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Abstract

We obtain new separation results for the two-party external information complexity of boolean func-
tions. The external information complexity of a function f(x, y) is the minimum amount of information
a two-party protocol computing f must reveal to an outside observer about the input. We obtain the
following results:

• We prove an exponential separation between external and internal information complexity, which
is the best possible; previously no separation was known.

• We prove a near-quadratic separation between amortized zero-error communication complexity
and external information complexity for total functions, disproving a conjecture of [Bra12].

• We prove a matching upper showing that our separation result is tight.

1 Introduction

The main object of study in this paper is the external two-party information complexity of problems. For a
two-party communication protocol π(x, y), with inputs distributed according to some (x, y) ∼ µ, one can
define the following complexity measures:1

• the (average case) communication cost CCµ[π] of π is the expected number of bits exchanged in π;

• the external information cost Iexternal
µ [π] of π is the expected amount of information an external ob-

server learns about the inputs (x, y) by observing an execution of π(x, y);

• the internal information cost Iinternal
µ [π] of π is the expected amount of information the protocol par-

ticipants learn about the inputs (x, y) by observing π.

For a given computational task — such as computing a boolean function f(x, y) with a prescribed error ε
— one can define the {average case communication, external information, internal information} complexity
of performing the task by taking the infimum of the corresponding cost over all protocols π that succeed at
performing the task. Thus:

• the (average case) communication complexity CCµ[f, ε] is the smallest expected number of bits that
need to be exchanged to compute f with error 6 ε;

• the external information complexity ICexternal
µ [f, ε] is the smallest amount of information that must be

revealed to an external observer by two parties who need to compute f with error 6 ε;
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1See Section 2 for rigorous definitions and further background.
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• the internal information complexity ICinternal
µ [f, ε]2 is the smallest amount of information that must

be revealed by the players to each other while computing f with error 6 ε.

It follows from basic information-theoretic calculations that for all tasks:

ICinternal
µ [f, ε] 6 ICexternal

µ [f, ε] 6 CCµ[f, ε]. (1)

Within the theoretical computer science literature, notions of information complexity had been introduced
at least twice. It was introduced once in the context of information-theoretic security [BYCKO93], where
a low ICinternal

µ [f, ε] would mean that information-theoretically secure two-party computation is possible
(turns out to be impossible in most cases). It was introduced in a different set of works, starting with the use
of external information cost, in [CSWY01, BYJKS04], in the context of proving communication complexity
lower bounds by using information-theoretic reasoning to prove an information complexity lower bound, and
then using (1) to deduce a communication complexity lower bound. More recent surveys on information
complexity can be found in [Bra15, Wei15].

Starting with the works of Shannon in the 1940s, the main motivation for using information-theoretic
quantities is that they tensorize3. For example, if X1 and X2 are two independent random variables, then
their Shannon’s entropy satisfies H(X1X2) = H(X1) + H(X2). Turns out that internal information com-
plexity satisfies a similar property (and, thus, is arguably the correct information-theoretic version of two-
party communication complexity). For simplicity, denote by (f q, ε) the task of computing q independent
copies of f , each with error 6 ε, then

ICinternal
µq [f q, ε] = q · ICinternal

µ [f, ε]. (2)

Such a relationship was known to be false for CC, and was believed to also not hold for ICexternal, although
to the best of our knowledge only in the present paper we rule it out for all values of ε including ε = 0.

Equations (1) and (2) together provide a blueprint for proving communication lower bound on computing
multiple copies of a function:

CCµq [f
q, ε] > ICinternal

µq [f q, ε] = q · ICinternal
µ [f, ε]. (3)

Thus, an information complexity lower bound on f , implies a communication lower bound on multiple
copies of f . Moreover, a slight twist on (3) allows one to use similar reasoning to prove lower bounds on
e.g. an OR of q copies of f , to obtain tight bounds on the communication complexity of functions such as
Disjointness [BYJKS04, BGPW13].

It turns out that, in fact, for ε > 0 (3) is tight [BR14]. For all f and ε > 0 the following holds:

lim
q→∞

CCµq [f
q, ε]/q = ICinternal

µ [f, ε]. (4)

Equation (4) has given rise to two questions:

• What is the relationship between ICinternal
µ [f, ε] and CCµ[f, ε]? How large can the gap in (1) be?

This question is sometimes called the “interactive compression question”, and is equivalent to the
direct sum question for two-party communication complexity;

• What happens in (4) when ε = 0 — that is, when no error is allowed? Note that, not coincidentally,
in other communication settings allowing error drastically alters the communication complexity of
problems. For example, the communication cost of EQn(x, y) — the problem of determining whether
two n-bit strings are equal is O(log 1/ε) independent of n when error ε is allowed, but increases to
n+ 1 when no error is allowed.

2Sometimes called simply “information complexity”.
3Also said to satisfy a “direct sum” property in the TCS literature.
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Separation between information and communication. The first question was answered by Ganor, Kol,
and Raz [GKR16], who showed an exponential separation between internal information complexity and
communication complexity. Moreover, such separation is the best possible [Bra15]. In other words, there is
a boolean function f such that ICinternal

µ [f, ε] = O(k), while CCµ[f, ε] = Ω(2k). In addition, exponential
separation was shown between external information and communication complexity — at least for tasks
[GKR19].

Therefore, in the context of (1), at least for tasks, the second inequality was known to be strict (with the
maximal possible exponential separation). A separation in the first inequality had been strongly suspected
but never proven. In this paper (Theorem 1.2) we show that, in fact, the example from [GKR16] has an
exponential external information complexity (and not just exponential communication complexity), and
thus gives an example of an f such that

ICexternal
µ [f, ε] > 2Ω(ICinternal

µ [f,ε]). (5)

As will be discussed later, we need (5) in order to separate external information from zero-error amortized
communication.

Zero-error amortized communication. A second mystery that remains in the wake of (4) is what happens
with zero-error amortized communication? In other words, what can we say about the quantity:4

lim
q→∞

CCµq [f
q, 0]/q (6)

A canonical example of a function where zero-error and vanishing-error communication costs diverge is the
n-bit Equality function EQn(x, y) := 1x=y. It is known that the amortized communication complexity of
EQn is O(1) [FKNN95]. As a consequence of this result (which can also be seen directly [Bra15]), one gets
for all µ,

ICinternal
µ [EQn, 0] = O(1).

On the other hand, it is not hard to see using fooling sets, that

lim
q→∞

CCµq [EQ
q
n, 0]/q = Ω(n),

where µ is the distribution µ = 1
2U(x,x) + 1

2U(x,y) — a mixture of the uniform distribution and the uniform
distribution on EQ−1

n (1). Therefore (4) has no chance of holding when ε = 0. More precisely, half of the
proof of (4) holds for ε = 0, yielding

lim
q→∞

CCµq [f
q, 0]/q > ICinternal

µ [f, 0], (7)

but this inequality may be strict, as is indeed the case for f = EQn.
An attempt to prove the 6 direction in (7) would involve trying to compress a low-internal informa-

tion protocol for f q into a low-communication one. Such compression procedures exist [BR14], but they
inherently introduce errors (where with a tiny probability the message received doesn’t match the message
sent). In contrast to internal information, there is a zero-error compression protocol for external information
[HJMR10] leading to a variant of a converse to (7) where internal information is replaced with external
information:

lim
q→∞

CCµq [f
q, 0]/q 6 ICexternal

µ [f, 0]. (8)

4Here, zero-error means that the protocol has to always output the correct value of f(x, y), even if µ(x, y) = 0.
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We formally prove (8) for completeness purposes in Section A.1 (Theorem A.1). Inequality (8), along with
the fact that inequality (7) is easily seen to not be tight led to the following conjecture [Bra12]:

Conjecture : lim
q→∞

CCµq [f
q, 0]/q = Θ(ICexternal

µ [f, 0]). (9)

There were several reasons to believe this conjecture. Translated to this language, a result of Ahlswede
and Cai [AC94] shows that (9) holds (with a constant 1) when f is the 2-bit AND function for the hardest
distribution µ — the quantity on both sides is log2 3. A version of (9) in fact holds for one-sided non-
deterministic communication/information, which we prove in Section A.2 for completeness. Here the �1

superscript stands for the complexity of proving that the value of f(x, y) = 1.

Theorem 1.1. Let µ be a distribution with supp(µ) ⊆ f−1(1), then

ICexternal,1
µ [f, 0] 6 lim

q→∞
CC1q

µq [f
q, 0]/q.

We should note that a quadratic upper bound on ICexternal
µ [f, ε] in terms of amortized zero-error com-

munication complexity (Theorem 1.5) does hold. Informally, this upper bound can be thought of as a conse-
quence of Theorem 1.1 (along its co-nondeterministic counterpart) similarly to the D(f) 6 N0(f) ·N1(f)
bound on deterministic communication complexity in terms of non-deterministic communication complex-
ity.

It should be noted that in Conjecture (9) it is important that the zero-error of communication holds for all
potential inputs to f (even when µ is not full-support). In other words, correctness shouldn’t be predicated
on a “promise” about the inputs (x, y). In the promise setting, a counterexample has been constructed by
Kol, Moran, Shpilka, and Yehudayoff [KMSY16]. In the context of the counterexample, Theorem 1.1 also
doesn’t hold, which suggests a large gap between the promise and non-promise regimes.

Our main contribution is to disprove Conjecture (9). In light of (7), a prerequisite for disproving the
conjecture is being able to separate internal information complexity from external information complexity
along the lines of (5).

1.1 Main results

We now state our main results formally. First, as alluded to before, we show an exponential separation
between internal information and external information.

Theorem 1.2. For all ε > 0, for large enough k, there is n ∈ N, a function f : {0, 1}n × {0, 1}n → {0, 1}
and an input distribution µ satisfying:

1. ICinternal
µ [f, ε] 6 O(k),

2. ICexternal
µ [f, ε] > 2Ω(k).

Secondly, using Theorem 1.2 we disprove Conjecture 9. We show that even if one considers the external
information of f for protocols with constant error, a near-quadratic gap between it and the amortized zero-
error communication complexity is still possible:

Theorem 1.3. For large enough k, there is n ∈ N, a function f : {0, 1}n × {0, 1}n → {0, 1} and an input
distribution µ such that

1. limq→∞
1
qCCµq(f

q, 0) 6 O(
√
k log2 k),
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2. ICexternal
µ [f, 1/16] > Ω(k).

If one insists on external information of protocols with zero-error, a much stronger separation result
holds (and in fact quickly follows from Theorem 1.3):

Corollary 1.4. For large enough k, there is n ∈ N, a function f : {0, 1}n × {0, 1}n → {0, 1} and an input
distribution µ such that

1. limq→∞
1
qCCµq(f

q, 0) 6 O(1),

2. ICexternal
µ [f, 0] > Ω(k).

It is worth noting that the separation given in Theorem 1.3 is nearly tight, and in general the external
information with constant error is at most the square of the amortized zero-error communication complexity:

Theorem 1.5. There exists an absolute constant C > 0, such that for any ε > 0, f : {0, 1}n × {0, 1}n →
{0, 1} and an input distribution µ, we have that

ICexternal
µ [f, ε] 6

C

ε2

(
lim
q→∞

1

q
CCµq(f

q, 0)

)2

.

1.2 Proof overview and discussion

Separating external and internal information. As discussed earlier, having a problem with a low in-
ternal information complexity but a high external information complexity appears essential for our main
separation result. We actually prove that the Bursting Noise Function, which was introduced by [GKR16] to
separate internal information complexity from randomized communication complexity also separates inter-
nal information complexity from external information complexity. To that end, we extend the reach of the
relative-discrepancy lower bound technique from [GKR16] to apply to external information complexity.

We do this by introducing a property of protocols having “universally low external information”. We
then show that (1) low external information cost protocols can be approximated with universally low external
information protocols; and (2) universally low external information protocols (just like low-communication
protocols in [GKR16]) do very poorly when trying to compute functions with the appropriate relative dis-
crepancy property.

