
1
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Convex Quadratic Form
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Abstract—The non-linearity and non-convexity of the AC
power flow equations may induce convergence problems to the
Newton-Raphson (NR) algorithm. Indeed, as shown by Thorp
and Naqavi, the NR algorithm may exhibit a fractal behavior.
Furthermore, under heavy loading conditions or if some of the
line reactances are relatively large compared to the others, the
Jacobian matrix becomes ill-conditioned, which may cause the
divergence of this algorithm. To address the aforementioned
problems for radial power distribution systems, we propose in
this paper to apply a sinusoidal transform to map the AC power
flow equations into a convex quadratic form, which includes node-
based and Pythagorean equations. The good performance of the
proposed approach is demonstrated via simulations carried out
on several power distribution systems.

Index Terms—Power flow; Sinusoidal transform; Fractal be-
havior; Quadratic form; Distribution systems.

NOMENCLATURE

Indices
n/m Bus n/m

Parameters
pn/qn The real/reactive power consumed at bus n
R/X The resistance/ reactance of transmission lines
gnm/gl The conductance of the transmission line be-

tween buses n and m/ of line l
bnm/bl The Suseptance of the transmission line be-

tween buses n and m/ of line l
Variables

Pn/Qn The real/reactive power produced at bus n
Vn The voltage magnitude of bus n
θn The voltage angle of bus n
Pnm/Pl The real power transferred between nodes n

and m/ through line l
Qnm/Ql The reactive power transferred between nodes

n and m/ through line l
I. INTRODUCTION

One of the main tools for power system operation and
planning is the power flow algorithm. It is used in the study
of resilience, reliability, and efficiency of power systems [1].
The AC power flow analysis consists of solving a series of
nonlinear equations in order to determine the voltage magni-
tudes and angles at all buses, and then to calculate the active
and reactive power flows and power injections in the system.
It is conducted in both power transmission and distribution
systems. In this paper, we will focus on power distribution
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systems because of their growing importance resulting from
the increasing connection of renewable energy resources.

The AC power flow equations are non-linear and non-
convex [2]. To solve them, the literature suggests several
deterministic and probabilistic methods. For instance, by ap-
plying the adaptive polynomial chaos-ANOVA method, Xu
et [3] develops a probabilistic power flow method. The AC
power flow methods based on the Newton-Raphson (NR)
algorithm to solve the polar sinusoidal equations suffer from
various problems, including sensitivity to initial conditions,
ill-conditioning problems, and fractal behavior. For example,
if the initial value is not selected properly, the algorithm may
diverge. To address this problem, Tostado-Veliz et al. [4] use
Bulirsch – Stoer approach, while Tang et al. [5] uses the trust-
region techniques along with a least-square solution. To deal
with the non-convexity of the power flow equations, various
researchers propose a number of alternative techniques such
as various linearization techniques, including DC power flow
models, and diverse convexification methods. For example,
Yang et al. [6], and Shchetinin et al. [7] use a linearization
technique and Venzke et al. [8] provide a convex relaxation
approach to solve the power flow equations. It turns out that
the linear models may lead to incorrect values for the voltage
magnitudes and the reactive power flows and power injections.
Besides this problem, conventional methods based on the NR
method may suffer from convergence problems due to ill-
conditioning of the Jacobian matrix. This occurs when a power
system either has large R / X ratios [9], or is heavy loaded, or
has some lines with relatively large reactances as compared to
the others. Another problem that the NR algorithm suffer from
is a fractal behavior under certain conditions [10]. In power
systems, this was demonstrated by Thorp and Naqavi [11]. To
address all these problems, we propose in this paper to use
a sinusoidal mapping to transform the power flow equations
into a quadratic form for radial power distribution systems.
The advantage of this sinusoidal mapping is that it makes the
power flow equations quadratic, and hence convex, without
using any approximations.

The rest of this paper is organized in the following way.
Section II explores the polar-form AC power flow equations
and explains the fractal property of the power flow equations
solved by the NR algorithm. The new convex form is explored
by means of a sinusoidal transform function in Section III.
In section V, several case studies on a 22-bus and an 81-bus
distribution system demonstrate the good performance of the
proposed approach. Finally, the conclusions are provided in
Section VI.

