaging regions often used in the literature and, as discussed above, lead to
344 the false conclusion that the Congo Basin rainfall is bimodal. In addition, using these averaging
345 regions that span the equator suggests that atmospheric moisture divergence never occurs, since P
346 $> E$ at all times in this averages. As seen in Figs. 5a-d, this is not a correct conclusion because few,
347 if any, locations experience bimodality in rainfall.

348 To further examine the regionality of the hydrodynamics of Congo Basin rainfall, Figure
349 6 displays maps of precipitation, evapotranspiration, and the vertically-integrated moisture flux
350 convergence for the four months representing high and low precipitation rates, namely, January,
351 April, July, and October.

352 In January, rainfall maxima occur along the equatorial Atlantic coast, the Rift Valley
353 topography, and the southern edge of the domain (Fig. 6a). In contrast, the evapotranspiration

354 maximum is in the center of the Congo Basin on the equator (Fig. 6b); the regional precipitation
355 maxima are off the equator due to atmospheric moisture convergence (Fig. 6c). In the winter
356 hemisphere, low rainfall rates are related to large-scale atmospheric moisture divergence, while
357 the negative meridional gradient between the equator and 10°N is associated with the
358 evapotranspiration gradient. Precipitation enhancements in the far east and west of the analysis
359 domain are associated with atmospheric moisture convergence.

360 In April, precipitation maxima along the equatorial Atlantic coast and the Rift valley on
361 the edge of the analysis domain persist, and the rest of the Congo Basin receives relatively uniform
362 rainfall from 8°S to 6°N (Fig. 6d). Evapotranspiration (Fig. 6e) is a little stronger than in January,
363 but still centered on the equator. The atmospheric moisture convergence field closely resembles
364 the precipitation distribution (Fig. 6f).

365 The moisture budget in July (Figs. 6g-i) is similar to that in January (Figs. 6a-c) reflected
366 across the equator. However, the Atlantic coast maximum near 2°S in January is replaced by a
367 maximum north of the Cameroon Highlands near 6°N and the precipitation enhancement in the
368 east is smaller. Rainfall rates in the tropical Northern Hemisphere (0° to 5°N) in July are about 1
369 mm/day less than in the tropical Southern Hemisphere (0° to 5°S) in January because
370 evapotranspiration rates are lower (Fig. 6h). The pattern of atmospheric moisture divergence in the
371 winter hemisphere with convergence in the summer hemisphere reoccurs (Fig. 6i).

372 October rainfall (Fig. 6j) is similar in distribution to April rainfall (Fig. 6d) but rainfall
373 rates are higher because the atmospheric moisture convergence is greater; evapotranspiration rates
374 are similar in April and October (see also Figs. 5b and c)

375 Overall, Figs. 5 and 6 show that while evapotranspiration (water recycling) provides an
376 important source of moisture for precipitation throughout the year in the Congo Basin, it is not

377 primarily responsible for the seasonality of rainfall; seasonality is determined largely by the
378 atmospheric hydrodynamics. During the solstitial seasons there is column moisture divergence in
379 the winter hemisphere ($E > P$) and convergence ($P > E$) in the summer hemisphere. Depending
380 on latitude, evapotranspiration exceeds precipitation by more than 50% in the winter hemisphere
381 during the solstitial months. During the equinoctial months, precipitation exceeds
382 evapotranspiration by up to 70%.

383 In the following section, the vertically-integrated moisture convergence flux is
384 decomposed to understand the circulation features and specific humidity distributions that
385 determine the seasonality of Congo Basin rainfall. Since there are similarities between the
386 equinoctial seasons, they are investigated together in the following section. Analysis of the
387 hydrodynamics of the solstitial seasons follows.

388
389 *c. Equinoctial seasons*

390 Figures 7a-c display the vertically-integrated convergence (C ; Eq. 2), advection (A ; Eq. 3),
391 and orographic (O ; Eq. 4) components of the vertically-integrated moisture flux convergence for
392 the April climatology. The largest overall contribution to moisture flux convergence in the
393 atmospheric column is from the convergence term (Fig. 7a), which exhibits some small-scale
394 waviness due to finite differencing. An annulus pattern emerges with stronger values of C on the
395 perimeter of the central Congo Basin. The vertically-integrated advection term (Fig. 7b) generally
396 supports moisture flux convergence in the central Congo Basin, adding to the C term, and it
397 opposes the C term in the perimeter region except in the Northern Hemisphere. However, the A
398 term is weaker than the C term throughout the region.

399 The O term is primarily negative, opposing the C term in the Northern and Southern
400 Hemisphere perimeter regions. Since large values of O occur away from the region's topographic

401 features (Fig. 1a), we interpret it as primarily numerical error due to finite differencing and the
402 monthly sampling of variables used to calculate the nonlinear C and A terms (Eqs. 2 and 3). In
403 particular, for the April case, O is large and negative in opposition to the C term (Fig. 7a) from
404 5°N-10°N and 5°S-10°S, capturing in part numerical error in the divergence calculation (Eq. 2).
405 Physical interpretation of this term is, therefore, limited.

406 In October (Figs. 7d-f), the C term is again dominant. Positive values in the perimeter
407 region are similar to those for April (Fig. 7a), while values are larger in the central Congo Basin
408 region. The advection term (Fig. 7e) provides no support for rainfall in the central region. The
409 orographic term (Fig. 7f) is also weaker than in April (Fig. 7c) in most of the basin, but strong and
410 positive on the eastern and western edges of the analysis region. These figures show that the higher
411 rainfall rates of the boreal fall season compared with boreal spring (Figs. 2-4) are primarily
412 associated with the convergence term.

413 To relate the vertically-integrated moisture budget components with the atmospheric
414 hydrodynamics, the core expressions of the vertically-integrated C and A terms on individual levels
415 ($-q\nabla \cdot \vec{v}$ and $\vec{v} \cdot \vec{v}$, respectively) are examined. The 900 hPa and 750 hPa levels are chosen as
416 representative.

417 April values of the convergence term at 900 hPa are shown in Figure 8a along with moisture
418 transport vectors (\vec{q}) to aid interpretation. Positive values of the C term in the perimeter region
419 occur near the surface (900-800 hPa) with the exception of the far east (30°E) where the topography
420 rises above 850 hPa. At and below 900 hPa, $-q\nabla \cdot \vec{v}$ is negative in the central Congo Basin, in
421 contrast to the vertically-integrated C term which is positive (Fig. 7a). The vectors indicate that
422 the strong convergence at 5°N-10°N is paired with the divergence in the central Congo Basin as
423 the meridional moisture transport increases with latitude from 5°S to 5°N. Moisture convergence

424 in the west ($\sim 15^{\circ}\text{E}$) is associated with moisture divergence along the Atlantic coast, and in the
425 south (5°S - 8°S) with southeasterly flow.

426 Positive moisture convergence over the central Congo Basin is present in a deep layer from
427 800 hPa to 500 hPa, represented by the 750 hPa level in Fig. 8b. This convergence overlies low-
428 level divergence (Fig. 8a) and is a primary support for rainfall from about 7°S to 8°N across the
429 breadth of the Congo Basin. At this level the flow is easterly close to the equator, with
430 northeasterlies north of about 5°N and southeasterlies south of 5°S , so the positive values of
431 moisture convergence are associated with meridional convergence.

432 Low-level convergence terms and moisture transport vectors in October (Fig. 8c) differ
433 from those in April (Fig. 8a). Moisture is transported eastward across the central Congo Basin
434 where it converges near the topography in the far eastern Congo Basin. Areas of low-level moisture
435 divergence and convergence are scattered over the central basin; a counterpart to the low-level
436 meridional divergence seen in April (Fig. 8a) does not occur. These differences in the low-level
437 moisture convergence and transport are a primary reason for stronger precipitation in October than
438 April.

439 At higher levels, moisture transport in October (Fig. 8d) is similar to April (Fig. 8b).
440 Meridional convergence in the austral spring Southern Hemisphere is weaker than that in the
441 boreal spring Northern Hemisphere at 750 hPa, but stronger at 600-700 hPa (not shown).

442 The advection terms evaluated on individual levels are small (not shown). They exceed 1
443 $\times 10^{-3} \text{ s}^{-1}$ only locally along the Rift Valley topography, primarily outside of the analysis domain.
444 This indicates that moisture gradients do not play an important role in the hydrodynamics of Congo
445 Basin rainfall during spring and fall; specific humidity values are relatively uniform across the

446 analysis region. For example at 850 hPa, specific humidity values range from $13 - 15 \times 10^{-3}$ kg-
447 $\text{H}_2\text{O}/\text{kg-air}$ across the analysis domain during the equinoctial seasons with no strong gradients.

448 To relate the moisture budget analysis to the large-scale circulation, the atmospheric
449 dynamics is examined on a larger domain. Figure 9a shows 900 hPa winds and geopotential heights
450 from the ERA5 April climatology. The low-level pattern of moisture convergence between 6°N
451 and 10°N with moisture divergence to the south over the central Congo Basin (Fig. 8a) is associated
452 with a region of low geopotential heights centered near 12°N over the central and eastern Sahel.
453 This is the thermal low (the Saharan low) that develops over northern Africa each spring. It
454 strengthens during boreal spring, moving northward and expanding westward. In April, the low-
455 latitude, low-level winds flow down the geopotential height gradient causing divergence over the
456 central Congo Basin from 5°S to 7°N , with convergence to the north. Note that the westerly wind
457 on the west coast near the equator is part of this down-gradient flow; it is not connected with the
458 South Atlantic high which is far from the region in April, centered west of the Greenwich meridian
459 at 30°S (see Fig. 1 in Sun et al. 2017).

460 Consistent with Figs. 8a and c, the low-level dynamics is different in October compared
461 with April. Figures 9b and c show the 900 hPa and 850 hPa winds and geopotential heights for
462 October; the 850 hPa level is included to clear the southern Africa topography. The thermal low
463 that is analogous to the Saharan low - the Angola low – is the closed low near 15°S at 850 hPa
464 (Fig. 9c). It is weaker and smaller than the Saharan low because of the smaller zonal width and
465 elevated-plateau topography of the continent in the Southern Hemisphere. It is associated with
466 cyclonic circulation south of the equator at 900 hPa (Fig. 9b), but it does not lead to moisture
467 divergence over the central Congo Basin in sharp contrast to April. Again, westerlies over the west

468 coast are related to continental geopotential height gradients and they are not associated with the
469 South Atlantic high.

470 At 800 hPa and above, represented by the 750 hPa level for April and October in Figures
471 10a and b, respectively, the meridional convergence that supports the deep layer of moisture
472 convergence is evident. In the Northern Hemisphere tropics during both April and October,
473 northeasterly flow originates in the subtropics over land and, in April only, the northern Indian
474 Ocean. In April, the flow north of 10°N over the Sahel is northerly/northeasterly along the eastern
475 flank of the developing Saharan high. In October the inflow is from the northeast in association
476 with both the Saharan and Arabian highs. Winds are close to geostrophic north of about 12°N and
477 develop a down-gradient orientation closer to the equator, supplying the meridional convergence
478 that supports central Congo Basin rainfall in boreal spring.

479 In the Southern Hemisphere, during both boreal and austral spring (Figs. 10a and b),
480 southeasterly flow originates over the southwestern tropical Indian Ocean. South of 10°S, the flow
481 is mostly geostrophic with lower geopotential heights over the equatorial Indian Ocean to the
482 northeast and higher continental geopotential heights to the southwest. As the southeasterly flow
483 crosses onto the African continent at 5°S-10°S, it develops an ageostrophic component directed
484 into the equatorial trough and, as a result, meridional moisture convergence.

485

486 *d. Solstitial seasons*

487 Rainfall distributions in the central Congo Basin (5°S to 5°N) are characterized by strong
488 meridional gradients during the solstitial seasons (Figures 3 and 4), with higher rainfall rates in the
489 summer hemisphere and lower rates in the winter hemisphere. In the vertical integral, moisture
490 convergence in the atmospheric column is confined primarily to the summer hemisphere with
491 divergence in the winter hemisphere (Figs. 6c and i). The evapotranspiration maximum remains

492 centered on the equator but drops off sharply poleward of 5° latitude in the winter hemisphere
493 (Figs. 6b and h).