Separating amortized zero-error communication from external information. It is actually surpris-
ingly difficult to construct a candidate function for our main separation. We need a function with a low
amortized zero-error communication, but a high external information complexity. Low amortized commu-
nication implies low internal information complexity. This means that inside the construction we should use
a separation between internal and external information.

In addition, as seen in Theorem 1.1, non-deterministic zero-error amortized communication complexity
appears to be connected to zero-error non-deterministic external information complexity. This connection
is reinforced by Theorem 1.5. Therefore, the construction is likely to require a function featuring maximum
possible (i.e. quadratic) separation between non-deterministic communication and deterministic communi-
cation complexity.

Indeed, our starting point is a boolean function whose query complexity exhibits a quadratic separation
between deterministic and non-deterministic complexity. To “lift” this separation into the communication
world, our construction uses an idea that is close in spirit to the cheat sheet lifting constructions [ABK16,
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ABB+16]. At a high level, we too want to give advantage (say, access to non-deterministic certificates) to
certain class of protocols (in our case, protocols that solve many independent instances). Our construction
however implements this high-level idea differently.

We hide extra information as an output of an auxiliary function f . Our chosen function f has low internal
information complexity so as to be useful for constructing a protocol with low amortized communication
complexity. This extra information allows us to evaluate our function on all but o(1) fraction of the input
tuples of the players in which they fail (and therefore importantly do not introduce errors), and for those one
may use a trivial protocol (which would contribute at most o(1) to the amortized communication anyway).
The second property that we need is that this extra information would be useless for protocols with low
external information attempting to solve only a single challenge. Indeed, our chosen function f will have
high external information complexity, and our argument in the proof of Theorem 1.2 actually shows that low
external information protocols are unable to gain even a slight advantage for computing f . In particular, the
extra information we hide looks essentially random to them, and therefore does not offer any help.

With this intuition in mind, the starting point of our construction is a function h : {0, 1}m → {0, 1}
and its AND-lifting h∧ : {0, 1}m × {0, 1}m → {0, 1} defined as h∧(x, y) = h(x ∧ y), with the following
properties: (1) the external information of h∧ is Ω(m); (2) one can certify that h(z) = 0 or that h(z) = 1
using only C = O(

√
m) bits. We then wish to construct a functionH on 4-tuples, (x, y, u, v), whose output

on (x, y, u, v) is h∧(x, y), and (u, v) encodes a certificate for that on the support of our input distribution.
Here, by “encodes” we mean that (u, v) could be viewed as a sequence of C input tuples to f , and that these
bits encode a certificate to h∧(x, y). Thus, for the purposes of amortized communication complexity, we use
the back-door (u, v) and only have to pay communication proportional to the internal information of f (after
retrieving the hint f(u, v) we still need to use O(C) communication to verify its veracity to ensure the final
answer is never wrong). On the other hand, f(u, v) will look almost random to a low external information
protocols, and hence is essentially useless for them, so the external information of our protocol must be the
external information of h∧, i.e. at least Ω(m).

Discussion. Of the two questions raised in the beginning of Section 1, in this paper we have given the
optimal separation between internal and external information complexity. On the other hand, the mystery of
understanding amortized zero-error communication complexity has only deepened. We now know that it is
different from external information complexity, and that the worst possible gap is in some sense quadratic.

This leaves the question of characterizing zero-error amortized communication complexity wide open.

Open Problem 1.6. Characterize the amortized zero-error communication complexity of functions. For
simplicity, suppose µ has full support. Characterize:

ZAC(f, µ) := lim
q→∞

CCµq(f
q, 0)/q, (10)

where CC is average-case distributional communication complexity with zero error.

Ideally, the characterization would be in terms of information-theoretic quantities pertaining to comput-
ing a single copy of f . Such a characterization is sometimes called “single letter” characterization in the
information theory literature. It is likely that understanding this quantity will lead to further communication
complexity insights.

Organization. In Section 2, we recall some standard notions and tools that will be needed in our proofs.
We prove Theorem 1.3 in Section 3, and Theorem 1.3 in Section 4. Finally, we prove Theorem 1.5 and
Corollary 1.4 in Section 5.
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2 Preliminaries

2.1 Information theory

We begin with a few basic definitions from information theory. Throughout the papers, we only consider
random variables with finite support.

Definition 2.1. Let X,Y be random variables with a finite support.

1. The Shannon entropy of X is H[X] =
∑
x

Pr [X = x] log
(

1
Pr[X=x]

)
.

2. The Shannon entropy of X conditioned on Y is H[X | Y ] = Ey∼Y [H[X | Y = y]], where H[X | Y =

y] =
∑
x

Pr [X = x |Y = y] log
(

1
Pr[X=x |Y=y]

)
.

Definition 2.2. Let X,Y, Z be random variables with a finite support.

1. The mutual information between X and Y is I[X;Y ] = H[X]−H[X|Y ].

2. The mutual information between X,Y conditioned on Z is I[X;Y | Z] = H[X | Z]−H[X | Y,Z].

Definition 2.3. Let X,Y be random variables with a finite support. The KL-divergence from Y to X is
DKL (X ‖ Y ) =

∑
x,y

Pr [X = x] log
(

Pr[X=x]
Pr[Y=y]

)
.

We will need the following standard facts from information theory (for proofs, see [Cov99] for example).

Fact 2.4. Let X,Y, Z be random variables. Then

I[X,Y ;Z] = E
(x,y)∼(X,Y )

[DKL (Z|X=x,Y=y ‖ Z)].

Fact 2.5. Let X,Y1, . . . , Yn be random variables. Then

I[X;Y1, . . . , Yn] =

n∑
i=1

I[X;Yi | Y<i].

Fact 2.6. Let X,Y, Z be random variables. Then I[X;Y | Z] 6 I[X;Y,Z].

For p ∈ [0, 1], we denote by B(p) a Bernoulli random variable with parameter p.

Fact 2.7. Let p, q ∈ [0, 1] and suppose that 1
3 6 q 6

2
3 . Then

2(p− q)2 6 DKL (B(p) ‖ B(q)) 6
9(p− q)2

2 ln 2
.

2.2 Communication complexity

Let f : X × Y → {0, 1} be a function, let µ be a distribution over its inputs and denote (X,Y ) ∼ µ.
Throughout, we denote by Π a two-player communication protocol, and by Π(X,Y ) the distribution over
transcripts of the protocol where the inputs are sampled according to the random variables (X,Y ). We
denote the output of a specific transcript π by output(π). Abusing notations, for inputs x, y, we denote by
output(Π(x, y)) the random variable which is the output of Π when ran on inputs x, y.
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Definition 2.8. The internal information of the protocol Π is defined as Iinternal
µ [Π] = I[Π;X|Y ]+I[Π;Y |X].

For an error parameter 0 6 ε < 1
2 , we define the internal information cost of f on µ with error ε by

ICinternal
µ [f, ε] = inf

Π:Pr(x,y)∼µ[f(x,x) 6=output(Π(x,y))]6ε
Iinternal
µ [Π].

Definition 2.9. The external information of the protocol Π is defined as Iexternal
µ [Π] = I[Π;X,Y ].

For an error parameter 0 6 ε < 1
2 , we define the external information cost of f on µ with error ε by

ICexternal
µ [f, ε] = inf

Π:Pr(x,y)∼µ[f(x,y)6=Π(x,y)]6ε
Iexternal
µ [Π].

Fact 2.10. For any function f and ε > 0 it holds that ICexternal
µ [f, ε] > ICinternal

µ [f, ε].

We need to use the notion of smooth protocols, as defined in [BBCR13].

Definition 2.11. A two-player protocol Π is called smooth if for every pair of inputs x, y, a step i in the
protocol, and a possible transcript T up to the (i − 1)-th step, it holds that the distribution of the next
message Mi satisfies that 1

3 6 Pr [Mi = 1 |x, y, T ] 6 2
3 .

An important fact that we will use, is that one can transform a given protocol Π into a smooth protocol
Π′ that has roughly the same error probability, whose information cost is the same as the original protocol
Π. Such statement was proved in [BW15, Lemma 23] for internal information, and the same argument also
works for external information. We thus have the following lemma.

Lemma 2.12. Suppose f : {0, 1}n × {0, 1}n → {0, 1} and that µ is a distribution over {0, 1}n × {0, 1}n,
and ε, ε′ > 0. Then any protocol Π for (f, µ) with external information at most M and error at most ε′ can
be turned into a smooth protocol Π′ for (f, µ) external information at most M and error at most ε′ + ε.

Fact 2.13. Let P,Q be distributions over domain X . Then∑
x

P (x)

∣∣∣∣log

(
P (x)

Q(x)

)∣∣∣∣ 6 DKL (P ‖ Q) + 8.

Proof. Partition A = {x |P (x) 6 Q(X)} into Aj =
{
x | 2−j−1Q(x) < P (x) 6 2−jQ(x)

}
where j =

0, 1, . . .. Then the left hand side is

∑
x∈Ā

P (x) log

(
P (x)

Q(x)

)
+

∞∑
j=0

∑
x∈Aj

P (x) log

(
Q(x)

P (x)

)
= DKL (P ‖ Q) + 2

∞∑
j=0

∑
x∈Aj

P (x) log

(
Q(x)

P (x)

)
.

The proof is now concluded by noting that

∞∑
j=0

∑
x∈Aj

P (x) log

(
Q(x)

P (x)

)
6
∞∑
j=0

∑
x∈Aj

2−jQ(x)(j + 1) 6
∞∑
j=0

2−j(j + 1) = 4.
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2.3 Probability

We will need the following immediate corollary of Doob’s martingale inequality.

Fact 2.14. Suppose that (Xi)i=1,...,m is a martingale and E
[
X2
m

]
6M . Then for every ε > 0,

Pr
[
∃i such that |Xi| >

√
M/ε

]
6 ε.

Proof. By Doob’s martingale inequality, Pr
[
maxi |Xi| >

√
M/ε

]
6 E[|Xm|]

M/ε 6
√

E[X2
m]

M/ε 6 ε.

Definition 2.15. Let X,Y be random variables over the same universe U . The statistical distance between
X,Y is

SD(X,Y ) =
1

2

∑
u∈U

∣∣∣Pr [X = u]− Pr [Y = u]
∣∣∣ .

Fact 2.16. Let X,Y be discrete random variables over the same universe U . Then there is A ⊆ U such that
SD(X,Y ) = 1−

∑
x∈A

Pr [X = x]−
∑
x 6∈A

Pr [Y = x]

3 Separating internal and external information cost

In this section, we prove Theorem 1.2. A key notion of our proof will be the relative-discrepancy measure,
introduced in [GKR16].

Definition 3.1. For a function f : {0, 1}n×{0, 1}n → {0, 1} and a distribution µ over {0, 1}n×{0, 1}n, we
say (f, µ) has (ε, δ) relative-discrepancy with respect to a distribution ρ, if for any rectangle R = A×B ⊆
{0, 1}n × {0, 1}n for which ρ(R) > δ, it holds that

1. µ(R ∩ f−1(0)) > (1
2 − ε)ρ(R),

2. and µ(R ∩ f−1(1)) > (1
2 − ε)ρ(R).

In [GKR16], the authors show that if (f, µ) has strong relative-discrepancy, then CCµ(f, 1/2− ε′) must
be high. More precisely, they show if (f, µ) has (ε, δ) discrepancy, then any protocol for f on the distribution
µ that achieves advantage of ε′, must communicate at least log

(
ε′−ε
δ

)
bits. The main result of this section

strengthens this assertion, as follows.

Theorem 3.2. LetM ∈ N, δ, ε > 0 and let µ be a distribution over {0, 1}n×{0, 1}n. Suppose f : {0, 1}n×
{0, 1}n → {0, 1} such that (f, µ) has (ε, δ) relative-discrepancy, and Π is a protocol for computing f such
that Iext

µ [Π] 6M , then

Pr
(x,y)∼µ

[Π(x, y) = f(x, y)] 6
1

2
+ 2000 max

(
ε,

M

log(1/δ)

)
.