II. THE POWER FLOW NR ALGORITHM
We first present the polar form of the power flow equations

and then discuss the NR algorithm’s fractal behaviors.
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A. Polar Form of the Power Flow Equations

By using the Ohm and Kirchhoff laws, real power, Pnm,
and reactive power, Qnm, are derived as follows:

Pnm = gnnV
2
n + gnmVnVmcos(θn − θm)

+bnmVnVmsin(θn − θm); (1)
Qnm = −bnnV 2

n + gnmVnVmsin(θn − θm)

−bnmVnVmcos(θn − θm). (2)

Besides, the real and reactive power balance for each node
is given by

Pn − pn − gnnV 2
n −

N∑
m=1(m6=n)

gnmVnVmcos(θn − θm)

+bnmVnVmsin(θn − θm) = 0 ; ∀n (3)

Qn − qn + bnnV
2
n −

N∑
m=1(m6=n)

gnmVnVmSin(θn − θm)

−bnmVnVmcos(θn − θm) = 0 . ∀n (4)

We assume that we have nP PV buses and nQ PQ buses.
The total number of buses is equal to N . At PV buses, only
the voltage angle is an unknown state variable while at PQ
buses, both the voltage magnitude and angle are unknown state
variables. Hence, considering one of the PV buses as a slack
bus, the total number of the unknown state variables is equal
to nP + 2nQ − 1. Besides the polar form, the power flow
equations can be expressed in the rectangular form. Both forms
of power flow equations are non-linear and non-convex leading
to difficulty in convergence and fractal behavior. In the next
part, we analyze the fractal behavior of the NR algorithm when
solving the AC power flow equations.

B. Fractal Property of the NR algorithm

A fractal object has similar patterns to its portion where
the Hausdorff-Besicovitch fractal dimension noticeably sur-
passes the topological dimension [12]. Recall that the fractal
dimension is the power of scale that is not necessarily an
integer, while that of a geometric figure is always an integer
number. Therefore, their scalability is different. The fractal
dimension is obtained by LogNζ = −D = LogN

Logζ , where
ζ is the scaling factor, D is the fractal dimension, and N
is the number of sticks. Fractals are not differentiable and
cannot be measured in traditional ways. A fractal object’s
main characteristics are self-similarity, which means having
a fine or detailed structure at arbitrarily small scales. Self-
similarity, also known as an unfolding symmetry, can be found
in one of the following categories: exact self-similarity, quasi
self-similarity, qualitative self-similarity (in a time series), and
multifractal scaling [13]. In addition to geometric patterns,
fractals can also characterize stochastic processes. Fractal
patterns with different degrees of self-similarity have been
observed in various areas such as images, sounds, nature,
technology, art, architecture, law, and numerical algorithms.

When the Newton algorithm is used to solve the power flow
equations, it may experience a fractal behavior [11]. This may
occur either under heavy loading conditions, or high values of
one or several line reactances, or the choice of an inappropriate
initial point. To show the fractal behavior of the power flow
equations, we consider a simple three-machine system [11].

By selecting Bus 1 as the slack bus, we get the following
power flow equations:

f1(θ2, θ3) = 0.5− 0.4cos(θ2)− 1.9sin(θ2)

−0.2cos(θ2 − θ3)− 2sin(θ2 − θ3); (5)

f2(θ2, θ3) = 3.9− 1.6cos(θ3)− 7.3sin(θ3)

+0.2cos(θ2 − θ3) + 2sin(θ2 − θ3). (6)

The Julia set of power flow equations of 3 buses system,
solved by the NR algorithm, is shown in Figure 1. The Hurst
exponent, H, of these equations is equal to 0.83 for when
0 ≤ δ1, 2 ≤ 8π. the fractal dimension, D, can be obtained by
D = 2 − H . Hence, the fractal dimension is equal to 1.73.
The fractal dimension shows the level of fractal behavior of
the Julia set.

Fig. 1. The Julia set curves of the NR algorithm for a 3-bus power system
when 0 ≤ δ1,2 ≤ 8π.