494 Figure 11 decomposes the vertically-integrated moisture flux convergence into
495 convergence (C), advection (A), and orographic/residual (O) terms (Eq. 2-4). In January, the C
496 term is largely positive south of about 7°N, with negative values to the north (Fig. 11a). High
497 values of the vertically-integrated moisture convergence (and rainfall) over the western equatorial
498 Congo Basin and west of the Rift Valley topography are associated with this term. The A term
499 (Fig. 11b) is strong and negative from 2°N to 8°N. In the summer hemisphere, the A term is small,
500 and this difference explains why winter is dry while relatively high precipitation levels are
501 maintained through the summer season (see Figs. 2-5). The O term (Fig. 10c) contributes weak
502 moisture divergence in the central Congo Basin, and essentially cancels the negative values of the
503 convergence term north of 6 °N.

504 The three components of the vertically-integrated moisture convergence in July (Figs. 11d-
505 f) are similar to those in January, but reflected about the equator. The primary difference between
506 January and July is that the advection term is weaker in the Southern Hemisphere in July, and tilts
507 from the southwest to the northeast.

508 Examining the core expression of the C term ($-\nabla \cdot \vec{q}$) at individual levels reveals partial
509 cancellation between lower levels (850 hPa and below) and middle levels (800 hPa-600 hPa) in
510 the winter hemisphere. Figures 12a and b provide examples at 900 hPa and 750 hPa, respectively,
511 for the January climatology, and Figs. 12c and d for July. In January, high positive values at 900
512 hPa centered 5° off the equator in the winter hemisphere are cancelled in the vertical integral by
513 negative values aloft. A similar pattern occurs in July in the winter hemisphere, but centered a few
514 degrees farther poleward. In middle levels, exemplified by the 750 hPa level in Figs. 12b and d,

515 the C term is positive, providing primary support for the positive vertically-integrated moisture
516 convergence (Figs. 11a and d) and precipitation (Figs. 2 and 3) near the equator and into the
517 summer hemisphere. The moisture transport vectors indicate that the negative regions off the
518 equator in the winter hemisphere are coupled with these positive regions.

519 The winter hemisphere regions with a large negative advection term (A) also exhibits
520 vertical structure. Figures 13a and b show $\frac{\partial}{\partial z} \frac{\partial}{\partial z}$ at 900 hPa and 750 hPa in January, respectively.
521 Negative values between 5°N and 10°N at 900 hPa (Fig. 13a) mark a region of dry air advection
522 that is slightly north of the region of low-level moisture convergence (Fig. 12a). However, without
523 compensation aloft (Fig. 13b), this low-level dry air advection contributes to the vertically-
524 integrated moisture divergence in the winter hemisphere (Figs. 6c and 11b). At 750 hPa (Fig. 13b),
525 dry air advection extends from the equator to about 7°N , overlying moist advection at 900 hPa
526 (Fig. 13a) associated with inflow from the west.

527 For July, the 900 hPa advection term (Fig. 13c) indicates that topography plays a role in
528 the southwest-to-northeast tilt of the region of vertically-integrated dry air advection (Fig. 11e).
529 Low-level moist advection from the west near 5°S is associated with westerly moisture transport
530 and, at 750 hPa (Fig. 13d), a large region of dry air advection is associated with the southeasterly
531 moisture transport.

532 January 900-hPa geopotential heights (shaded), specific humidity (contours), and winds
533 (vectors) are plotted in Figure 14a on a larger domain. Note the strong meridional specific humidity
534 gradient at 5°N - 10°N . The northeasterly flow that is associated with a positive moisture
535 convergence term and a negative moisture advection term between 5°N and 10°N (Figs. 12a and
536 13a) originates in the anticyclonic flow about the winter subtropical high over northern Africa.
537 South of about 10°N the wind becomes more ageostrophic and flows into the broad thermal low

538 over the central Congo. With northerly winds ($v < 0$) and a negative meridional specific humidity
539 gradient ($\frac{\partial q}{\partial y} < 0$), $-v \frac{\partial q}{\partial y}$ is negative. The meridional flow is importing dry subtropical air
540 from the Sahara and Sahel, suppressing precipitation from 5°N-10°N in boreal winter (see Figs. 2-
541 4). On the synoptic scale, this mechanism manifests as dry, cold air intrusions (Vizy and Cook
542 2009, 2014).

543 High positive values of the C term in the shallow near-surface layer (Fig. 12a) are also
544 associated with this northerly flow but, as seen in Fig. 12b, the moisture convergence term is
545 negative in the layers immediately above. Figure 14b shows that at 750 hPa, a weaker flow
546 continues southward after rising from the 900 hPa level. There is a band of upward vertical p-
547 velocity between 5°N and 10°N with negative velocities up to 4 Pa/s in magnitude in the 850-750
548 hPa layer (not shown).

549 A similar dynamics occurs in July, but modified due to the southern Africa topography and
550 smaller zonal extent of the continent. Since much of the southern Africa plateau extends above the
551 900 hPa level (see Fig. 14a), low-level geopotential heights (shaded), specific humidity (contours),
552 and winds (vectors) are shown at 850 hPa in Fig. 15. The continental subtropical high is centered
553 at 25°S, farther south than its Northern Hemisphere counterpart (compare with Fig. 14a), and it is
554 weaker and smaller. Nonetheless, a strong positive meridional specific humidity gradient develops
555 over the southern Congo Basin (10°S-5°S) with equatorward dry air advection (Fig. 12c).

556
557 *5. Summary and Conclusions*

558 Clarifying our understanding of current and potential changes in Congo Basin climate, and
559 the consequences for ecosystems, requires that we develop a deeper understanding of the
560 hydrodynamic processes that support regional precipitation and determine its seasonality. This

561 paper contributes to developing that understanding by evaluating the regional column moisture
562 budget in the ERA5 reanalysis. The good accuracy of precipitation distributions produced by the
563 ERA5 reanalysis on climatological time scales (Fig. 2 and 3) provides the opportunity to evaluate
564 the atmospheric column moisture budget in a consistent dataset, in which the atmospheric
565 dynamics and moisture distribution can be related to the precipitation field.

566 An examination of regional precipitation distributions dispels the notion that the Congo
567 Basin can be described as a bimodal rainfall regime. This point was made by the classification
568 studies of Herrmann and Mohr (2011) and Knoben et al. (2018) as well, but the description of
569 Congo Basin rainfall seasonality as bimodal persists in the literature. The mistaken impression of
570 bimodality occurs when inhomogeneous averaging regions that cross the equator are chosen. Even
571 within 5° of latitude of the equator, the only dry season is the winter season which, of course,
572 occurs in different months depending on the hemisphere, so averaging produces a bimodal pattern
573 that is not realized locally. The equinoctial and summer seasons are the wettest, with maxima in
574 spring and fall. Summer rainfall rates are 15% - 40% lower than the equinoctial maxima.

575 The atmospheric column moisture budget analysis (Eq. 1) shows that evapotranspiration is
576 indispensable for providing moisture to the atmospheric column to support precipitation in the
577 Congo Basin, as is typical in tropical forest regimes. However, seasonal variations in
578 evapotranspiration are small and they do not drive precipitation seasonality. In averaging regions
579 that are 5° wide in latitude running longitudinally across the Congo Basin, evapotranspiration rates
580 exceed precipitation rates during the winter season in both hemispheres and the atmosphere
581 diverges moisture out of the overlying column (see Fig. 5). In the equinoctial and summer seasons,
582 precipitation exceeds evapotranspiration by 50% - 225%, depending on season and location, and
583 moisture is converging in the atmospheric column.

584 The atmospheric hydrodynamics determines the seasonality, and much of the regionality,
585 of Congo Basin rainfall. During the equinoctial seasons, precipitation is primarily supported by
586 wind convergence in the moist environment (the *C* term in the column moisture budget, Eq. 2);
587 specific humidity gradients are small so moisture advection (the *A* term in the column moisture
588 budget, Eq. 3) is not effective (Fig. 7). In both boreal and austral spring, a deep layer of
589 convergence extends from 800 hPa to 500 hPa to provide the primary support for rainfall within
590 about 8° of the equator (Figs. 8b and d). During both equinoctial seasons, this convergence is
591 primarily meridional in association with the equinoctial, large-scale geopotential height patterns
592 that place low heights on the equator in the central Congo Basin (Fig. 10).

593 The low-level hydrodynamics is different between the two equinoctial seasons (e.g., April
594 and October; Fig. 8). Moisture divergence in the central Congo Basin (5°S to 5°N) occurs at and
595 below 900 hPa as southerly low-level winds flow down the geopotential height gradient toward
596 the developing Saharan thermal low centered near 12°N in April (Fig. 9). In October, the Southern
597 Hemisphere counterpart – the Angola low – is weaker and less extensive than the Saharan low due
598 to the smaller continental width and the southern Africa topography, so a similar dynamics does
599 not develop. Instead, westerly flow into a broad equatorial trough develops, but the associated
600 convergence is confined to the eastern Congo Basin. Because the low-level moisture divergence
601 does not develop in October, it is the wetter of the two equinoctial rainy seasons in both
602 hemispheres (see Figs. 2 and 5).

603 Similar to the equinoctial seasons, the moisture convergence term dominates the column
604 moisture budget during the summer season in both hemispheres, with convergence in the 850-
605 600hPa layer of southwesterlies in the Northern Hemisphere (e.g., July; Fig. 12d) and
606 northeasterlies in the Southern Hemisphere (January; Fig. 12b). This cross-equatorial flow is the

607 trade winds but modified over the continent, with higher magnitudes and a more meridional
608 orientation, because of high geopotential heights over the winter hemisphere subtropics and lows
609 over the summer hemisphere subtropics (Figs. 14b and 15b). Convergence occurs in the summer
610 hemisphere when this cross-equatorial flow interacts with the cyclonic flow about the thermal
611 lows.

612 Summer and winter rainy seasons are different, with the winter season much drier, because
613 the advection term is large and negative in the winter season (Fig. 13). Anticyclonic flow about
614 the Saharan high becomes ageostrophic south of about 10°N, advecting dry air across a strong
615 negative specific humidity gradient centered near 5°N (Fig. 14). The dynamics is similar in
616 Southern Hemisphere, also with equatorward dry air advection (Fig. 15).

617 The coupling between the subtropical thermal lows over the Africa continent and
618 atmospheric moisture convergence over the Congo Basin was related to a mechanism for Congo
619 Basin drying in Cook et al. (2020). Intensification, changes in seasonality, and/or shifts in the
620 thermal lows in response to increasing greenhouse gas levels will have repercussions for Congo
621 Basin rainfall.

622 In this paper we provide a basic understanding of the hydrodynamics of seasonality and
623 regionality of Congo Basin rainfall. We show that Congo Basin rainfall seasonality and regionality
624 is not locally driven by, for example, evaporation/evapotranspiration and surface temperature
625 variations but by the atmospheric hydrodynamics including important tropical/subtropical
626 interactions over the Africa continent and the Indian Ocean. Studying these fundamental
627 determinants of the precipitation climatology will support process-based studies of variations on
628 all time scales, including those associated with greenhouse gas-induced global warming. It is only

629 through a process-level understanding that confident and useful projections of climate change in
630 the Congo Basin, and the fate of the Congolese tropical forest, can be advanced.

631
632 **Acknowledgements:** Support for this work through NSF Award #1939880 is gratefully
633 acknowledged. We also greatly appreciate the efforts of the ERA5 team at the ECMWF, which
634 made this analysis possible.

635

636 References

637

638 Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts, A. K. and Scipal, K.

639 (2009). A revised hydrology for the ECMWF model: Verification from field site to

640 terrestrial water storage and impact in the Integrated Forecast System. *J. Hydrometeorol.*,

641 10, 623–643.