Counter positively, if (f, µ) has (ε, δ) relative-discrepancy and Π is a protocol for (f, µ) achieving
advantage ε′, then the external information of Π according to µ is at least (ε′− 2000ε) log(1/δ). Therefore,
the relative-discrepancy measure allows us to prove lower bounds on the external information cost of a
function, which is always smaller than the communication complexity of a function.

To prove Theorem 3.2, we instantiate Theorem 3.2 with the “bursting noise function” from [GKR16],
which we present next.
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The bursting noise function. Let k ∈ N be thought of as large, and set c = 24k . The bursting noise func-
tion, fburst is a pointer chasing function on a tree of height c, however the input distribution µ is supported
only on x, y that are very correlated. More precisely, for b ∈ {0, 1}, we define the distribution µb according
to the following sampling procedure: we think of a complete binary tree of depth c, and for each vertex in
the tree, each player has a bit in their input. We think of vertices from odd layers as being owned by Alice,
and vertices from even layers as being owned by Bob. Partition the layers of the tree into c/k multi-layers (a
multi-layer consists of k consecutive layers), and sample i ∈ {1, . . . , c/k} uniformly. For each multi-layer
j < i, and for each vertex u in multi-layer j, we choose yu ∈ {0, 1} uniformly, and set xu = b ⊕ yu. In
layer i, for each vertex v in it, we choose xv, yv ∈ {0, 1} independently and uniformly.

Next, we define the notion of a typical vertex. We say a vertex p from layer i is typical, if considering
the part of the path from the root to p that is inside multi-layer i, on at least 80% of it, on at least 80% of
the odd locations on that path it agrees with x, and on at least 80% of the even locations of the path it agrees
with y.

For the rest of the layers, for each vertex u, let p(u) denote the ancestor of u from layer i. If p(u) is
typical, we again take the bits to be uniform such as xu = b ⊕ yu, and if p(u) is atypical we take xu, yu as
independently chosen bits.

For (x, y) ∈ supp(µb), we define fburst(x, y) = b. We take µ = 1
2µ0 + 1

2µ1. We remark that each one

of x and y are n-bit Boolean strings where n = Θ(2c) = Θ(224k

).
In [GKR16], the following two important properties are proved for the bursting noise function.

Lemma 3.3. ICinternal
µ [f, 2−k] = O(k).

Lemma 3.4. The pair (f, µ) has the (ε, δ) relative-discrepancy property with respect to ρ for ε = 2−k and
δ = ε/22k .

First, we quickly show that Theorem 1.2 follows from Theorem 3.2 and the above lemmas.

Proof of Theorem 1.2. Fix η > 0 a small constant, and choose k large enough. Using Lemma 3.4 together
with 3.2 gives us that ICexternal

µ [f, η] > 2Ω(k), whereas Lemma 3.3 gives us that ICinternal
µ [f, η] = O(k).

The rest of this section is devoted to the proof of Lemma 3.2, and we begin by giving a proof outline.

Outline of the proof of Theorem 3.2. The proof has two components. Fix a function f and an input
distribution µ. In the first step we show that any protocol Π for (f, µ) with low external information, can
be converted into a protocol Π′ such that (a) Π′ has roughly the same error in computing (f, µ), and (b) Π′

never reveals too much information about the player’s input, with respect to any measure ρ; we refer to such
protocols as having “universally low external information” (defined formally below). In the second step, we
show that if (f, µ) has the (ε, δ) relative-discrepancy property, then a protocol Π with low universal external
information can only have a small advantage of in computing (f, µ). Quantitative issues aside, it is clear
that one can combine steps (a) and (b) above to prove that a low external information protocol cannot have
a significant advantage in computing a function that has strong relative-discrepancy.

3.1 Universal external information

Suppose Π is a protocol between Alice and Bob. Suppose Alice speaks first, and denote her messages by
A = (A1, . . . , Am), and Bob’s messages by B = (B1, . . . , Bm). For each point i ∈ [m] in the protocol, a
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possible exchange of messages (a, b) ∈ {0, 1}m × {0, 1}m, and a pair of inputs x, y ∈ {0, 1}k, denote

P xA,Π,i(a, b) =
∏
j<i

Pr
(X,Y )∼µ

[Aj = aj |A<j = a<j , B<j = b<j , X = x],

P yB,Π,i(a, b) =
∏
j<i

Pr
(X,Y )∼µ

[Bj = bj |A6j = a6j , B<j = b<j , Y = y].

If this product runs through the whole protocol, i.e. i = m + 1, we omit the subscript i and simply write
P xA,Π(a, b) and P yB,Π(a, b).

Definition 3.5. With the above notations, we say a protocol Π has universal external information at most
M , if there are non-negative functions ηA(a, b) and ηB(a, b) over transcripts, such that the following holds.

1. The function η(a, b) = ηA(a, b)ηB(a, b) is a probability distribution.

2. For any (x, y) ∈ {0, 1}k × {0, 1}k and (a, b) ∈ {0, 1}m × {0, 1}m it holds that

2−M 6
P xA,Π(a, b)

ηA(a, b)
6 2M , 2−M 6

P yB,Π(a, b)

ηB(a, b)
6 2M . (11)

Informally, a protocol has low universal external information, if for all possible transcript π = (a, b),
no input of Alice (or Bob) makes π much more likely from their point of view. We remark that having low
universal external information is a very strong property. For example, it implies that the external information
of the protocol is low with respect to any distribution.

Lemma 3.6. Suppose that a protocol Π has universal external information at most M . Then for any distri-
bution ρ over (x, y), we have that Iexternal

ρ [Π] 6 2M .

Proof. Let ηA, ηB and η = ηA · ηB be from Definition 3.5. First, we argue that for all inputs x, y it holds
that DKL (Π|X=x,Y=y ‖ η) 6 2M . Indeed, by definition

DKL (Π|X=x,Y=y ‖ η) =
∑
π

Pr [Π = π |X = x, Y = y] log

(
Pr [Π = π |X = x, Y = y]

η(π)

)
.

Noting that Pr [Π = π |X = x, Y = y] = P xA,Π(π)P yB,Π(π), we get from the universal external informa-
tion property that

Pr [Π = π |X = x, Y = y]

η(π)
6 22M ,

and plugging that in above yields that DKL (Π|X=x,Y=y ‖ η) 6 2M .
The statement will thus follow if we show that Iexternal

ρ [Π] 6 E(x,y)∼ρ [DKL (Π|X=x,Y=y ‖ η)]. Indeed,
using the definition of external information and Fact 2.4 we get that

Iexternal
ρ [Π] = Iρ[X,Y ; Π] = E

(x,y)∼ρ
[DKL (Π|X=x,Y=y ‖ Π)],

11



and therefore

E
(x,y)∼ρ

[DKL (Π|X=x,Y=y ‖ η)]− Iexternal
ρ [Π] = E

(x,y)∼ρ
[DKL (Π|X=x,Y=y ‖ η)−DKL (Π|X=x,Y=y ‖ Π)]

= E
(x,y)∼ρ

[∑
π

Pr [Π(x, y) = π] log

(
PrX,Y∼ρ [Π = π]

η(π)

)]

=
∑
π

Pr
X,Y∼ρ

[Π = π] log

(
PrX,Y∼ρ [Π = π]

η(π)

)
= DKL (Π ‖ η) > 0.

3.2 Step (a): fixing external information leakage

Our goal in this section is to prove the following lemma, asserting that a low external information protocol
may be converted into a protocol with low universal external information with only small additional error.

Lemma 3.7. Let ε, ε′ > 0 and let µ be distributions over {0, 1}n×{0, 1}n. Suppose f : {0, 1}n×{0, 1}n →
{0, 1} is a function, and Π is a protocol (f, µ) that has error at most ε′ and Iexternal

µ [Π] 6M . Then there is
a protocol Π′ for (f, µ) such that

1. The error of Π′ on (f, µ) is at most ε′ + 40ε.

2. The universal external information of Π′ is at most 2M/ε+ 1.

We begin by explaining the idea in behind the design of Π′. In Π′ we will simulate Π, except that each
player will also measure how many bits of external information they have leaked so far (this is possible
to do since it only depends on the transcript up to that point, and their input). In case this number of bits
has exceeded a certain threshold, the player changes their behaviour and enters a “strike” in which they
will act in a way that does not reveal any additional external information regarding his/her input. Strictly
speaking, once a player determines they have leaked too much information, they will forget about their input
and instead sample their answer according to their answer distribution at that point in Π, conditioned on the
transcript so far (but not on their specific input).

Let us now be more precise. Fix a protocol Π such that Iext
µ [Π] 6 M , and recall the definitions of

P xA,Π,i(a, b) and P yB,Π,i(a, b) above. We will also need to define their averaged counterparts, i.e.

ηA,i(a, b)
def
= PA,Π,i(a, b) =

∏
j<i

Pr
(X,Y )∼µ

[Aj = aj |A<j = a<j , B<j = b<j ],

ηB,i(a, b)
def
= PB,Π,i(a, b) =

∏
j<i

Pr
(X,Y )∼µ

[Bj = bj |A6j = a6j , B<j = b<j ],

(the ηA,i, ηB,i notations is not a coincidence, and we will use these functions to exhibit the fact that the
protocol Π′ we construct has low universal external information). We note that PA,Π,i, P xA,Π,i only depend
on the i − 1-prefixes of a and b, and PB,Π,i, P

y
B,Π,i only depends on the i-prefix of a and i − 1-prefix of

b. We will therefore sometimes abuse notations and drop the rest of a, b from the notation. We also note
that P xA,Π,i, P

y
A,Π,i depend only on x and y (and not on µ). This is because, at each point in time, a player’s

message only depends on their input, and the messages they received from the other player so far.
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With these notations, we may consider for each a, b, the likelihood ratios SA,i(a<i, b<i, x) =
PxA,i(a<i,b<i)

ηA,i(a,b)

and SB,i(a6i, b<i, y) =
P yB,i(a6i,b<i)

ηB,i(a,b)
. Intuitively, these quantities measure how much more/ less likely a

given exchange of messages (a, b) is, when knowing x and y respectively, compared to only knowing that
(x, y) ∼ µ. Thus, we may expect an external observer to learn many bits of information in case the protocol
was executed and the resulting exchange of messages a, b has high likelihood ratios, say SA,m(a, b, x) > 2M

(in which case we expect an external observer to learn ≈ M bits of information). This turns out to be true,
and actually with slightly more work, one can that the same holds if the likelihood ratios become large at
some earlier point in the protocol, i < m.

With this intuition in mind, and noting that Alice (and analogously Bob) can compute SA,i(a<i, b<i, x)
(analogously SB,i(a6i, b<i, y)) it makes sense that the players should alter their behaviour if at some point in
their protocol, their likelihood ratio gets too high – say, larger than 22M/ε. Indeed, this is what our protocol
Π′ does.

The protocol Π′. We simulate the protocol Π, with a small change in the beginning of each player’s turn.
Consider a player intending to send their ith message – say Alice. First, Alice computes SA,i(πA, πB, x)
(where πA are the messages of Alice so far, and πB are the messages of Bob so far). If this quantity is
larger than 22M/ε, or at most 2−2M/ε, Alice moves into “strike mode”, and otherwise proceeds as usual
according to the protocol Π. Upon entering “strike mode”, Alice will sample her subsequent messages only
conditioned on the transcript of the protocol up to that point without taking her input x into consideration.
I.e., to send her jth message, for j > i, Alice considers the transcript of the protocol thus far, a<j , b<j , and
the distribution Aj(X,Y ) | A<j(X,Y ) = a<j , B<j(X,Y ) = a<j where (X,Y ) ∼ µ, and samples her
next message according to it. Bob implements an analogous check during his turns.