To address these challenges, we convert the non-convex
power flow equations into a convex quadratic form by using
a sinusoidal function transform as discussed next.
III. SINUSOIDAL FUNCTION TRANSFORM OF THE POWER

FLOW EQUATIONS

This section discusses the foundation of the sinusoidal
function transformation and how it converts the non-convex
polar form of the power flow equations into a quadratic convex
form.
A. Sinusoidal Function Transform

This transformation starts with the following two equations:

xal = Vncos(θn − θm), ; ∀l (7)

xbl = Vnsin(θn − θm), ; ∀l (8)

where n is the line l that connects node n to node m. By using
this definition, the non-convex equations 3 and 4 are converted
into the convex form as follows

Pn − pn − gnnV 2
n

−
l∑

i=1,mai

giVmxai + biVmxbi = 0 ; ∀n (9)
Qn − qn + bnnV

2
n

−
l∑

i=1,mai

giVmxbi − bnmVmxai = 0 ; ∀n (10)

where m a l means m is the end node of line l. We will now
check that the total number of the variables and equations in
the new form are equal. To this end, we start by assuming
that we have L lines. According to Eqs. (7) and (8), we have
2L state variables. In the new form, the voltage angles are no
longer state variables, while the voltage magnitudes are state
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variables. Hence, the total number of states variables is equal
to A = 2L+NQ. In addition, according to Eqs. (9) and (10),
we have B = 2NQ + NP convex equations. The difference
between the number of variables and equations is obtained by

A−B = 2L+NQ − 2NQ −NP = 2L−NQ −NP . (11)

In radial distribution networks, L = N−1 since NP+NQ =
N − 1. By leveraging these two relationships, the difference
between the number of variables and equations is obtained by

A−B = 2L− (NQ +NP ) = 2L− (N − 1) = L. (12)

This implies that L additional equations are needed when
dealing with a radial distribution power system. These L
equations are Pythagorean equations given by

x2
al

+ x2
bl

= V 2
n .∀l (13)

In addition, the real and reactive power flow equations in the
new convex form are given by

Pl = gnnV
2
n + glVmxal + blVmxbl ; ∀l (14)

Ql = −bnnV 2
n + glVmxbl − blVmxal = 0. ∀l (15)

From our discussion, we infer that we have to first use Eqs.
(7) and then (8) to convert the power flow equations to the new
form. Then, we solve a set of convex equations as provided
in Table 1.

TABLE I
CONVEX POWER FLOW EQUATIONS USING A SINUSOIDAL

TRANSFORMATION

Node-based equations:

Pn − pn − gnnV
2
n −

∑l
i=1,mai giVmxai

+ biVmxbi
= 0 (16)

Qn − qn + bnnV
2
n −

∑l
i=1,mai giVmxbi

− bnmVmxai
= 0 (17)

Line-based equations (Pythagorean identity):

x2
al

+ x2
bl
− V 2

n = 0 (18)

To solve these set of convex quadratic equations, we can use
various approaches. In this paper, we apply the Trust-Region-
Dogleg algorithm [14], [15].

B. Trust-Region-Dogleg Algorithm

For the Newton’ method, the variable state xk+1 is obtained
by Xk+1 = xk + ∆k (16)

0 = ∆k + J−1F (xk) (17)
When the Jacobian matrix is singular, there is no value

for ∆k. In addition, when the initial points are deviant,
the Newton’s method may diverge. The useful approach to
deal with these challenges is the Trust-region algorithm [14].
According to this approach, we check if xk+1 is better than
xk or not via the function Gk(xk, which is defined as

Gk(xk,∆k) = ∆k + J−1F (xk), (18)

where ∆k is given by
Min∆k

1

2
Gk(xk,∆k)TGk(xk,∆k) (19)

To calculate ∆k, the Powell-Dogleg procedure is used. Here,
∆k is a combination of the Cauchy step, i.e, δc, and the Gauss-
Newton step for F (xk),i.e, δgn. ∆k is obtained by

∆k = δc + α(δgn − δc), (20)

where α gets a value between 0 and 1. The α is chosen such
that ∆k is less than a given threshold. The Cauchy step, i.e.,
δc and the Gauss-Newton step, i.e., δgn are obtained by

δc = −βJTF (xk), (21)

δgn = −J−1F (xk), (22)

where β minimizes Eq. (19). When the Jacobean matrix is
singular, ∆k is obtained via the Cauchy step. The detailed
discussion is provide in [14], [15].