642 Betts AK, Chan DZ, Desjardins RL (2019) Near-Surface Biases in ERA5 Over the Canadian

643 Prairies. *Frontiers in Environmental Science* 7

644 <https://DOI=10.3389/fenvs.2019.00129>

645 Christensen, J., et al. (2013), Climate phenomena and their relevance for future regional climate

646 change, in *Climate Change 2013: The Physical Science Basis. Contribution of Working*

647 *Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate*

648 *Change*, edited by T. Stocker et al., pp. 1217–1308, Cambridge Univ. Press, Cambridge,

649 U. K., and New York.

650 Cook, K. H., and E. K. Vizy, 2015: Detection and analysis of an amplified warming of the

651 Sahara Desert. *J. Climate*, 28, 6560-6580.

652 Cook KH, Vizy EK (2016) The Congo Basin Walker Circulation: Dynamics and connections to

653 precipitation, *Climate Dynamics*, 47, 1-21. <https://doi.org/10.1007/s00382-015-2864-y>

654 Cook, K. H., and E. K. Vizy, 2019: Contemporary climate change of the African monsoon

655 systems. *Current Climate Change Reports*, 5, 145-159. <https://doi.org/10.1007/s40641-019-00130-1>

657 Cook KH, Liu Y, Vizy EK (2020) Congo Basin drying associated with poleward shifts of
658 African thermal lows. *Climate Dynamics*, **54**, 863-883. <https://doi.org/10.1007/s00382-019-05033-3>

660 Creese A., and R. Washington, 2016: Using qflux to constrain modeled Congo Basin rainfall in
661 the CMIP5 ensemble. *J Geophys Res* **121**, 13415-13442.
662 <https://doi.org/10.1002/2016JD025596>

663 Creese A, Washington, 2018: A process-based assessment of CMIP5 rainfall in the Congo
664 Basin: The September-November rainy season. *J Climate*, **31**: 7417-7439.
665 <https://doi.org/10.1175/JCLI-D-17-0818.1>

666 Crowhurst DM, Dadson SJ, Washington R (2020). Evaluation of evaporation climatology for the
667 Congo Basin wet seasons in 11 global climate models. *Journal of Geophysical Research: Atmospheres*, **125**, e2019JD030619. <https://doi.org/10.1029/2019JD030619>

669 Crowhurst D, Dadson S, Peng J, Washington R (2021) Contrasting controls on Congo Basin
670 evaporation at the two rainfall peaks. *Climate. Dyn.* **56**, 1609-1624.

671 Danso DK, Anquetin S, Diedhiou A, Lavaysse C, Kobea A, Touré NE (2019) Spatio-temporal
672 variability of cloud cover types in West Africa with satellite-based and reanalysis data. *Q J Roy Meteorol Soc* **145**: 3715-3731. <https://doi.org/10.1002/qj.3651>

674 Dargie, G.C., Lawson, I.T., Rayden, T.J., Miles, L., Mitchard, E.T.A., Page, S.E., Bocko, Y. E.,
675 Ifo, S.A., Lewis, S.L. (2019) Congo Basin peatlands: threats and conservation priorities.
676 *Mitig Adapt Strateg Glob Change* **24** (4), 669–686. <https://doi.org/10.1007/s11027-017-9774-8>.

678 Dezfuli, A.K., and S.E. Nicholson, 2013: The relationship of rainfall variability in western
679 equatorial Africa to the tropical oceans and atmospheric circulation. Part II: The boreal
680 autumn. *J Climate*, **26**, 66-84. <https://doi.org/10.1175/JCLI-D-11-00686.1>

681 Dinku T, Funk C, Peterson P, Maidment R, Tadesse T, Gadain H, Ceccato P (2018) Validation
682 of the CHIRPS satellite rainfall estimates over eastern Africa. *Quart. J. Roy. Meteorol.*
683 *Soc.*, **144**, 292-312.

684 Dyer, E.L.E., D.B. Jones, J. Nusbaumer, H. Li, O. Collins, G. Vettoretti, and D. Noone, 2017:
685 Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of
686 moisture. *J Geophys Res* 122, 6882-6898. <https://doi.org/10.1002/2016JD026240>

687 Funk, C., P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, G. Husak, J. Rowland, L.
688 Harrison, A. Hoell, and J. Michaelsen, 2015: The climate hazards infrared precipitation
689 with stations – a new environmental record for monitoring extremes. *Scientific Data*, **2**,
690 150066. <https://doi.org/10.1038/sdata.2015.66>

691 Guan, K., M. Pan, L. Haiban, and co-authors, 2015: Photosynthetic seasonality of global tropical
692 forests constrained by hydroclimate. *Nature Geoscience*, **8**, 284-289.

693 Harrison IJ, Brummett RE, Stiassny MLJ (2016) Congo River Basin. In The Wetland Book,
694 Central African Regional Program for the Environment (USAID).
695 https://doi.org/10.1007/978-94-007-6173-5_92-2

696 Herrmann SM, Mohr KI (2011) A continental-scale classification of rainfall seasonality regimes
697 in Africa based on gridded precipitation and land surface temperature products. *J. Appl.*
698 *Meteorol. And Clim.* **50**, 2504-2513.

699 Hersbach H, Bell B, Berrisford P, Hirahar H, and co-authors (2020) The ERA5 global reanalysis.
700 *Quart. J. Royal Meteorol. Soc.*, **146**, 1999-2049.

701 Howard E, Washington R (2018) Characterizing synoptic expression of the Angolan low. *J*
702 Climate 31: 7147-7165. <https://doi.org/10.1175/JCLI-D-18-0017.1>

703 Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, Y. Hong, E.F.
704 Stocker, D.B. Wolff, 2007: The TRMM multisatellite precipitation analysis (TMPA):
705 quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. *J*
706 *Hydrometeorol.*, **8**, 38–55. <https://doi.org/10.1175/JHM560.1>

707 Huffman, G., D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E.J. Nelkin, S. Sorooshian,
708 J. Tan, and P. Xie, 2018: Algorithm Theoretical Basis Document (ATBD) Version 5.2
709 NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for
710 GPM (IMERG).
711 https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf

712 Johannsen F, Ermida S, Martins JPA, Trigo IF, Nogueira M, Dutra e (2019) Cold Bias of ERA5
713 Summertime Daily Maximum Land Surface Temperature over Iberian Peninsula. *Remote*
714 *Sens.* **11**, 2570. <https://doi.org/10.3390/rs11212570>

715 Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces
716 global precipitation estimates from passive microwave and infrared data at high spatial
717 and temporal resolution. *J. Hydromet.*, **5**, 487-503. [https://doi.org/10.1175/1525-7541\(2004\)005<0487:CAMTPG>2.0.CO;2](https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2)

719 Knoben WJM, Woods RA, Freer JE (2019) Global bimodal precipitation seasonality: A
720 systematic overview. *Int. J. Clim.* **39**, 558-567.

721 Laing, A.G., R.E. Carbone, and V. Levizzani, 2011: Cycles and propagation of deep convection
722 over Equatorial Africa. *Mon Wea Rev*, **139**, 2832-2853.
723 <https://doi.org/10.1175/2011MWR3500.1>

724 Lavaysse C, Flamant C, Janicot S, Parker DJ, LaforeJP, Sultan B, Pelon J (2009) Seasonal
725 evolution of the West African heat low: A climatological perspective. *Climate. Dyn.* **33**,
726 313-330. <https://doi.org/10.1007/s00382-009-0553-4>

727 Longandjo GT, Rouault M (2020) On the structure of the regional-scale circulation over central
728 Africa: Seasonal evolution, variability, and mechanisms. *J. Climate*, **33**, 145 – 162.
729 <https://doi.org/10.1175/JCLI-D-19-0176.s1>.

730 Mahli, Y., and J. Wright, 2004: Spatial patterns and recent trends in the climate of tropical
731 rainforest regions. *Phil. Trans. R. Soc. Lond. B*, **359**, 311-329.

732 Maidment, R. I., R.P. Allan, and E. Black, 2015. Recent observed and simulated changes in
733 precipitation over Africa. *Geophysical Research Letters*, **42**, 8155-8164.

734 Maidment, R.I., D. Grimes, E. Black, E. Tarnavsky, M. Young, H. Greatrex, R.P. Allan, T.
735 Stein, E. Nkonde, S. Senkunda and E. Misael Uribe Alcántara, 2017: A new, long-term
736 daily satellite-based rainfall dataset for operational monitoring in Africa, *Scientific
737 Data*, **4**, 170063. <https://doi.org/10.1038/sdata.2017.63>

738 Mueller B, Hirschi M, Jimenez C et al (2013) Benchmark products for land evapotranspiration:
739 landFlux-EVAL multi-data set synthesis. *Hydrol Earth Syst Sci* 17:3707–3720.
740 <https://doi.org/10.5194/hess-17-3707-2013>

741 Nicholson SE, Grist JP (2003) The seasonal evolution of the atmospheric circulation over West
742 Africa and equatorial Africa. *J. Climate*, **16**, 1013-1030.

743 Nicholson SE, Klotter D, Dezfuli AK, Zhou L (2018) New rainfall datasets for the Congo basin
744 and surrounding regions, *J. Hydrometeor.*, **19**, 1379-1396.

745 Novella NS, Thiaw WM (2013) African rainfall climatology version 2 for famine early warning
746 systems. *J. Appl. Meterol. Climatology*, **52**, 588-606.

747 Pokam, W. M., L. A. T. Djotang, and F. K. Mkankam, 2012: Atmospheric water vapor transport
748 and recycling in equatorial Central Africa through NCEP/NCAR reanalysis data. *Climate
749 Dyn.*, 38, 1715–1729, <https://doi.org/10.1007/s00382-011-1242-7>

750 Pokam, WM, Bain CL, Chadwick RS, Graham R, Sonwa DJ, Kamga FM (2014) Identification of
751 processes driving low level westerlies in west equatorial Africa. *J. Climate*, **27**, 4245–
752 4262, <https://doi.org/10.1175/JCLI-D-13-00490.1>

753 Schwendike JP, Govekar P, Reeder MJ, Wardle R, Berry GJ, Jakob C (2014) Local partitioning
754 of the overturning circulation in the tropics and the connection to the Hadley and Walker
755 circulations, *J. Geophys. Res. Atmos.*, **119**, 1322–1339,
756 <https://doi:10.1002/2013JD020742>.

757 Shapiro AC, Grantham HS, Aguilar-Amuchastegui N, Murray NJ, Gond V, Rickenbach O
758 (2021) Forest condition in the Congo Basin for the assessment of ecosystem conservation
759 status. *Ecological Indicators* 122 (107268) <https://doi.org/10.1016/j.ecolind.2020.107268>

760 Sori, R, Nieto R, Vicente-Serrano SM, Drumond A, Gimeno L (2017) A Lagrangian perspective
761 of the hydrological cycle in the Congo River basin. *Earth Syst. Dyn.*, **8**, 653-675.

762 Sorooshian, S., K.-L. Hsu, X. Gao, H.V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation
763 of PERSIANN system satellite-based estimates of tropical rainfall. *Bull Amer Meteorol
764 Soc.*, **81**, 2035-2046. [https://doi.org/10.1175/1520-0477\(2000\)081<2035:EOPSSE>2.3.CO;2](https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2)

765 Sun, X.M., Cook, K. H., and E. K. Vizy, 2017: The South Atlantic subtropical high: Climatology
766 and interannual variability. *Climate Dynamics*, 30, 3279-3296.
767 <https://doi.org/10.1175/JCLI-D-16-0705.1>

768 Tamoffo AT, Dosio A, Vondou DA, Sonkoue D (2020) Process-based analysis of the added
769 value of dynamical downscaling over central Africa. *Geophys. Res. Lett.*, 47.