In the remainder of this section, we argue that the probability that a player ever enters “strike mode” in
Π′ is small, and so Π′ retains roughly the same error as Π on (f, µ). We then show that Π′ has universal
external information at most 2M/ε + 1. We remark that for technical reasons, we will need to assume that
our original protocol is smooth (as in Definition 2.11). Thankfully, by Lemma 2.12, we may indeed do so
while only slightly increasing the error of the protocol.

3.2.1 The error of Π′ on µ is comparable to the error of Π

In this section we prove the following lemma.

Lemma 3.8. The probability that at least one of the players enters “strike mode” in the protocol Π′ when
ran on µ is at most 38ε.

First, by Lemma 2.12 we may assume henceforth that the protocol Π is smooth and has error at most
ε′ + ε. Thus, once we prove Lemma 3.8 it will follow that the error of Π′ is at most ε′ + 39ε. The rest of
this section is therefore devoted to the proof of Lemma 3.8.

By Fact 2.4 and the definition of KL-divergence

M > Iµ[X,Y ; Π] = E
(x,y)∼µ

[DKL (Π|X=x,Y=y ‖ Π)]

= E
(x,y)∼µ

∑
a,b

Pr [Π(x, y) = (a, b)] log

(
Pr [Π(x, y) = (a, b)]

Pr [Π = (a, b)]

). (12)
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We set up some notations. For a, b ∈ {0, 1}m, let pAa,b,i(ai) = Pr(X,Y )∼µ [Ai = ai |A<i = a<i, B<i = b<i],
and similarly we define for Bob pBa,b,i(bi) = Pr(X,Y )∼µ [Bi = bi |A6i = a6i, B<i = b<i]. Also, define

pAa,b,i(x, ai) = Pr
(X,Y )∼µ

[Ai = ai |A<i = a<i, B<i = b<i, X = x]

and
pBa,b,i(y, ai) = Pr

(X,Y )∼µ
[Bi = bi |A6i = a6i, B<i = b<i, Y = y].

With these notations, we have Pr [Π = (a, b)] =
m∏
i=1

pAa,b,i(ai)
m∏
i=1

pBa,b,i(bi), and for every fixed x, y it holds

that Pr [Π(x, y) = (a, b)] =
m∏
i=1

pAa,b,i(ai, x)
m∏
i=1

pBa,b,i(bi, y). Thus, (12) gives us that

m∑
i=1

E
(x,y)∼µ

∑
a,b

Pr [Π(x, y) = (a, b)]

(
log

(
pAa,b,i(x, ai)

pAa,b,i(ai)

)
+ log

(
pBa,b,i(x, bi)

pBa,b,i(bi)

)) 6M. (13)

We consider the two terms on the left hand side separately, i.e. define

(I) =
m∑
i=1

E
(x,y)∼µ

∑
a,b

Pr [Π(x, y) = (a, b)] log

(
pAa,b,i(x, ai)

pAa,b,i(ai)

), (14)

(II) =
m∑
i=1

E
(x,y)∼µ

∑
a,b

Pr [Π(x, y) = (a, b)] log

(
pBa,b,i(x, bi)

pBa,b,i(bi)

). (15)

We now take a moment to reinterpret these two quantities. Define the random variables Zx,a,b,A,i(c) =

log

(
pAa,b,i(x,c)

pAa,b,i(c)

)
, Zy,a,b,B,i(c) = log

(
pBa,b,i(y,c)

pBa,b,i(c)

)
, where c is the next message of the respective player

conditioned on their input and the transcript so far. Note that the distribution of Zx,a,b,A,i, only depends on
the (i− 1) prefix of a, b and the distribution of Zx,a,b,B,i only depends on the i prefix of a and (i− 1)-prefix
of b. Let Ex,a,b,A,i, Ey,a,b,B,i be their expectations, respectively, i.e.

Ex,a,b,A,i =
∑

c∈{0,1}

pAa,b,i(x, c)Zx,a,b,A,i(c), Ex,a,b,B,i =
∑

c∈{0,1}

pBa,b,i(y, c)Zx,a,b,B,i(c).

With these notations, we note that (14) and (15) translate to

(I) =

m∑
i=1

E
(x,y)∼µ

 E
a<i∼A<i(x,y)
b<i∼B<i(x,y)

[Ex,a,b,A,i]

, (II) =
m∑
i=1

E
(x,y)∼µ

 E
a6i∼A6i(x,y)
b<i∼B<i(x,y)

[Ey,a,b,B,i]

. (16)

Analyzing the probability to enter “strike mode”. With the notations we have set, we have that

log(SA,i(a, b, x)) =
∑
j<i

Zx,a,b,A,i(ai),
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and similarly for Bob, and so probability that one of the players in Π′ enters “strike mode” is

Pr
(x,y)∼µ
a∼A,b∼B

∃i ∈ [m] such that

∣∣∣∣∣∣
∑
j<i

Zx,a,b,A,i(ai)

∣∣∣∣∣∣ > 2M

ε
or

∣∣∣∣∣∣
∑
j<i

Zx,a,b,B,i(bi)

∣∣∣∣∣∣ > 2M

ε

.
The rest of the proof is dedicated to upper bound the probability that

∣∣∣∣∣∑j6iZx,a,b,A,i(ai)
∣∣∣∣∣ > 2M

ε , and the

probability that

∣∣∣∣∣∑j<iZx,a,b,B,i(bi)
∣∣∣∣∣ > 2M

ε , each by 19ε. Lemma 3.8 thus follows from the union bound. We

focus on upper bounding the probability for Alice, and the argument for Bob is analogous.

Claim 3.9. For each x, y, a, b and i, we have that Ex,a,b,A,i, Ex,a,b,B,i are non-negative and furthermore

Ex,a,b,A,i > 2(pAa,b,i(x, 1)− pAa,b,i(1))2, Ex,a,b,B,i > 2(pBa,b,i(x, 1)− pBa,b,i(1))2.

Proof. We show the argument for Ex,a,b,A,i, and the argument for Ex,a,b,B,i is identical. Note that

Ex,a,b,A,i = DKL
(
Ai|X=x,A<i=a<i,B<i=b<i ‖ Ai|A<i=a<i,B<i=b<i

)
,

from which the non-negativity is clear. Since Π is a smooth protocol, we may use Fact 2.7 and conclude that

Ex,a,b,A,i > 2(pAa,b,i(x, 1)− pAa,b,i(1))2.

We note that Claim 3.9 combined with (13) and (16) immediately implies:

Corollary 3.10. We have that

M > (I) > 2
m∑
i=1

E
(x,y)∼µ

 E
a<i∼A<i(x,y)
b<i∼B<i(x,y)

[
(pAa,b,i(x, 1)− pAa,b,i(1))2

].

Consider a random choice of (x, y) ∼ µ, a ∼ A(x, y) and b ∼ B(x, y). Note that the sequence
QAi = Zx,a,b,A,i(ai) − Ex,a,b,A,i forms the sum-martingale GAi =

∑
j6i

QAi , and the similarly the sequence

QBi = Zx,a,b,B,i(bi) − Ex,a,b,B,i forms the sum martingale GBi =
∑
j6i

QBi , both with respect to the natural

filtration defined by the transcript of the protocol at each step. The following claim upper bounds the
expectation of the square of these sum-martingales in the end.

Claim 3.11. E
[
(GAm)2

]
6 18(I) 6 18M .

Proof. Using the martingale property we have that

E
[
(GAm)2

]
=

m∑
i=1

E
[
(QAi)2

]
6

m∑
i=1

E
[
Zx,a,b,A,i(ai)

2
]
.
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Note that fixing x, a<i, b<i we have that

E
[
Zx,a,b,A,i(ai)

2
]

=
∑

c∈{0,1}

pAa<i,b<i,i(x, c) log2

(
pAa<i,b<i,i(x, c)

pAa<i,b<i,i(c)

)
.

Using the smoothness of Π, we have that
pAa<i,b<i,i

(x,c)

pAa<i,b<i,i
(c)

is at least 1
2 for all c ∈ {0, 1}, and since |log(z)| 6

2 |z − 1| for all z > 1/2 we get that

E
[
Zx,a,b,A,i(ai)

2
]
6 4

∑
c∈{0,1}

pAa<i,b<i,i(x, c)

(
pAa<i,b<i,i(x, c)− p

A
a<i,b<i,i

(c)

pAa<i,b<i,i(c)

)2

.

By the smoothness of Π we have pAa<i,b<i,i(c) > 1/3 for all c ∈ {0, 1}, so the above inequality implies that

E
[
Zx,a,b,A,i(ai)

2
]
6 36

(
pAa<i,b<i,i(x, 1)− pAa<i,b<i,i(1)

)2
. The claim now follows by combining this with

Corollary 3.10.

We are now ready to prove Lemma 3.8.

Proof of Lemma 3.8. Consider a random choice of (x, y) ∼ µ, a ∼ A(x, y) and b ∼ B(x, y). Let W1 be

the event that
m∑
i=1

Ex,a,b,A,i > M/ε and let W2 be the event that
∣∣GAi ∣∣ > √M/ε for some i. By Markov’s

inequality we have that

Pr [W1] 6
(I)

M/ε
6 ε,

where we used Corollary 3.10. For W2, using Fact 2.14 and Claim 3.11 gives that

Pr [W2] 6
E
[
(GAm)2

]
M/ε

6 18ε.

Note that

∣∣∣∣∣∑j<kZx,a,b,A,i(ai)
∣∣∣∣∣ =

∣∣GAk−1

∣∣+ m∑
i=1

Ex,a,b,A,i, so if none ofW1,W2 hold, then

∣∣∣∣∣∑j<iZx,a,b,A,i(ai)
∣∣∣∣∣ 6

M/ε +
√
M/ε 6 2M/ε and Alice never enters “strike mode” in the duration on the execution of Π′.

Therefore, the probability Alice enters into “strike mode” on an execution of Π′ is at most Pr [W1] +
Pr [W2] 6 19ε. The same goes for Bob, and Lemma 3.8 follows from the union bound.

3.2.2 The protocol Π′ has universal external information at most 2M/ε+ 1

Let ηA = ηA,m+1 and ηB = ηB,m+1. It is easy to see that the η(a, b) = ηA(a, b)ηB(a, b) is a distribution.
We show that it exhibits that Π′ has low universal external information.

Suppose towards contradiction that this is not the case. Then there are inputs x, y and possible transcripts

a, b and a step i such that (11) fails – suppose without loss of generality that
Px
A,Π′ (a,b)

ηA(a,b) > 22M/ε+1.
We claim that on an execution of Π′ on x, y that yields the transcript (a, b), it must be the case that Alice

entered “strike mode”. Otherwise, we have that:

P xA,Π′(a, b)

ηA(a, b)
=
P xA,Π,m(a, b)

ηA,m(a, b)
· Pr [Am = am in Π | a<m, b<m, x]

Pr [Am = am in Π | a<m, b<m]
.
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Since Alice did not enter “strike mode”, the first fraction is between 2−2M/ε and 22M/ε, and since Π is
smooth, the second fraction is between 1/2 and 2. It follows that (11) holds for 2M/ε + 1 for Alice, in
contradiction.

Let i be the step in the protocol in which Alice decided to enter “strike mode”. By the minimality of i
and smoothness of Π we conclude that

SA,i(a<i, b<i, x) = SA,i−1(a<i−1, b<i−1, x)
Pr [Ai−1 = ai−1 in Π | a<i−1, b<i−1, x]

Pr [Ai−1 = ai−1 in Π | a<i−1, b<i−1]
6 22M/ε · 2,

Now, note that by the behaviour of Alice in strike mode it follows that

P xA,Π′(a, b) = P xA,Π,i(a, b) ·
m∏
k=i

Pr
(X,Y )∼µ

[Ak = ak in Π | a<k, b<k],

and clearly

ηA,m+1(a, b) = ηA,i(a, b)
m∏
k=i

Pr
(X,Y )∼µ

[Ak = ak in Π | a<k, b<k],

so
P xA,Π′(a, b)

ηA,m(a, b)
= SA,i(a<i, b<i, x) 6 22M/ε+1,

and contradiction.