After solving the convex forms of the power flow equations
using the trust-region-Dogleg algorithm, we calculate the
voltage magnitudes, the real and reactive power lines, and
the real and reactive power injections at the PV buses. Note
that the voltage angle at the slack bus is set to zero, that is,
θ1=0. First, we calculate the voltage angles of the buses that
are connected to the slack bus and put them in the set Z.
Then, we calculate the voltage angles of the buses that they
are connected to the buses in set Z. We continue this process
through forwarding substitution until all the bus voltage angles
are calculated.

IV. REALISTIC DISTRIBUTION SYSTEMS
A. 3-Phase Distribution Systems

The power flow equations for a 3-phase distribution system
are given by

P inj,pi − V pi
∑

q∈(a,b,c

Nbus∑
j=1

V qj Y
pq
ij cos(θ

p
i − θ

q
j − ψ

pq
ij ) = 0, (23)

Qinj,pi − V pi
∑

q∈(a,b,c)

Nbus∑
j=1

V qj Y
pq
ij sin(θpi − θ

q
j − ψ

pq
ij ) = 0, (24)

where i and j are the bus numbers and a, b, and c are the
bus phases. For this system, there are relationships between
the cosine functions of angles, resulting in nine new convex
equations according to various combinations of angles. By
using the sinusoidal function transform discussed earlier, the
final form of these equations are: V a,b,cj x1 = x2x3 + x4x5,
which have a convex quadratic form. Note that the proof is
out of the scope of this paper.
B. Synchronous Generator-Based Distribution Generation

The real and reactive power generated by a droop-controlled
synchronous generator-based DG’s are expressed as

P 1
G,i = ηi(w0,i − w) (25)

Q1
G,i = µi(V

1
0,i − |V 1

i |) (26)
Considering the frequency as the variable in the power flow

equations while using Eqs.(25) and (26) do not change their
convex quadratic form. Note that the proof is out of the scope
of this paper.

C. Distribution Systems With Various Load Models

1) Induction motors loads: As described in detail in [16],
the real and reactive power consumed by the induction motors
are given by

P IM
trl =

(
Rs1r +

Rr1r
Sr

)
· V 2

n

(Rs1r +
Rr

1r

S1r
)2 + (Xys

1r +Xyr
1r)

2
(27)
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QIM
trl = (Xys

1r +Xyr
1r) ·

V 2
n

(Rs1r +
Rr

1r

S1r
)2 + (Xys

1r +Xyr
1r)

2
(28)

S1r =
(W s

1r −W r
1r)

W s
1r

(29)

2) Polynomial load model: As described in detail in [16],
the real and reactive power consumed by a polynomial load
model are expressed as

P ZIP
n = P1(

Vn

V ref )2 + P2(
Vn

V ref ) + P3 (30)

QZIP
n = Q1(

Vn

V ref )2 +Q2(
Vn

V ref ) +Q3 (31)

For these load models, the power flow equations maintain their
convex quadratic form.
D. Meshed Distribution Systems

a) Loop with 3 nodes b)  Loop with 4 nodes

 cos (θ4- θ3)cos (θ3- θ2)

co
s 

(θ
3-

 θ
2)

cos (θ2-θ1)

 c
o

s 
(θ

4-
 θ

1)

θ2

θ2θ1
θ1

θ3 θ3θ4
Fig. 2. Meshed distribution systems where the voltage angles are state
variables.

For meshed distribution systems, we can rewrite cos(θ3−θ2)
as cos((θ3−θ1)+(θ1−θ2)). Recall the following trigonometry
identity: cos(a+ b) = cosa cosb− sina sinb. By putting a =
θ3−θ1 and b = θ1−θ2, we obtain a product of sine and cosine
functions for each line. If we put xa = cosa, and xb = sinb,
we get xa3 = xa2xa1 − xb1xb2. Here, a3 means that a is
related to Line 3. In general, we can write this equation as
follows: x3 = x2x1 − x4x5, which is convex quadratic.

V. CASE STUDIES
In this section, we use the proposed convex quadratic

form to calculate the power flow equations of various case
studies including, the 18-bus power distribution System [17],
the 22-bus power distribution system [18], the 69-bus power
distribution system [19], the 85-bus power distribution system
[20], the 141-bus power distribution system [21], and the IEEE
906-bus European Test Feeder [22]. This section evaluates the
performance of the convex quadratic form under heavy loads,
large values of the line resistances and the reactances, and
deviant initial points. To clarify the strength of the proposed
model, we compare the convex quadratic form results to those
of the conventional polar form. For both forms, we use the
Trust-Region-Dogleg algorithm to solve the set of power flow
non-linear equations.