770 <https://doi.org/10.1029/2020GL089702>

771 Van der Ent RJ, Savenie HHG (2013) Oceanic sources of continental precipitation and the
772 correlation with sea surface temperature. *Water. Resource Res.*, **49**, 3993-4004.

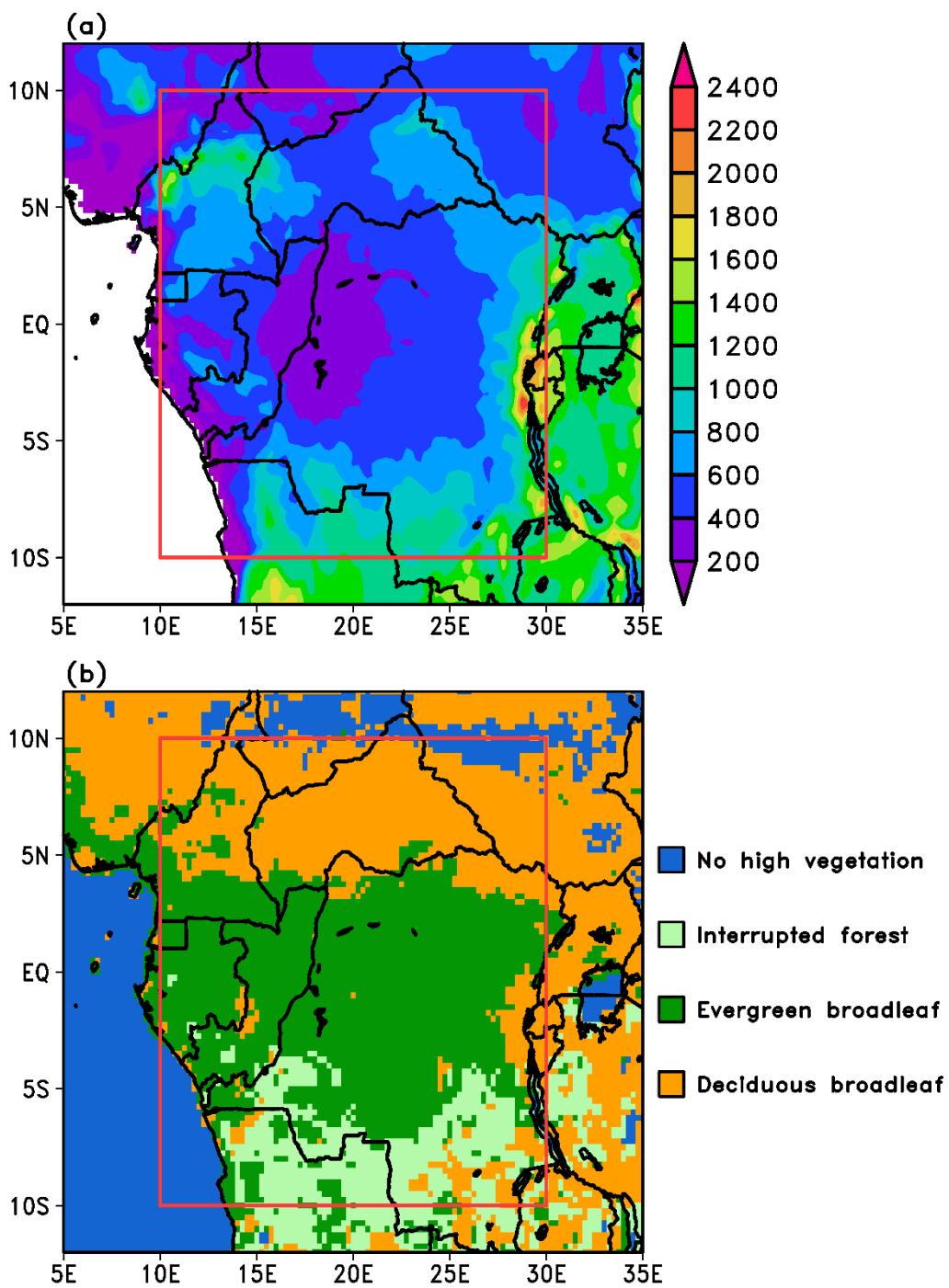
773 Viterbo P, Beljaars ACM (1995). An improved land surface parametrization scheme in the
774 ECMWF model and its validation. ECMWF Tech. Report No. 75, Research Department.

775 Vizy EK, Cook KH (2009) A mechanism for African monsoon breaks: Mediterranean cold air
776 surges. *J. Geophys. Res.*, 114, D01104, doi:10.1029/2008JD010654.

777 Vizy EK, Cook KH (2014) Impact of cold air surges on rainfall variability in the Sahel and wet
778 African tropics: a multi-scale analysis. *Clim. Dyn.*, 43, 1057-1081.

779 Vizy EK, Cook KH (2017) Seasonality of the observed amplified Sahara warming trend and
780 implications for Sahel rainfall. *J. Climate*, **30**, 3073-3094

781 Vizy EK, Cook KH (2019) Observed relationship between the Turkana low-level jet and boreal
782 summer convection. *Clim. Dyn.* 53: 4037 – 4058. <https://doi.org/10.1007/s00382-019-04769-2>

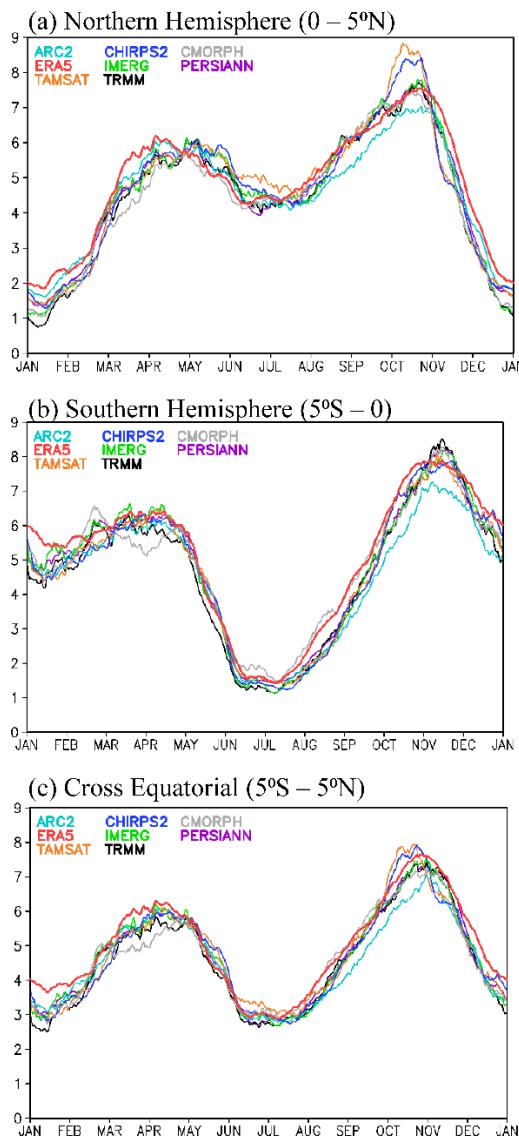

783

784 Washington, R., R. James, H. Pearce, W.M. Pokam, and W. Moufouma-Okia, 2013: Congo
785 rainfall climatology: can we believe the climate models? *Philosophical Transactions of
786 the Royal Society B*, **368**: 20120296.

787 Zhao S, Cook KH (2020) Influence of Walker circulations on East African rainfall. *Climate
788 Dynamics*, **56**, 2127-2147. <https://doi.org/10.1007/s00382-020-05579-7>

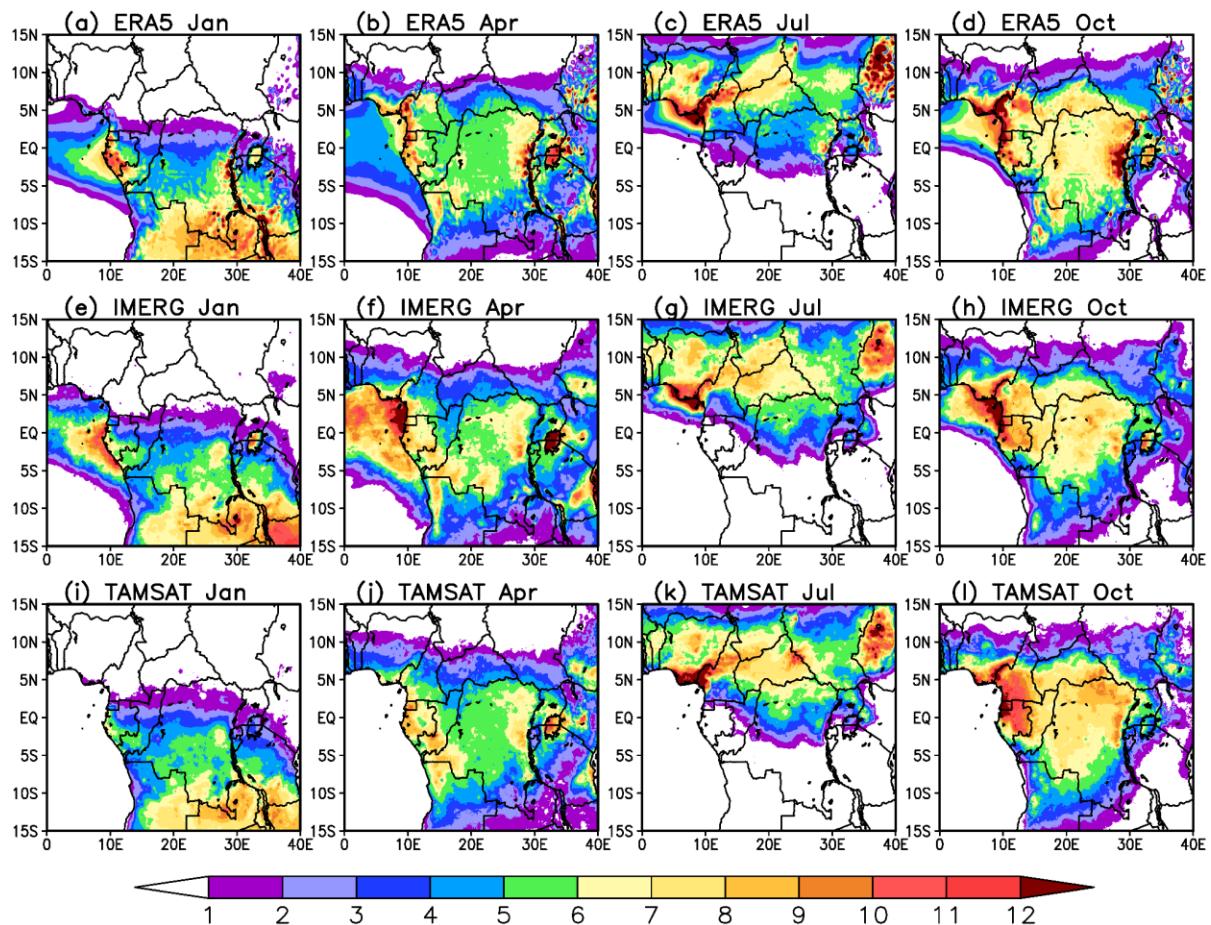
789 Zhou, L.M., Y.H. Tian, R.B. Myneni, P. Ciais, S. Saatchi, Y.Y. Liu, S.L. Piao, H.S. Chan, E.F.
790 Vermote, C.H. Song, et al., 2014: Widespead decline of Congo rainforest greenness in the
791 past decade. *Nature*, **509**, 86-89.
792
793
794