3.3 Step (b): strongs relative discrepancy implies high universal external information

Next, we prove the following lemma, asserting that a protocol with low universal external information cannot
compute functions that have strong relative-discrepancy.

Lemma 3.12. Let δ, ε, ε′ > 0 and M ∈ N. Let µ be a distribution over {0, 1}n × {0, 1}n, and suppose
that f : {0, 1}n × {0, 1}n → {0, 1} is such that (f, µ) has (ε, δ) relative-discrepancy. If Π is a protocol for
(f, µ) whose universal external information at most M , then for (X,Y ) ∼ µ,

SD(Π(X,Y )|f(X,Y )=0,Π(X,Y )|f(X,Y )=1) 6 20

(
ε+ ε′ +

24M

ε′2
δ

)
.

Proof. By Definition 3.5, there are functions ηA(a, b), ηB(a, b) > 0 such that η(a, b) = ηA(a, b)ηB(a, b)
is a distribution, and inequality (11) holds for all x, y, a, b. For each possible transcript π, we partition x, y
into rectangles by according to the ratios PxA(π)

ηB(π) and P yB(π)

ηB(π) . Namely, for −M/ε′ 6 i, j < M/ε′ we denote

RXπ [i] =

{
x | (1 + ε′)i 6

P xA(π)

ηA(π)
6 (1 + ε′)i+1

}
, RYπ [j] =

{
y | (1 + ε′)j 6

P yB(π)

ηB(π)
6 (1 + ε′)j+1

}
,

and define Rπ[i, j] = RXπ [i]× RYπ [j]. We note that the number of rectangles is at most (2M/ε′)2, and that
they cover the entire domain.

Let ρ be a distribution from Definition 3.1 exhibiting the fact that (f, µ) has (ε, δ) relative-discrepancy.
We say a rectangle is heavy if ρ(Rπ[i, j]) > δ and otherwise we say it is light. For future reference, note
that the total ρ-weight on light rectangles is at most (2M/ε′)2δ.
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Fix π and let Hπ = {(i, j) |Rπ[i, j] is heavy}. Then for all b ∈ {0, 1} we have

Pr
(x,y)∼µ

[Π(x, y) = π, f(x, y) = b] =
∑
(x,y)

f(x,y)=b

µ(x, y)P xA(π)P xB(π)

>
∑

(i,j)∈Hπ

∑
(x,y)∈Rπ [i,j]
f(x,y)=b

µ(x, y)P xA(π)P xB(π)

>
∑

(i,j)∈Hπ

∑
(x,y)∈Rπ [i,j]
f(x,y)=b

(1 + ε′)i+jµ(x, y)ηA(π)ηB(π),

where in the last inequality we used the definition of Rπ[i, j]. Thus, we get that

Pr
(x,y)∼µ

[Π(x, y) = π, f(x, y) = b] > η(π)
∑

(i,j)∈Hπ

(1 + ε′)i+jµ(Rπ[i, j] ∩ f−1(b)).

By the relative-discrepancy property we have that µ(Rπ[i, j] ∩ f−1(b)) >
(

1
2 − ε

)
ρ(Rπ[i, j]), and so

Pr
(x,y)∼µ

[Π(x, y) = π, f(x, y) = b] >

(
1

2
− ε
)
η(π)

∑
(i,j)∈Hπ

(1 + ε′)i+jρ(Rπ[i, j]), (17)

and we analyze the last sum. Note that∑
(i,j)∈Hπ

(1 + ε′)i+jρ(Rπ[i, j]) =
∑

(i,j)∈Hπ

∑
(x,y)∈Rπ [i,j]

(1 + ε′)i+jρ(x, y)

>
∑

(i,j)∈Hπ

∑
(x,y)∈Rπ [i,j]

(1 + ε′)−2P
x
A(π)P yB(π)

ηA(π)ηB(π)
ρ(x, y)

=
∑

(i,j)∈Hπ

∑
(x,y)∈Rπ [i,j]

(1 + ε′)−2 1

η(π)
ρ(x, y)P xA(π)P yB(π)

=
(1 + ε′)−2

η(π)
Pr

(X,Y )∼ρ
[Π(X,Y ) = π, (X,Y ) in a heavy rectangle of π]

=
(1 + ε′)−2

η(π)

(
ρ(π)− Pr

(X,Y )∼ρ
[Π(X,Y ) = π, (X,Y ) in light rectangle]

)
.

(18)

We now upper bound the last probability. By conditioning we have that

Pr
(X,Y )∼ρ

[Π(X,Y ) = π, (X,Y ) in a light rectangle of π] =
∑

(i,j) 6∈Hπ

∑
(x,y)∈Rπ [i,j]

ρ(x, y)ρ|x,y(π),

and by our earlier notations we have ρ|x,y(π) = P xA(π)P yB(π) 6 22MηA(π)ηB(π) = 22Mη(π), so

Pr
(X,Y )∼ρ

[Π(X,Y ) = π, (X,Y ) in a light rectangle of π] 6 22Mη(π)
∑

(i,j) 6∈Hπ

∑
(x,y)∈Rπ [i,j]

ρ(x, y),

18



which is at most 22Mη(π) · (2M/ε′)2δ 6 24M

ε′2 δη(π). Plugging this into (18), and then (18) into (17) yields
that

Pr
(x,y)∼µ

[Π(x, y) = π, f(x, y) = b] >

(
1

2
− ε
)

(1 + ε′)−2

(
ρ(π)− 24M

ε′2
δη(π)

)
. (19)

We note that summing this up over all π, we get that

Pr
(x,y)∼µ

[f(x, y) = b] >

(
1

2
− ε
)

(1 + ε′)−2(1− 24M

ε′2
) >

1

2
− ε− ε′ − 24M

ε′2
. (20)

We can now bound the statistical distance between Π(X,Y )|f(X,Y )=1 and Π(X,Y )|f(X,Y )=0 where (X,Y ) ∼
µ. By Fact 2.16, there is A ⊆ Supp(Π) such that this statical distance is equal to

1−

∑
π∈A

Pr [Π(X,Y ) = π | f(X,Y ) = 1] +
∑
π 6∈A

Pr [Π(X,Y ) = π | f(X,Y ) = 0]

 .

Denote p = Pr(X,Y )∼µ [f(X,Y ) = 1], and note that by (20) we have that
∣∣p− 1

2

∣∣ 6 ε+ ε′ + 24M

ε′2 . We get
from the above that the statistical distance is equal to

2

1

2
− 1

2p

∑
π∈A

Pr [f(X,Y ) = 1,Π(X,Y ) = π]− 1

2(1− p)
∑
π 6∈A

Pr [f(X,Y ) = 0,Π(X,Y ) = π]


62

1

2
−
∑
π∈A

Pr [f(X,Y ) = 1,Π(X,Y ) = π]−
∑
π 6∈A

Pr [f(X,Y ) = 0,Π(X,Y ) = π]


+ 8(ε+ ε′ +

24M

ε′2
), (21)

and it is enough to lower bound the two sums. Define bπ = 1 if π ∈ A, and bπ = 0 if π 6∈ A. Then together
the two sums can be written as∑

π

Pr
(X,Y )∼µ

[f(X,Y ) = bπ,Π(X,Y ) = π] >
∑
π

(
1

2
− ε
)

(1 + ε′)−2

(
ρ(π)− 24M

ε′2
δη(π)

)
,

where we used (19). Since the sum of ρ(π), as well as the sum of η(π), is 1, we get that the last expression
is equal to

(
1
2 − ε

)
(1 + ε′)−2(1 − 24M

ε′2 δ) >
1
2 − ε − ε′ − 24M

2ε′2 δ, and plugging this into (21) yields the
result.

3.4 Proof of Theorem 3.2

We can now combine Lemmas 3.7 and 3.12 to deduce Theorem 3.2, as outlined below.
Suppose (f, µ) has (ε, δ) relative-discrepancy with respect to ρ. Let the error of Π be denoted by

ε′; if ε′ > 1
2 − 2000ε we are done, so assume otherwise. Denote by η = 1

2 − ε′ the advantage of Π.
Using Lemma 3.7 (choosing the ε there to be η/160), we get from Π a protocol Π′ whose error is at most
ε′ + η/4 and has universal external information at most M ′ = 400M

η . Thus, the advantage of Π is at least
1
2 − (ε′ + η/4) = 3η/4. Using Lemma 3.12 (with ε′ there to be η/40), we get that the advantage of Π′

is most 20ε + 1
2η + 20·402·24M′

η2 δ. Combining the upper and lower bound on the advantage of Π′, we get
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3η/4 6 20ε+ 1
2η + 20·402·24M′

η2 δ. Simplifying and using η > 2000ε, we get that η
10 6

20·402·24M′

η2 δ, and so

δ > 2−4M ′η3/(10 · 20 · 402) > 2−5M ′ . Taking logarithm gives 5M ′ > log(1/δ) and so by definition of M ′

we get that η 6 2000M
log(1/δ) .

4 Separating amortized zero-error communication complexity and external
information

In this section we prove Theorem 1.3, restated below.

Theorem 1.3 (Restated) . For large enough m, there is a function H : {0, 1}N × {0, 1}N → {0, 1} and a
distributionDH over inputs such that limq→∞

1
qCCDqH (Hq, 0) 6 O(

√
m log2m) and ICexternal

ν [H, 1/16] >
Ω (m).

We begin by presenting our construction, and then analyze it. In particular, Lemmas 4.4 and 4.8 imply
the properties asserted by Theorem 1.3.

4.1 The construction

4.1.1 AND-OR trees

Let I1, . . . , I√m be the partition of [m] into equal sized sets given by Ii = { i ·
√
m+ j | j = 1, . . . ,

√
m}.

We define h : {0, 1}m → {0, 1} by

h(z) =

√
m∧

i=1

∨
j∈Ii

zj .

We will need the following easy fact.

Fact 4.1. For each z ∈ {0, 1}m, there exists a certificate for h(z) of size C(m), where C(m) = O(
√
m).

Consider the function h∧ : {0, 1}m × {0, 1}m → {0, 1} whose input is (u, v), and it is defined by
h∧(u, v) = h(u1 ∧ v1, . . . , um ∧ vm). We will need the following result due to Jayram, Kumar and Sivaku-
mar:

Theorem 4.1. [JKS03] There exists a distributionDh over {0, 1}m×{0, 1}m, such that ICinternal
Dh [h∧, 1/8] >

m/100.

4.1.2 Our construction: AND-OR trees with a hint

Fix a function h as defined above, and let Dh be the distribution from Theorem 4.1.
Let fhint : {0, 1}n × {0, 1}n → {0, 1} be a function, and µ = 1

2µ0 + 1
2µ1 be a distribution over inputs

such that (fhint, µ) has high relative discrepancy (we encourage the reader to think of the bursting noise
function for sufficiently large n). Here, for each b ∈ {0, 1}, µb is supported on f−1

hint(b). We define the
function H : {0, 1}m × {0, 1}m × ({0, 1}n × {0, 1}n)C(m) logm → {0, 1} as follows. View the input as
(u, x, v, y) ∈ {0, 1}m × {0, 1}nC(m) logm × {0, 1}m × {0, 1}nC(m) logm, and define

H(u, x, v, y) = h∧(u, v)
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At first glance, one may wonder what is the role of the x, y-part of the input in the function H , as the
definition of the function ignores them altogether. The idea is that in the input distribution we consider, the
inputs x, y will be used as a pointer to a certificate of h on the input z = (u1 ∧ v1, . . . , um ∧ vm), and we
will be able to compute this pointer with low amortized communication complexity (but with error). Once
the players compute the certificate set I[z] of h on z, they are able to communicate C(m) logm bits in order
to reveal learn zi for each i ∈ I[z]. Thus, if the players were successful in computing the certificate set I[z],
they above protocol would compute H(u, x, v, y) with no error.