1) Effect of Heavy Loads on the Power Flow Solutions:
Table II provides the number of iterations, the residual, and
the number of operations for various case studies for both the
polar and the convex quadratic forms when the power system
is under heavy loading conditions. Noe that the residual is the
solution error upon convergence of the power flow algorithm.
The simulations are performed for different cases as explained
next. Firstly, we increase the load 4 times and then 32 times.
When using the polar form, the residual significantly increases
(e.g., 1.40 × 104.), indicating that the power flow results are
inaccurate. When the load in the 22-Bus power distribution
system increases 32 times, the algorithm based on the polar
form does not converge while when it is based on the convex
quadratic form, it converges to an accurate solution. When the
load in all the five tested distribution systems increases from

TABLE II
POWER FLOW CALCULATION OUTPUTS FOR VARIOUS CASE STUDIES

USING THE POLAR AND THE QUADRATIC FORM UNDER HEAVY LOADING
CONDITIONS.

Forms Case study Load growth Iterations Residual Number of
operations

Po
la

r
fo

rm

18−Bus Power
Distribution

System

1 4 6.86e− 14 175
4 2862 65.518 100001
32 2863 1.40 + 04 100002

22− bus Power
Distribution

System

1 5 2.93e− 17 258
4 5 6.64e− 20 258
32 - - -

69− bus Power
Distribution

System

1 78 4.02e− 04 9735
4 736 0.0737 100017
32 744 31.735 100025

85− bus Power
Distribution

System

1 5 2.61e− 12 1014
4 619 0.0209 100076
32 594 1.476 100051

141− bus Power
Distribution

System

1 54 0.0024 13775
4 372 0.6562 100053
32 473 1.07e+ 02 100154

C
on

ve
x

Q
ua

dr
at

ic
fo

rm

18−Bus Power
Distribution

System

1 4 5.03e− 22 260
4 4 2.48e− 22 260
32 4 2.40e− 22 260

22− bus Power
Distribution

System

1 5 3.46e− 14 384
4 5 3.67e− 14 384
32 5 5.29e− 14 384

69− bus Power
Distribution

System

1 9 9.33e− 08 2050
4 9 9.34e− 08 2050
32 9 9.37e− 08 2050

85− bus Power
Distribution

System

1 5 5.38e− 16 1518
4 5 5.51e− 16 1518
32 5 7.65e− 16 1518

141− bus Power
Distribution

System

1 16 4.16e− 11 6737
4 16 4.35e− 11 6737
32 16 1.71e− 08 6737

1 to 4 to 32 times, the number of iterations of the algorithm
based on the quadratic form remains constant. When the load
in the 18-Bus power distribution system is increased 32 times,
the residual of the polar form is 65.518 while that of the
convex quadratic form is 2.48 × 10−22. In other words, the
residual has been improved by a factor of 3.785×10+20, which
is significant. As for the number of iterations and of operations,
they have been decreased by a multiplicative factor of 715
and 384, respectively, in some scenarios. This demonstrates
the excellent performance of the quadratic form under heavy
loading conditions.

2) The Effect of the Increase of the Line Resistances and
Reactances.: Table III provides the results of the power flow
calculation based on the polar and the quadratic form when the
line resistances or/and reactances are increased. We consider
5 scenarios for each case study of either form. For the 18-
bus and the 69-bus power distribution system, we increase
the resistance or/and reactance of Line 3. Then, we increase
the resistance or/and reactance of all the lines of the 141-bus
power distribution system. In the polar form, residual increases
significantly. For example, for the 18-bus power distribution
system, when the reactance of Line 3 is increased 100 times,
the residual of the algorithm based on the polar form amounts
to 6.404 while that based on the quadratic form amounts to
9.41 × 10−15. In other words, we improve the residual by a
factor of 1.469 × 10+15, which is significant. Furthermore,
the algorithm based on the polar form does no converge
scenarios 2-5 for the 69-bus power distribution system as
described in Table III. According to the simulation results, the
numbers of iterations and of operations have been improved
by a factor 716, and 384 times in some scenarios. Obviously,
when the line resistances or/and reactances are increased,
the performance of the power flow calculations based on the
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TABLE III
THE OUTPUTS OF THE POWER FLOW CALCULATIONS FOR VARIOUS

VALUES OF THE LINE RESISTANCES AND REACTANCES.
Forms Case study R× X× Iterations Residual Num. of

Ope.