795

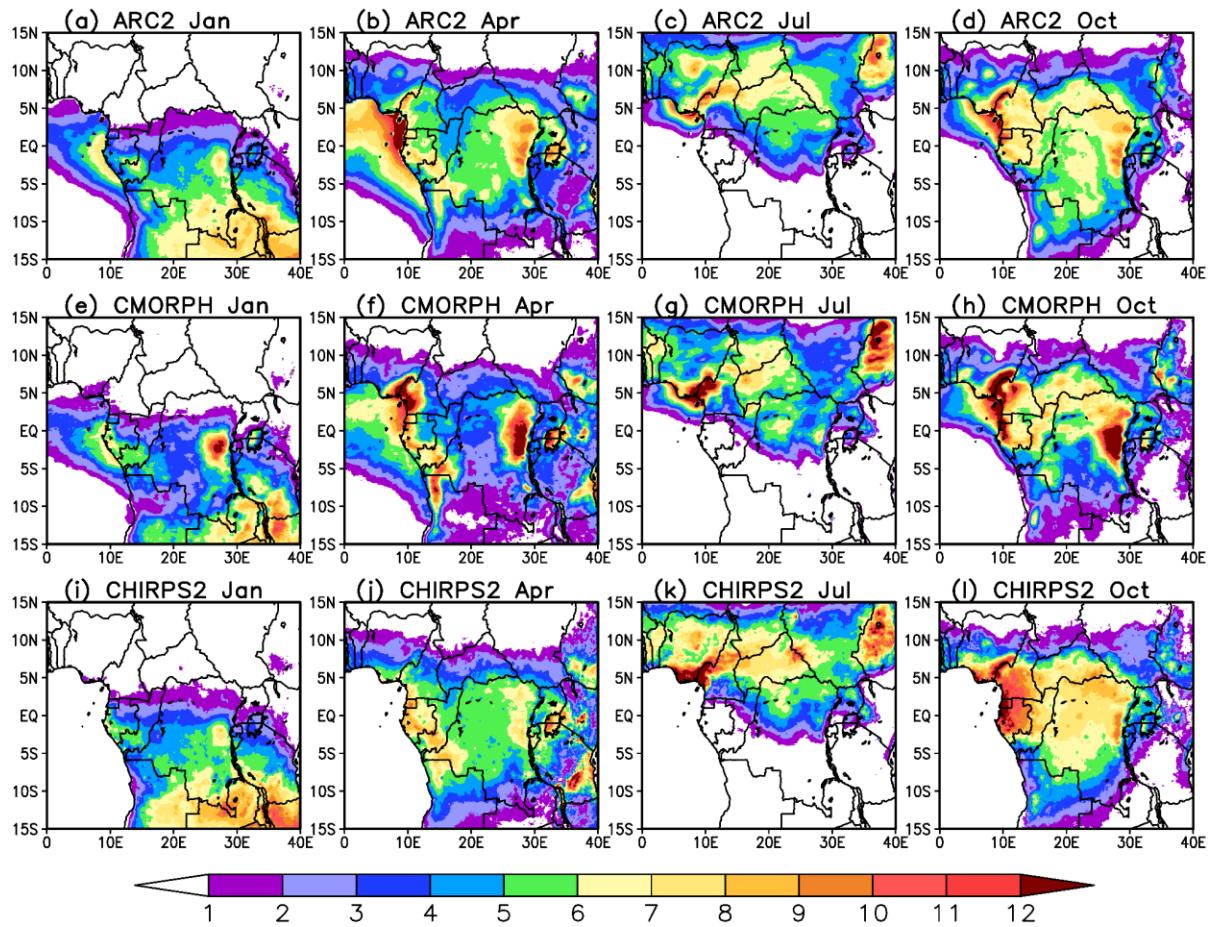

796

797

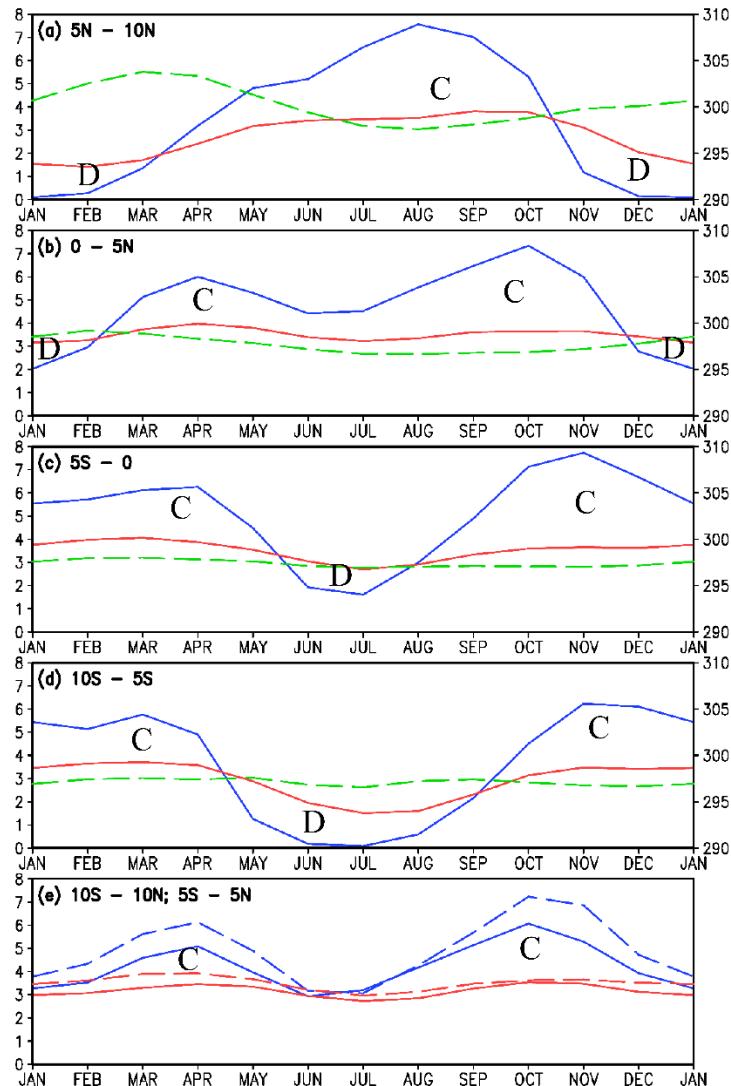
798 Figure 1. (a) Topography of equatorial Africa (shaded; m). (b) Specification of the high vegetation
 799 type in the ERA5 reanalysis. Red boxes in (a) and (b) denote the primary analysis region.


800

801

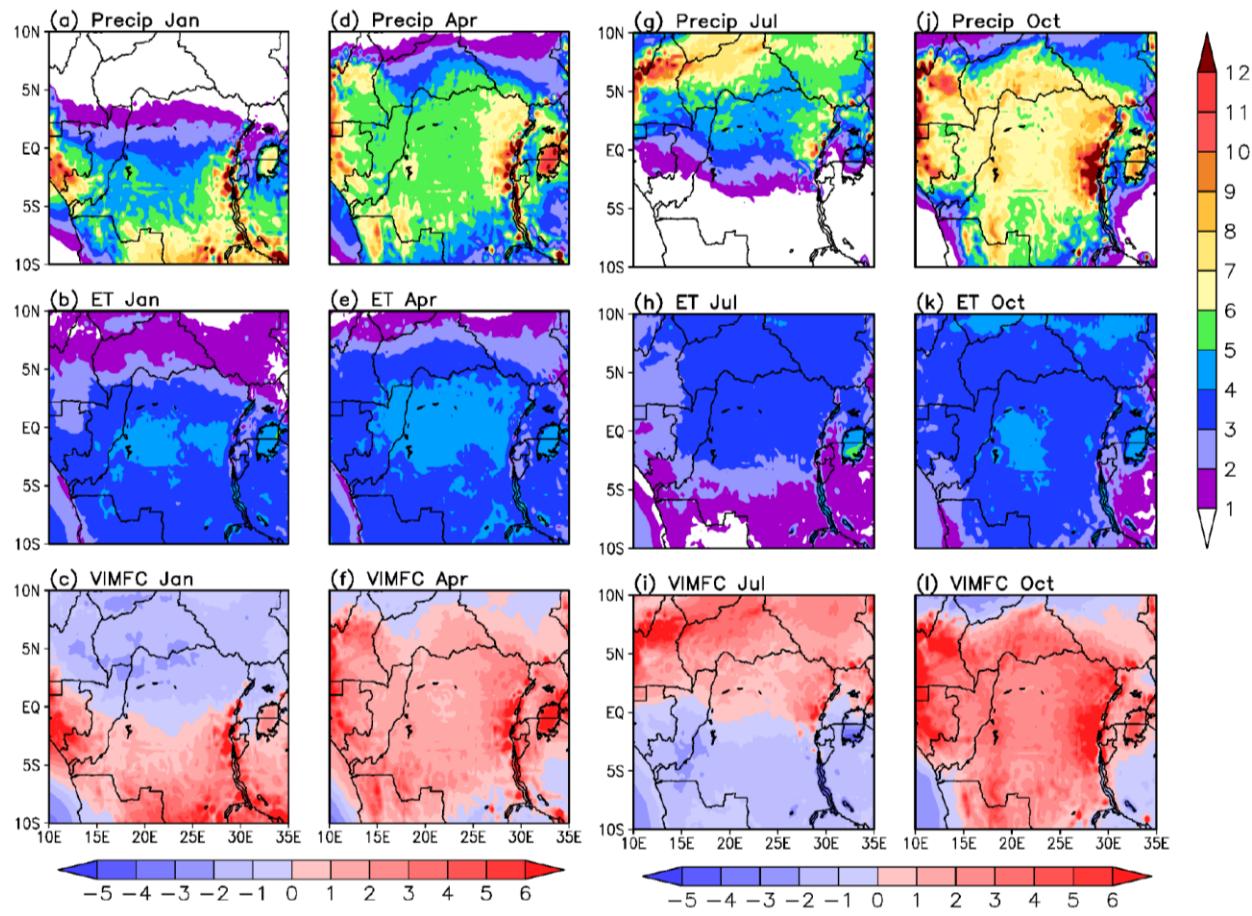

805 Figure 2. Daily precipitation climatology (mm/day) for various datasets and the ERA5 reanalysis
 806 averaged from 10°E-30°E and (a) 0°-5°N, (b) 5°S-0°, and (c) 5°S-5°N. A 12-day running mean
 807 smoothing has been applied

810
811
812

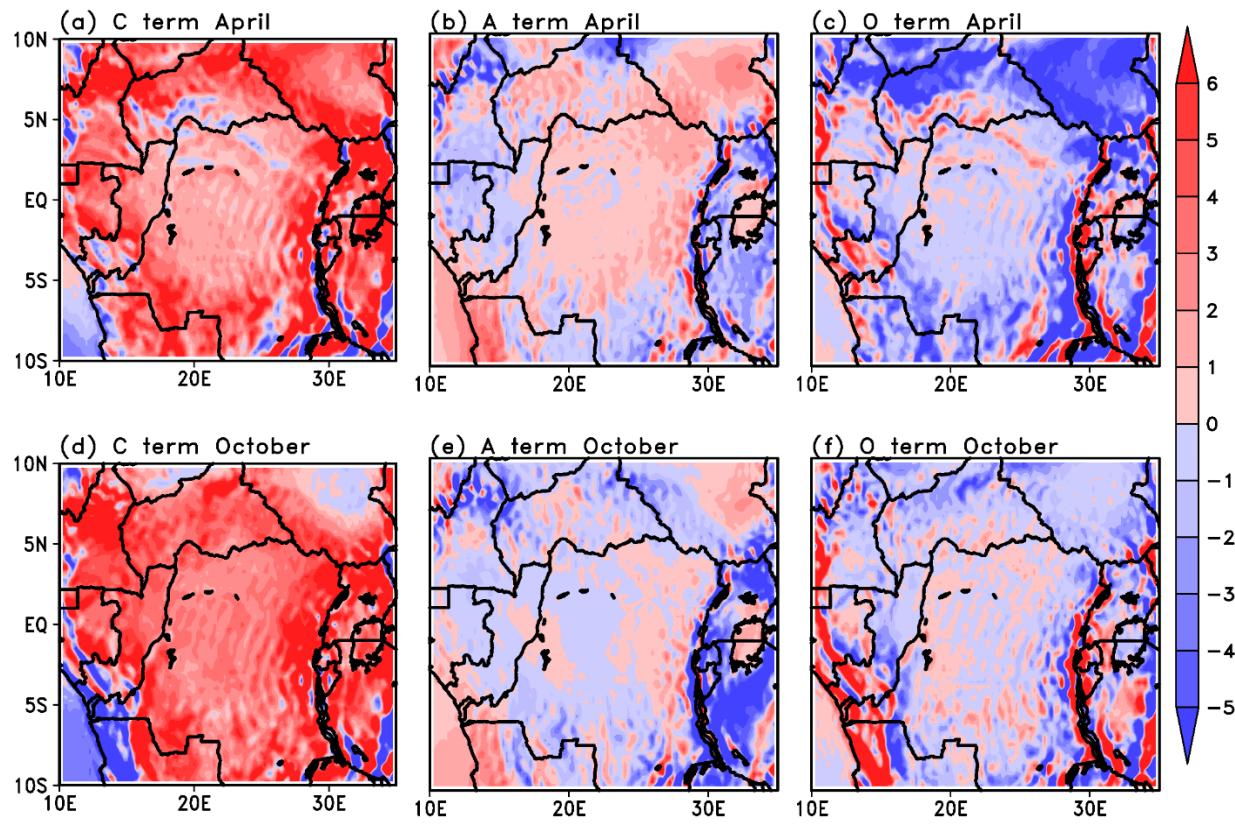


813
814
815 Figure 3. Precipitation distributions (mm/day) for months with maximum and minimum rainfall
816 for the (a)-(d) ERA5, (e)-(h) IMERG, and (i)-(l) TAMSAT climatologies.
817
818