The input distribution DH . A sample according to the distribution DH is drawn in the following way.
First, sample (u, v) ∼ Dh, and consider the point z = (u1 ∧ v1, . . . , um ∧ vm). By Fact 4.1, there is a
certificate for h(z) of size at mostC(m). Choose such certificate (in some canonical way), and let α(u, v) =
(α1, . . . , αC(m) logm) be a binary encoding of it. For each i = 1, . . . , C(m) logm independently, we choose
(xi, yi) ∼ µαi . The sample of DH is now (u, x, v, y).

Choice of the parameters. Let k ∈ N be a large parameter, and choose fhint to be the bursting noise
function on the tree of height 24k and n accordingly. Finally, we choose m = 2k/10.

4.2 The zero-error protocol

In this section, we show a zero-error protocol of low amortized communication complexity as asserted in
Theorem 1.3. To show that, we will need the following result from [BR14].

Theorem 4.2. [[BR14]] limq→∞CCµq [f
q, ε]/q = ICinternal

µ [f, ε].

We also need the following easy fact.

Fact 4.3. Suppose µ, µ0, µ1 are distributions such that µ = 1
2µ0 + 1

2µ1, and let ν be any convex combination
of µ0, µ1. Then ICinternal

ν [f, 2ε] 6 2ICinternal
µ [f, ε] + 6.

Proof. Let Π be a protocol for (f, µ) with ε-error. Note that when executed on µ0 (or on µ1), the protocol
has at most 2ε error, and hence its error on ν is also at most 2ε. We next upper bound the internal information
cost of Π when executed on ν.

Consider the random variables D,X, Y , where we first sample D ∈ {0, 1} uniformly, then sample
(X,Y ) ∼ µD. Then I[Π;X|Y ] > I[Π;X|Y,D]− 1 and similarly I[Π;Y |X] > I[Π;Y |X,D]− 1, so we get
that

Iinternal
µ [Π] >

1

2
Iinternal
µ0

[Π] +
1

2
Iinternal
µ1

[Π]− 2,

hence max(Iinternal
µ0

[Π], Iinternal
µ1

[Π]) 6 2Iinternal
µ [Π] + 4.

Since ν is a convex combination of µ0 and µ1, we may write ν = λµ0 + (1 − λ)µ1 and define ran-
dom variables D′, X ′, Y ′ where: D′ = 0 with probability λ and otherwise D′ = 1, and then we sample
(X ′, Y ′) ∼ µD. We thus have

I[Π(X ′, Y ′);X ′|Y ′] 6 I[Π(X ′, Y ′);X ′|Y ′, D′] + 1, I[Π(X ′, Y ′);Y ′|X ′] 6 I[Π(X ′, Y ′);Y ′|X ′, D′] + 1,

and so

Iinternal
ν [Π] 6 λIinternal

µ0
[Π]+(1−λ)Iinternal

µ1
[Π]+2 6 max(Iinternal

µ0
[Π], Iinternal

µ1
[Π])+2 6 2Iinternal

µ [Π]+6.
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Lemma 4.4. limq→∞
1
qCCDqH

(Hq, 0) 6 O(
√
m log2m)

Proof. Let q ∈ N be the number of copies of H we wish to compute (thought of as very large), and denote
the q-inputs to H by (u(1), x(1), v(1), y(1)), . . . , (u(q), x(q), v(q), y(q)). Set r = C(m) logm; we now
define r distinct q-tuples of inputs for f . For each i = 1, . . . , r, consider the q-tuple of inputs for f resulting
from taking the ith input from each one of (x(1), y(1)), . . . , (x(q), y(q)), i.e. a(i) = (x(1)i, . . . , x(q)i) and
b(i) = (y(1)i, . . . , y(q)i). We note that for each i, the distribution of (a(i), b(i)) is a product distribution νqi
where νi is some convex combination of µ0, µ1.

Combining Lemma 3.3 and Fact 4.3 we get that for each i, ICinternal
νi [f, 21−k] = O(k), and so by

Theorem 4.2, there is q(i) such that for all q > q(i), we may find a protocol Πi communicating O(qk)
bits in expectation whose error on each copy of f q on νqi is at most 21−k. For the rest of the proof, we take
q > maxi=1,...,r q(i).

We are now ready to present the protocol for H . For each i, the players use the protocol Πi in order
to compute f q(a(i), b(i)). Thus, the players now have a candidate answer for f(x(j)i, y(j)i) for each
j = 1, . . . , q and i = 1, . . . , r. The players now check for each j = 1, . . . , q the subset of coordinates that
(f(x(j)i, y(j)i))i=1,...,r encodes, call it Ai, and then communicate all of the bits in u(j), v(j) that are in
it, i.e. u(j)`, v(j)` for ` ∈ Ai. If this partial assignment to h∧ is indeed a certificate – the players declare
the copy i to be successful and thus know the value H(u(j), x(j), v(j), y(j)). Otherwise, if copy j is not
successful, the players use the trivial protocol for H and exchange u(j), v(j) fully to compute H on that
copy (that simply exchanges the players’ inputs).

Correctness. It is easy to see that the players are always correct on each copy. They are correct on
a “successful copy” by the definition of certificates, and are correct on “unsuccessful copy” since they
exchange all of the relevant input bits needed to compute h∧ on such copy.

Average communication complexity. LetEi be the event that copy i is successful, and letQ =
q∑
i=1

1Ei be

the number of successful copies. Also, denote byA the total number of bits communicated by the simulation
of Πi for i = 1, . . . , r. With these notations, we note that the random variable A + (q −Q)2m bounds the
total number of bits communicated by the protocol.

First, note that by choice of Πi we have that E [A] 6 O(qkr). Secondly we lower bound the expectation
of Q. Note that for each i, j, the probability the players computed f(x(j)i, y(j)i) correctly is at least
1− 21−k. Thus, for each j, the probability that they computed f(x(j)i, y(i)i) correctly for all i = 1, . . . , r
is at least 1− r21−k > 1− 2−9k/10. Thus, E [Q] > (1− 2−9k/10)q.

Overall, we get that the expected number of bits communicated is at most

E [A+ (q −Q)2m] 6 O(qkr) + 2mq2−9k/10 = O(qkr),

where in the last inequality we used the fact that m = 2k/10. Therefore, we get that

lim
q→∞

1

q
CCDqH

(Hq, 0) = O(kr) = O(
√
m log2m).

4.3 Lower bounding the external information of H

In this section, we prove the lower bound on the external information of (H,DH) as asserted in Theorem 1.3.
The main step in this proof is Lemma 4.5, which asserts that any protocol for (H,DH) with low external
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information can be converted into a protocol for (hfinal,Dh) with low external information. The second step
of the proof is to argue that the latter is impossible, and is essentially the content of Theorem 4.1 (up to the
choice of the parameters).

4.3.1 Dropping the hints

Lemma 4.5. Let M ∈ N, ε, ε′, ξ, δ > 0, let h∧ : {0, 1}m × {0, 1}m → {0, 1} be as above and let
f : {0, 1}n × {0, 1}n → {0, 1} be a function with (ε, δ) relative discrepancy.

Then any protocol Π for (H,DH) with error ε′ and Iexternal
DH [Π] 6 M , can be converted into a protocol

Π′ for (h∧,Dh) satisfying:

1. The protocol Π′ has universal external information at most 4M
ξ .

2. The error of Π′ is at most ε′ + 61ξ + 20C(m) logm · ε+ 233C(m) logmM/ξ2 · δ.

The rest of this section is devoted to the proof of Lemma 4.5. Denote r = C(m) logm.
Recall the input distribution DH of the function H , and consider the distribution D̃H defined as follows.

To draw a sample, we take (u, v) ∼ Dh, and for each i = 1, . . . , r take (xi, yi) ∼ µ independently, and
output (u, x, v, y).

By Lemma 3.7, we may convert Π into a protocol Γ that has error at most ε′′ = ε′ + 40ξ on (H,DH)
and has universal external information at most M ′ = 4M/ξ. We would like to show that the distribution
over the transcript Γ(U,X, V, Y ) when (U,X, V, Y ) ∼ DH , is statistically close to the distribution of the
transcript Γ(U, X̃, V, Ỹ ) where (U, X̃, V, Ỹ ) ∼ D̃H .

To do so, we consider the hybrid ensembles of random variables. That is, sample (U,X, V, Y ) ∼ DH
as well as X̃, Ỹ ∼ µC(m) logm, so that the distribution of (U, X̃, V, Ỹ ) is D̃H . Denote

X i = (X̃1, . . . , X̃i, Xi+1, Xi+2, . . . , Xr), Y i = (Ỹ1, . . . , Ỹi, Yi+1, Yi+2, . . . , Yr)

and define Γi = Γ(U,X i, V,Y i). We show that the statistical distance between Γi and Γi+1 is small.

Claim 4.6. For all i ∈ {0, . . . , r − 1}, we have that SD(Γi,Γi+1) 6 20ε+ 21 ξr + 20 r
228M′r/ξ

ξ2 δ.

Proof. Since Γ has universal external information at most M ′, it follows from Lemma 3.6 that the external
information of Γ when ran on (U,X i+1, V,Y i+1) is at most 2M ′, i.e.

I[Γ(U,X i+1, V,Y i+1);X i+1,Y i+1, U, V ] 6 2M ′.

By Fact 2.6, the left hand side is at least

I[Γ(U,X i+1, V,Y i+1); X̃i+1, Ỹi+1 | X i+1
6=i+1, Y

i+1
6=i+1, U, V ].

For each x 6=i+1, y6=i+1, u, v we define

M [x 6=i, y6=i, u, v] = I[Γ(U,X i+1, V,Y i+1); X̃i+1, Ỹi+1 | X i+1
6=i+1 = x 6=i+1, Ỹ

i+1
6=i+1 = y6=i+1, U = u, V = v].

Then we have that E
[
M [X i+1

6=i+1, Ỹ
i+1
6=i+1, U, V ]

]
6 2M ′, and thus by Markov’s inequality we have that

M [X i+1
6=i+1, Ỹ

i+1
6=i+1, U, V ] 6 2rM ′/ξ = M ′′ with probability at least 1− ξ/r; denote this event by E.
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Take (u, v, x 6=i+1, y6=i+1) ∈ E and condition on X i+1
6=i+1 = x 6=i+1 , Y i+1

6=i+1 = y 6=i+1, U = u and V = v.
Note that the distribution of (X̃i+1, Ỹi+1) is µ, and that Γ(U,X i+1, V,Y i+1) is a protocol whose input is
X̃i+1, Ỹi+1 and has mutual information M [x6=i, y6=i, u, v] with its the inputs. Therefore, by Lemma 3.12
(applied with ε′ = ξ/r) we get that

SD
(

Γ(U,X i+1, V,Y i+1)|f(X̃i+1,Ỹi+1)=0,Γ(U,X i+1, V,Y i+1)|f(X̃i+1,Ỹi+1)=1

)
6 20

(
ε+

ξ

r
+
r224M ′′

ξ2
δ

)
.

Let α1, . . . , αr be the encoding of the certificate chosen for h(u, v), and let b = αi+1. Then it follows that

SD
(

Γ(U,X i+1, V,Y i+1)|f(X̃i+1,Ỹi+1)=b,Γ(U,X i+1, V,Y i+1)
)
6 20

(
ε+

ξ

r
+
r224M ′′

ξ2
δ

)
.

Taking average over X i+1
6=i+1,Y

i+1
6=i+1, U, V and noting that the event E fails with probability at most ξ/r (and

then the statistical distance is at most 1), we get that

SD
(

Γ(U,X i+1, V,Y i+1)|f(X̃i+1,Ỹi+1)=αi+1(U,V ),Γ(U,X i+1, V,Y i+1)
)
6 20ε+ 21

ξ

r
+ 20

r224M ′′

ξ2
δ.

The statement of the claim now follows since the distribution Γ(U,X i+1, V,Y i+1)|f(X̃i+1,Ỹi+1)=αi+1(U,V ) is
precisely Γi, and the distribution of Γ(U,X i+1, V,Y i+1) is precisely Γi+1.