Po
la

r
fo

rm

18−Bus Power
Distribution

System
(Line 3)

1 1 4 6.86e− 14 175
1 100 2865 6.404 100004
100 1 2865 2.835 100004
100 100 2868 7.500 100007
1e+ 4 1e+ 4 2867 12.799 100006

69− bus Power
Distribution

System
(Line 3)

1 1 78 4.02e− 04 9735
1 1e+ 4 797 0.0658 100078
1e+ 4 1 - - -
1e+ 4 1e+4 - - -
1e+ 6 1e+6 - - -

141− bus Power
Distribution

System
(All lines )

1 1 54 0.0025 13775
1 1e+ 4 - - -
1e+ 2 1 - - -
1e+ 2 1e+ 4 - - -
1e+ 3 1e+ 5 - - -

C
on

ve
x

Q
ua

dr
at

ic
fo

rm

18−Bus Power
Distribution

System
(Line 3)

1 1 4 5.034e− 22 260
1 100 4 9.41e− 15 260
100 1 4 1.99e− 20 260
100 100 4 2.31e− 14 260
1e+ 4 1e+ 4 8 2.16e− 10 468

69− bus Power
Distribution

System
(Line 3)

1 1 9 9.33e− 08 2050
1 1e+ 4 11 1.65e− 08 2460
1e+ 4 1 10 1.88e− 08 2255
1e+ 4 1e+ 4 11 1.75e− 07 2460
1e+ 6 1e+ 6 495 0.0037 100048

141− bus Power
Distribution

System
(All lines)

1 1 16 4.16e− 11 6737
1 1e+ 4 26 1.81e− 04 9267
1e+ 2 1 7 5.94e− 17 3368
1e+ 2 1e+ 4 214 1.71e− 04 87995
1e+ 3 1e+ 5 29 2.34e− 05 11370

TABLE IV
THE OUTPUTS OF THE POWER FLOW CALCULATIONS FOR VARIOUS

INITIAL POINTS USING THE QUADRATIC FORM.

Forms Case study Initial
V alue× Iterations Residual Number of

operations

C
on

ve
x

Q
ua

dr
at

ic
fo

rm

18−BusPower
Distribution

System

1 4 5.03e− 22 260
±20 12 2.90e− 16 676
±100 16 3.94e− 16 884

22− bus Power
Distribution

System

1 5 3.46e− 14 384
±20 12 4.21e− 19 832
±100 16 5.98e− 20 1088

69− bus Power
Distribution

System

1 9 9.33e− 08 2050
±20 17 7.64e− 08 3690
±100 21 1.18e− 07 4510

85− bus Power
Distribution

System

1 5 5.38e− 16 1518
±20 13 1.64e− 13 3542
±100 17 6.62e− 12 4554

141− bus Power
Distribution

System

1 16 4.16e− 11 6737
±20 33 4.28e− 08 12634
±100 27 5.92e− 11 11368

IEEE 906−Bus
European

Test Feeder

1 11 2.141e− 07 32592
±20 18 3.11e− 07 51604
±100 24 7.61e− 07 65185

quadratic form has significantly improved as compared to the
calculations based on the polar form.

3) The Effect of Deviant Initial Conditions: Table IV pro-
vides the results of the power flow calculations based on the
quadratic form for highly deviant initial points. The simulation
results show that the quadratic form is robust to deviant initial
points. When the initial values are increased 20 and 100 times,
the number of iterations and of operations typically increases
a little.

VI. CONCLUSIONS
In this paper, we present a new transformation of the AC

power flow equations. Our proposed algorithm significantly
alleviate the fractal behavior. We show that our approach is
robust to heavy loads, high values of the line resistances and
reactances, and deviant initial points. The performance the AC
power flow calculations are significantly improved. As for the
residuals, they are decreased by 3.785×10+20 when using the
proposed convex quadratic form. The number of the iterations
and of the operations are decreased 716 and 384 times in some
scenarios.
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