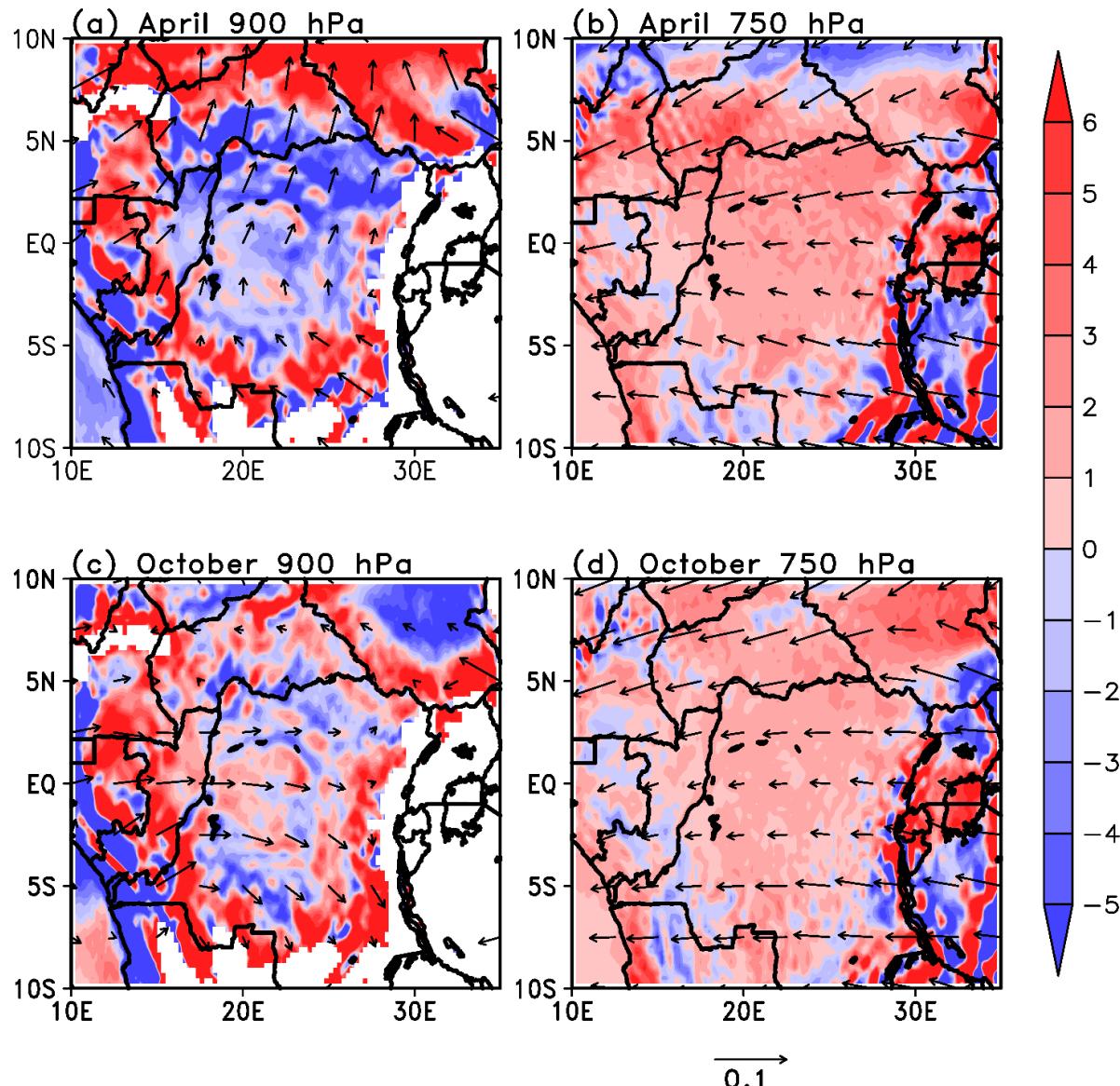
819
820
821



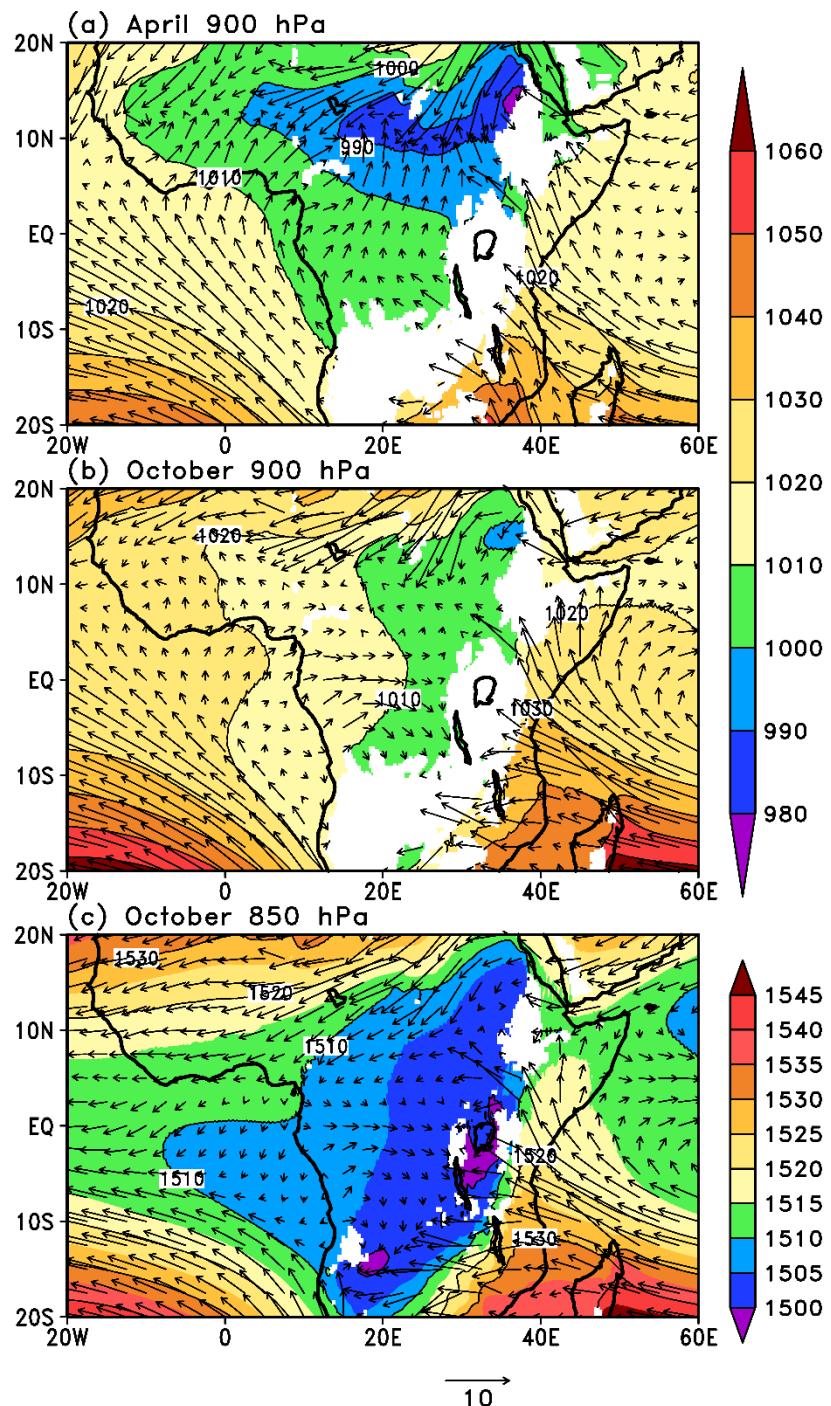
822
823
824 Figure 4. Precipitation distributions (mm/day) for months with maximum and minimum rainfall
825 for the (a)-(d) ARC2, (e)-(h) CMORPH, and (i)-(l) CHIRPS2 climatologies.
826
827


831 Figure 5. Monthly mean precipitation (blue solid line), evapotranspiration (red solid line), and skin
 832 temperature (green dashed line) from the ERA5 climatology averaged from 10°E to 30°E and (a)
 833 $5^{\circ}\text{N} - 10^{\circ}\text{N}$, (b) $0^{\circ} - 5^{\circ}\text{N}$, (c) $5^{\circ}\text{S} - 0^{\circ}$, (d) $10^{\circ}\text{S} - 5^{\circ}\text{S}$, and (e) $10^{\circ}\text{S} - 10^{\circ}\text{N}$ with $5^{\circ}\text{S}-5^{\circ}\text{N}$ dashed.
 834 Units are mm/day for precipitation and K for temperature. C and D indicate regions of vertically
 835 integrated moisture convergence and divergence.
 836