Claim 4.7. SD(Γ(U,X, V, Y ),Γ(U, X̃, V, Ỹ )) 6 20rε+ 21ξ + 20 r
328M′r/ξ

ξ2 δ.

Proof. Since Γ0 = Γ(U,X, V, Y ) and Γr = Γ(U, X̃, V, Ỹ ), the statement of the claim follows by summing
Claim 4.6 and using the triangle inequality.

Set η = 20rε + 21ξ + 20 r
328M′r/ξ

ξ2 δ. Using Claim 4.7, since the error of Γ0 in computing (H,DH) is

at most ε′′, it follows that Γr has error at most ε′′ + η in computing (H, D̃H). Note that the distribution of
X̃, Ỹ is completely independent of U, V , and (U, V ) is distributed according to Dh. Thus, we may find x̃, ỹ

such that the protocol Π′(U, V )
def
= Γ(U, x̃, V, ỹ) has error at most ε′′+η in computing (h∧,Dh). Bounding

η 6 20rε+ 21ξ + 233rM/ξ2 · δ and plugging in r gives the claimed bound.

4.3.2 Concluding the external information lower bound

Lemma 4.8. ICexternal
DH [H, 1/16] > Ω(m).

Proof. Let ξ = 1/1000, and suppose we have a protocol Π for (H,DH) with external information at most
ξm/800 and error ε′. Using Lemma 4.5, we find a protocol Π′ for (h∧,Dh) with external information at
most m/200, whose error is upper bounded as in Lemma 4.5. However, by Fact 2.10 and Theorem 4.1 we
have that ICexternal

Dh [h∧, 1/8] > ICinternal
Dh [h∧, 1/8] > m/100, so Π′ must have error at least 1/8. Combining

the upper and lower bounds on the error of Π yields that

1

8
6 ε′ + 61ξ + 20C(m) logm · ε+ 233m·C(m) logm/ξ2 · δ

By the choice of parameters, we have that m = 2k/10 and that f has (ε, δ) relative-discrepancy for ε = 2−k,
δ = ε/22k (by Lemma 3.4), so 20C(m) logm · ε+ 233C(m) logmM/ξ2 · δ 6 2−k/2 + 2m

2 · δ 6 2−k/4. Thus
we get that ε′ > 1

8 − 61ξ − 2−k/4 > 1
16 , as desired.
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5 Tightness and additional implications

In this section, we prove Theorem 1.5, which asserts that Theorem 1.3 is nearly-tight for protocols with
constant error. We then prove that for protocols with zero-error, a better, arbitrarily large, separation holds
in the form of Corollary 1.4.

5.1 Proof of Theorem 1.5

Fix (f, µ) as in the Theorem, denote A = limq→∞
1
qCCµq(f

q, 0) and take q such that CCµq(f
q, 0) 6

2Aq. Thus, there is a zero-error protocol Π for f q, whose average communication cost on µq is at most
2Aq. Let (X1, Y1), . . . , (Xq, Yq) ∼ µ be independent. Then the independence implies that I[Π;Xi, Yi] 6
I[Π;Xi, Yi | X<i, Y<i], and so by Fact 2.5

E
i∈[q]

[I[Π;Xi, Yi]] 6
1

q

q∑
i=1

I[Π;Xi, Yi | X<i, Y<i] =
1

q
I[Π;X,Y ] 6

1

q
H[Π] 6

1

q
E [|Π|] 6 2A.

It follows that there is an i ∈ [q] such that I[Π;Xi, Yi] 6 2A, and without loss of generality assume i = 1 is
such copy. We first handle the simple case in whichA 6 ε log(1/ε)/10. In this case, by the Data Processing
inequality we have I[Π; f(X1, Y1)] 6 2A, and since Π has zero-error we get that H[f(X1, Y1)] 6 2A. Thus,
f(X1, Y1) is close to constant, i.e. there is b ∈ {0, 1} such that Pr(X1,Y1)∼µ [f(X1, Y1) = b] > 1 − ε, and
we have a trivial protocol for f (in particular Iexternal

µ [f, ε] = 0). Therefore, we may assume for the rest of
the proof that A > ε log(1/ε)/10.

Define the set of good tuples G = {(x1, y1) |DKL (ΠX1=x1,Y1=y1 ‖ Π) 6 2A/ε}, and note that using
Fact 2.4 and Markov’s inequality yields that µ(G) > 1− ε.

Denote X = (X1, . . . , Xq), Y = (Y1, . . . , Yq). For a transcript π = (a, b) where a = (a1, . . . , am) are
the messages of Alice and b = (b1, . . . , bm) are the messages of Bob, and inputs x, y define

P xA(a, b) =
∏
j<m

Pr
(X,Y )∼µ

[Aj = aj |A<j = a<j , B<j = b<j , X = x],

and similarly
P yB(a, b) =

∏
j<m

Pr
(X,Y )∼µ

[Bj = bj |A6j = a6j , B<j = b<j , Y = y].

We will use the protocol Π to construct a protocol Π′ for (f, µ), whose input is (x1, y1), but first let us
introduce some terminology and make some observations. We say a transcript π = (a, b) of Π is compatible
with Alice, if there exists (x2, . . . , xq) such that P xA(π) > 0 for x = (x1, . . . , xn), and analogously for Bob.
Note that if π is compatible with both Alice and Bob, then there are extensions x of x1, and y of y1, such
that the probability that Π(x, y) = π is P xA(π)P yB(π) > 0. Since Π has zero-error, it means that in that case
the value of f(x1, y1) is computed correctly in transcript π.

For each π, let Rπ be the set of (x1, y1) for which π is compatible with both Alice and Bob, and note
that Rπ is a monochromatic rectangle of f . We say a transcript π is a 0-transcript if the value of f(x1, y1)
on Rπ is 0, and say it is a 1-transcript if the value of f(x1, y1) on Rπ is 1. Note that if π0 is a 0-transcript,
and π1 is a 1-transcript, then Rπ0 and Rπ1 are disjoint.

We need the following claim, asserting that a randomly chosen transcript is compatible with both players
with noticeable probability.
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Claim 5.1. Let (x1, y1) ∈ G. Then

Pr
π∼Π(X1,Y1)

[π is compatible with both Alice and Bob on inputs (x1, y1)] > 2−2A/ε−17.

Proof. Define p(π) = Pr(X1,Y1)∼µ [Π(X1, Y1) = π] and p(π | x1, y1) = Pr [Π(x1, y1) = π], and consider

H =
{
π ∈ Supp(Π) | 0 < p(π | x1, y1) 6 22(A/ε+8)p(π)

}
.

By Fact 2.13 and the definitions of G and H ,∑
π 6∈H

p(π | x1, y1) · 2
(
A

ε
+ 8

)
6
∑
π

p(π | x1, y1)

∣∣∣∣log

(
p(π | x1, y1)

p(π)

)∣∣∣∣ 6 DKL (ΠX1=x1,Y1=y1 ‖ Π) + 8

6
A

ε
+ 8,

so
∑
π∈H

p(π | x1, y1) > 1/2. It follows that

Pr
π∼Π(X1,Y1)

[π is compatible with both Alice and Bob on inputs (x1, y1)] >
∑
π∈H

p(π)

>
∑
π∈H

2−2(A/ε+8)p(π | x1, y1)

> 2−2A/ε−17.

The idea of Π′ is to consider a long enough list of possible transcripts of Π, such that almost all input tu-
ples (x, y) ∈ G have a compatible transcript in the list. Thus, we will have a collection of L monochromatic
rectangles that cover most of the mass of µ, and we may invoke the classical argument from [AUY83] that
constructs a protocol from monochromatic rectangles. We outline the argument below for completeness.

Using Claim 5.1, there is a list ofL = 22A/ε+17 log(1/ε) = 2O(A/ε) possible transcripts of Π, π1, . . . , πL,
and G′ ⊆ G with µ(G′) > µ(G) − ε > 1 − 2ε, such that for each (x1, y1) ∈ G′ there is i ∈ [L] such that
πi is compatible with both Alice and Bob on (x1, y1). We now describe Π′(X1, Y1). The players will try to
convince themselves that f(x1, y1) = 0, and for that they will try to eliminate from the list all 1-transcripts.
Formally, at each step of the protocol there is an active set of 1-transcripts, S ⊆ [L], and the goal of the
players at each step is either to shrink the size of S by factor 2, or learn the value of f(x1, y1).

Suppose that both players are compatible with a 0-transcript τ0 from the list, and consider all 1-transcripts
τ1 in S. Note that since Rτ0 and Rτ1 are disjoint, either their x-range is disjoint, or their y-range is disjoint.
In particular, it follows that either for the x-range or y-range – say x-range, at least half of the Rτ1’s are
disjoint fromRτ0 in it. In this case, we say that τ0 eliminates half of the τ1’s from the point of view of Alice.

Thus, at each step, the player considers all 0-transcripts from the list that are compatible with their input,
and checks whether there is at least one that eliminates half of the 1-transcripts in S from their view.

1. If there is, the player chooses one such τ0 arbitrarily, and sends the index of that transcript in the list.
All of the 1-transcripts that are inconsistent with τ0 from that player’s point of view are discarded from
S. If τ0 is also compatible with the other player, the players declare the output to be 0 and terminate,
and otherwise the players continue in the protocol.

2. If there is no such τ0, the player indicates so and passes the turn to the other player.

If both players passed as in item 2 above in consecutive turns, the players declare the output of the function
to be 1. Otherwise, the protocol continues until S becomes empty, in which case the players declare the
output to be 0.
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Analyzing the communication complexity. Note that in each turn, the number of bits communicated is
at most O(A/ε), so to bound the communication complexity of Π′ we need to bound the number of turns.
Since the list S starts off at size 2O(A/ε) and shrinks by factor 2 at least once every 3 turns, it follows that the
number of rounds is O(A/ε), and so the communication complexity of Π′ is at most O

(
A2

ε2

)
. In particular,

we get that Iexternal
µ [Π′] 6 O

(
A2

ε2

)
.

Correctness. We claim the Π′(x1, y1) is correct whenever (x1, y1) ∈ G′, and since µ(G′) > 1 − 2ε it
follows that it has error at most 2ε when ran on µ. Indeed, note that if (x1, y1) ∈ G′ and f(x1, y1) = 0,
then there is τ0 in the list that is compatible with both of them, hence the players will never pass in two
consecutive turns and the output of the protocol will be 0. If f(x1, y1) = 1, then there is τ1 a 1-transcript
that is compatible with both players, hence it will never be removed from S. Thus, the output of the protocol
will be 1.

5.2 Proof of Corollary 1.4

Fix k, and pick (f, µ) from Theorem 1.3. Define f ′ : {0, 1}n+1 × {0, 1}n+1 → {0, 1} in the following
way: view the input (x′, y′) as x′ = (x, a), y′ = (y, b) where (x, y) ∈ {0, 1}n × {0, 1}n, and define
f ′(x, y) = f(x, y) if a = b = 1 and 0 otherwise. Set p = 1√

k log2 k
and consider the distribution ν that puts

(1−p) mass uniformly on x′ = (x, a), y′ = (y, b) such that a = b = 0, and puts the rest of its mass on x′, y′

where a = b = 1, i.e. ν(x′, y′) = pµ(x, y) for any such x′, y′. We claim that (f, ν) satisfies the properties
asserted by Corollary 1.4.

Let Π be a zero-error protocol for (f, ν), and consider the random variables (D,X ′ = (X,A), Y ′ =
(Y,B)) where D = 0 with probability p and otherwise D = 1. If D = 0 we sample (X,Y ) ∼ µ and set
A = B = 1, and otherwise we sample X and Y uniformly form {0, 1}n and set A = B = 0. Then

Iexternal
ν [Π] = I[Π;X,Y ] > I[Π;X ′, Y ′ | D]− 1 > pI[Π;X ′, Y ′ | D = 0]− 1,

so ICexternal
ν [f ′, 0] > pICexternal

µ [f, 1/16]− 1 > Ω(
√
k/ log2 k).