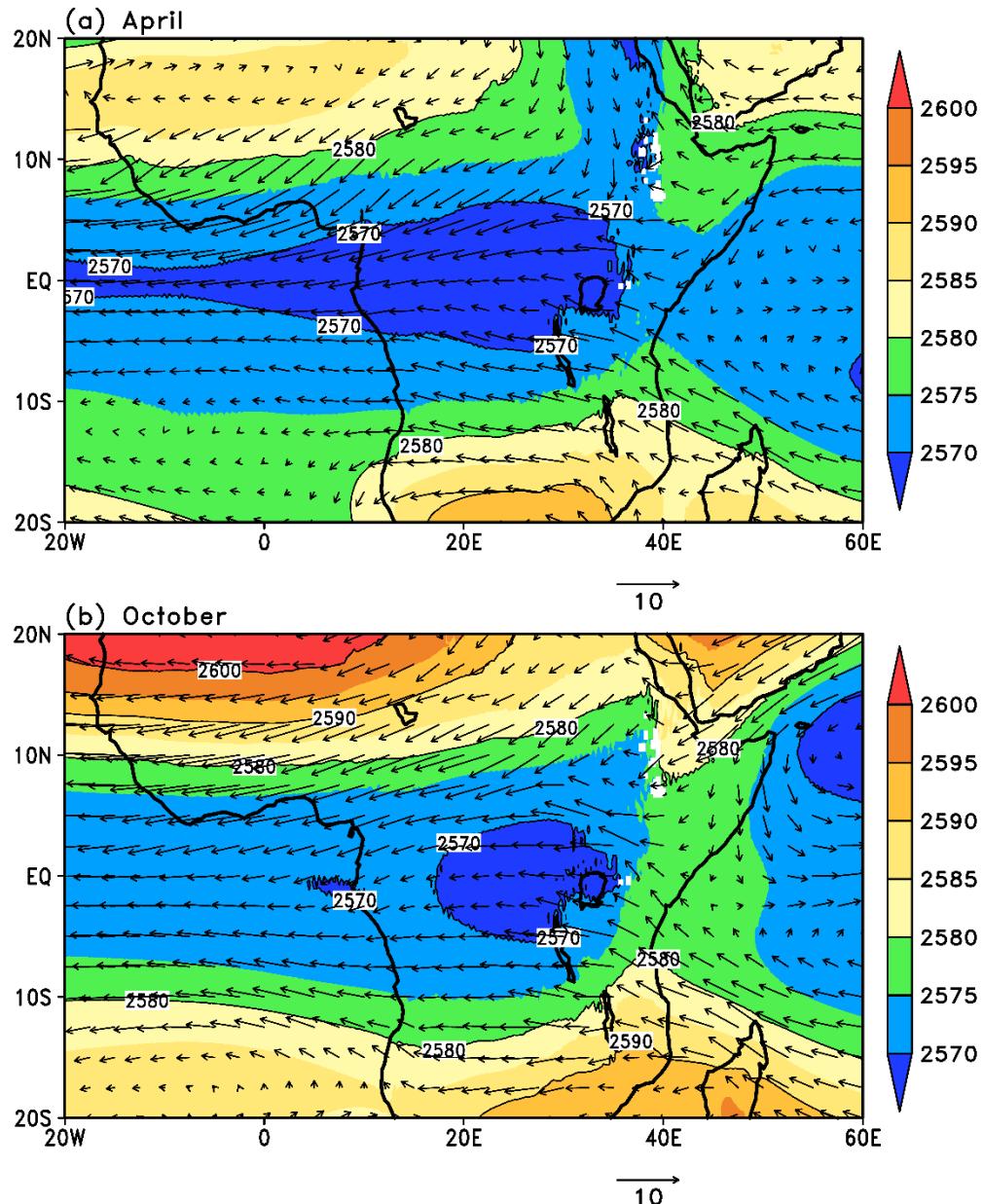
837
838
839



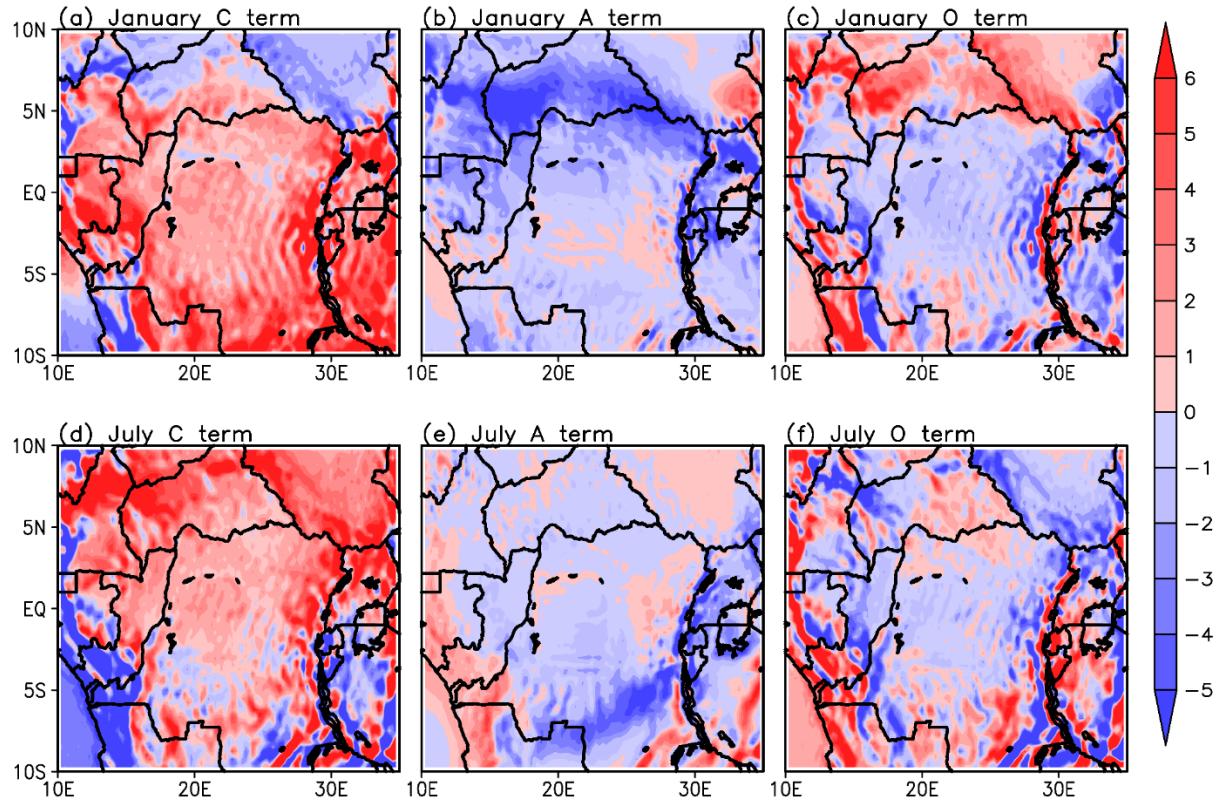
840
841
842
843
844
845
846
847
848


Figure 6. January (a) precipitation, (b) evapotranspiration, and (c) vertically-integrated moisture flux convergence from the ERA5 climatology. April (d) precipitation, (e) evapotranspiration, and (f) vertically-integrated moisture convergence. July (g) precipitation, (h) evapotranspiration, and (i) vertically-integrated moisture convergence. October (j) precipitation, (k) evapotranspiration, and (l) vertically-integrated moisture convergence. Units are mm/day.

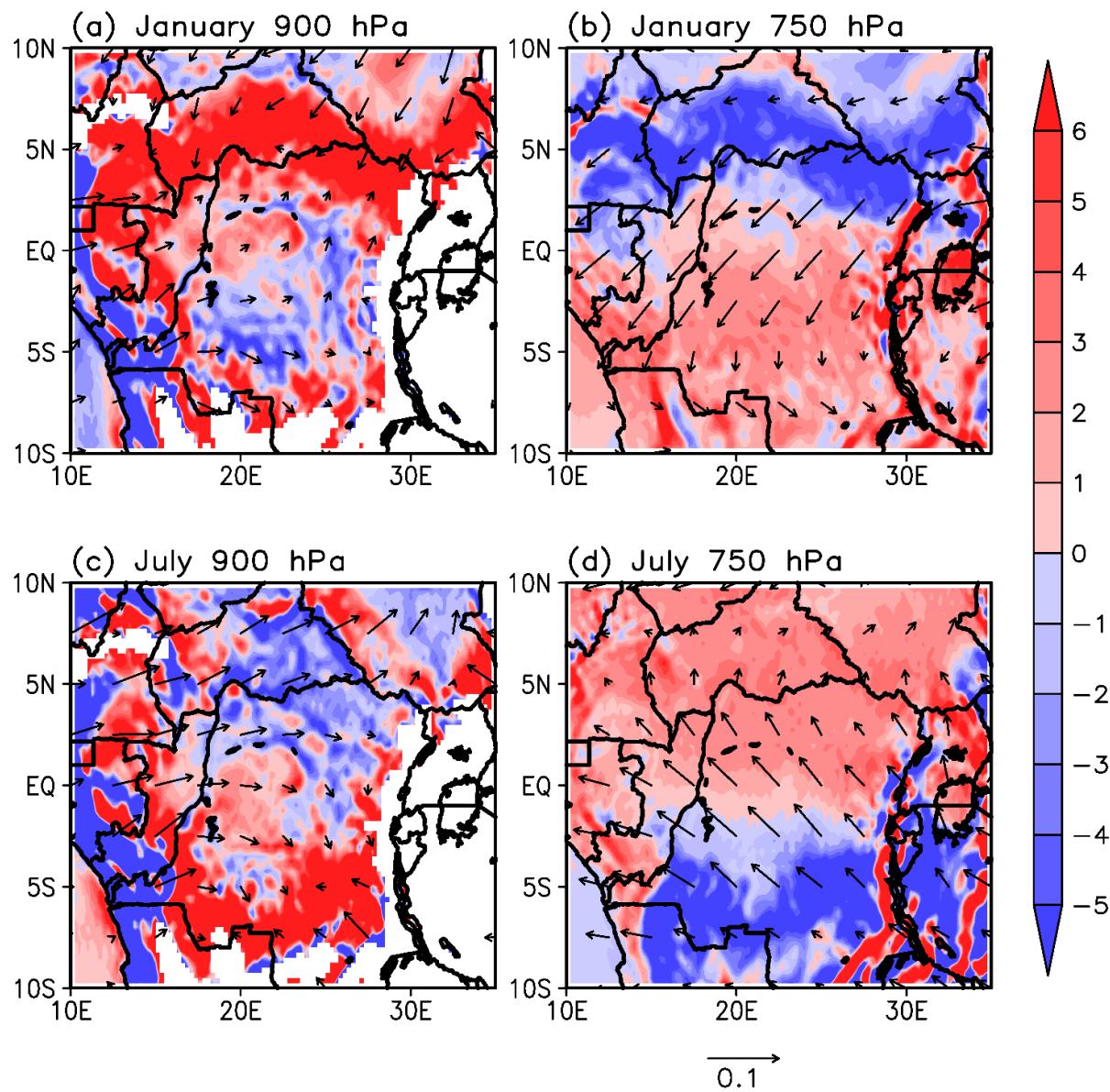
852 Figure 7. Vertically-integrated convergence (C; Eq. 2), advection (A; Eq. 3), and orographic (O;
 853 Eq. 4) components of the vertically-integrated moisture flux convergence during April and
 854 October. Units are mm/day.



860 Figure 8. Moisture convergence term ($q\nabla \cdot \vec{v}$; shading; $s^{-1} \times 10^{-3}$) and moisture transport vectors
 861 ($\vec{q}v$; m/s) for April at (a) 900 hPa and (b) 750 hPa. Moisture convergence term and moisture
 862 transport vectors for October at (c) 900 hPa and (d) 750 hPa. Color bar applies to all panels, as
 863 does the vector scale in m/s on the lower right. White shading indicates where topography exceeds
 864 the pressure level plotted.


870 Figure 9. Wind and geopotential height at 900 hPa for (a) April and (b) October. (c) Wind and
 871 geopotential height at 850 hPa for October. Vector scale is in m/s, and geopotential heights are in
 872 gpm. White shading indicates where topography exceeds the pressure level plotted.

875
876
877


878
879
880 Figure 10. Wind (vectors) and geopotential heights (shaded) at 750 hPa for (a) April and (b)
881 October. Vector scale is in m/s, and geopotential heights are in gpm.
882
883

884
885
886
887
888

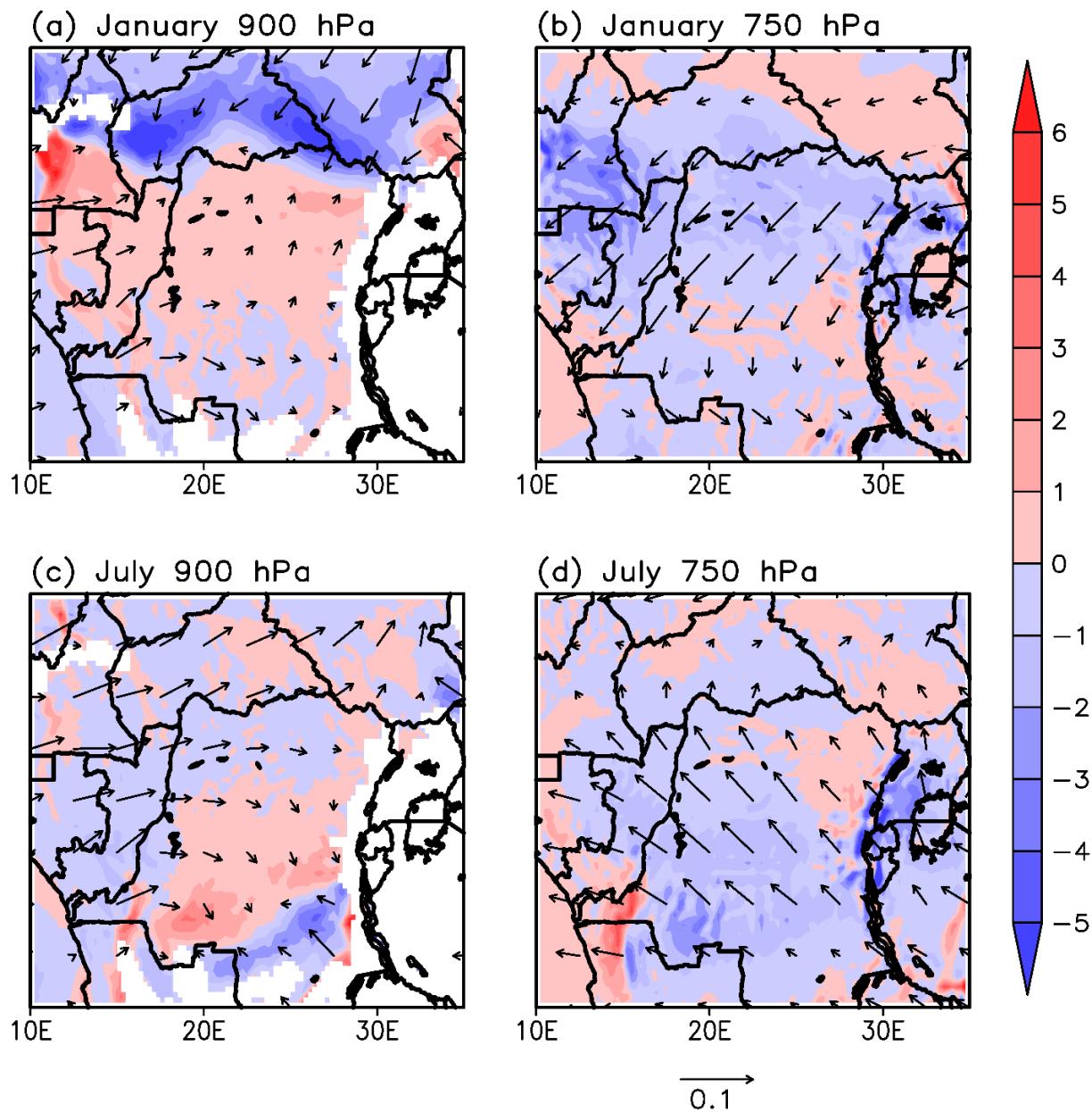
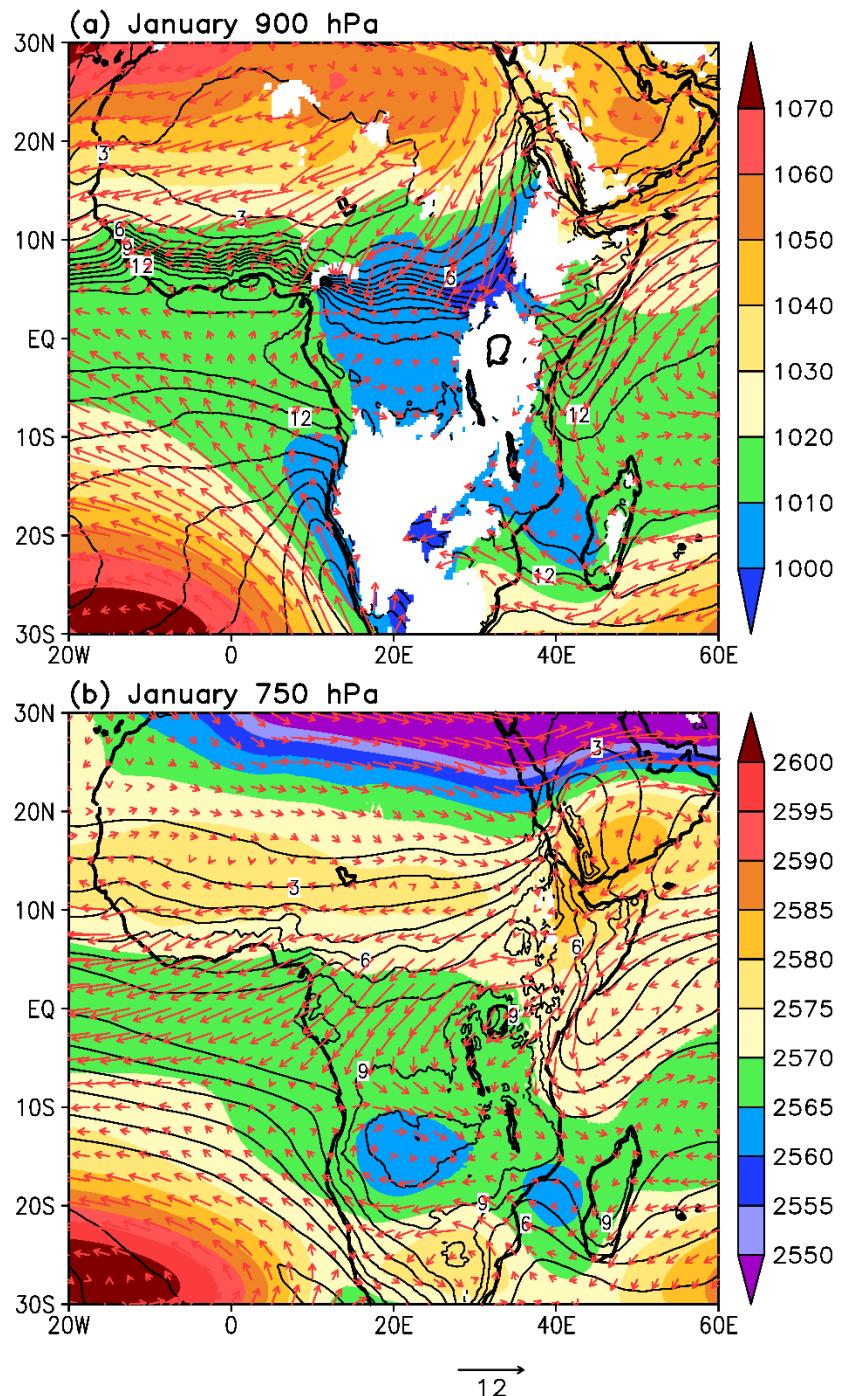

889
890
891
892
893
894
895

Figure 11. Vertically-integrated convergence (C; Eq. 2), advection (A; Eq. 3), and orographic (O; Eq. 4) components of the vertically-integrated moisture flux convergence during April and October. Units are mm/day.

898 Figure 12. Moisture convergence term (shading; $s^{-1} \times 10^{-3}$) and moisture transport vectors (m/s) for
 899 January at (a) 900 hPa and (b) 750 hPa. Moisture convergence term and moisture transport vectors
 900 for July at (c) 900 hPa and (d) 750 hPa. Color bar applies to all panels, as does the vector scale in
 901 m/s on the lower right. White shading indicates where topography exceeds the pressure level
 902 plotted.

905

906

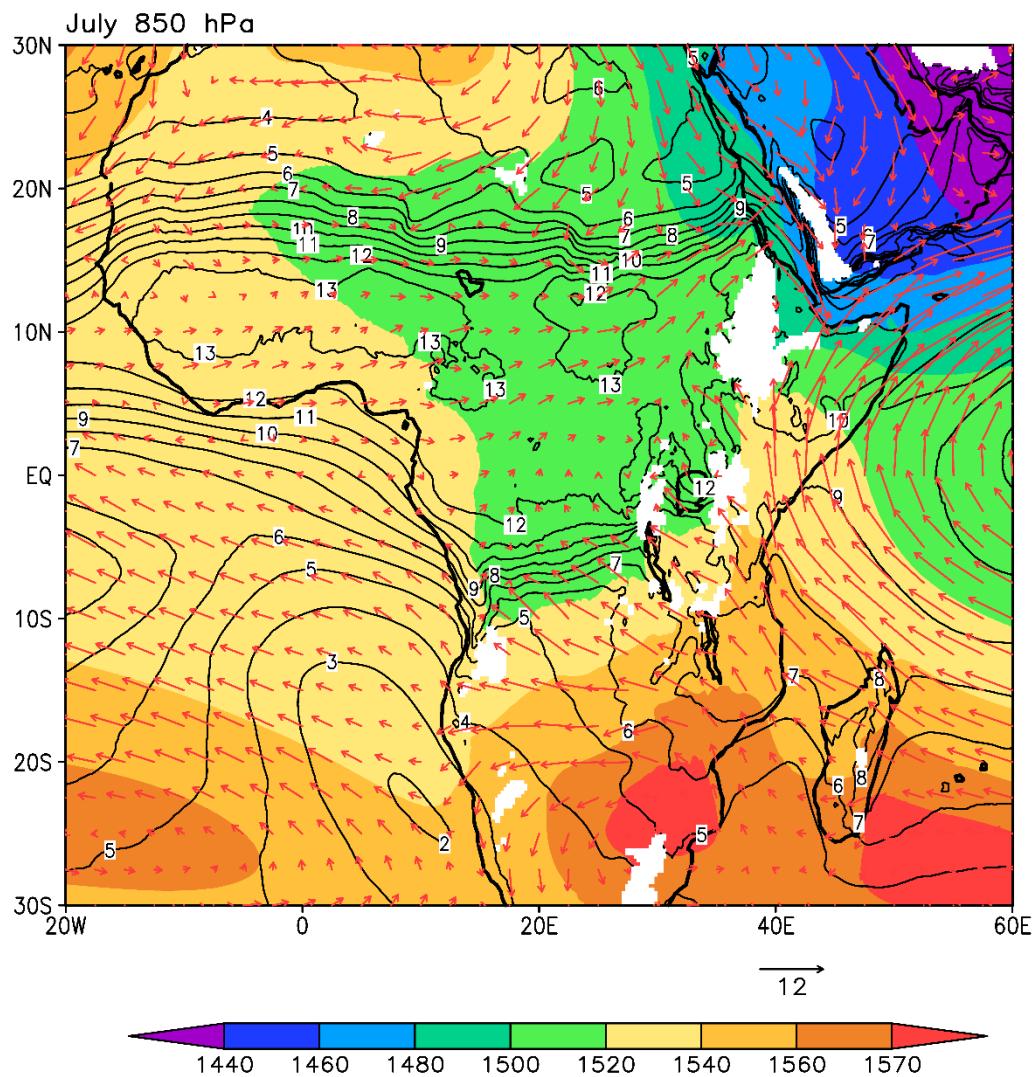

907

908 Figure 13. Moisture advection term (shading; $s^{-1} \times 10^{-3}$) and moisture transport vectors (m/s) for
 909 January at (a) 900 hPa and (b) 750 hPa. Moisture advection term and moisture transport vectors
 910 for July at (c) 900 hPa and (d) 750 hPa. Color bar applies to all panels, as does the vector scale in
 911 m/s on the lower right. White shading indicates where topography exceeds the pressure level
 912 plotted.

913

914

915


916

917

918 Figure 14. Wind (vectors), geopotential heights (shading), and specific humidity (contours) for
 919 January at (a) 900 hPa and (b) 750 hPa. Vector scale is in m/s and applies to both panels;
 920 geopotential heights are in gpm. White shading indicates where topography exceeds the pressure
 921 level plotted.

922

923

924

925

926 Figure 15. Wind (vectors), geopotential heights (shading), and specific humidity (contours) for
 927 July at 850 hPa. Vector scale is in m/s, and geopotential heights are in gpm. White shading
 928 indicates where topography exceeds the pressure level plotted.

929