As for a zero-error protocol withO(1) amortized communication on ν, by assumption there is a protocol
Πq solving (fm, µm) with zero-error and expected communication complexity O(m

√
k log2 k) + o(m) =

O(m/p) + α(m), where α(m) is monotone and α(m)/m→ 0.
Consider the following protocol Π for (f q, νq). Denote the inputs by (x′1, y′1), . . . , (x′q, y′q), and write

x′i = (xi, ai) and y′i = (yi, bi). Alice first identifies all copies i such that ai = 0, and communicates
them to Bob, so that the answer to that copy is 0. Similarly, Bob identifies all copies i where bi = 0, and
communicates them to Alice. Let A be the set of i’s such that ai = bi = 1 (note that both Alice and Bob
know A), and set m = |A|. The players use the protocol Πm to solve the copies of f corresponding to A.

Correctness. It is clear that the protocol Π is correct and has zero error.

Amortized communication cost. Let Q = |A| be a random variable. Note that the number of bits trans-
mitted in the phase of the protocol in which trivial copies are identified, isO(q) (corresponding to encodings
of two subset of [q]). Thus, the expected communication cost of Π is at mostO(q)+E

[
CCµ′Q(ΠQ)

]
. Condi-

tioning onQ, we have that CCµ′Q(ΠQ) = O(|Q| /p)+α(|Q|) 6 O(|Q| /p)+α(q). Note that E [|Q|] = pq,
so we get that

E
[
CCµ′Q(ΠQ)

]
6 E [O(|Q| /p) + α(q)] 6 O(q) + α(q).
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In conclusion, the expected communication cost of Π is O(q) + α(q), and since α(q)/q → 0 we conclude
that the amortized communication cost of Π is O(1).
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A Missing proofs

A.1 Upper bounding amortized zero-error communication complexity

Theorem A.1. For every total function f : {0, 1}n × {0, 1}n → {0, 1}, it holds that

lim
q→∞

1

q
CCµq(f

q, 0) 6 ICexternal
µ [f, 0].

For the proof, we need the following lemma due to [HJMR10].

Lemma A.2. Let P,Q be distributions such that DKL (P ‖ Q) <∞. Then there exists a sampling procedure
P , that on an input (q1, q2, . . .) consisting of a list of independent samples from Q, outputs an index r? such
that the distribution of qr? is P , and the expected length of r? is at most

DKL (P ‖ Q) + 2 log(DKL (P ‖ Q) + 1) +O(1).

Proof of Theorem A.1. Let Π be a zero-error protocol for f . We show that there is a sequence of zero-error
protocols (Γk)k∈N for (fk)k∈N, such that CC(Γk) = kIexternal

µ [Π] + o(k), from which the theorem clearly
follows.

Let M = CCµ(Π) < ∞. Let k be large, let (X1, Y1), . . . , (Xk, Yk) ∼ µ be independently sampled
(i.e. an input for fk), and denote by (x1, y1), . . . , (xk, yk) ∼ µ a realization of them. The protocol Γk we
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construct works by rounds, wherein in round t, the player that speaks in that round in Π also speaks. The
goal of that player is to communicate to the other player all of the bits that would be sent on that round in
Π(X1, Y1), . . . ,Π(Xk, Yk) conditioned on the transcripts so far and the input of the speaking player.

We describe Γk more precisely now. For each i ∈ [k] and step t, the players maintain a transcript
of Π(Xi, Yi) up to step t, which we denote by πi,t. Thus, denoting πt = (π1,t, . . . , πk,t), the goal of
the players is to correctly sample πt+1 conditioned on πt, and to do so with low expected communication
complexity low. Towards this end, we denote by Π(Xi, Yi)j the jth bit exchanged in the protocol Π on
Xi, Yi, X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk). Denote

D(πt, t, x, y) = DKL

((
Π(X1, Y1)t+1, . . . ,Π(Xk, Yk)t+1

)
|X=x,Y=y,Π(X,Y )6t=πt ‖(

Π(X1, Y1)t+1, . . . ,Π(X1, Y1)t+1

)
|Π(X,Y )6t=πt

)
.

We now argue that the players can sample πt+1 conditioned on πi,t by expectedly communicating at most
O(1) + D(πt, t) + 2 log(D(πt, t) + 1) bits. Note that regardless of what player speaks, the distribution(
Π(X1, Y1)t+1, . . . ,Π(Xk, Yk)t+1

)
|Π(X,Y )6t=πt is known to both players at the (t + 1)-step, and they

therefore can think of their shared string of randomness as a list of samples from it. Assume without
loss of generality that Alice speaks. Since her next message only depends on her input and the transcript
so far, the distribution Π(X1, Y1)t+1, . . . ,Π(Xk, Yk)t+1

)
|X=x,Y=y,Π(X,Y )6t=πt is identical to the distribu-

tion Π(X1, Y1)t+1, . . . ,Π(Xk, Yk)t+1

)
|X=x,Π(X,Y )6t=πt , and in particular she knows it. Therefore, Alice

can use the sampling procedure from Lemma A.2 to pick an index r? in their string of randomness that
refers to the r?th sample in their shared randomness string, such that this sample is distributed according to
Π(X1, Y1)t+1, . . . ,Π(Xk, Yk)t+1

)
|X=x,Y=y,Π(X,Y )6t=πt . Alice can communicate r? to Bob, and then they

can continue. We note that the correctness of the sampling, as well as the expected communication cost of
the (t+ 1)th step, trivially follow from Lemma A.2.

Thus, Γk is a zero-error protocol for fk, and we next upper bound its expected communication com-
plexity. Let Z1, . . . , Zk denote the number of rounds in the execution of Π on (X1, Y1), . . . , (Xk, Yk)
respectively, and let T = max(Z1, . . . , Zk). By our analysis of each round, we have that

CCµk(Γk) 6
∞∑
t=0

E
x,y

[
E
πt

[1T>t (O(1) +D(πt, t, , x, y) + 2 log(D(πt, t, , x, y) + 1))]

]
. (22)

Clearly, the first term contributes at most O(E [T ]), which by Claim A.3 is o(k). Next, we upper bound the
contribution from the second term, which will also allow us to bound the last term using Jensen’s inequality.
To upper bound the contribution of the second term in (22), note that by the chain-rule for conditional
KL-divergence we have that

E
xi,yi

[ ∞∑
t=0

E
πi,t

[D(πt, t, x, y)]

]
= E

~x,~y

[
DKL

((
Π(X1, Y1), . . . ,Π(Xk, Yk)

)
|X=x,Y=y ‖ Π(X1, Y1), . . . ,Π(Xk, Yk)

)]
.

By Fact 2.4, this is equal to I[X,Y ; Π(X1, Y1), . . . ,Π(Xk, Yk)], which by independence between the (Xi, Yi)
for different i’s, is equal to kI[X1, Y1; Π(X1, Y1)] = kIexternal

µ [Π].
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For the second term, we note that log(1 + z) 6
√
z and so

∞∑
t=0

E
x,y

[
E
πt

[2 · 1T>t log(D(πt, t, x, y))]

]
6 2

∞∑
t=0

E
x,y

[
E
πt

[
1T>t

√
D(πt, t, x, y)

]]

6 2

√√√√ ∞∑
t=0

E
xi,yi

[
E
πt

[1T>t]

]√√√√ ∞∑
t=0

E
x,y

[
E
πt

[D(πt, t, x, y)]

]
,

where the last inequality is by Cauchy-Schwarz. The first term in this product is
√
E[T ] = o(

√
k), and the

second term in this product is
√
kIexternal
µ [Π], so overall this expression is o(k).

Plugging everything into (22), we see that the expected communication complexity of Γk is at most
kIexternal
µ [Π] + o(k), as desired.

Claim A.3. SupposeZ is a non-negative, integer random variable with finite expectation, and letZ1, . . . , Zk
be independent copies of Z. Then

lim
k→∞

1

k
E [max(Z1, . . . , Zk)] = 0.

Proof. The assumption implies that E[Z] =
∑
r>1

Pr [Z > r] < ∞, so limR→∞
∑
r>R

Pr [Z > r] = 0. Let

ε > 0. Then there is R (that depends on the distribution of Z) such that
∑
r>R

Pr [Z > r] 6 ε.

Computing, we get that

1

k
E [max(Z1, . . . , Zk)] =

1

k

∑
r>1

Pr [max(Z1, . . . , Zk) > r] =
1

k

∑
r>1

1− Pr [Z < r]k.

We split the sum into r < R and r > R. The contribution from r < R is clearly at most R/k, and by our
earlier observation the contribution from r > R is at most

1

k

∑
r>R

1−
(

1− Pr [Z > r]
)k
6

1

k

∑
r>R

kPr [Z > r] 6 ε.

It follows that lim sup 1
kE [max(Z1, . . . , Zk)] 6 ε, and since this is true for all ε > 0 the claim is proved.

A.2 Non-deterministic external information complexity

In this section pe prove Theorem 1.1:

Theorem 1.1. Let µ be a distribution with supp(µ) ⊆ f−1(1), then

ICexternal,1
µ [f, 0] 6 lim

q→∞
CC1q

µq [f
q, 0]/q.

Before proceeding, let us formally define the quantities in the theorem. For a function f and an output a,
we say that a distribution of messages M = M(X,Y ) along with acceptance functions AccA : (X,M) 7→
{0, 1}, AccB : (Y,M) 7→ {0, 1} is an a-proof for f , if the following properties hold for all (x, y):
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• If f(x, y) = a, then for all m with Pr[M = m|(x, y)] > 0, AccA(x,m) = 1 and AccB(y,m) = 1;

• if f(x, y) 6= a, then for all m, AccA(x,m) = 0 or AccB(y,m) = 0.

Then the (average case) non-deterministic amortized communication complexity of a boolean f(x, y) is
defined as:

CC1q

µq [f
q, 0] := inf

M : M is a 1q-proof for fq
E

(x,y)∼µ;m∼M |(x,y)

|m|. (23)

The non-deterministic external information complexity of f is given by:

ICexternal,1
µ [f, 0] := inf

M : M is a 1-proof for f
I(x,y)∼µ;m∼M |(x,y)

(XY ;M). (24)

In other words, it’s the smallest amount of information a proof that definitively convinces Alice and Bob
that f(x, y) = 1 can reveal about (x, y) to an outside observer. With the definitions in place, we are ready
to prove the theorem.

Proof of Theorem 1.1. We will prove the inequality for any fixed q. Theorem 1.1 then follows by taking
q →∞. For a fixed q, let M q be a 1q-proof for f q such that E |M q| realizes CC1q

µq [f
q, 0].

Fix an index i ∈ [q]. Let M q
i (x, y) be obtained as follows: (1) set (xi, yi) = (x, y); (2) pick values

(xj , yj) ∼ µ for j 6= i; (3) sample M q conditioned on (xj , yj)
q
j=1.

Note that since M q is a 1q-proof for f q, M q
i is a 1-proof for f(xi, yi) for all i. Thus each i gives rise to

a valid 1-proof for f . Importantly, to verify that M q
i is a valid proof that f(x, y) = f(xi, yi) = 1 the players

do not need to know the values of (xj , yj) for j 6= i.
To complete the proof we only need to show that there exists an i such that

I(M q
i ;XY ) = I(M q;XiYi) 6 E |M q|/q. (25)

To see this, observe that

E |M q| > H(M q) > I(M q;X1Y1 . . . XqYq) =

q∑
i=1

I(M q;XiYi|X<iY<i)

=

q∑
i=1

(I(M qX<iY<i;XiYi)− I(X<iY<i;XiYi)) =

q∑
i=1

I(M qX<iY<i;XiYi) >
q∑
i=1

I(M q;XiYi).

Therefore, there must exist and i ∈ [q] such that (25) holds.
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